Plate 45. Topographic map of Graham County and vicinity, Arizona_...
46. Map showing geology, wells, and springs in parts of the valley of the Gila River and San Simon Creek, Graham County, Ariz.
47. A, View looking north over irrigated lowlands along the Gila River near Solomonsville; B, View looking northwest down San Simon Valley from a point near Tanque_
48. A, View looking north along San Simon Creek near Solomonsville; B, San Simon Creek near T'anque
49. A, Remnants of upper terrace on flank of Graham Mountains; B, View looking south toward Graham Mountains from point near Thatcher_
50. A, Lake beds exposed at Red Knolls "desert theater", in valley $1 \frac{1}{2}$ miles southwest of Ashurst; B, (iila conglomerate on Big Spring Wash, near center of T. 5 S., R. 25 E_
52. A, Diatomite with thin chert layers in lake beds 1 mile east of 111 ranch; B, Cienaga Springs, in Jacobson Wash, east of Cactus Flat
53. A, Flow of warm water from Pinal Oil Co.'s Whitlock No. 1 well, in sec. 36, T. 10 S., R. 28 E.; B, Indian Hot Springs....
Figure 29. Index map of Arizona, showing area considered in this report and other water-supply papers of the Geological Survey
30. Section showing artesian conditions in the lake beds of the valley of the Gila River and San Simon Creek
31. Map of Pima, showing locations of wells \qquad
32. Map of Safford, showing locations of wells
33. Map of Thatcher, showing locations of wells

INSERT

Records of wells in Craham County. Ariz

GEOLOGY AND GROUND-WATER RESOURCES OF THE VALLEY OF GILA RIVER AND SAN SIMON CREEK, GRAHAM COUNTY, ARIZONA

By Maxwell M. Knechtel

ABS'PRACT

The valley formed by the Gila River and San Simon Creek, in Graham County, Ariz., is an intermontane trough 10 to 20 miles wide that extends from the San Carlos Indian Reservation many miles southeastward. It is bordered on the southwest by the Chiricahua, Dos Cabezas, Pinaleño, Santa Teresa, Turnbull, and Mescal Mountains and on the northeast by the Peloncillo and Gila Mountains. The Ciila River, a perennial stream, cnters the trough northeast of Solomonsville through a gorge in the Peloncillo Mountains and flows northwestward to Coolidge Dam, where it turns southwest and leaves the relatively broad valley through a gorge in the Mescal Mountains. San Simon Creek, an intermittent stream, rises at the head of the trough and flows northwestward to join the Gila near Solomonsville.

Along the Gila River is an allurial lowland plain, 1 to 3 miles wide, which is underlain, to an average depth of about 100 feet, by Quaternary silt, sand, and gravel deposited by the river. This plain, large portions of which are irrigated by water from the river, includes most of the erop-producing land of Graham County. Similar low plains lie along several of the larger tributary arroyos. Higher land borders the alluvial plains and grades gently upward on each side of the valley to the base of the steep mountain slopes. This higher land is terraced, and two principal terrace levels have been recognized. The terraces, the smooth upper surfaces of which are of the pediment type, are capped by naturally cemented gravel, which in most places is not more than 10 feet thick. The gravel on the terraces is believed to have been deposited in Pleistocene time, earlier than the materials in the low-lying alluvial plains, and it rests on still older (upper Pliocene) deposits, which are mostly lacustrine but partly fluviatile in origin and which represent the Gila conglomerate. The Gila deposits, which carry fossil mammals, amphibians, fresh-water mollusks, silicified wood, and diatoms, consist chiefly of clay in the central part of the valley and of sand and gravel along the valley margins. They crop out prominently on the steeply sloping escarpments of the terraces and along most of the watercourses but are hidden elsewhere under the alluvial deposits and terrace gravel. Beds of water-bearing sand and gravel occur in all the deposits, but the principal gromed-water supply for the valley is obtained from wells in the Pliocene lacustrine strata and the Quaternary alluvium.
In the Quaternary alluvium underlying the lowland plains beds of water-bearing sand and gravel are mumerous but irregular. Any one bed pinches out laterally in all directions and generally underlies only a small area. Consequently, the vertieal spacing and the number of water-bearing layers encomtered in sinking wells differ from place to place. The water in these layers is under little or no artesian pressure.

The Pleistocene (?) terrace gravel yields little water, and most of this water issues as springs on the escarpments of the terraces at the contact between the permeable gravel and the underlying dense lacustrine clay.

The upper Pliocene (Gila) deposits yield water to wells from beds of permeable sand and gravel, which in general lie nearly horizontal between thick layers of relatively impervious silt and clay. The water-bearing beds are commonly mos mmerous and thickest toward the sides of the valley, and many of them pinch out toward the center of the valley. A typical section across the valley shows the Gila beds to be chiefly impervious lacustrine clay beneath the contral part and coarse fluviatile conglomerate at the valley margins, with nearly horizontal thin tongues or sheets of water-bearing sand and gravel extending out here and there from the belts of conglomerate into the lacustrine deposits. The water in the upper Pliocene beds is believed to be derived from the rain water that falls on the marginal belts, where it sinks into the permeable conglomerate and finds its way thence into the beds of sand and gravel in the lacustrine deposits. The water table in the permeable conglomerate of the intake area stands much higher than the ground surface of the central part of the valley, and the pressure of the water in the marginal belts is transmitted horizontally underground through the permeable layers of the lacustrine deposits. The artesian pressure thus produced is strong almost cerywhere, and in wells at several favorably situated localities the pressure is great enough to force the water to the surface. A few small areas of cultivated land along tributaries of the Cila River are irrigated by water from artesian wells, and this water is also supplied extensively to cattle.
The temperature of the water issuing from flowing wolls varies considerably, and as a rule the deeper the well the higher the temperature of the water it yields. A study of the relation of depth to temperature in 78 flowing artesian wells in the valley of the Gila River and San Simon Creek indicates an average rise in water temperature of $1^{\circ} \mathrm{F}$. for each 57 feet of depth. This normal gradient probably accounts for the high temperature of the water of the Indian Hot Springs, near Eden, the indication being that they probably derive their water through a fault or fissure from a source at a depth of about 2,500 feet below the surface.
Successful drilling of artesian wells in the past and the generally favorable geologic conditions in the lacustrine deposits warrant the belief that water under artesian pressure is present in nearly all parts of the valley that are underlain by these beds, at depths within easy reach of drilling equipment.

Samples for analysis from 49 scattered localities in the valley proved to be mainly of the sodium chloride, sodium carbonate, and sodium sulf phate types. Most of them showed a rather high mimeral content, but the greater number proved sufficiently soft to be satisfactory for most industrial uses. About a third of the waters analyzed are regarded as chemically unsuited for use in irrigation, and.many contain large amounts of sodium salts, which would be likely to cause foaming if used in boilers. A large proportion showed concentrations of fluoride sufficiently high to account for the dental defect known as mottled enamel. which afficts many inhabitants of the region.

Rather extensive gullying of the lands in the valley, having developed since the advent of white settlers early in the cighties, is a local manifestation of the present widespread "epicycle of erosion" in the arid Southwest, a phenomenon that is currently viewed with apprehension by agronomists. It has been suggested by some geologists that the accelerated erosion might have been mitiated by a recent climatic change or by a differential elevation of the land surface brought about by warping of the carth's erust. Most investigators, however, believe that it ${ }^{t}$ due to causes related primarily to stock-raising.

INTRODUC'IJON
 SCOPE OF REPORT

This paper contains the results of the writer's investigation, during 1 months in the winter of $1933-34$, of the geology and ground-water resoures of that part of the valley of the Gila River and San Simon Creek that lies in Craham County, Ariz. It includes descriptions of wells and springs and information on the stratigraphy, physiography, and hydrology of the valley. The work was supported by funds allotted to the Geological Survey by the Public Works Administration and was fone under the supervision of C. A. Waring and the general direction of O. E. Meinzer, geologist in charge of the division of ground water of the Geological Survey.

ACKNOWLEDGMENTS

Gencrous assistance was rendered by the inhabitants of the region, who supplied much of the information presented. Messrs. C. A. Firth, of Safford, water commissioner for Graham County, and P. C. Merill, aiso of Safford, secretary of the Graham County Chamber of Commerce, were especially helpful. The writer is indebted to O. E. Meinzer, G. A. Waring, N. H. Darton, P. B. King, M. G. Wilmarth, and W. W. Rubey for criticism of the manuscript, and to other members of the Geological Survey for helpful suggestions.

LOCATION AND GEOGRAPHY

Graham County, which contains about $2,963,000$ acres ${ }^{1}$ in the southeastern part of Arizona, is crossed by the thirty-third parallel of latitude and the one hundred and tenth meridian and lies in the Mexican Highland section of the Basin and Range province. (See fig. 29.) Safford, the county seat, on the line of the Southern Pacific Railroad known as the Arizona Eastern Railroad and U. S. Highway 70, is about 185 miles east of Phoenix, Ariz., and about 245 miles west of El Paso, Tex.

The valley of San Simon Creek and the Gila River above the San Carlos Indian Reservation forms a structural trough 10 to 20 miles wide. In Graham County the trough is bordered on the northeast by the Gila and Peloncillo Mountains and is separated from the Sulphur Spring and Aravaipa Valleys to the southwest by the Turnbull, Santa Teresa, and Graham (Pinaleño) Mountains. (See pl. 45.) - San Simon Creek, an intermittent stream, flows northwestward lown the axis of the valley in Cochise and Graham Counties, crossing the southern boundary of Graham County at about 3,650 feet above sea level, and discharges into the Gila River at an altitude of about 2,950 feet near Solomonsville. Its gradient averages nearly 20 feet to the mile.

The Gila River, known as the "Upper Gila" above the San Cu Reservoir, is a perennial stream that heads far to the east in $\frac{1}{4}$
Mexico, enters the Gila-San Simon trough at about 3,075 feet 4 t sea level a few miles northeast of Sanchez, and meanders doms
valley northwestward 65 miles to the San Carlos Reservoir,

Figure 29.-Index map of Arizona showing areas considered in this report and other watr-aptyter of the Geologion survey. Shaded area is described in this paper. The Hobrook resion, mowert outline, is described in a water-suphy paper in preparation. Other areas are desentert in warme. papers indicated by numbers.
west boundary of Graham County, where the altitude is about 2 , 3 feet. The average gradient of the river in the valley is about 10 ted to the mile.
Numerous intermittent tributaries heading in or near the borderity mountain ranges enter San Simon Creek an! the Gila Rirer Irew both sides of the valley.

