COMPLETION REPORT:
 RAFT RIVER
 gEOTHERMAL INJECTION WELL SEVEN
 (RRGI-7)

FEBRUARY 1979
L. G. Miller

EG趹 Idaho, Inc.
and
S. M. Prestwich

DOE-ID

COMPLETION REPORT:
RAFT RIVER
GEOTHERMAL INJECTION.WELL SEVEN (RRGI-7)

APPROVED:

COMPLETION REPORT:

RAFT RIVER
geothermal injection well seven
(RRGI-7)
L. G. Miller

EG\&G Idaho, Inc.
and
S. M. Prestwich DOE-ID

February 1979

Raft River Geothermal Injection Well Seven (RRGI-7) is an intermediatedepth injection well designed to accept injected water in the 600 . to 1000 m (2000 to 3500 ft) depth range. ${ }^{[a]}$ It has one barefoot leg, and it was drilled so that additional legs could be added later; if there are problems with intermediate-depth injection, one or more additional legs could be directionally drilled from the current well bore.

This report describes the drilling and completion of RRGI-7 and provides a brief summary of preliminary testing. It includes daily drilling reports, as well as records of logging, coring, and containment techniques used during drilling operations.

[^0]ABSTRACT ii
I. INTRODUCTION. 1
II. DRILLING SUMMARY. 1
III. SURFACE AND CONTAINMENT EQUIPMENT AND SERVICES. 4

1. CONTAINMENT EQUIPMENT - SURFACE HOLE 4
2. CONTAINMENT EQUIPMENT - PRODUCTION HOLE 7
3. FLOW TESTING EQUIPMENT 7
4. WELLHEAD 7
5. DRILLING RECORDER. 10
IV. DOWNHOLE EQUIPMENT AND SERVICES 10
6. SURFACE CASING 10
7. INTERMEDIATE LINER 10
8. DRILL BIT SUMMARY 10
9. CORING 10
10. DRILLING FLUID 11
11. SAMPLES AND MUD LOGGING SERVICE. 11
12. CEMENTING. 11
13. GEOPHYSICAL LOGGING PROGRAM. 12
APPENDIX A DAILY DRILLING REPORTS. A-1
APPENDIX B BIT RECORD. B-1
APPENDIX C CASING RECORD C-1
ATTACHMENT LITHOLOGIC LOG.
14. Raft River geothermal site and location of wells 2
15. Location survey 3
16. Subsurface well status 5
17. Drilling and operations summary 6
18. Blowout preventer for drilling below the $34-\mathrm{cm}(13-3 / 8-\mathrm{in}$. casing show 8
19. Schematic diagram of completed wellhead 9
TABLES
I. Logs Run on RRGI-7. 13
A-I Daily Drilling Reports. A-1
B-I. Bit Record. B-1
C-I. Casing Record C-2
```
    COMPLETION REPORT:
    RAFT RIVER
GEOTHERMAL INJECTION WELL SEVEN
    (RRGI-7)
```

I. INTRODUCTION

This report describes the drilling and completion of Raft River Geothermal Well Seven (RRGI-7). Previous Raft River wells established the feasibility of using the valley's resource for a $5-\mathrm{MW}$ power plant, as well as for numerous nonelectrical applications. RRGI-7, planned as an injection well, will accept the spent geothermal fluid. This will prevent the pollution that surface disposal could cause.

Colorado Well Service performed the drilling and completion of RRGI-7 under the direction of EG\&G Idaho, Inc., and DOE-ID. The drilling supervision, subcontracted by EG\&G, was conducted by an independent company, Energy Drilling Specialists of Denver, Colorado. Technical direction was supplied to the drilling subcontractor through the drilling supervisor. DOE-ID provided funding for the drilling operation, and EG\&G provided budgeting and procurement adminisțration.

RRGI-7 is located about $1 / 2$ mile southeast of the RRGE-3 well (see Figures 1 and 2). This area was selected by DOE-ID as the site for all injection wells.

II. DRILLING SUMMARY

RRGI-7 well design incorporates multiple factors. The design provides for injection into the intermediate zone, in order to minimize nearsurface groundwater contamination, to avoid cooling production aquifers, and to reduce well costs. It also provides for completion options: deepening and casing with $24-\mathrm{cm}$ (9-5/8-in.) casing, or deepening with directionally drilled legs.

The drill site was completed prior to rig move-on. Site preparation included excavation of a fluid reserve pit; leveling, grading, and gravelling of the site; and construction of a road. A temporary water line from RRGE-3 to the site provided drilling water. The site measured about $76 \times 76 \mathrm{~m}(250 \times 250 \mathrm{ft})$.

