GL02733

PROGRAM PLAN - USAF-TAC

DEVELOPMENT OF A GEOTHERMAL SPACE HEATING SYSTEM AT MOUNTAIN HOME AIR FORCE BASE

1.0 Executive Summary

The potential for the existence of geothermal waters beneath Mountain Home AFB has been postulated for years. This project will establish the characteristics of the geothermal resource under the base and if favorable for development, will culminate in the use of the resource for space and hot water heating of the residential areas on the base.

The project will be developed in three phases. Phase I focuses on reservoir exploration and assessment activities including the drilling of small-diameter thermal gradient holes and on the conceptual design of the space and hot water heating system. This work will provide an updated assessment of the potential for a reservoir beneath Mountain Home AFB, a refined estimate on system economics based on data from the small-diameter holes, and a specific location will be selected for the future drilling of a production well. The total estimated time for Phase I is one year, and the estimated cost is \$350,000.

Phase II involves the drilling of the production well, well testing and analysis necessary to make predictions concerning the long-time capabilities of the reservoir. This information will be integrated into an update of the system conceptual design and system economics. The total estimated time for Phase II is 14 months, and the estimated cost is \$669,000 (includes a 25% contingency).

Phase III provides the detail design, construction, installation and testing of the space and hot water heating system. The total estimated time for Phase III is 25 months, and the estimated cost is \$9,259,000 (includes a 25% contingency).

2.0 Introduction

The proposed program is designed to provide the USAF with supplemental space and hot water heating for the residential portion of Mountain Home AFB through the utilization of geothermal energy.

A three-phased approach is proposed. Phase I will focus on reservoir exploration and assessment activities and on the conceptual design of the space heating system.

Phase II will provide a production well and the necessary reservoir engineering to proceed with Phase III. Phase III is the most expensive portion of the program, for it provides for the detail design and construction of the space heating system.

Figure 1 shows the overall plan for the Mountain Home AFB geothermal space heating scenario from initial exploration and assessment activities through system design and construction.

3.0 Scope of Work

This section discusses the scope of work necessary to accomplish the objective outlined in Section 2.

3.1 Phase I Work Breakdown Structure (WBS)

3.1.1 Exploration and Assessment

The potential for the existence of geothermal waters beneath Mountain Home Air Force Base has been postulated in numerous reports for the past several years. To date however, no direct evidence of a geothermal resource has been found, no detailed conceptual resource models have been developed, and no drilling has taken place at sufficient depth to test for any occurrence of a geothermal resource. This proposal covers the work necessary to develop geological data aimed at siting thermal gradient test holes and then to test the deep thermal regime at Mountain Home AFB by drilling these small-diameter thermal gradient holes.

GEOTHERMAL SPACE HEATING MOUNTAIN HOME A.F.B. FY 83 FY 84 FY 85 FY 86 FY87 FHASE IT PHASE Pie-production System Conceptual Explanation and assessment Drill production Deshn well activities) Reservoir and system engineering • Data acquisition • Well design · Perform geologic work · Environmental Assessment · Torget thermal grudiant welks · Drilling Permits · Bid and award drilling contract · Award drilling contract • Drill thermal gradiant wells • Test and interpret results PHASE III " Trade off studies and analysis Construction and Tile I TitleII 5.0. ·Design layours and schematics design) Title III y design) TESTS Construction

herma

Spai

Hea

ting

P-] an

The geologic portion of this work will be divided into three components:

- Collection, synthesis and interpretation of available data;
- Generation of new geological, geochemical and geophysical data as necessary to fill gaps in the existing data base and to allow sites to be selected for drilling thermal gradient test wells, and;
- Drilling of 2 or 3 small-diameter thermal gradient test wells to aid in selection of sites for the drilling of production and injection wells.

The product of this project will be a report to the Air Force, discussing not only the detailed results of the geological program, but also the economics and engineering of developing the deep geothermal resource. Most importantly, the report will contain recommendations regarding whether to proceed to production drilling, and will suggest how the production drilling phase of the program should be conducted. Figure 2 shows the schedule for this work.