Base from topographic map of
Arizona by N.H.Darton, 1933 .
TOPOGRAPHIC MAP OF GRAHAM COUNTY AND VICINITY. ARIZONA
Scale $\frac{1}{500,000}$

Datum is mean sea level

The part of the valley of the Gila River and San Simon Creek here lescribed, except for a narrow strip along the base of the Graham Mountains, ${ }^{2}$ has not been topographically mapped in detail, and at the time of writing good base maps are available for only a small part of the area covered by this report. The most cletailed maps are those covering the irrigated lands along the Gila River and its tributaries, on a seale of 1,000 feet to the inch. ${ }^{3}$ Good maps also cover five townships (Tps. 7 and 8 S., R. 28 E.; Tps. 10 and 11 S., R. 26 E.; and T. 6 S., R. 24 E.) that have been surveyed by the General Land Office in recent years; but the plats prepared by that office for the remainder of the area were issued prior to 1910 and do not show many details. Tron pins, which can usually be found with ease, have been used to mark the land comers in the five townships covered by the more recent surveys, but many of the stones used as markers in the earlier surveys have disappramed. A map including the area studied, published by the United tates Forest Service on a scale of 4 miles to the inch, is little more than a compilation of the Land Office plats. ${ }^{4}$ The base for the map prosented as plate 46 of this paper, showing the geology, wells, and springs of part of the area studied, was prepared from the arailable maps.
A summary of the geology of the area discussed in the present report is griven in an carlier paper by the writer, ${ }^{5}$ and Schwennesen ${ }^{6}$ has reported on the ground water in adjacent areas to the southeast and northwest in the San Simon and Gila Valleys, respectively.

ROUTES OF TRAVEL

The Bowie-Globe branch of the Southern Pacific Railroad, known locally as the Arizona Eastern Railroad, crosses Graham County and passes through Solomonsville, Safford, Thatcher, Pima, Fort Thomas, and Geronimo. In addition to these principal stations several sidings are provided for handling freight. A busy coast to coast highway, known between Lordsburg, N. Mex., and Globe, Ariz., as U. S. Highway 70, enters the valley from the east near San Jose and follows the railrond from Solomonsville to the Coolidge Reservoir, where it leaves Graham County. State Highway 81, which is graveled, leads from Safford southward through Cactus Flat and Artesia and joins
'Whap of the Crook National Forest (Mount Grabam division), Ariz. (scale 1 inch to the mile, contour interval to0 feet), C. S. Dept. Agr., Forest Service, 1932.
'Gila River determination, Graham County, Ariz; map (in 9 parts) of surveys showing irrigated lands under ditches taking water from Gila River or tributaries, district no. 3, Phocnix, Ariz., State Water Commissioner, 1920 .
'Marof the Crook National Forest, Ariz., U. S. Dept. Agr., Forest Service, 1934.
: Kneftel, M. MI., Geologic relations of the Gila conglomerate in sontheastern Arizona: Am. Jour. Sei., Wh ser., vol. 31, pp. 80-92, February 1936.
'schwennesen, A. T., Ground water in Snn Simon Valley, Ariz. and N. Mex.: Geol. Survey WaterAphly Paper 425, pp. 1-35, 1917: Geology and water resources of the Gila and San Carlos Valleys in the San Carlos Indian Revervation, Ariz.: Geol. Survey Water-Supply Paper 450, pp. 1-27, 1919.
an El Paso-Tucson highway near Bowic, Ariz. A road branching from State Highway 81 south of Artesia leads to Fort Grant, at the head of Sulphur Spring Valley. A better road to Fort Grant leaves U. S. Highway 70 about 7 miles northwest of Pima. State Highway 81, a graveled road, leads northward to Clifton from a point on U. S. Highway 70 about 6 miles east of San Jose. The settlements in the valley are comected with these main highways and with each other by numerous roads and trails.

TOWNS AND SETTLEMENTS

The incorporated towns of Graham County are Sufford, Thatcher, and Pima, all of which are on the railroad and on U. S. Highway 70 .
Safford, the chief commercial center, was founded in 1873 and incorporated in 1901. In 1930 its population was nearly 3,000 . The principal industries of Safford are flour milling, cotton giming, and the retail distribution of goods to residents of the valley. In recent years the automobile tourist traffic on U. S. Highway 70 has also been a notable source of income. Thatcher, 3 miles west of Safford, had in 1930 a population of nearly 1,300 . It is a shopping center for the surrounding farming community and is the seat of the Gila Junior College. Pima, 8 miles west of Safford, which had a population of about 1,000 in 1930, is a minor mercantile center. Solomonsville, formerly the county seat, is the largest of the unincorporated commumities. Its population in 1930 was about 1,300 . It is on the railroad and on U. S. Highway 70 , near the mouth of San Simon Creek, about 5 miles east of Safford. Next in size is Fort Thomas, about 21 miles northwest of Safford, on the railroad and on U. S. Highway 70, with a population of nearly 500 in 1930 . Several smaller communitiesAravaipa, Ashurst, Bonita, Bylas, Central, Eden, Fort Grant, Geronimo, Glenbar, Klondyke, and Sunset-are provided with post offices. Escala, Tanque, Hackel, and Solomon are railroad sidings. Bryce has only a few houses and a public school.

POPULATION

According to the United States census of 1930, Graham County had a population of 10,373 , of whom 1,981 were Mexicans and 724 were Indians. Of the total number, 4,276 were classed as rural farm population.

climate

The climate of the valley of the Gila River and San Simon Creek is mild and dry, as shown by the following table, which is compiled from records of the United States Weather Bureau:

Climatic records in valley of Gila River and San Simon Creek

Station	County	Allitude	Temperature		Precipitation	
			Lempth of record	Mean	Length of record	Mean
Buwie.	Corhise	Fcet 3,756 2.658	Years	${ }^{6} \mathrm{~F} .4$	Years	Inclies $\text { 14. } 29$
Thatcher--......	graham dila	2, 2×50	41	62.6 6.3	32 41	9.01 12.74
Sm Carlos Reservo			41	64, 3	41	12.74

The higher portions of the Graham Mountains are usually covered with snow for several months during the winter, but snow seldom falls on the ralley lands. Occasionally violent hailstorms damage crops.

NATIVE VEGETATION

Large areas of brush land in the portion of the ralley occupied by San Simon Creek and on the upland terraces of the Gila River Valley support relatively abundant growths of creosote bush and mesquite and more scattered cholla, prickly pear, ocotillo, burro weed, snakeweed, yucea, sotol, and flowering ammals. Grama grass and curly mesquite grow well on the higher lands near the mountains, but much of the central part of the ralley along San Simon Creek, which, according to early settlers, formerly contained excellent pasture of sacaton grass, is now reported to be incapable of supporting more than a few head of cattle to the square mile, and during excessively dry seasons many cattle must be removed to distant grazing lands. Native regetation in the higher parts of the cultivated lowland along the Gila River consists mainly of mesquite, squawbush, saltbush, burroweed, and cactus. Scattered cottonwoods and thickets of tamarisk, willow, and arrowweed grow on the river flood plain, where mumerous moist depressions support salt grass and tules.
The slopes of the Graham, Santa Teresa, and Turnbull Mountains are covered at high altitudes by pine forests and at lower levels by scattered juniper, oak, and walnut. The Gila and Pcloncillo Mounthins, northeast of the valley, are less heavily timbered. A sawmill at lima, which had been idle for several years prior to 1934, obtained its supply of timber from the Graham Mountains.

AGRICULTURE

The irrigated lowland that lies along the Gila River is the principal "gricultural area of Graham County, although numerous small cultisated tracts, aggregating about 1,000 acres, are scattered along the Gila and San Simon Valleys within the county. The largest of these are the Artesia, Cactus Flat, and Ash Creek areas. About 1,500 acres of land is cultivated in the Bonita district, south of Fort Grant, in the Sulphur Spring Valley.

The Federal census for 1890 ranked the chicf crops of Graham County in order of importance as hay, corn, barley, and wheat. By 1900 wheat held first phace, followed by alfalfa, barley, and corn. In 1910 alfalfa was leading and was followed by barley, wheat, and corn. In 1920 the order was alfalfa, wheat, barley, corn, and grain sorghums; cotton had been introduced. In 1930 cotton outranked all other crops, with an acreage nearly twice that of alfalfa.

Almost all agricultural products, other than alfalfa and cotton, are consumed locally. Practically all the cotton produced in recent years has been ginned at Safford and the lint exported to Japan through California ports. Yields of 2 bales to the acre are not uncommon on many of the farms. A large part of the alfalfa crop is sold outside the county.

The soil of the agricultural belt along the Gila Riyer is generally described as "sandy loam" and "silt loam" "and is highly fertile.

GEOMORPHOLOGY

In early Quatemary or late Pliocene time a lake that had occupied the valley of the Gila River and San Simon Creek during late Tertiary time found an outlet, probably at the site of the Coolidge Dam, and as the water drained away it exposed to erosion a great mass of sediments that had accumulated in the basin, mainly unconsolidated clay, silt, sand, and gravel. The erosion of these sediments has produced a variety of land forms.

SAN SIMON VALLEY

The upper part of the valley, in Cochise County, is described by Schwennesen ${ }^{8}$ as follows:
The valley has the form of a broad, shallow trough, the sides of which are formed by the alluvial slopes that extend down from the bordering mountains. Where the valley is narrow the bases of the alluvial slopes almost meet at the axis, but where the valley is wide it has the appearance of a nearly level plain with upward-curving edges.
This description is applicable to the wide San Simon Valley at the southern boundary of Graham County. To the north lowering of the Gila River twice during Pleistocene time initiated cycles of erosion, the effects of which have progressed up the San Simon Valley for many miles, altering the form of the valley floor. The old surface of this part of the San Simon Valley, which no doubt resembled that of the upper part of the present valley, as described by Schwennesen, is now preserved in part as gravel-capped terrace remnants that slope gently downward toward the center of the valley from both sides, as shown in plate 47, B.