Prior to rig move-on, the following work was performed. A dry-hole digger drilled a $66-\mathrm{cm}$ ($26-\mathrm{in}$.) diameter hole and set 46 m (750 ft) of $51-\mathrm{cm}$ (20-in.) conductor pipe. This contractor cemented the pipe with plant-mix concrete. The dry-hole digger also drilled the rat and mouse holes. A subcontractor constructed a 2.4-x 2.4-x $3-\mathrm{m}$ ($8-\times 8-\times 10-\mathrm{ft}$) concrete-lined cellar around the conductor pipe.

Drilling began with a $44-\mathrm{cm}$ (17-1/2-in.) diameter bit, using a low-solids mud. Minor problems with bit plugging developed upon encountering a gravel section. On July 19, 1978, at 7:00 P.M., drilling operations were shut down by the Idaho Department of Water Resources, because of environmental questions about RRGP-5 operations. Drilling resumed on July 21, 1978. At a depth of 610 m (2000 ft), the hole was logged. Fifty-one joints of $34-\mathrm{cm}(13-3 / 8-\mathrm{in}),. \mathrm{k}-55,81.1-\mathrm{kg} / \mathrm{m}$ ($54-1 \mathrm{l} / \mathrm{ft}$) casing were run to a depth of 623 m (2044 ft). Cementing operations used 1600 sacks of Class-G cement with $11.5 \mathrm{~kg} /$ sack ($25 \mathrm{lb} /$ sack) kolite, 20% silica flour, and 3% D-53 with a slurry weight of $1.68 \mathrm{~kg} / \mathrm{L}$ ($12 \mathrm{lb} / \mathrm{gal}$). While waiting on cement, the BOP was nippled up and pressure tested.

Drilling operations continued using a 31-cm (12-1/4-in.) bit, with water as the drilling fluid. After drilling to 1167 m (3828 ft), a $9-\mathrm{m}(30-\mathrm{ft})$ core was cut with a $6-\mathrm{m}$ (19-ft) recovery. Upon reentering the hole after coring, the hole had $18 \mathrm{~m}(60 \mathrm{ft})$ of fill. The hole was cleaned and logs were run.

A short--term airlift flow test was conducted. Flows measured 24 to $30 \mathrm{~L} / \mathrm{sec}$ (400 to 500 gpm). Upon recovery, water level stabilized at $9 \mathrm{~m}(28 \mathrm{ft})$. An injection test was conducted at $54 \mathrm{~L} / \mathrm{sec}(850 \mathrm{gpm})$ for a half hour, and $28 \mathrm{~L} / \mathrm{sec}(463 \mathrm{gpm})$ for 4 hours. A second airlift flow test was conducted for $9-3 / 4$ hours at $33 \mathrm{~L} / \mathrm{sec}(540 \mathrm{gpm})$, to remove all injected water and clean out the formation. Rigging-down operations then began.

Figure 3 shows the status of the subsurface well. Figure 4 provides a drilling and operations summary.

III. SURFACE AND CONTAINMENT EQUIPMENT AND SERVICES

1. CONTAINMENT EQUIPMENT - SURFACE HOLE

A $51-\mathrm{cm}$ (20-in.) single-gate Shaffer blowout preventor (BOP) was installed between the $51-\mathrm{cm}(20-\mathrm{in}$.) casing head \quad and the drilling nipple for drilling the $44-\mathrm{cm}(17-1 / 2-\mathrm{in}$.) hole to 625 m (2050 ft).

2. CONTAINMENT EQUIPMENT - PRODUCTION HOLE

After setting the $34-\mathrm{cm}(13-3 / 8-\mathrm{in}$.$) casing at 623 \mathrm{~m}$ (2044 ft), the following containment stack, (listed from expansion spool up) was used (see Figure 6).
(1) WKM 51- $\times 30-\mathrm{cm}(20-\times 12-i n$.$) expansion spool$
(2) WKM $30-\mathrm{cm}$ (12-in.) master valve
(3) Adaptor spool
(4) Shaffer double-gate $30-\mathrm{cm}(12-i n$.$) BOP$
(5) Hydril Type-GK $30-\mathrm{cm}$ (12-in.) BOP
(6) Grant $30-\mathrm{cm}(12-i n$.$) rotating head.$

3. CELLAR

A subcontractor constructed a $2.4-\times 3-\times 2.4-\mathrm{m}$ ($8-\times 10-\times 8-\mathrm{ft}$) reinforcedconcrete cellar to accommodate the BOP stack.