Part 1 - Collection, Interpretation and Synthesis of Available Data

The goal of Part 1 of the proposed study is to develop a preliminary model of geothermal resources in the vicinity of Mountain Home Air Force Base for use in estimating the liklihood of occurrence of a resource on or near the base proper and for estimating the water temperature, quality, and productivity that might be expected at depth. Part 1, based entirely on existing data, is composed of data compilation, interpretation and model development stages. A briefing will be given to Mountain Home personnel at the conclusion of this part.

Data Compilation

Because there are very little data on geothermal potential at Mountain Home AFB project, most of the existing data to be compiled and interpreted will be regional in nature. Data on the geothermal, hydrologic, geological,

Task	٦	2		л	1 -	c .							(leeks)											
	1	٢	3	4	5	6	/	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24		26
Program Management	.		<u> </u>		,	:			• ••••					• • •		•••••	•	•								
Part 1					!	1				•																
Compiled Data			:							1					1- 								1		ļ	
Preliminary Model			¦ 		-	ſ																			1	
USAF Briefing			t	~	•	i r				· · · · ·			:		4 9 1										1	
Part 2			:										•											••		-
Model Refinement			:							•			1													
Geology			-							:							1								1	
Geochemistry			1					 		1			•													1
Geophysics							-			÷							;									ţ
Modeling			:					;																		•
Target wells						1 1							1		: : :		, ; ;		; ;							
Part 3						-																	•			
Drilling										;	•						- - -		1						1 1 1	
Bids								+		: 					1		4 1 1 1									1
Drill																							1			
Log										:							, ,								:	
Case										:								••							1	
Establish Equilibrium		-						-													_					
Thermal Log					1											•	,									, I
Interpret Results										:			: :						1						i 1	
Report Prep.						•				:	}				1				1							
USAF Briefing					:	:							i 				;		1				•	• •		
					i.	;							1												•	

Assumptions are that drill bids on street for two weeks, driller immediately available, and no institutional delays, either Air Force, Department of Energy, State Federal or local regulations or land status problems will arise. Three holes drilled at eight days each.

Figure 2. Exploration and Assessment Schedule

geochemical and geophysical environments of the Snake River Plain in the vicinity of Mountain Home AFE exist in published and unpublished formats. Most published data on the geothermal resources and many reports on geological, geochemical, and geophysical characteristics of the Snake River Plain are on file at the ESL library. Unpublished well logs and other data including geochemical data exist at the Idaho Department of Water Resources in Boise. The U.S.G.S. District Office in Boise has had professionals working on the hydrology of the Snake River Plain for many years, and has both unpublished and open-file data pertinent to this project. The U.S. Department of Energy in Idaho Falls has data from two deep geothermal wells in the Snake Plain, which pertain to possible drilling conditions at Mountain Home. Other important sources of information are studies that have been made of the Boise, Twin Falls, Bruneau-Grandview and other hydrothermal systems in the Snake River Plain. These sources of information will be used and all relevant data will be assembled.

Preliminary Model Development

The existing data will be integrated and interpreted, in order to develop a likely target model for the existence of geothermal resources beneath or near Mountain Home AFB. This model will be based on geologic, structural and stratigraphic data, and regional geochemical and geophysical information and will include input from the known geothermal systems on the Snake River Plain.

USAF Briefing

The results of Part 1 will be presented to the USAF at Mountain Home AFB. This briefing will keep USAF apprised of progress on the program.

Part 2 - Selection of Sites for Slim-hole Thermal Gradient Drilling

The goals of Part 2 of this study are to refine the target model for geothermal resources developed in Part 1 by collecting appropriate new data on Mountain Home AFB, and to test the thermal component of the resource model by drilling 2 or 3 deep thermal gradient holes. Geological, geochemical, and geophysical studies will be undertaken to refine the model. Subcourracting and drilling of thermal gradient holes will be the major time and financial commitment in Part 3. A comprehensive final report will be prepared.

Model Refinement

The target model developed in Part 1 will be based on identification of likely water-bearing rock units that may exist at depth, location of fault and fracture channels that could allow upward circulation of deep, warm waters into shallower horizons and other appropriate data. New data to be compiled during Part 2 will be used to refine the resource model and to locate specific fracture channels, in order to site optimally the thermal gradient holes.

Geologic data on stratigraphy will be supplemented through field investigation of the anticipated deep aquifers where they crop out along the Snake River Plain. Fault and fracture analysis will be done through interpretation of aerial photographs and satellite images.