[^0]Mormon settlers, who arrived from Utah early in the eighties, fonnd the valley in essentially its present form, but the present trench, known as Sim Simon Creek, a steep-walled gully in the valley floor (see pl. $4 \mathrm{~s}, A, B$), did not then exist. According to the statements of mams inhabitants, the San Simon Valley Jowlands at that time suppented a luxuriant growth of grass, which has since vanished. Mary investigators believe that these changes, which have occurred sinc: the arrival of white settlers, are to be attributed, at least in part, to semoval of the protective cover of regetation by excessive grazing followed by increased run-off and greater erosion. Stock trail are said to be the forerumers of small watercourses, which grow to berome broad, steep-walled arroyos. A few writers, however, have pointed out that climatic changes or tectonic movements may be mpable of producing similar results. A decrease in the mean amnal precipitation would kill off part of the vegetation, and if accompanied or followed by storms of increased violence, streams that had been aggrading their beds might begin cutting. An increase in the gradient of streams by slight regional uplift would no doubt have a similar effect.

Bryan ${ }^{9}$ favored the hypothesis of a recent climatic change. Regarding the approximate time at which the phenomena mentioned began to appear, he says:
The change from aggradation and the building of flood plains to dissection and the formation of arroyos in many streams of southern Arizona can be confidently pheed in the decade 1880 to 1890, although many tributary streams were not affected until the nineties, and some are still undissected. The date in southern Ctah, northern Arizona, and southern Colorado is apparently earlier, and cutting probahly began at some time after 1860 .
Gregory, ${ }^{10}$ in discussing the "recent cycle of erosion" in the Navajo cointry, states that
luman factors exert a strong influence but are not entirely responsible for the disastrous erosion of recent ycars. The region has not been deforested; the present cover of the vegetation affects the rum-off but slightly, and parts of the region not utilized for grazing present the same detailed topographic features as the areas anmally overrun by Indian herds.
Gregory ${ }^{41}$ has later been inclined to regard recent regional tcetonic activity as a possible cause of the trenching, an explanation which Bryan rejected.

Bryan ${ }^{12}$ summarizes information on trenching in the San Simon Valley as follows:
San Simon Creek, which enters the Gila River near Solomonsville, once flowed Hrough uninterrupted meadows and flats from a point near Rodeo more than

- Bryan, Kirk, Date of channel trenching (arroyo cutting) in the arid Southwest: Science, new ser., vol. 62; W. $335-344,1025$.
a Gregory, H. E., Geology of the Navajo country, a reconnaissance of parts of Arizona, New Mexico, and Cth: Gcol. Survey Prof. Paper 93, p. 132, 1917.
Cregry, H. E., oral communication to the writer, 1934.
${ }^{3}$ Bryan, Kirk, op. cit, p. 342.

100 miles to its mouth. Aceording to Ohmstead, ${ }^{13}$ settlers near Solomonsville in 1883 excavated a small channel 20 feet wide and 4 feet deep to confine the flood water. Since that time a chamel formed and progressed headward through the flats for 60 miles to the lower end of the San Simon Cienaga. Above this point there is no definite chammel, but the new chamel of the creek downstream is 10 to 30 feet deep and 600 to 800 feet wide. Schwemnesen ${ }^{14}$ deseribes the drainage of the area and states that the chamel has formed siree the advent of American settlers. Carpenter and Bransford ${ }^{15}$ make the same comment but also say that in large floods the chamel is still overflowed.
As stated by Olmstead, thie chameling in the San Simon Valley began with the digging of the Solomonsville drainage ditch, and much of the headward cutting is reported by early settlers to have followed the ruts of a former wagon road along the ralley bottom between Bowie and Solomonsville. Branch trenches are likewise generally confined to the principal drainage chamels, which head in or near the mountains bordering the valley. These chamels existed long before the advent of stock, and the areas between them are not gullied excessively, as they supposedly should be if stock trails were important contributory factors. The present velicular trail east of San Simon Creek between Bowic and Solomons ville (pl. 46) runs for miles near the creek over comparatively smooth surfaces, and the only trenches crossed are in old watercourses heading in or near the Peloncillo Mountains. Under these cireumstances it would be difficult, to say the least, to determine which of the possible causes that have been suggested is the chief cause of the local phenomena under consideration, and it should be borne in mind that erosion in the ancient lake beds began in late Pliocene or carly Pleistocene time. It is conceivable that numerous "epicycles of erosion", similar to that recently begun, may have occurred during each of the major cycles of aggradation and degradation recorded in the valley terraces and described in the following pages. In this conncction, however, it is worthy of note that Bailey, ${ }^{16}$ having compared the evidence of recent and earlier epicycles in several valleys in Utah, reached the conclusion that "utilization of the region by man and the consequent reduction and modification in the plant cover are major factors in starting the new epicycle of erosion." It is possible that further studies will confirm this view.

GILA VÀLLEY

GENERAL FEATURES

The Gila River, a peremial stream carrying a large volume of water, has cut down into the late Tertiary sediments much more effectively

[^1]
192 wathmetons to habrology of united states, 193

 a feature characteristically associated with pediments formed while the baselevel is rising as a result of accumulation of detritus in an enclosed basin. The pediments that slope downward from both sides of the upper San Simon Valley flatten out and meet in the central part of the trough as described by Schwennesen. (See p. 188.)
GPPER TERLIACE

Along the southwest side of the Gila Valley a dissected gravel covered terrace (see pl. 49, A, B) is the remnant of an ancient pediment and is called in this paper the "upper terrace." This terrace extends southeastward from the San Carlos Indian Reservation and floor in the southers surface with the relatively undissected valley the Graham Mountains of the San Simon Valley. At the base of this terrace is several hund margin of the valley. The highest higher than elsewhere along the mouth of Frye Canyon and is about point on the terrace is at the longitudinal section of the upper terrace feet above sea level. The this neighborhood is conver upward formed by aggradation at the mouth suggesting a typical alluvial fan belt of fanglomeratic Gila conglomerate rye Canyon. However, a Graham Mountains in this vicinity ate lies along the base of the Gila fanglomeratic phase and the out basinward as a thin coating over the latying gravel that spreads not be located at the time of er lake beds of Gila age could detailed study of the prominent fan ation. It is possible that a would show it to belong to the deratio mouth of Frye Canyon originally described by Paige ${ }^{20}$ and egatational "rock fan" type, as At the mouth of Tripp Canyon the lituded later by Johnson. ${ }^{21}$ about 4,400 feet above sea level the altitude of the upper terrace is point on it is at an altitude ovel; near the Swift Trail the highest Grant road about 7 miles south about 4,100 feet; and at the Fort feet. Schwennesen's diagrams of Artesia the altitude is about 4,300 at the base of the Turnbull how the edge of the valley deposits sea level. served on numerous isolat the Gila Valley the upper terrace is prestreams in the clay, silt, and mesas that have been carved by the Pliocene lake beds of the central layers characteristic of the late capped by a layer of Pleistentral part of the basin. Each mesa is thick, firmly cemented by colene (?) gravel, usually from 6 to 10 feet glomerate whose pebbles calcium carbonate (caliche) to form a con-

[^2]
nts formed while of detritus in an d from both sides cet in the central See p. 188.)
dissected gravel an ancient pedie." This terrace Reservation and indissected valley At the base of e upper limit of ewhere along the terrace is at the e sea level. The he mountains in pical alluvial fan on. However, a the base of the act between the vel that spreads fiila age could possible that a of Frye Canyon K fan' type, as r by Johnson. upper terrace is rail the highest nd at the Fort e is about 4,300 valley deposits ,000 feet aboye
: terrace is precarved by the stic of the late Each mesa is m 6 to 10 feet to form a cone are in general 442-450, 1912 . 77, 1931; Rock lant © gions: Geog. Rerifer
geological survey
WATER-SUPPLY PAPER 796 PLATE 47

A. View looking xormi over mrigated lowlands along the gila river near solomonsville.

B. VIEW LOOKING NORTHWEST DOWN SAN SIMON VALLEY FROM A POINT NEAR TANQUE. San Simon Creek in the foreground.

A. IIEW LOOKING NORTII ALONG SAN SIMON CREEK NEAR SOLOMONSVILLE.

b. San shmon creek near tanque.

1. REMNANTS OF UPPER TERRACE ON FLANK OF GRAHAM MOUNTAINS.

b. WEW LOOKING SOUTH TOWARD GRAHAM MOUNTAINS FROM PONT NEAR THATCHER

Upiper terrace is seen at base of monatains.

A. LAKE BEDS EXPOSED AT HED KNOLLS "DESERT THEATER", IN VALLEY ib MLES SOUTHWEST OF ASHURST.
Two conspicuous hard layers near top are limestone containing fresh-water invertehrate fossils

B. (illi Conglomerate on big spring wash, near center of t. 5 S., r. 25 E.

About 50 feet of conglomerate is exposed. :

$$
\therefore \therefore \quad \therefore \quad \therefore \quad \therefore 4
$$

composed of the sam: materials as the fanglomeratic phase of the Gila conglomerate. Tl avel is everywhere coarse, and the pebbles are poorly assorted in sta. In sec. 27, T. 7 S., R. 25 E., 4 miles from the base of the Graham Sountains, boulders 2 feet in diameter occur in the conglomerate tha: caps a small mesa. The steep gradient, generally more than 30°.f the sloping escarpment of this terrace is due to the resistance to assion that is offered by the hard capping layer of caliche and the ease of crosion in the underlying unconsolidated lake beds.

On the opposite side of the valley no terrace corresponding to this one seems to be present, unless if is indicated by a few caliche-capped mesas in sec. 31 , T. $5 \mathrm{~S} .$, R. 25 , the tops of which are about 3,330 feet above sea level, or about tof leet above the surrounding upland. Possibly the upper terrace was fumerly matched by a terrace sloping away from the Gila Mountains northeast of the present river and higher than the present surface there. At that time the Gila Valley was probably a broad trough resembling the present San Simon Valley in the neighborhood of San Simon, as described by Schwennesen.