4. WELLHEAD

The permanent wellhead on this well consists of a standard WKM wellhead system. The casing head, with its $51-\mathrm{cm}$ (20-in.) $14,000-\mathrm{kPa}$ (2000-psi) API flange, is welded directly to the $51-\mathrm{cm}$ ($20-\mathrm{in}$.) well casing. The expansion spool mates to the $51-\mathrm{cm}$ ($20-\mathrm{in}$.) $14,000-\mathrm{kPa}$ ($2000-\mathrm{psi}$) API casing head flange on the bottom, and the $30-\mathrm{cm}$ ($12-\mathrm{in}$.) $2760-\mathrm{kPa}$ ($400-\mathrm{psi}$) ANSI flanged master gate valve on the top. Both sides of the expansion spool contain $7.5-\mathrm{cm}$ (3 -in.) valved outlets with $7.5-\mathrm{cm}$ ($3-\mathrm{in}$.) $14,000-\mathrm{kPa}$ (2000-psi) API flanges.

A hanger spool mates with master valve on the bottom, and with a $20-\mathrm{cm}$ ($8-\mathrm{in}$.) $1860-\mathrm{kPa}$ ($600-\mathrm{psi}$) ANSI flanged power-seal gate valve on top. Above the power-seal gate valve is a $20-\mathrm{cm}$ ($8-\mathrm{in}$.) $1860-\mathrm{kPa}$ ($600-\mathrm{psi}$) ANSI tee (or cross).

For logging access into the well, a double-studded $20-\mathrm{cm}$ (8-in.) $1860-\mathrm{kPa}$ ($600-\mathrm{psi}$) ANSI to $10-\mathrm{cm}$ ($4-\mathrm{in}$.) $930-\mathrm{kPa}(300-\mathrm{psi}$) ANSI flanged gate valve is mounted above the double-studded flange. Figure 7 is a schematic view of the completed wellhead system, showing the expansion capabilities for the production casing and the packoff system. The packoff system is designed to be repacked under pressure.

5. DRILLING RECORDER

A six-pen recorder charted the weight on the derrick, the drilling rate, the rotary torque, the standpipe pressure, and the pump strokes on the number-one and number-two pumps during drilling.

IV. DOWNHOLE EQUIPMENT AND SERVICES

1. SURFACE CASING

Four joints of $51-\mathrm{cm}$ (20-in.) H-40 casing were welded at each joint, set, and cemented to a $46-\mathrm{m}$ ($150-\mathrm{ft}$) depth.

2. INTERMEDIATE CASING

Fifty-one joints of $34-\mathrm{cm}(13-3 / 8-\mathrm{in}),. 81.1-\mathrm{kg} / \mathrm{m}$ ($54.5-1 \mathrm{~b} / \mathrm{ft}$), K-55 casing, guide shoe, and float collar were run and cemented.

3. DRILL BIT SUMMARY

A dry-hole driller drilled the $66-\mathrm{cm}$ (26-in.) conductor hole to set the 46 m (150 ft) of $51-\mathrm{cm}$ (20-in.) conductor pipe.

The intermediate hole was drilled with three $44-\mathrm{cm}$ (17-1/2-in.) Hughes bits: Bit 1, an OSCIG-Jet, was used to drill from 46 to 312 m (150 to 1025 ft) in 34.75 hours. Bit 2, an OWV-Jet, was used to drill from 312 to 457 m (1025 to 1499 ft) in 22.5 hours. Bit 3, an OSCIG-Jet, went to $625 \mathrm{~m}(2050 \mathrm{ft})$ in 20.25 hours. The $44-\mathrm{cm}(17-1 / 2-\mathrm{in}$. $)$ hole was then cased and cemented.

The 31-cm (12-1/4-in.) hole was drilled with two Smith SVH-Jet bits. Bit 4 went to 916 m (3004 ft) in 23.5 hours, and Bit 5 to 1167 m (3828 ft) in 26.5 hours. A rerun bit, number 6 , was used for reaming, drilling, and cleaning to 1176 m (3858 ft).
4. CORING

One $9-\mathrm{m}(30-\mathrm{ft}$) core from 1167 to 1176 m (3828 to 3858 ft) was cut using a $20-\times 8.9-\mathrm{cm}(7-7 / 8-\times 3-1 / 2-\mathrm{in}$.) diamond-core bit. The drilling fluid was water. Six meters (19 ft) of the core were recovered.