Appropriate new groundwater geochemistry data will be obtained from existing cold and warm wells and springs, in order to refine water-rock interaction models, to postulate the kind of rocks the waters have circulated through and to perform chemical geothermometer analyses. This will help refine expected sursurface temperature estimates.

Geophysical studies will emphasize identification of deep fractures along which water could circulate, and, if detectable, deep thermal aquifers. Appropriate wells on and near Mountain Home AFB for which no available precise data on water temperature or thermal gradient measurements can be found, will have such measurements made. Relevant private sector geophysical data such as oil company seismic data, will be identified and purchased (if appropriate) and interpreted during Part 2. New Part 2 site-specific data will be used to supplement the regional data of Part 1, and modify the preliminary resource target model as appropriate for the anticipated conditions at the base.

The refined geologic model will be used to select the optimum sites for drilling thermal gradient holes.

Part 3 - Thermal Gradient Drilling

Relatively deep, small-diameter thermal gradient holes are commonly used by the geothermal industry in exploration in terrains such as that at Mountain Home AFB, where a shallow cold-water aquifer may mask deeper thermal waters. It is anticipated that up to three such holes, as deep as 2000 feet, may be drilled during Part 3 of this program. These holes will provide temperature, heat flow, rock property, and water chemistry data, which will be used to infer the nature of any deeper geothermal resource.

Although well design and bid package preparation are relatively straightforward for thermal gradient holes, commencement of drilling will be controlled by bid responses and drilling mobilization time. It must be emphasized, even at this early stage, that drilling costs usually increase dramatically during freezing weather. Drilling of the gradient holes therefore, should be completed prior to mid-November 1982, or following March 1983.

Preliminary evaluation of drilling conditions and programs suggests that approximately eight days will be required for drilling, geophysical logging, and casing each hole. This time estimate is subject to much variation, depending on lithologies encountered and attendant drilling problems.

Drilling disturbs the natural thermal conditions around a well, by the introduction of surface temperature drilling fluids. It is necessary, therefore, to allow time for the wells to reach thermal equilibrium before accurate thermal gradients can be measured. Two weeks are allowed in the schedule for thermal equilibrium to be reached; this should be adequate. Once thermal equilibrium is reached, detailed temperature profiles of the wells will be made.

Data Interpretation, Report Preparation

The data from the drilling program will be interpreted to modify the resource target models as required, and to infer the nature of deeper geothermal resources near the base, as appropriate. The most likely site for the production well will be identified.

Report Preparation, USAF Briefing

All of the data from the program will be combined into a final report to the USAF, which will include an estimate of geothermal resources likely to be encountered at the base. This report will be presented to the USAF at a briefing at Mountain Home AFB.

3.1.2 System Conceptual Design

Upon receipt of preliminary site specific information from the exploration and assessment activities, work will proceed on the conceptual design of the space and water heating system for the base. Trade-off studies will be performed, economic evaluations updated to reflect input of new data, and analysis necessary to back up the conceptual design will be done.

The conceptual design report resulting from this effort will also include preliminary engineering schematics showing the distribution system, site plans, P&IDs, and individual housing sketches.

3.2 Phase II WBS

3.2.1 Pre-production drilling activities

A drilling consultant will be secured to insure a safe and successful design and completion of the well. It is well understood that the inclusion of local drilling expertise in a project of this magnitude is very cost effective.

The drilling consultant will aid in the following functions which will include but not be limited to: designing the well, preparing and distributing the drilling contractor bid invitation, selection of drilling contractor, supervision of drilling and geophysical logging operations, supervision of casing the drill hole, and ascertaining that all drilling and testing operations comply with all state and federal regulations.

The advance planning of all aspects of the drill hole will assure the proper match between the drill hole, geologic conditions and planned fluid production, as well as provide input for the Environmental Assessment and permitting processes. The ultimate controlling factor affecting the well design is the size of casing required to produce geothermal fluid at the prescribed rate. That objective. along with knowledge of the stratigraphic section to be penetrated and special drilling problems provide the input for a set of programs that define the drilling and completion of the well. The drill bit program optimizes the types of bits to be used in each depth interval or formation. The drilling fluid program defines the drilling fluids to be used to most efficiently drill each formation; special emphasis will be placed on controlling lost circulation. The casing program will detail the size(s) and length(s) of casing to be placed in the drill hole and at what depths. The cementing program will define in detail the procedures and equipment to be used to cement the casing into the drill hole.