LOWER TERRACE

A second dissected pediment surface, which may be called the "lower terrace", is bounded on the southwest side of the ralley by the upper terrace and slopes gently downward toward the alluvial lowlands of the Gila Valley (pl. $49, B$). Northeast of the Gila River it is matched by a similar terrace that rises to the base of the Gila Mountains. These two surfaces represent a second major episode in the erosional history of the valley since the lake disappeared, involving cutting by the Gila River down to a level about 100 feet above its present channel, at which it remained long enough to permit its tributaries to cut away large parts of the erosion surface represented by the upper terrace. Like the upper terrace, the lower terrace on each side of the valley is covered by a thin layer of coarse gravel cemented by calcium carbonate, and here also the cutting of the soft lake beds below the hard caliche capping has produced steeply sloping escarpments along the terrace faces. At this stage cutting extended up the San Simon Valley for more than 15 miles above Solomonsville.

alluvial plains

The alluvial lowland plain along the Gila River (pl. 47, A) extends from the San Carlos Reservoir upstream and terminates at the narrows about 2 miles above Sanchez. This plain, which was built by the Gila River, is bordered on both sides by the steeply sloping escarpments at the foot of the lower terrace; its width is about 1 mile at Geronimo and Fort Thomas, about $2 \frac{1}{2}$ miles at Pima, 3 miles at Thatcher and Safford, 2 miles at Solomonsville, and $1 \frac{1}{2}$ miles at San
\qquad

SEDIMENTARY ROCKS

orla conglomerate
general features
Sedimentary deposits of lake and stream origin fill the valley of the Gila River and San Simon Creek to a depth of possibly 1,600 feet. The area occupied by these valley deposits in Graham County rates from 10 to 20 miles in width, and they extend more than 100 miles up the valley from the Coolidge Dam. In the central part of the valney they are of lacustrine origin and are characteristically fine-graned, consisting of stratified red and gray clays and silts, with here and there layers of tuff and marly limestone. (See pls. 50, A; 51, A, B.) These prevailingly finc-grained materials grade laterally into fanglomerate (pl. 50, B), which is included in the Gila conglomerate as originally defined by Gilbert ${ }^{23}$ and which extends in belts along the sides of the valley. This coarse material is of fluvatile origin and was no doubt deposited as alluvial fans and deltas by streams issuing from the mountains along the shores of the ancient lake. The pebbles and boulders of this lateral or shore phase of the formation are largest at the base of the mountains, where they are commonly a foot or more in diameter. On the southwest side of the valley they are composed chicfly of schist and coarse-grained igneous rocks derived from the Graham, Santa Teresa, and Turnbull Mountains. On the northeast side of the valley the pebbles are predominantly fragments of volcanic rock transported from the Gila Mountains. The belts of fanglomerate exposures are several miles wide in some places, but are absent in others. A broad belt skirts the Gila Mountains from the San Carlos Indian Reservation southeastward nearly to Sanchez, being interrupted only in the vicinity of Fort Thomas. A second broad belt skirts the Santa Teresa Mountains and extends a few miles southeast of the Fort Grant road. For several miles northwest and southeast of Frye Creek the belt of fanglomerate is not more than a mile wide. Belts in the upper San Simon Valley and in the lower Gila Valley are described by Schwemesen. ${ }^{30}$ The fanglomeratic phase is absent along the base of the Whitlock Hills and in the vicinity of the 111 ranch, where the lake beds are composed of gray clays and beds of white diatomite and chert, shown in plate 52, A.
In the absence of detailed surveys no accurate estimate of the exposed thickness of lake beds in the valley is possible. It is probably not more than 200 feet, but the strata penetrated in at least the upper 1,600 feet in deep wells drilled at Safford, Pima, and Ashurst are apparently of lacustrine origin. The logs of the deep wells (pp. 202-204) show no large body of conglomerate older than the lake beds

[^3]and underlying them at a depth of about 600 feet below the surface, as postulated by Schwennesen, ${ }^{31}$ whose diagram, moreover, shows the "high marginal hilly belts" in the San Carlos Indian Reservation to be undenain exclusively by alluvial material. The writer found that the dissected upper surface of the high marginal belt or pediment (see p. 191) on the southwest side of the Gila Valley, along the base of the Graham Mountains, is underlain in part by lake beds, in part by fanglomerate, and; in an area of a few square miles, by the crystalline rocks of the Graham Mountains. Schwennesen's concept, in which the limits of the "belts of lower country" in the San Carlos Reservation are regurded as coincident with the outlines of the former lake, is thus contradicted, so far as the extension of the Gila Valley southeastward into Graham County is concerned. Furthermore, the transition from coarse detrital material in the basin deposits, as exposed along several arroyos near the margins of the valley, to predominantly fine-grained material in the central part of the trough occurs not abruptly but gradually. Interfingering of the two types of fill, as shown in figure 30 , is inferred from well data and is supported by the hydrologic considerations set forth on pages 209-211. Such relations would scarcely be expected to exist if the fanglomerates and lake beds were deposited at separate times. The Gila conglomerate as a geologic formation must therefore include both lake beds and fanglomerates, the two phases having originated simultaneously. The late Pliocene age of the lacustrine phase of the Gila conglomerate in this area is known from fossil evidence obtained during the present investigation and set forth below. As the lacustrine deposits have been traced continuously to the mouth of Bonita Creek (see pl. 45), they may safely be regarded as lying within the type locality of the Gila conglomerate as given in the following quotation from Gilbert's original definition of that formation, ${ }^{32}$ where the Gila and San Simon Valleys are referred to as the "Pueblo Viejo Desert."
Begiming at the month of the Bonita, below which point their distinctive elaracters are lost, they follow the Gila for more than 100 miles toward its source, being last seen a little above the mouth of the Gilita.* * * Below the Bonita it the Gila conglomerate] merges insensibly with the detritus of Pueblo Viejo Desert.
The character of the late Pliocene deposits in this valley is evidently rery much the same as in the San Pedro Valley, to the southwest, which is described by Bryan ${ }^{33}$ as follows:
The conglomerate (fanglomerate) of the typical facies encircles unconsolidated fine-grained deposits laid down in the central areas of the original valleys. In
Andian Rennesen, A. T., Geology and water resources of the Gila and San Carlos Valleys in the San Carlos Jndian Reservation, Ariz: Geol. Surves Water-Sumply Paner 450, pe. 7 -10, 1919.
"Githert, G. K., op. cit . pp. 540-541, 1875.
${ }^{3}$ liryan, Kirk, San Pedro Valles, Ariz, and the geographic cycle [abstract]: Geol. Soc. America Bull., vol. 37, ע. 169. 1920.
the fine-gramed deposits a large vertebrate fana, determined by Gidey to be of late Pliocene age, has been fomd.

FOSSILS

Vertebrate fossils that were collected by the writer from the lake beds of the ralley of the Gila River and San Simon Creek at two localities about 25 miles apart (111 ranch and Henry ranoh) include camel bones, peccary teeth, a sloth bone, teeth and bone belonging to three genera of horses, and fragments of a large that: These, together with photorraphes and casts of part of a mastodis full from a third locality, near Bear Springs, were referred for dele mination to C. L. Gazin, of the United States National Museum, whose preliminary report follows:

1. Nannippus locality, 111 ranch, sec. 27 , T. 8 S., R. 28 E.:

Hipparion (Namippus) sp. (teeth and jaw fragments).
Equid, large form (tooth fragments and foot bones).
Camelid sp. (fragments of limb and foot bones).
Platygonus sp. (teeth).
Megalonychid sp. (mngual phalanx).
2. Plesippus locality, Henry ranch, NE,4 sec. 22, T. $5 \mathrm{~S}, \mathrm{R} .23$ E.:

Plesippus sp. (teeth and bone fragments).
Camelid sp. (fragmentary foot bones).
3. Mastodon locality, Bear Springs, SE1/4 sec. 9, T. 7 S., R. 23 E.:

Rhynchotherimm? sp. (portion of skull with teeth, identified from photographs and casts of the tooth crowns).
There is probably little or no difference in the age of the above three occurrences, as the presence of Namippus, Plesippus, and a mastodon resembling Rhynchotherium in each locality indicates an upper Pliocene age. The part of the upper Pliocene represented is not clearly indicated, although the part represented appears to be less adranced than the Plesippus zone at Hagerman, Idaho, ${ }^{34}$ and probably not greatly separated in time from the Blanco of Texas. ${ }^{35}$ As compared with the horizons that carry mammalian remains in the San Pedro Valley of Arizona, ${ }^{36}$ the horizons in the Gila and San Simon Valleys appear to be older than the late Pliocene or Pleistocene at the Curtis ranch, about 15 miles south of Benson, Ariz, and younger than or possibly equivalent to the upper Pliocene recognized near Benson.
The turtle remains were submitted to C. W. Gilmore for identification, and he reported them as undeterminable testudimate remains that gave no indication as to age.
${ }^{34}$ Gidey, J. W., A new Pliocene horse from Idaho: Jour. Mammalogy, rol. 11, 19. 300-303, 1930; Contimuation of the fossi-horse romid-up on the old Oregon Trail: Smilhsonian Inst. Explorations and Field Work in 1930, pp. 33-40, 1931. Boss, N. H., Explorations for fossil horses in Idabo: Smithsonian Inst. Explorations and Field Work in 1931, pp. 41-44, 1932.
${ }^{38}$ Gidley, J. W., The fresl-water Tertiary of northwestern Texas: Am. Mus. Nat. History Bull., vol. 19, pp. 617-635, 1903. Cope, E. J., A preliminary report on the vertebrate paleontology of the Llano Estacado: Texas Geol. Survey fth Am, Rept., pt. 2, pp. 47-74, 1893. Plummer, F. B., Ceooovie systems in Texas: Texas पniv. Bull. 3232, vol. 1, pp. $765-776,1932$.
3i Gidey, J. W., Peliminary report on fossil vertebrates of the San Pedro Valley, Ariz., with deseriptions of new species of Rodentia and Lagomorpha: U.S. Geol. Survey Prof. Paper 131, pp. 119-131, 1922; Fossil Proboscidea and Edentata of the San Pedro Valley, Ariz: U. S. Geol. Survey Prof. Paper 140, pp. 83-95, ${ }_{1926}$ Prob