5. DRILLING FLUID

Drilling began with a dispersed polymer with a weight average of $1.06 \mathrm{~kg} / \mathrm{L}$ ($8.9 \mathrm{lb} / \mathrm{gal}$) and viscosity of 34 to $44 \mathrm{sec} / \mathrm{L}$. At approximately 290 m (950 ft), the drilling fluid was changed to a low-solids mud. Mud properties averaged as follows:

Weight	$1.1 \mathrm{~kg} / \mathrm{L}(9.2 \mathrm{lb} / \mathrm{gal})$
Viscosity	$39 \mathrm{sec} / \mathrm{L}$
Plastic Viscosity	$10 \mathrm{cP}\left(0.01 \mathrm{~Pa} \mathrm{I}^{\prime}\right)$
Sand Content	6%

After the $34-\mathrm{cm}$ (13-3/8-in.) casing was set, drilling continued to a total depth of 1176 m (3858 ft) with water pumped from RRGE-3. Overall drilling-fluid circulation throughout the drilling operation was good.

6. SAMPLES AND MUD LOGGING SERVICE

A mud-logging service was employed to monitor drilling fluid and cutting returns. This service monitored fluid temperatures (in and out), and hydrogen sulfide and hydrocarbon concentrations. Samples were taken at $6-\mathrm{m}(20-\mathrm{ft})$ intervals. Samples indicated the zone of penetration was mostly gravel near the surface, underlain by lacustrine siltstone and sands tone.

7. CEMENTING

The $51-\mathrm{cm}$ (20-in.) surface casing was cemented from 46 m (150 ft) to ground level using plant-mix concrete, with 9 kg (20 1b) of fine sand per sack of cement.

The $34-\mathrm{cm}$ (13-3/8-in.) intermediate casing was cemented to 623 m (2044 ft) in a $44-\mathrm{cm}$ (17-1/2-in.) hole using RFC Thrixotropic cement. The drill crew established circulation to pretreat the hole. This was followed by 1600 sacks of Class $-G$ cement, 11.5 kg (25 lb) of Kolite per sack of cement, 20% silica flour, and 8% D-53 with a slurry weight of $1.67 \mathrm{~kg} / \mathrm{L}$ ($14 \mathrm{lb} / \mathrm{gal}$). Pumping started at 7:00 P.M. and was completed in 2 hours.

8. GEOPHYSICAL LOGGING PROGRAM

Various logs were run in the RRGI-7 well to determine the condition of the hole at different stages of the drilling operations. A listing of the logs, the intervals, and the lengths is shown in the following table.

TABLE I
LOGS RUN ON RRGI-7

Log	Type	Date	Shallowest Reading $[m(f t)]$		Deepest Reading $[m(f t)]$		$\begin{aligned} & \text { Length } \\ & {[\mathrm{m}(\mathrm{ft})]} \end{aligned}$	
1	Compensated Neutron	7-23-78	49	(160)	625	(2050)	576	(1890)
2	Dual Induction Focused Log	7-23-78	49	(160)	625	(2052)	577	(1892)
3	Borehole Compensated Acoustilog	7-23-78	49	(160)	626	(2055)	578	(1895)
4	Differential Temperature Log	7-24-78	30	(100)	626	(2054)	596	(1954)
5	Four-Arm Caliper Log	7-25-78	30	(100)	614	(2016)	584	(1916)
6	Epilog - Computer Log Analysis	8-3-78	46	(150)	625	(2050)	579	(1900)
7	Dual Induction Focused Log	8-1-78	622	(2040)	1155	(3788)	533	(1749)
8	Borehole Compensated Acoustilog	7-31-78	625	(2050)	1156	(3793)	531	(1743)
9	Differential Temperature Log	7-31-78	625	(2050)	1158	(3800)	533	(1750)
10	Compensated Densilog Compensated Neutron	8-1-78	625	(2050)	1155	(3789)	530	(1739)
11	Compensated Densilog	8-1-78	625	(2049)	1157	(3796)	532	(1747)
12	Epilog - Computer Log Analysis	8-17-78	625	(2050)	1158	(3800)	533	(1750)

APPENDIX A
 daily drilling reports

The following table contains excerpts from the notes recorded in the driller's IADC "Daily Drilling Report."

TABLE A-I
DAILY DRILLING REPORTS

Date
June 24, 1978
July 6, 1978
July 11 to 13, 1978

July 14, 1978

July 15, 1978

Report
Conductor was set. Rat and mouse holes drilled. Cellar construction completed.