An environmental assessment document will then be prepared according to the requirements of AFR 19-2. It is anticipated that the document will include eight sections as follows:

- Introduction Brief overview of the project. The discussion would include such topics as program objectives, location and schedule of major development activities.
- <u>Description of the Proposed Activity</u> Discussion of the regions drilling history, exploration program, proposed well design, drilling schedule, well testing, fluid disposal, well control, etc.
- 3. <u>Description of the Existing Environmental and Potential Environmental</u> <u>Concerns</u> - Address geological hazards, air quality, and water quality protection and concerns, floral and faunal impacts, etc.
- 4. <u>Alternatives</u> Reaffirm that the trade-offs involved in developing the geothermal resource at that site are favorable compared to other energy options.

- <u>Restoration</u> Plans and procedures that would be used to restore the site and/or close the well (if well is to be abandoned).
- 6. <u>Irreversible and Irretrievable Impacts</u> Describe such impacts that may result from the proposed development, if any.
- 7. <u>Monitoring Program</u> Define the analyses to be performed on the geothermal fluids. Describe any other environmental monitoring programs planned or required for the project.
- 8. <u>Regulations and Permits</u> As a minimum the following information should be provided:
 - Document the right to develop the geothermal resource
 - Approval of drilling activity
 - Fluid disposal approval
 - Air discharge waiver (if needed)

Finally, the necessary permit will be obtained, and a drilling contract for the production wells will be awarded after a formal bid process. The RFP for the drilling contract will provide the dimensions of the hole to be drilled, the procedures to be followed, and the anticipated schedule.

This stage of the project will optimize the prospects for an economically drilled, and successfully completed drill hole. The selection of a drilling contractor will be done by the project management team in conjunction with the drilling consultant.

3.2.2 Drill Production Wells

The necessary site preparation will be done prior to the arrival of the drill rig on the site; a mud pit and a secondary pit for fluid collection and cooling during well testing will be dug and lined (if necessary).

Drilling will then commence at the earliest date consistent with completion of the Environmental Assessment and securing necessary permits. All aspects of drilling will be supervised by ESL personnel with the assistance of the local drilling consultant. Appropriate hydrologic monitoring during drilling will be by Reservoir Engineering and Resource Development personnel.

Immediately following initial logging of the wellbore, the well will be completed by installing the production casing, cementing it in place and air-lifting to clean the production zone.

3.2.3 Reservoir Engineering

This task will be initiated upon completion of the well drilling and logging operations. The well will be tested in order to infer reservoir size, evaluate hydraulic characteristics, and assess long-term well production capability. Well testing will consist of a series of short-term (one hour to several days) pulse tests to provide early time data relative to boundary conditions and thermal effects. The data collected from the pulse tests will be utilized to select the optimum flow rate for a longterm constant rate flow test, approximately three to four weeks in duration.

Data will be collected to determine the following well parameters: specific capacity, well efficiency, productivity index, skin factor, wellbore storage, aquifer transmissivity (T) and storage coefficient (S), aquifer permeability (K), or thickness-permeability product (kh), and porosity-compressibility thickness-product (Oc₊h). Analysis of data will be divided into two parts: geologic results and interpretation of the drilling, logging, and rock and water sampling program, and results and interpretation of the aquifer testing program.

The analysis of the drilling and logging program will include details of the drilling program, downhole interpretation of the rock units encountered, interpretation of the well logs, and results of rock and water chemical analyses. An analysis of the drilling, with suggestions for procedures to be used in a wellfield development program, will be provided, and this information will be integrated into an update of the system conceptual design and system economics.

The results of the Phase II work will be reported to the USAF in a formal briefing at Mountain Home AFB along with recommendations concerning the Phase III Space Heating System Design and Construction activities.

3.3 Phase III WBS

The most costly phase of the geothermal space and hot water heating system is Phase III. The work involved in this phase will be Title I and Title II design including system and equipment specifications, design analysis, engineering drawings, etc. A construction contract will be awarded, Title III inspection and as-built drawings produced, and the completed system will be tested.