Fossil invertebrates from Red Knolls, were studied Survey, who states:
4. Planorbis locality, Red Kıult murth locality, in the lake beds near IV. C. Mansficld, of the Geological bout 40 feet higher than midentine womate bones:

Lymmata? sp. (only a fragment a a pire seen).
Planorbis (species indeterminahle, ane cimens badly crushed)
The fanna lived under fresh-water whditions. The age is indeterminable becanse of the poor state of prescrvation of the organisms; however, they do not look very old.
Fossil wood from locality 2 (Plesippus locality) has been studied by R. W. Brown, of the Ceological Survey, who writes:

Among several specimens of silicified wood from sec. 22, T. 5 S., R. 23 E., Graham County, Ariz, only one was well enough preserved to show identifiable cellular elements. A transverse section of this wood exhibits distinct annual rings composed of about equal zones of spring and summer wood. The vessels of the spring wood are large and miform; those of the summer wood, minute. The transition from the open spring wood to the dense summer wood is conspicuously abrupt. The medulary rays are narrow, barely visible to the naked eye, and lie between single, rarely double, rows of wessels. The radial and tangential sections reveal nothing definitive. This wood is clearly a ring-porous, dicotyledonons species, resembling in some respects the living Sassafras variffolium. I should hesitate, however, to identify it positively as a Sassafras. Its well-defined ammal rings suggest regular seasonal changes, either wet to dry or wam to cold, or both. As to its geologic age I can offer only a guess that it may have lived in the middle or late Tertiary.
Diatomite collected by the writer from two localities was examined by K. E. Lohman, of the Geological Survey, whose report follows:
Geol. Survey diatomite locality 2054, 111 ranch, Ariz., SE/4/4 sec. 21, T. S S., R. 28 E.

This material consists chiefly of voleanic ash and some clastic material, diatoms constituting only about 30 percent of the total. It is useless for any purpose for which diatomite would be required. The following species of diatoms are present (C , common; F , frequent; R , rare):

Melosira italica (Ehrenberg) Kützing. F.
Podosira sp. R.
Stauroneis ef. S. phoenicenteron Ehrenherg. F.
Anomoconeis sphacrophora (Kützing) Pfitzer. F.
Navieula ef. N. cuspidata Kützing. R.
Navicula amphibola Cleve. F.
Pinutaria major (Kützing) Cleve. C.
Pinnularia microstauron (Ehrenberg) Cleve. F.
Gomphonema longiceps Ehrenberg var. subclavata Grunow. R.
Denticula elegans Kützing. C.
Epithemia zebra (Ehrenberg) Kiitzing var. procellus (Kütztng) Grunow. R.
Rhopalodia giblerula (Ehrenberg) Müller. F.
Nitzschia sp. R.
Campylodiseus clypeus Ehrenberg. R.
Geol. Survey diatomite locainty 2055, opposite Fort Thomas, Ariz, SE1/4 sec. 24. T. 4 S., R. 23 E.

This material is an impure diatomite, the impurities, chiefly silt, amounting to approximately 15 percent. It would be suitable for such purposes as heat and sound insulation but would not be marketable in competition with even medium grades of diatomite from Callfornia, Oregon, Nevada, and other areas, because of and ond depend on a local market. Heat insulation is suggested as the most likely purpose for which it might be used.

The following species of diatoms are present (A, abundant; C, common; F, frequent):

Cyclotella meneghiniana Kützing. C.
Mastogloia ef. M. smithii Thwaites. F.
Gomphonema ef. G. Janceolatum Ehrenberg.
Denticula elegans Kützing. A.
Surirella striatula Turpin. F.
Camprlodiscus clypeus Ehrenberg. F.
The diatoms in both these samples suggest that they were deposited in warm, somewhat saline lake water. All the species are living at the present time, so that no evidence of age is offered, other than that the deposits can hardly be very old. All these species have been found in rocks of supposed Pliocene age, so that these deposits may be of Pliocene age or younger.

PLEISTOCENE (?) TERRACE GRAVEL
The middle and upper terraces of the valley of the Gila River and San Simon Creek are capped by caliche-cemented coarse gravel, the nature, origin, and stratigraphic relations of which are described on pages 190-193 of this report. As no fossils have been found in the gravel, its geologic age can only be inferred. Both the gravel capping the upper terrace and that capping the lower terrace, which is of later origin, are tentatively assigned to the Plcistocene because they rest unconformably on the upper Pliocene lake beds and were formed before the deposition of the alluvium that underlies the lowland plain along the Gila River.

QUAMERNARY ALLUVIUM

Alluvium, consisting of silt, sand, and gravel, underlies the lowland plain along the Gila River and less extensive areas along the tributaries of the river in Graham County. Deposition of this material probably began in Pleistocene time and has been in progress on the flood plain of the river until recently. The areal distribution of the alluvium, the history of its origin, its physiographic relations, and its economic value are briefly described on pages 187, 188, 193, 194, and 207.
The thickness of alluvium underlying the lowland plain differs from place to place but is probably nowhere much more than 100 feet. A general idea of the character of the alluvium as shown by wells may be obtained from the following sections:

A. E R. 23 E.

sht, amounting to as as heat and n with even medium her areas, because of set. Heat insulation used. ant; C, common; F. e present time, so that in hardly be very old: ene age, so that these
the Gila River and coarse gravel, the hare described on been found in the the gravel capping ce, which is of later because they rest and were formed is the lowland plain
derlies the lowlanis long the tributarie s material probably on the flood plain of if the alluvium, the Its ceonomic valut and 207.
id plain differs frow e than 100 feet. 8 e hown by wells mis)

B. FOSSILIfEROUS LAKE bEDS NEAll 111 RANCH, IN SEC. 27 ;T. 8 S., R. 28 E.

B. CIENAGA SPRINGS, IN JACOBSON WASH, EASI OF CACTUS FLAT.

GILA RIVEIR AND SAN SIMON CRERE, ARIZONA
 Jenses.

Approximate section from San Simon Creek to Saflord

Log of E. G. Rogers well, NE/4 sec. 5, T. 6 S., R. 24 E.

	$\begin{aligned} & \text { Thick- } \\ & \text { ness } \end{aligned}$	Depth	Hemarks
	Feet ${ }_{15}$	Feet ${ }_{15}$	
Sand.	20	35	Suall mount of water.
Soft red clay	5	40	Small amoum of wat
Coarse clay	5	50	Considerable water (nonartesian).
Coarse sand	10	60	Do.
Sand cay.	$\stackrel{2}{18}$	62	Do.
Mard red clay-.	+	82	Do, between lake bets and overlying
Oravel ${ }_{\text {Unconformity }}$			Contact between alluvimb.
Clay, with beds of limestone and turt.	718	800	No sand or gravel and no water. 6 feat thick at about 500 fert.

deEp-well records

The following drillers' logs of four deep wells in the Gila Valley ate given with no attempt to slow the geologic age of the rocks pene trated. It is believed, however, that all the materials are of sedi. mentary origin, and it is possible that at least the upper 1,500 or 1,600 feet of the strata underlying the Quaternary alluvium belong to the lake beds.

Log of Soulhern Pacific Co.'s well at Tanque, Ariz.
[Pumping yield, $2 x, 000$ gallons in 24 hours]

	Thick ness	Depth	Remarks
Hardpan	Feet ${ }_{32}$	Fect ${ }_{3}$	
Gravel....	6	35	
Yellow clay	52	90	Base of alluvium.
Sand and gravel.	34	124	High water, 111 feet. Water level whin
Yellow clay	8	132	pumping, 115 feet.
Gravel....	12	144	Water.
Blue clay.	96	240	Working barrel raised to 155 feet from grount
Blue clay and san	14	254	surface, November 191.
Gruse and sand	${ }^{6}$	260	
Sand......	24	${ }_{283}^{284}$	
Yellow clay-.	34	322	
Sand and clay	4	326	
Buac clay.	70	396	
Blue clay.	192	400	
Gypsum and clay	$1: 3$	735	
Gypsum.......-	30	765	mottom of well.

Log of Southern Pacific Co.'s well (dry) 17 feel south of center of main (rack, 12 , feet cast of center line of Central Avenue, Saflord, Ariz. [Drilled January 1906-March 1907. All water encountered was salty]

	Thichness	Depth	Remarks
Soil.	Feet ${ }_{\text {s }}$	Feet ${ }_{8}$	
Graveland boulders.	82	90	
Unconformity			Base of allurium.
Yellow clay.	109 70	190	
Blue clay. -	40	260 300	
Yellow stratifed clay-...-........-	400	700	
Yellow clay with streaks of gypimm. Yellow clay with strata of hard rock.	100	800	
Yollow and brown clay with streaks of gypsum.	105	- 895	
Salty ehy - --.......................-	820	1,820	Botion of well.

GILA RIVER AND SAN

204 CON'PRIBUTLONS TO HYDROLOGY OF UNITED STATES, 1937
Log of Gila Oil Syndicale's well in the SW1/4NE/4 sec. 30, T. 5 S., R. 24 E., neat Ashurst

	Thickness	Depth	Remarks	
Alluvinm.	Feet 50	Fect_{50}	Water.	
Clay	380	445	Fiow of witer	\checkmark
Shand--.........	15	445 599	Flow of water. Salt water.	
Limy shale.....	30	620		
Gray sand	80	700	Flow of water.	
Limy shale.	50 55	750 805	Salt water.	
Blue shale. Oravel....	${ }_{30}^{55}$	8805		
Gray shale	200	1,035		
Brown shale	80	1,115		
Blue shale.	20	1,135		
Brown shale	15	1,150		
Brown shale	35	, 160	\checkmark	
Sandy shate.	3.5	1,235		
Blue shale-	20	1,255		
Brown shate	80	1,335		
Red shaie-...	60	1,395		
Sandy shale-	80	1,435		
Brown sandstone.	480	1,995	Flow of water.	
Gravel..	10	${ }^{2.005}$		
Dark-brown shate.	10	2,075 2,045		
Brown shale.	125	2. 210		
Dark-brown sandstone	70	2.280		
Gray shale...	15	2. 295		
Red shale-.............	110 80	2.405		
Limestone-- -	80	2. 565		
Sandy limestone	30	${ }_{2}^{2.595}$		
Blue shale...	50	2.645	Botiom of weh.	