Rigging up Colorado Well Service Rig 75, a Cabot 750 with $34-\mathrm{m}$ (112-ft) derrick [substructure 4.3 m (14 ft) above ground level].

Spudded. Drilled $44-\mathrm{cm}$ (17-1/2-in.) hole from 37 to 109 m (120 to 358 ft), with a Hughes OSCIG-Jet bit. Pulled out of hole to unplug bit. Worked on pump. Ran back in hole.

Mud - dispersed polymer.
Bottom hole assembly - 6-point reamer Shock sub 9-m (30-ft) drill collar Stabilizer $9-m(30 \mathrm{ft})$ drill collar Stabilizer.

Drilled from 109 to 270 m (358 to 885 ft). Washed to bottom, worked pipe in hole. Serviced rig and worked on pumps. Reached gravel formation.

Mud - dispersed polymer wt. $-1.05 \mathrm{~kg} / \mathrm{L}(8.8 \mathrm{ppg})$ vis. $-20 \mathrm{sec} / 1000 \mathrm{~cm}^{3}$.

Bottom hole assembly - 6-point reamer Shock sub 9-m (30-ft) drill collar Stabilizer 9-m (30-ft) drill collar Stabilizer.
$[\mathrm{a}$ All depths are referenced from the Kally Bushing, 4.3 m (14 ft) above ground level, unless otherwise noted.

Date
July 16, 1978

July 17, 1978

July 18, 1978

July 19, 1978

Report
Drilled from 270 to 303 m (885 to 995 ft). Repaired pump. Tripped out with a plugged bit, caused by gravelly formation. Tripped in hole and encountered $9 \mathrm{~m}(30 \mathrm{ft})$ of fill. Repaired mud line.

Mud - low solids wt. - $109 \mathrm{~kg} / \mathrm{L}(9.1 \mathrm{ppg})$ vis. - $42 \mathrm{sec} / 1000 \mathrm{~cm}^{3}$.

Bottom hole assembly - 6-point reamer Shock sub 9-m (30-ft) drill collar Stabilizer $9-m(30-f t) d r i l l ~ c o l l a r$ Stabilizer.

Drilled from 303 to 364 m (995 to 1195 ft). Tripped for new bit. Pump broken, waited for parts.

Mud - low solids
wt. - $1.1 \mathrm{~kg} / \mathrm{L}(9.2 \mathrm{ppg})$
vis. $-44 \mathrm{sec} / 1000 \mathrm{~cm}^{3}$.
Bottor hole assembly - 6-point reamer Shock sub
9-m (30-ft) drill collar Stabilizer 9-m (30-ft) drill collar Stabilizer.

Drilled from 364 to 385 m (1195 to 1263 ft). Waited on pump parts. Repaired pump. Repaired shale shaker.

Mud - low solids wt. $-1.2 \mathrm{~kg} / \mathrm{L}(9.4 \mathrm{pgg})$ vis. $-39 \mathrm{sec} / 1000 \mathrm{~cm}^{3}$.

Bottom hole assembly - 6-point reamer Shock sub 9-m (30-ft) drill collar Stabilizer $9-m$ (30-ft) drill collar Stabilizer.

Drilled from 385 to 457 m (1263 to 1499 ft). Repaired pump. Serviced rig. Tripped for new bit. At 7:00 P.M., the Idaho Department of Water Resources issued a cease and desist order to all drilling operations, due to environmental concerns for RRGP-5 operations.

Date
July 19, 1978 (cont.)

July 20, 1978

July 21, 1978

July 22, 1978

```
Mud - low solids
    wt. - 1.1 kg/L (9.2 ppg)
    vis. - }38\textrm{sec}/1000\mp@subsup{\textrm{cm}}{}{3}\mathrm{ .
Bottom hole assembly - 6-point reamer
    Shock sub
    9-m (30-ft) drill collar
    Stabilizer
    9-m (30-ft) drill collar
    Stabilizer.
```

State gave okay to drill ahead at 7:00 P.M. Drilled
from 457 to 468 m (1499 to 1534 ft).
Mud - low solids
wt. $-1.09 \mathrm{~kg} / \mathrm{L}(9.1 \mathrm{ppg})$
vis. $-35 \mathrm{sec} / 1000 \mathrm{~cm}^{3}$.
Bottom hole assembly - 6-point reamer
Shock sub
9-m (30-ft) drill collar
Stabilizer
$9-m$ ($30-\mathrm{ft}$) drill collar
Stabilizer.
Drilled from 468 to 576 m (1534 to 1890 ft). Worked
on pump. Cleaned mud pits.
Mud - low solids
wt. $-1.1 \mathrm{~kg} / \mathrm{L}(9.2 \mathrm{pRg})$
vis. - $35 \mathrm{sec} / 1000 \mathrm{~cm}^{3}$.
Bottom hole assembly - 6-point reamer
Shock sub
9-m (30-ft) drill collar
Stabilizer
9-m (30-ft) drill collar
Stabilizer.