4. Cost Estimate

Costs estimates for Phases I, II, and III are as follows:

	Base	With Contingency
Phase I -	\$ 350,000	\$ 350,000
Phase II -	535,000	669,00 0
Phase III -	7,407,000	9,259,000
Total:	\$8,292,000	\$10,278,000

All estimates are in 1982 dollars.

Details of the cost basis for Phase I are shown on Table 1. This estimate includes a detailed analysis of the tasks that are necessary to select slim drill sites, drill the slim holes, select the production well drill site and assess project economics. The base costs for Phase II and III have been obtained from the optimistic case summarized in Section 5 of this proposal. Specific cost items for Phase II are summarized on Table 2. The Phase III costs include all of those remaining in the optimistic case.

To take into account the optimistic assumptions in this base case, the Phase II costs have arbitrarily been increased by twenty-five percent. This contingency is on top of the normal engineering contingency of 10% which is included in the base case.

Phase II cost estimates also include the assumption that a suitable surface disposal method can be found for water produced during well testing. If this is not the case, an injection well will be required before testing can begin.

TABLE 1

PHASE I COST ESTIMATE

A. Resource Assessment

Part I - Preliminary Model Development

Salary & Benefits	\$ 5,000
Supplies, Travel, Reporting	2,000
Consultants	2,000
Indirect, G&A	 6,000
	\$ 15,000

Parts II & III-Thermal Gradient Well Siting & Drilling

	Salary & Benefits Supplies, Travel, Reporting Data Processing Consultants Indirect, G&A	33,000 9,000 2,000 3,000 2,800 \$ 75,000
	Total Parts I, II, III:	\$ 90,000 ·
Β.	Engineering Contractor	
	Environmental Report & Permitting Hydrology Conceptual Design, Engineering	\$ 10,000 4,000 26,000
	Management and Travel	20,000
		\$ 60,000
С.	Thermal Gradient Hole Drilling (up to 3 holes)	\$200,000
	Total Phase I	\$350,00 0

W/ JZ 20 June 83

170K

Table 2

PHASE II COST ESTIMATE

Well Drilling	\$ 350,000
Permitting & Environmental Analysis	20,000
Pumps & Piping	50,000
Testing & Analysis	50,000
Update System Conceptual Design & Engineering Analysis	50,000
Report	15,000
	\$ 535,000

Note: These costs do not include site restoration, which would be required if the well was a failure and the program terminated. Approximate restoration costs are \$25,000.

8. Projected System Economics

Estimates have been made of the total cost of providing residential space heating at Mountain Home AFB, using geothermal energy. The characteristics of the geothermal resource at the base itself are not known so two sets of cost projections were made, one with a set of cost conservative assumptions and one with optimistic assumptions. The assumptions used for each case are shown in Table 3.

Payback periods were calculated for each case: Optimistic: 5.2 years simple payback 7.1 years discounted (7%) payback

Conservative: 9.1 years simple payback 15.0 years discounted payback

The optimistic case demonstrates that geothermal energy has the potential to be very attractive economically. The conservative assumptions result in an unacceptable payback and emphasize the need for careful analysis as the project proceeds. During Phase I more detailed engineering studies will be made to more precisely pinpoint the costs and study the factors which lead to the unacceptable payback. The key differences between the two cases relate to resource quality, in terms of depth, temperature, and water quality. Our current information supports the optimistic assumptions. Phase I resource evaluation and slim hole drilling will reduce the uncertainty in these assumptions, particularly in the area close to the housing where it will be most desireable to drill the production wells. A recommendation to proceed will be contingent on obtaining ten year or less discounted payback for the system.

The optimistic geothermal system can be expanded to accommodate load growth either by the addition of more production wells or a heat pump at the injection well site. The heat pump option could provide 165°F water at the injection site for about \$2.70/MMBtu. This cost includes operating and capital costs. It does not include the cost of a distribution system to transfer the energy to the point of use. <u>Optimistic Case Description</u> - The optimistic system consists of a heating system in which the geofluid flows through heating coils in each residence to provide space and water heating. The production well is located on one side of the residential area and the injection well on the other side. The system provides 50% of the peak heating load with 30% of the peak water heating load. Ninety-four percent of the annual load is provided by geothermal and existing furnaces provide peaking. Production well flow of 1200 gpm at 160°F water is assumed. One production well serves the entire residential area of 1538 units. The production and injection wells are located adjacent to the residential area. Capital and operating costs are shown in Tables 4 and 5.