The following section of the flowing well at Geronimo, in sec. 19, T. 4 S., R. 23 E., drilled for oil with cable tools in 1918-19, is furnished from memory by the owner, R.S. Knowles:

Log of flowing well at Ceromimo

	Thick. ness	Depth	Remarks
	Fett	Fet	
Samand chay.	17	45	Fresh water at several horizons: cemented off.
Mard clay	43	88	A little water.
Gravel chay and lime	405	495	Artesian fow of salt water.
Samd.-............	30	52.5	
Shate, lime, and clay	2.0 15		Botom of well; no water was struck below
			495 feet.

SUMMARY OF TERTIARY AND QUATERNARY HISTORY

The Tertiary and Quaternary history of the Gila-San Simon trough may be summarized as follows:
An enclosed basin, surrounded by mountains and occupied by a lake, was formed during late Tertiary time, possibly by block faulting. Lacustrine and fluviatile sediments were laid down in the basin to a thielness believed to be 1,000 fect or more. A part at least, if not all, of these beds were laid down in late Pliocene time. The presence of
ative volcanoes in the neighborhood during the existence of the lake ative
bproved by the layers of tuff that occur in the lake beds, and possibly part of the great succession of lava flows exposed in the Gila Mountains pais extruded during that time. The lake was then drained, exposing the lacustrine and fluviatile sediments to erosion. Gravel-capped piedmont erosion surfaces, of the pediment type, cut in these upper Pliocene beds, were formed, probably in Pleistocene time, on both sides of the valley. At the end of this stage, which is now represented by the upper terrace, the Gila River was several hundred feet above its present level. The Gila later cut down a few hundred fecet and then paused while new erosion surfaces, now represented by the lower terrace, were developed on both sides of the valley. The river next emcavated a trench about 200 feet below the lower terrace and widened the trench by lateral cutting. The river chamel then rose gradually by aggradation, depositing silt, sand, and gravel to form the alluvial lowland plain. It has recently cut down through the alluvium and has deposited the sand, silt, and gravel of its present flood plain.

WATER RESOURCES

SUMMARY

The water a vailable for use in the valley of the Gila River and San Simon Creek may be classified as shown below, according to its mode of occurrence and development for use:

Ground water:

Springs.

Wells:
Flowing wells.
Nonflowing artesian wells.
Nonartesian wells.
Water forwing peremially in the Gila River.
Water of intermittent streams tributary to the Gila.
Water or is used principally for domestic supplies, for watering The water is uscd prince Individual wells and springs differ in the stock, and and temperature of the water they yield, in the amount and
amount and chemical character of minerals in solution, and in the depth of the sand and gravel from which the water is obtained. Shallow wells are gencrally dug by hand. Wells more than 40 feet deep are usually drilled by power-driven machinery. The water of nonflowing wells is pumped to the surface by windmills, by gasoline engines, or by hand or is brought up in buckets attached to ropes. The water of springs, flowing wells, and intermittent streams is commonly stored in reservoirs for use as needed.

MUNICIPAL WATER SUPPLIES

The municipal water-supply system of Safford and Thatcher i, owned and operated by the Arizona Edison Co. The water is of tained from Frye Creek, which is fed in part by springs and rain but chiefly by melting snow in the Graham Mountains. The company, plant consists essentially of several miles of pipe and two storage reservoirs on Frye Creek. The upper reservoir, at the mouth of Frye Canyon, in sec. 7, T. 8 S., R. 25 E., has a capacity of $70,000,000$ gallons. The dam, of varinble-radius arch design, is 91 feet high and is constructed of reinforced concrete. The lower reservoir, $3 \frac{1 / 2}{2}$ miles downstream, in sec. 34, T. 7 S., R. 25 E., has a capacity of $5,000,000$ gallons. When this supply fails, as occasionally happens during periods of drought, water is pumped from a well in the NE/4SE/4 sec. 13, T. 7 S., R. 25 E., on the outskirts of Safford
The water supplied to the residents of Pima is piped from several flowing wells that lie along Cottouwood Creek in sec. 8, T. 7 S., R. 24 E. The water is stored in a small concrete reservoir in sec. 25 , T. 6 S., R. 24 E. The plant is owned and operated by the City Utility Co. of Pima.
. The water supply at Eden is partly obtained from a communityowned spring (see p. 214) and a small concrete reservoir about a mile northeast of the settlement.
All other settlements in the valley, including Solomonsville, Fort Thomas, and Geronimo, are supplied with water from local pumped wells, most of which are owned by individuals.

SURFACE-WATER IRRIGATION
The cultivated lands along the Gila River (pl. 47, B) are irrigated with water diverted from the river into ditches through which it is conducted to the users by gravity. The irrigation system is owned jointly by the users. The river water is well suited for irrigation, especially as it carries a large amount of silt that is reported to be rich in fertilizing material.
The following table shows that the amount of water available in the Gila River for irrigation is variable from yoar to ycar. The table gives the annual discharge and run-off for the years 1915 32 as recorded at a station 8 miles northeast of Solomonsville, abov all diversions in the vallcy except that of the Brown Canal, and for $10 \% 3$ as recorded at a station 3 miles farther upstream, above the Brown Canal.

GILA RIVER AND SAN SAMON CR Gila River 8 miles northeast of Northeast of Solomonsville, 1983
northeast of Solomonsile, norm records of U. S. Geological Surveyl

The maximum daily discharge during the period of 18 years was 73,600 second-feet on January 19, 1916; the minimum was about 29 second-feet on July 4, 1923.
The farming areas at Artesia, Cactus Flat, Ash Creek, and Cottonwood Creek, which include about 1,000 acres, are imigated by water from flowing wells, supplemented by stream water-from the Graliam Mountains. Well water for irrigation is commonly stored in small reservoirs for use when needed, and several large reservois, not an of which were in use at the time of exammation, hatching and storing on Cottonwood, Ash, and Marijild Creeks for catching and mountains. the flood waters that issue rather infrequen ec. 6 , T. 9 S., R. 26 E., A reservoir in Jacobson flow, that is diverted from the creek into a stores a small perennial 2 miles upstream.
pipe line at a point about 2 GROUND WATER

welas in alluviunt

The Quaternary alluvium underlying the lowhand plain along the Gila River in Graham County everywhere contains water at no great depth below the surface. Water is commonly obtained in wells at depths of less than 25 feet, and usually two or surface. The beds beds are found at less than 100 feet be composed of sand and gravel, that yield water are nearly horizontal, are composed of sampermen impermeable and are commonly overlan and undertam and gravel beds are numerous but irregular, and any one bed pinches out laterally in all directions and generally underlies only a small area. Consequently, the vertical spacing of water-bearing layers varies and the number of them en countered in sinking wells differs from place to place.
The water in the alluvium is doubtless derived mandy water added by of rain water, irrigation water, Gila River Possibly some water enters the tributaries of the Gila during floods. Possibly some water enters the
alluvium locally by upwardseepage from the underlying Pliocene lake beds. The water in the alluvium does not rise to the surface in wells but is reported to be under small artesian pressure at a few localities, especially in the neighborhood of Thatcher.

Quaternary alluvium underlying the relatively narrow flood plains of tributaries of the Gila River also yields water to pumped wells at many places, especially along Black Rock, Cottonwood, Asb, Marijilda, and Stockton Washes.

wells in fanglomoritte phase of the glla conglomerate

Very few wells have been put down in localities underlain by fanglomerate of the Gila conglomerate, which crops out in large areas along the sides of the valley, and the writer knows of only one such well in which water was struck. At the Pursley ranch, in sec. $12, \mathrm{~T}$. $6 \mathrm{~S} ., \mathrm{R} .26 \mathrm{E}$., the drill went through coarse fanglomerate and clay to a depth of 345 feet, where it encountered hot water that rose under artesian head about 200 feet, to a level about 145 feet below the surface. Near Big Spring Wash, in secs. 11 and 14, 'T. 5 S., R. 25 E., two unsuccessful wells were put down. One of these wells was drilled without reaching water through 375 feet of very coarse conglomerate followed by 40 feet of basalt and 100 feet of clay. It is probable, however, that in some areas underlain by the fanglomerate the water table lies within a few hundred feet of the surface. Otherwise it would be difficult, if not impossible, to explain the pressure head of the artesian water in the lake beds.

> wells in lake beds of tine gila conghomerate

The upper 1,600 feet of beds in the central part of the valley troughre consisting mainly of clay and silt, which are tentatively regarded as belonging to the lake beds, yield water from sandy beds at various depths. Nearly all the wells that obtain water from the lake beds have artesian flows or at least water under considerable artesian head. The number of water-bearing sands and the intervals between them difler from place to place. In some parts of the valley, as at Cactus Flat and Artesia and along Ash Creek, several water-bearing beds are separated by thicknesses of only a few hundred feet of clay and silt. In some other places wells drilled many hundred feet deep have failed to yield water. The 800 -foot Rogers well, in see. 13, T. 6 S., R. 24 E., yielded no water below the Quaternary alluvium in which it was started. In drilling at the 111 ranch no water was encountered above 720 feet.