Drilled from 576 to 613 m (1890 to 2010 ft). Waited on parts for pump, and repaired pump. Changed shale shaker screen.

```
Mud - low solids
    wt. - 1.09 kg/L (9.1 ppg)
    vis. - }39\textrm{sec}/1000\mp@subsup{\textrm{cm}}{}{3}\mathrm{ .
```

Bottom hole assembly - 6-point reamer
Shock sub
9-m (30-ft) drill collar
Stabilizer
$9-m$ (30-ft) drill collar
Stabilizer.

Bottom hole assembly - 6-point reamer Shock sub
9-m (30-ft) drill collar Stabilizer
$9-m$ (30-ft) drill collar
Stabilizer.

Date
July 23, 1978

July 24, 1978

July 25, 1978

July 26, 1978
July 27, 1978

Report

Drilled from 613 to 625 m (2010 to 2050 ft). Circulated and conditioned hole. A directional survey to $619 \mathrm{~m}(2000 \mathrm{ft})$ showed a 2% deviation. Tripped out: and laid down bottom hole assembly. Rigged up and began running logs.

```
Mud - low solids
    wt. - 1.09 kg/L (9.1 ppg)
    vis. - }39\textrm{sec}/1000\mp@subsup{\textrm{cm}}{}{3}
Bottom hole assembly - 6-point reamer
                                    Shock sub
                                    9-m (30-ft) drill collar
                                    Stabilizer
                                    9-m (30-ft) drill collar
                                    Stabilizer.
```

Logged hole. Tripped in with bottom hole assembly and circulated.

```
Mud - low solids
    wt. - 1.09 kg/L (9.1 ppg)
    vis. - }39\textrm{sec}/1000\mp@subsup{\textrm{cm}}{}{3}\mathrm{ .
Bottom'hole assembly - 6-point reamer
                                    Shock sub
```

Circulated to run casing. Tripped out of hole and laid down bottom hole assembly. Rigged up and ran 51 joints of $34-\mathrm{cm}$ (13-3/8-in.), K-55, $81.1-\mathrm{kg} / \mathrm{M}$ ($54.5-1 \mathrm{~b} / \mathrm{ft}$), casing to 623 m (2044 ft). Rigged up cementers. Cemented with 1600 sacks of Class G cement with $11.5 \mathrm{~kg} / \mathrm{sack}$ ($25 \mathrm{lb} / \mathrm{sack}$) kolite, 20% silica and 8\% D-53. Started cementing at 7:00 P.M. Cement in place at 9:00 P.M. Cleaned out lines and started removing BOP.

WOC - Nippling up BOP.
Completed nippling up BOP. Pressure tested casing at 2100 kPa (300 psi). Ran in the hole, drilled out cement, and began drilling new hole with $31-\mathrm{cm}$ (12-1/4in .) bit to 632 m (2075 ft).

Drilling fluid - Water.
Bottom hole assembly - Shock sub.

Date
July 28, 1978

July 29, 1978

July 30, 1978

July 31, 1978

Report
Drilled to 788 m (2586 ft). At $667 \mathrm{~m}(2189 \mathrm{ft})$, pulled out of hole, and picked up bottom hole assembly. Cleaned pits. Reamed from 655 to 674 m (2150 to 2210 ft).

Drilling fluid - Water.
Bottom hole assembly - 6-point reamer Shock sub
9-m (30-ft) drill collar 3 -point stabilizer 9-m (30-ft) drill collar Blade stabilizer.

Drilled to $982 \mathrm{~m}(3221 \mathrm{ft})$. Serviced rig and pumps. Ran deviation survey which showed a $3-1 / 2$ degree deviation at $902 \mathrm{~m}(2960 \mathrm{ft})$. Tripped out for new bit. Washed and reamed to bottom.

Drilling fluid - Water.
Bottom hole assembly - 6-point reamer Shock sub 9-m (30-ft) drill collar 3-point stabilizer 9-m (30-ft) drill collar Blade stabilizer.

Drilled to 1167 m (3828 ft). Serviced rig. Cleaned mud pits. Circulated, in preparation to core.