<u>Conservative Case Description</u> - The geothermal fluid is assumed to be of poor quality and not suitable for use in a direct heating system. Heat is exchanged from the geofluid to an intermediate loop, and a heat pump and heat exchanger transfer heat from the intermediate loop to a heat delivery system. One well producing 500 gpm is used (with a heat pump) to heat 85% of the residences. A heat pump is cost effective with these conservative assumptions because a central heat exchange point is required with piping to both wells from that point, and multiple wells would be required without a heat pump. The production well is located 10,000 feet from the residential area, and the injection well is 800 feet away.

TABLE 3

Mountain Home AFB Geothermal Space Heating

Assumptions and System Descriptors

•

	Parameter	Optimistic C Case	onservative Case
1	Number of Production Walls	٦	J
1. 2	Number of Injection Wells	1	1
۲. ک	Number of Posidonces Hosted	1529	1207
э. Л	Wall Production Pate	1000 apm	500 apm
4. 5	Well Injection Pate	1200 gpm	500 gpm
э. с	Wellhead Tomporature		
0. 7	Production Woll Donth	100 F	100 F
7. 0	Injection Wall Dopth	3500 ft	6000 ft
0. 0	Painiaction Temperature	100°F	
э. 10	Production Well Lift	100 ft	600 ft
10.	Injection Processon	400 TC	200 nci
12	Moll Cost	\$100/f+	\$100/f+
12.	Production Injection Woll Separation	5500 ft	10 800 ft
13.	Production Wall Provinity to use	200 ft	10,500 ft
14.	Injection Well Provimity to use	200 ft	10,000 ft
15.	Intermediate Heat Exchangen Required	200 TL	SOU IL
10. 17	Hest Rump Delivery Temperature	NU A	162
17.	Heat Pump Return Topponature	N/A	100 -
10.	Design Tomporature	N/ A	
19.	Annual Degree Dave		
20.	Annual begree bays	5939 EC1 D+11/9F	2222
21.	Geothermal Fraction of Design Load	Unit 50%	501 5007 Unit 50%
23.	Geothermal Fraction of Annual Load	94%	94%
24.	Domestic Hot Water Load	19x10 ⁶ BtuY/unit	19x10 ⁶ BtuY/un
25.	Water Heating Energy Delivery Rate	4.5 kW	4.5 kW

		Optimisti c	Conservative
	Parameter	Case	Case
	•		
26.	Well Maintenance (per well-year)	S1 900	\$30,00 0
27.	Heated Air Distribution System	Existing	New
28.	Building Spacing	Per Drawing	Per Drawing
29.	Operating and Maintenance Crew	Existing	Existing
30.	1982 Natural Gas Costs	\$5.59/10 ⁶ Btu	\$5.59/10 ⁶ Btu
31.	Natural Gas - Real Escalation	per Fed. Reg.	Per Fed. Reg.
32.	1982 Electricity Rate	2.4¢/kWh	2.4¢/kWh
33.	Electricity - Real Escalation	2%	2%
34.	1982 Oil Costs	\$1.34/gallon	\$1.34/gallon
35.	Oil - Real Escalation	2%	2%
36.	Discount Rate	7%	7%

•

.

.

.

TABLE 4 Mountain Home Air Force Base Geothermal Space Heating Capital Costs

,

Cost Item	Optimistic Case	Conservative Case
Resource Exploration & Identification (Phase I)	350,000	350,000
Permitting & Environmental Assessment	20,000	20,000
Field Development		
Production Wells Injection Wells Collection & Reinjection Piping Production & Injection Pumps	350,000 350,000 - 112,000	500,000 600,000 304,000 79,000
Pump Installation (30%)	34,000 ·	24,000
Subtotal-Exploration & Development	1,216,000	1,977,000
Equipment		
Distribution Piping Filters Heating System Pumps Surge Tanks Heat Pumps	2,363,000 150,000 6,000	2,244,000 128,000 9,000 13,000 394,000
Residential In-House Equipment & Hookup Equipment Building System Heat Exchangers	1,166,000 N/A N/A	1,645,000 17,000 279,000
Subtotal-Equipment	3,685,000	4,729,000
Instrument & Control (10% Equip) Labor (30% Equipment + I&C)	368,000 1,216,000	473,000 1,561,000
Subtotal-Direct Costs (except Field Development)	5,269,000	6,763,000
Construction Management (15% Direct Costs) Design (5% Direct Costs)	790,000 263,000	1,014,000 338,000
Subtotal Installed Equipment Field Development (from above)	6,322,000 1,216,000	8,115,000 1,977,000
Subtotal Project Costs	7,538,000	10,092,000
Contingency (10%)	754,000	1,009,000
TOTAL	\$8,292,000	\$11,101,000

.