The principal area of artesian wells in Graham County is in the west half of T. $8 \mathrm{~S} ., \mathrm{R} .26 \mathrm{E}$., in the vicinity of the farming communities at Artesia and Cactus Flat. The western edge of this area is $1 \frac{1}{2}$ to $2 \frac{1}{2}$ miles east of the contact between the valley fill and the rocks exposed at the base of the Graham Mountains. Small areas of
utesian flow have been developed along Ash Creek in the east half arti. 7 S., R. 24 E.; along Cottonwood Creek in the west half of T.7S., R. 24 E.; and near Bear Springs in secs. 1 and 2, T. 7 S., 4. 4.23 E . All flowing wells in these areas are within 4 miles of the base of the Graham Mountains. A few flowing welie have been obsenined between these areas and at other places in the valley. llowing wells in the San Simon Valley to the southeast, in Cochise County, Ariz., have been described by Schwemiesen. ${ }^{37}$
The drilling of wells in the lake beds of Graham County began bout 1900 . Some adequately cased wells are reported to have lowed fairly uniformly for many years. Others that were not cased yieded copiously at first but later dwindled in flow, and many ceased flowing. Drillers have usually failed to keep logs, and the writer could measure the depths of but few drilled wells.
The discussion by Meinzer ${ }^{38}$ of artesian conditions in the valley fill of Sulphur Spring Valley, Ariz., is believed to be applicable, with slight modification, to the late Tertiary fill in the valley of the Gila River and San Simon Creek. He writes:
The sediments in Sulphur Spring Valley are saturated practically to the level of the lowest parts. New supplies of water are from time to time poured into the valley and sink into the gravelly upper parts of the stream-buit slopes. The water beneath the slopes has accummated slow toward these low areas, where it central flats and consequently moves slow in the upper parts of the slopes the reappears at the surface and craporates. buther down in the valley the gravel gives valley fill consists largely of graved, buth. Beneath the center of the valley these way to alternating beds of clay and samd. Sem curve upward. The gravel and beds are nearly level, but bencath the slopes they curve upwarough them, but the sand are porons and therefore allow water to pereolate the water which sinks into the clay is so dense that it is relatively water-tight. gravel in the upper parts of the slopes and the water which accumulates back of it confined below the layers of elay, and may become so great that when the clay places it under pressure. This pressure may beconer will cseape to the surface, layers are punctured by the drill the condmed waterecty impervious the head of forming flowing wells. If the chay to produce flows with strong pressure over water would probably be great enoughto so much water to escape that flowing considerable arcas, but in fact they allow so mechaty favorable localities, and in most of wells have been struck in on
these the pressure is slight
A detailed structural survey would probably show that the lake beds in the valley of the Gila River and San Simon Creck also curve gently upward toward the sides of the valley, although the strata appear horizontal at most places. The upward curving, however, may not be required to explain the artesian pressure under conditions believed to

 sapply Paper t2, A,
${ }^{35}$ Meinzer, O. F., Geollays and
Supply Pajer 3\%1, ए4. 130. 131, 1913.
1495:5-9
exist here, as illustrated in figure 30. The water bencath the highest terrace near the Graham Mountains evidently accumulates in the porous gravel and sand of the underlying fanglomeratic phase of the Gila conglomerate and stands at or below the level of the highest lake beds, which are composed largely of clay. Nearer the middle of the valley the upper part of the lake beds has been removed by erosion, and the land surface is lower than the level of the water table in the fanglomerate. Beds of sand, which lie almost horizontal, extend basinward from the fanglomerate into the dense lake beds underlying the lower lands. Most of the sand beds pinch out within 3 or 4 miles of the mountains. The water in these permeable sands is subject to the pressure of water standing at higher levels in the fanglomerate and is confined by relatively water-tight clays above and below and is also confined in a direction normal to the axis of the valley. In Graham

Figure 30.-Section showing artesian conditions in the lake beds of the valley of the Gila River and san Simon Creek. (See text for further explanation.)
County these conditions may account for the localization in a relatively narrow belt not far from the Graham Mountains of nearly all flowing wells that reach water in the lake beds.

The fanglomerate phase of whe Gila conglomerate does not crop out between the 111 ranch and the mountains to the east, the sedimentary rocks locally exposed bring dense Pliocenc clay and diatomite, capped by a thin layer of Pleistocene (?) gravel. It is obvious, therefore, that this locality is not the intake area for the water-heaming sand at a depth of 720 feet tapped by the well at the 111 ran h, the water in which rises under pressure and stands at a depth of to feet below the surface. The water probably comes from areas farther up
the valley or across the valley the valley or across the valley.

water to the surface in a second well (d, fig. 30) having its mouth at or below the level of the first but farther from the intake area.
The favorable geologic conditions in the lake beds and the successful drilling for artesian water that has been carried on over a period of several decades warrant the belief that artesian water is present in

Futre 32.-Map of Safford, showing location of wells, 1934. (See wells 189-203, table following p. 222.)
nearly all parts of the Gila and San Simon Yalleys that are undermin by these beds, at depths within easy reach of drilling equipment.

Wells in THE DEEP SANDS

The deepest well in Graham County is the 3,767-foot Mack well; in sec. 13, T. 6 S., R. 24 E., near Pima. This well penetrated fire water-bearing sands below 1,600 feet, the deepest one at 3,530 feet The geologie age and structure of the deeply buried sediments containing these sand beds is not known, and no explanation of the ocemrence of water in them is offered. It is possible that they are marine sediments and are much older than the lake beds. A well that was abandoned before 1933 was drilled to a depth of 2,645 feet near Ashurst, in see. 30, T. 5 S., R. 24 T., about $21 / 4$ miles southwest of Indian Hot Springs. It is reported 5, 2,210, and 2,405 feet below the flows at depths of $430,620,1,515,2,075,2,210$, highly mineralized and surface. The water of the decperer encountered in this well to that of

$$
\begin{aligned}
& \text { Figure } 33 \text {--Anay of Thather, showing location of } \text { p. } 222 \text {.) }
\end{aligned}
$$

Indian Hot Springs (pp. 210 and 217) is not known, but possibly the deep water-bearing beds are the same. Rogers in the NE1/4. sec. $5, T$ 1934 a well was being drilled by K. (R. Rog artesian flows of hot water 6 S., R. 24 E., in the expectan comparable with those obtamed atherst well.
well and formerly at the Ashurst well. Gafford, at the place where the
The Southern Pacific Co.'s well at Salmed in 1900-7 to a depth of elevated water tank stood . This well is reported to have flowed warm 1,820 feet. (See log, p. 202.) This well is mportel to mat

214- CONTRIBUTIONS TO HYDROLOGY OF UNITED STATES, 1937

salt water for a short time. No record was kept of the temperature or of the depth at which the water stood in the well, and no chemical analysis of the water is available.

In the southeastern part of T. $10 \mathrm{~S} ., \mathrm{R} .28 \mathrm{E} .$, two flowing artesian wells, the Whitlock Nos. 1 and 2 of the Pinal Oil Co., were obtained in drilling unsuccessfully for oil. The Whitlock No. 1 well, shown in plate $53, A$, was drilled in 1927-28. It yields a strong flow of soft, warm water (temperature $105^{\circ} \mathrm{F}$.) from conglomerate at a depth of 1,445 feet, above which only clay and sand, probably lake beds, were encountered. A flow of sulphur water was struck at a depth of 1,750 feet. "Limerock" was encountered at a depth of 1,500 feet, and the well was drilled through this to a depth of 1,925 feet and finished in "sandy lime." When the well was completed the discharge was estimated by the drillers to be about 12,000 barrels (500,000 gallons) in 24 hours. The discharge is controlled by a valve at the casing head. The Pinal Oil Co.'s Whitlock No. 2 well, was drilled with cable tools to a depth of 1,555 feet. It discharges a " 2 -inch pipe full" of lukewarm water. The depths to the water sands in this well were not ascertained.
The location of wells in the towns of Pima, Thatcher, and Safford in 1934 is shown in figures 31,32 , and 33 . The data collected by the writer on these and other wells in the valley are presented in the table at the end of this paper.
springas
The Goodwin Spring, in Goodwin Wash, sec. 35, T. 4 S., R. 22 E., near the east boundary of the San Carlos Indian Reservation, is a seepage from the alluvial gravel of the creek bottom. The discharge on January 10, 1934, was about 8 gallons a minute. This spring is reported to have yielded much more copiously some years ago.

Several springs, yielding less than 100 gallons a minute in total discharge, issue along the sloping terrace escarpment that rises about 100 feet above the alluvial lowland plain in secs. 21 and 22, T. $4 \mathrm{~S} ., \mathrm{R}$. 23 E . The water seems to come from the base of porous Pleistocene (?) gravel, several feet thick, which caps about 90 feet of dense lacustrine chas of Pliocene age exposed on the hillside. The water is highty mineralized and is used only for watering stock.

A spring about 1 mile northeast of Fort Thomas, near the southwest comer of sec. 25 , T. 4 S., R. 23 E., yields about 6 gallons a minute. The water issues from the base of Pleistocene (?) terrace gravel overtying dense clays of the Pliocene lake beds. The spring is used to water stock.
The residents of Eden, in secs. 28 and 33, T. 5S., R. 24 E., normally obtain their water supply from a small spring of seasonally variable yield about 1 mile northeast of the settlement. The spring issues from a small exaration in the porous gravel bottom of a minor reen-
 frant in the face of the lower terrace. from which it is piped by gravity spring in a small concrete reservorr, from during several months of each to the settlement. The spring hauled from the Rhodes well, about year, and drinking water is The water of nearer wells is regarded by $\$ / 2$ miles to the northwest.
local residents as poor in quality.
local residents as poor in quality.
A small spring in sec. 5, T. 6 S., R. 25 E., about $1^{1 / 2}$ miles northeast of Bryce, flows from the base of porous conglomerate that caps impermenble Pliocene lake beds. The spring yiclds about 12 gallons a minute of water at a temperature of $68^{\circ} \mathrm{F}$. and is used to water stock. (See analysis F, p. 222.) At T. 7 S., R. 23 E., two springs yield At Bear Springs, in secs. I and 2 , 1 . water from sand in the 1 the heads of spering in sec. 1 yields about 2 gallons the heads of smate but has not been used. The water has a temperature of a minute but has not $\mathrm{G}, \mathrm{p} .222$.) The spring in see. 2 yiclds about
$54^{\circ} \mathrm{F}$. (See analysis half a gallon a minute of rather salty water. a minute in Cottonwood A spring yielding less than half a gation a minnes from the base of a
Wash, in the $\mathrm{SE}^{1 / 4}$ sec. 5, T. $7 \mathrm{~S} ., \mathrm{R} .24$ E., issues

A spring on the Pace estate, in the $\mathrm{SW} 1 / 4$ sec. 3, T. $7 \mathrm{~S} ., \mathrm{R} .25 \mathrm{E}$. , about a mile west of Thatcher, at the southern edge of the alluviak lowland, yields about 5 gallons a minute of rather alabine water. The water of this spring probably issues from a sandy layer in the Pliocene lake beds.
A spring known as the Porter Spring, in the southeastern part of T. 7 S., R. 25 E., which yiclds less than a gallon of water a minute, probably issues from a sandy layer in the Pliocene lake beds. It is used for watering stock.
A spring in the NW $W^{1 / 4}$ sec. 5, T. 7 S., R. 26 E., which yields less than half a gallon of water a minute, issues from the base of gravel capping the Pliocene lake beds, on the face of the lower terace about 30 feet above the alluvial plain.