Drilling fluid - Water
Bottom hole assembly - 6-point reamer Shock sub
9-m (30-ft) drill collar 3-point reamer $9-\mathrm{m}$ ($30-\mathrm{ft}$) drill collar Blade stabilizer.

Circulated and pulled out of hole. Picked up corebarrell and ran in hole. Cored $9 \mathrm{~m}(30 \mathrm{ft})$ and recovered $6 \mathrm{~m}(19 \mathrm{ft})$. Ran in hole with bit, reamer, and shock sub. Washed and reamed to total depth of 1176 m (3858 ft). Circulated. Ran a deviation survey which showed $5-1 / 2$ degrees at $1176 \mathrm{~m}(3858 \mathrm{ft})$. Pulled out of hole and rigged up loggers. Started running logs.

Date
August 1, 1978

August 2, 1978

August 3, 1978

Report
Ran logs. Prepared and started air lift from 55 m (180 ft) down hole.

Conducted air lift, recovering 24 to $30 \mathrm{~L} / \mathrm{sec}$ (400 to 500 gpm). Shut in well. Water level at $9 \mathrm{~m}(28 \mathrm{ft})$. Injected at $34 \mathrm{~L} / \mathrm{sec}(850 \mathrm{gpm})$ with $1380 \mathrm{kPa}(200 \mathrm{psi})$ for $1 / 2$ hour, $28 \mathrm{~L} / \mathrm{sec}$ (463 gpm) for 4 hours. Shut in well. Restarted air lift from 55 m (180 ft) downhole and recovered $33 \mathrm{~L} / \mathrm{sec}(540 \mathrm{gpm})$ for $1-3 / 4$ hours.

Continued air lifting for 8 more hours for a total of $9-3 / 4$ hours. Laid down drill pipe and bottom hole assembly. Began rigging down operations at 2:00 P.M.

APPENDIX B

BIT RECORD

The following table provides a performance record for each of the bits used to drill RRGI-7. This information was obtained from the IADC "Daily Drilling Report."

TABLE B-I														
Bit	Make	$\underset{[\mathrm{cm}(\mathrm{in} .)]}{\text { Size }}$	Type	Serial Number	Jets	Depth Out $[m(f t)]$	Footage [m (ft)]	Hours	$\left.\begin{array}{c}\text { Weight } \\ {[1000 \mathrm{~kg}} \\ (1000 \mathrm{l})\end{array}\right]$	RPM	Pump Pressure $[\mathrm{kPa}(\mathrm{psi})]$	SPM	Bit Condition T/B/G	Formation Remarks
1	Hughes	$\begin{gathered} 44 \\ (17-1 / 2) \end{gathered}$	OSCIG-Jet	JLN67	Open	$\begin{gathered} 312 \\ (1025) \end{gathered}$	$\begin{gathered} 267 \\ (875) \end{gathered}$	34.75	$\begin{gathered} 7 \\ (15) \end{gathered}$	60	$\begin{aligned} & 2069 \\ & (300) \end{aligned}$	65	5/4/1/8	Drilled with low solids mud to 625 m (2050 ft)
2	Hughes	$\begin{gathered} 44 \\ (17-1 / 2) \end{gathered}$	OWV-Jet	AA421	Open	$\begin{gathered} 457 \\ (1499) \end{gathered}$	$\begin{gathered} 144 \\ (474) \end{gathered}$	22.5 .	$\begin{gathered} 7 \\ (15) \end{gathered}$	60	$\begin{aligned} & 3448-5516 \\ & (500-800) \end{aligned}$	65	3/4/0	
3	Hughes	$\begin{gathered} 44 \\ (17-1 / 2) \end{gathered}$	OSCIG-Jet	HV649	Open	$\begin{gathered} 625 \\ (2050) \end{gathered}$	$\begin{gathered} 168 \\ (551) \end{gathered}$	20.25	$\begin{gathered} 7 \\ (15) \end{gathered}$	60	$\begin{array}{r} 2758-5516 \\ (400-800) \end{array}$	69	5/3/0	From 625 m (2050 ft) to TO with water
4	Smith	$\begin{gathered} 31 \\ (12-1 / 4) \end{gathered}$	SUH-Jet	598DN	Open	$\begin{gathered} 916 \\ (3004) \end{gathered}$	$\begin{gathered} 248 \\ (814) \end{gathered}$	23.5	$\begin{gathered} 7 \\ (15) \end{gathered}$	65	$\begin{aligned} & 4138 \\ & (600) \end{aligned}$	50	7/3/1/8	
5	Smith	$\begin{gathered} 31 \\ (12-1 / 4) \end{gathered}$	SUH-Jet	635CA	Open	$\underset{(3828)}{1167}$	$\begin{gathered} 251 \\ (824) \end{gathered}$	26.5	$\begin{gathered} 7 \\ (15) \end{gathered}$	65	$\begin{aligned} & 5516 \\ & (800) \end{aligned}$	50	$8 / 3 / 1 / 8$	
6	Hycalog	$\begin{gathered} 20 \times 9 \\ (7-7 / 8 \times \\ 3-1 / 2) \end{gathered}$	CMHIP	17479		$\begin{gathered} 1175 \\ (3858) \end{gathered}$	$\left(\begin{array}{c} 9 \\ (30) \end{array}\right.$	--	--	--	--	--	--	Cored $9 \mathrm{~m}(30 \mathrm{ft})$, recovered $6 \mathrm{~m}(19 \mathrm{ft})$