TABLE 5

Mountain Home Air Force Base

÷

Geothermal Heating Operation Costs

Cost Item	Optimistic Case	Conservative Case
Geothermal System		
Electricity at 2.4¢/kWh		
Water Heating - Peaking Production Well Pump Injection Well Pump Heat Pump Heating Loop Circulation	\$ 9,000 20,600 7,400 N/A N/A	\$ 7,700 10,700 7,600 161,100 1,300
Subtotal Electricity	\$37,000	\$188,400
Natural Gas at \$5.59/10 ⁶ Btu		
Space Heating - Peaking Water Heating - Peaking	14,300 3,400	12,200 2,900
Subtotal Gas	\$17,700	\$ 15,100
Oil at Sl.34/gallon		
Space Heating - Peaking	62,100	52,800
Subtotal Oil	\$62,100	\$52,300
Maintenance		
Wells System (over existing system)	3,800 40,000	60,000 47,000
Subtotal Maintenance	\$43,800	\$107,000
Total Annual Costs	\$160,600	\$363,300
Existing System		
Electricity at 2.4¢/kWh	148,600	126,300
Oil at 1.34/gallon	1,034,800	879,600
Gas at \$5.59/10 ⁶ Btu	294,700	250,500
	\$1,478,100	\$1,256,400

Economic Analysis

A 20-year economic analysis was performed for each of the cases comparing the projected geothermal system capital costs and operations and maintenance costs vs continued use of natural gas and oil. This analysis used a 7% discount rate for future projected savings and incorporated escalation rates for natural gas prices from the Energy Information Administration Report, "The Current State of the Natural Gas Market"¹. As this report provided projections only to 1990, no real escalation was used beyond that time. Electricity costs and oil costs were escalated at 2% per year. All costs are in present dollars (no inflation).

In the tabulations for each case which follow, the "savings" represent the cost of not operating the present system; the "expenses" represent the cost of operating the geothermal system including fuel for the peaking system, electricity and maintenance; and the net revenue ins the difference between savings and expenses. NPV is the present value of the Net Revenue discounted at 7%. Simple and discounted (at 7%) payback periods have alos been calculated.

	ELECTRICAL 12 2 X					
196	2 \$'5	iEhk	ELLHEAD PRICE	ESC. FACIOK	CCH ESC FACTOR	CUH ESC FACTOR
EVPINGS GAS DIL & EL 1 OTHER TOTAL 1 ECPENSES GAS ELECTR. OIL OTHER TOTAL	294700 183400 0 478100 17700 37000 62100 43600 140400	1732 1783 1784 1785 1786 1787 1788 1787 1788 1789 1789	1,91 2,09 2,26 3,62 3,83 3,98 4,15 4,31 4,47	1.00 1.09 1.08 1.60 1.04 1.04 1.04 1.04	1,00 1,09 1,18 1,90 2,01 2,08 2,17 2,26 2,34	1.00 1.02 1.04 1.06 1.08 1.10 1.13 1.15 1.17

.

EPITIAL 5292000 INVESTMENT 05/19/82

,

ករិដ	dine.	81 81 81	GFTIMIST	TC 2		
	TEAR	SAVINGS	EXPERSES	RET REV		
	1982 1983 1984	1478100 1529541 1579912	160600 164250 167847	1317500 1365291 1412065	HPV 8 72	9722465
	1985 1986 1987	1814375 1871893 1920656	162512 186562 190097	1631863 1685331 1730559	SIXPLE PAYBACK	5+21
	1768 1769 1790	1973017 2024358 2076232	193861 197576 201335	1779157 1826783 1874897	D'CTD Paybacx	7,14
	1991 1992 1993	2076232 2076232 2076232	201335 201335 201335 201335	1874897 1874897 1874897 1874897		
	1994 1995 1996	2076232 2076232 2076232	201335 201335 201335	1874897 1374897 1874897		
	1997 1998 1999 2000	2076232 2076232 2075232 2075232	201335 201335 201335	1874897 1874897 1874897 1874897		
	2001	2076232	201335	1674897		