APPENDIX C
CASING RECORD

APPENDIX C

CASING RECORD

The following table contains excerpts from notes recorded in the drilling superintendent's casing record notebook.

TABLE C-1

CASING RECORD [a]		
Joint	Measured Length \qquad	Cumulative Length \qquad
1	12.4 (40.72)	12.4 (40.72)
2	11.1 (36.42)	23.5 (77.14)
3	12.4 (40.55)	35.9 (117.69)
4	$12.5(41.12)$	48.4 (158.81)
6	12.3 (40.51)	60.8 (199.32)
7	12.1 (39.82)	73.4 $85.6(280.88)$
8	12.3 (40.27)	97.8 (320.97)
$1{ }^{9}$	12.4 (40.60)	$110.2(367.57)$
10	$12.1(39.68)$	122.6 (402.25)
12	$12.2(40.11)$ $12.6(41.19)$	134.5 (441.36)
13	$12.4(40.66)$	$147.1\left(\begin{array}{l}\text { (482.55) } \\ 159.5 \\ \text { (523.21) }\end{array}\right.$
14	12.3 (40.42)	$171.8(563.63)$
15	12.5 (41.00)	184.3 (604.63)
16	12.1 (39.69)	196.4 (644.32)
17	$12.5(40.95)$	208.9 (685.27)
18	12.4 12.5 $\left(\begin{array}{l}40.63) \\ \hline 0.89)\end{array}\right.$	$221.3(725.90)$
20	12.6 (47.50)	233.7 246.4 (860.79) (808.29)
21	12.5 (40.91)	258.8 (849.20)
22	12.6 (4.1.27)	271.4 (890.47)
23	12.5 (41.01)	283.9 (931.48)
24	12.8 (42.07)	296.7 (973.49)
25	11.7 (38.46)	308.4 (1017.95)
26	12.3 (40.46)	320.8 (1052.41)
27	12.3 (40.39)	333.1 (1092.80)
28	12.0 (39.37)	$345.7(1132.17)$
29	12.3 (40.20)	357.3 (1172.37)
30	11.9 (39.06)	369.2 (1211.43)
31	12.5 (40.92)	381.7 (1252.35)
32	12.3 (40.41)	394.0 (1292.76)
33	12.2 (40.06)	406.3 (1332.82)
34	12.6 (41.22)	478.8 (1374.04)
35	12.6 (41.30)	431.4 (1415.34)
36	12.1 (39.85)	443.5 (1455.19)
37	12.6 (41.34$)$	456.1 (1496.53)
38 39	12.3 (40.38)	468.5 (1536.91)
49	12.1 (39.59)	480.5 (1576.50)
40	12.7 (39.62)	492.6 (1616.12)
42	12.3 (40.45)	504.8 (1656.13)
43	12.6 (41.42)	$517.1(1696.58)$
44	12.4 (40.68)	$529.7(1738.00)$
45	11.7 (38.50)	553.9 (1817.18)
46	11.8 (38.60)	565.6 (1855.78)
47	12.1 (39.85)	$577.8(1895.63)$
48	12.7 (41.78)	590.5 (1937.41)
49 50	12.2 (39.89)	602.7 (1977.30)
51	$12.5(41.09)$ $12.4(40.55)$	615.2 (2018.39)
		627.6 (2058.94)

ROCMY MOUNTAM GEO-ENGNERRING COMPANY

Crand Muncticn, tolmrado

[^0]: [a All depths are referenced from the Kelly Bushing, 420 cm (14 ft) above ground level, unless otherwise noted.