HEW 2 7%= 9722465

	201	TURAL GAS	ì		2	<u>ero</u> (fisichi 1 2 X
:	1982 \$'S	YEAR	ELLAEAD PRICE	ESC. FACTOR	CUM ESC FACTOR	CUN ESC FACTOR
AVINGS GAS OIL & EL OTHER TOTAL EXPENSES ELECTR: OIL OTHER TOTAL HITTAL INVESTMENT	250500 1005900 0 1256400 15100 168400 52800 107000 363300 11101000	1982 1983 1984 1985 1986 1987 1988 1989 1990	1.71 2.025 3.62 3.78 3.98 4.15 4.47	1,00 1,09 1,08 1,08 1,04 1,04 1,04 1,04	1.00 1.07 1.16 1.16 1.16 2.01 2.08 2.17 2.26 2.34	1.00 1.02 1.04 1.03 1.10 1.13 1.15 1.17

.

IEAR SAVINGS EXFERSES NET REV 1982 1256400 363300 893100 1983 1360125 367547 930578 NEV 2 7% 16225 1984 1342942 375811 967130 1985 1542239 371582 1150657 SIBPLE 9. 1986 1591130 398362 1192768 PAYBACK 1987 1632579 404769 1227810	TH FORE A.	F. B. 10457	elettive '2	
1982 1256400 363349 893100 1983 1360125 369547 930578 HFV 2 7% 16225 1984 1342942 375811 967130 1985 1542239 391582 1150657 SIMPLE 9. 1986 1591130 398362 1192768 PAYBACK 1987 1632579 404769 1227810	IEAR S	WINGS EXPERS	ES NET REV	
1988 16/7087 411439 1265648 D'CID 15. 1989 1720727 418137 1302591 PAYBACK 1990 1764821 424943 1339878 1991 1764821 424943 1339878 1992 1764821 424943 1339878 1993 1764821 424943 1339878 1993 1764821 424943 1339878 1994 1764821 424943 1339878 1995 1764821 424943 1339878 1995 1764821 424943 1339878 1995 1764821 424943 1339878 1996 1764821 424943 1339878 1997 1764821 424943 1339878 1997 1764821 424943 1339878 1997 1764821 424943 1339878 1997 1764821 424943 1339878 1997 1764821 424943 1339878 1997 1764821 424943 1339878 1999 176482	1982 1 1983 1 1983 1 1985 1 1985 1 1986 1 1986 1 1987 1 1988 1 1989 1 1999 1 1991 1 1993 1 1994 1 1995 1 1995 1 1995 1 1995 1 1997 1 1998 1 1998 1 1998 1 1998 1 1999 1 1998 1 1999 1 1990 1 1991 1 1991 1 1991 1 1991 1 1992 1 1995 1 1995 1 1996 1 1996 1 1996 1 1997 1 1997 1 1998 1 1997 1 1998 1 1997 1 1998 1 1998 1 1997 1 1998 1 1999 1 1998 1 1999 1 1999 1 1998 1 1999 1 1998 1 1999 1 1999 1 1990 1 19	156400 3633- 160125 3675 160125 3675 3758 142239 3758 3758 142239 3758 3758 32579 4047 3983 32579 4047 32579 32579 4047 32579 32579 4047 32579 32579 4041 32579 32579 4041 32579 32579 4041 4249 64821 4249 44821 64821 4249 44821 64821 4249 44821 64821 4249 44821 64821 4249 44821 64821 42494 44821 64821 42494 44821 64821 42494 44821 64821 42494 64821 42494 64821 42494 64821 42494 64821 42494 64821 42494	CO 693100 47 930572 HF 11 967130 HF 62 1150657 HF 62 1192768 P 62 127810 J 39 1265648 J 37 1302591 F 43 1339878 H3 43 1339878	V 2 71 162251. SIBPLE 9.11 AYBACK D'CTD 15.04 AYBACK

H5/19/82

,

NFV 2 71= 1622517