A small scepage of water in the bottom of Stockton Wash east of Cactus Flat, in T. S S., R. 26 E., issues from alluvium where formerly there was sufficient water to create a marsh cover Solomon Spring. This secpage was known a irrigation until the supply failed. The The water was ase in discharge is rerted to have taken place shortly after the drilling of four flowing wells at Artesia in 1929-30, and the possibility is therefore suggested that the seepare rises from the artesian water sands underlying this part of the valley. The same explanation may be applicable to several small springs known as the same townip, and Mud ($p 1.52, B$), in Jacobson Wiash, in see. 9 of the samer," in the vicinity of Spring, in sec. 17. Several former me dry since artesian wells have Cactus Flat and Artesia have become dry since artesian wels have
been drilled. Abundant fragments of pottery near these spring give evidence that the aborigines camped in their neighborhood.
The health resort and hotel known as Indian Hot Springs ($\mathbf{p} 1.5 \cdot 3, B$), in sec. 17, T. $5 \mathrm{~S} ., \mathrm{R} .24 \mathrm{E}$., is at the base of the middle terrace, abont 5 miles from the base of the Gila Mountains and 8 miles northwest of Pima. Within the grounds five springs and a flowing well $(87$ in table following p. 222) have a combined discharge of about 320 gallons a minute. Most of the water runs in ditches directly to the Gila River and makes a small contribution to the amount of water arail able for irrigation. A relatively small amount of water is used at the resort, where it is the supply for several Roman baths, a large swimming pool, and the hotel.

The springs and flowing well 87 are all within 300 fect of the hotel, in a small reentrant in the face of the middle termec. The rocks near the surface are late Pliocene sedimentary beds of lacustrine origin. Their structure could not be determined directly, because of an obscuring mantle of gravel and soil, but faulting in them is suspected, as explained below.
Well 87 is about 600 feet deep and discharges 156 gallons a minute of water at a temperature of $119^{\circ} \mathrm{F}$. Spring Byidld 145 gallons of water a minute at 116°; spring D yields $10 \frac{1 / 2}{2}$ gallons at 116°; spring A, $61 / 2$ gallons at 118°; and spring C , three-fifths of a gallon at 81° Spring E is a slow seepage of water at 107°

Samples of water for analysis were collected from the well and from springs A, B, and C. The analyses ($p .222$) show that all the samples contained a comparatively large amount of dissolved solids. The different mineral constituents were present in each sample in about the same amounts and proportions and in nearly the same amounts and proportions as in a sample of water collected from the deep Mach well 97, 7 miles to the southeast, near lima. From the similarity in the chemical composition of the waters at Indian Ilot Springs and the fact that the water of well 87 and the three springs that flow most copiously show a variation in temperature of only 2°, it may be inferred that all the water issues from the same horizon. The other springs. C and E, are cooler, and the water of the Mack well is 20° hotter.
The temperature of spring C is 35° lower than that of spring B, which is less than 20 feet distant. As these springs yidd water of similar nameral content and are therefore probably supplied from the same onmee, the difference in their temperatures is probably due: to the gre: Wifference in their rates of flow, the water from spring (being coe in a temperature lower than that of spring 13 because it rises mom hisly to the surface. This implies, of course, that all or a part of the ascent is made through independent openings. This

[^4]WATER-SUPPLY PAPER 790 PLATE 33

A. FLOW OF WARM WATER FROM PINAL ORA CO.

3. INDIAN IOT SPRINGS.

Eplanation also applies to the temperature of spring E, which is 9° Wer than that of spring B. The temperature of the well wout 117°. If it is assumed that the if Indian Hot Springs averages 600 feet, the depth of the well, then onter rises from a dimal conditions must be invoked to explain the high oration shation depth below the surface. romperatuble, however, that the water comes to the surface through fretures, perhaps caused by faulting, from an artesian source much fractures, 600 feet and that the well merely taps the upwarddeving streams. If there were an incrense of 1° in temperature for bout each 57 feet of increase in depth, as suggested in the following paragraphs, the water would rise from a depth of about 2,500 feet

oermi-temphrature relations

Most of the dept this of wells, especially of the deeper wells, given in the table of well records (following p. 222), were reported to the writer from memory by various persons, some of whom had in turn acquired their information by hearsay. Nost of the water temperatures are those observed by the writer at the mouths of flowing wells and probably are slightly lower than the temperatures of the water at depth. Some heat is lost by the water in its ascent to the surface, especially in wells that have only small flows, and as many of the wells are not cased the water issuing from a given well may come from several horizons at which the temperatures differ. In general, howerer, by far the greatest discharge is from the bottom of the well, and the cooling effect of water from higher levels is small.
A depth-temperature study of the ficld data on 78 wells was made by H. C. Spicer, of the Geological Survey, and his computations, which with one exception were based on wells ranging in depth from 100 to 1,450 feet, indicate a rise in temperature of F. for each 57 feet of depth. The temperature of about hecks surprisingly well with feet, as computed from the measured temperature, in sec. 13, T. 6 S., R. 24 E., most of which mouth of the Mack well, inat depth.
comes from a horizo chazener of the ground watme

> Chemical Character Of Thl by E. W. Lomr

The chemical chameter of ground water in the valley of the Gila River and San Simon Creek is indicated by partial amalyses of samples from 5 springs and 44 wells. The anases made by the Geological Survey indicate the suitability or unsuitabity of wach use is affected use, for irrigation, and for domestic use so fo not show the sanitary by the dissolved mineral matter. They do not shon the samitary condition of the waters examined.

The chemical constituents determined (see table of analyses, p. 222) are iron, calcium, magnesium, carbonate, bicarbonate, sulphate, chloride, fluoride, and nitrate. Sodium and potassium were calculated as sodium. The total hardness was calculated when both the calcium and magnesium were determined; otherwise it was determined by the soap method. Silica was not determined, and iron only when an amount in excess of 0.1 part per million was noted to be present. The silica present in the waters will probably average less than 20 parts per million, and the iron less than 0.1 part per million. The figure for total dissolved solids was obtained by summation of the mineral constituents, both calculated and determined, silica not being included. The usual methods of analysis ${ }^{40}$ were used. The fluoride was determined colorimetrically.
The 49 samples examined are manly sodium chloride, sodium carbonate, and sodium sulphate waters and are rather highly mineralized. There are only three calcium carbonate waters and a few that are of mixed type. Sodium is the chief basic constituent in 46 of the waters. Chloride is the main acid constituent in 32 of the samples, carbonate in 12, and sulphate in 5 . The concentration of these three acid constituents is rather high in nearly all the waters.
The high mineralization of the ground waters is due chiefly to the aridity of the area and to the lacustrine origin of the geologic formations through which the waters largely percolate and from which most of them flow or are pumped. The rapid evaporation of the water from the surface causes a concentration of soluble salts in the top layers of the soil, and the water that percolates downward to become ground water is therefore more highly charged with mineral matter than percolating water in a humid area. Moreover, sediments which are deposited in lakes that do not overflow are commonly impregnated with soluble salts, and the lacustrine origin of the principal sedimentary deposits of the Gila and San Simon Valleys may therefoce account for the rather highly mineralized waters of the region.
The quality of water that may be considered satisfactory for drinking and for domestic use depends on the locality and the individual. The limits adopted by the United States Treasury Depariment to govem the quality of water used for dimking on interstate carioss ${ }^{\text {a }}$ have been widely used as general standards for domestic water supplies. The published standards indicate that the limits are not expected to be very rigidly enforced. It is common experience that many waters exceeding the limits in some respects have been used for long times without any apparent harmful effects. The limits suggested by the

[^5]GILA RIVER AND SAN SLAON CRLEK, ALIZONA
freasury Department are total solids 1,000 parts per million, iron 0.3 freasury Depart, magnesium 100 parts, sulphate 250 parts, and chloride 250 parts. Of the samples examined from the Gila and San Simon Valley only 25 were within the limits suggested by the Treasury Department, but several others were not far from the limits and are reported to have been used without injurious effects. Water that is satisfactory for use hardness is the most generally industrial use. For industrial use hater with a hardness of 100 parts per objectionable characteristic. million is neither satistactory nor comome without treatment in steam boilers. Hardness is chiefly
for use caused by salts of calcium and magnesium. These constituents, with silica and iron, make up practically all the scale found in steam boilers and cause much of the trouble encountered in steam-boiler plants.
The waters analyzed from the valley of the Gila River and San Simon Creek do not contain large quantities of calcium and magnesium or iron, and in this respect they would be satisfactory for most industrial purposes. About 60 percent of the waters have hardness less than 100 ; about 30 percent have hardness between 100 and 300 ; and the remainder have hardness greater than 300 .

Although these waters do not contain scale-forming constituents in large quantities, most of them contain large amounts of sodium salts and would be likely to cause foaming in boilers. Some might even cause corrosion if used in boilers operated at high ratings.
The successful use of water for irrigation depends on a number of factors in addition to the composition of the water. Among these are the character of the sob, the amount of water used, rainfall, and drainage. Scofield ${ }^{22}$ in 10.3 suggested limits for certain characteristics of irgation water- In general, waters withm the range spectfied in the lower set of the - apper limits, however, represent con-
in ordinary irrigation. The uper in ordmary imigation. either because of their efferts on the plants or because of their effects on the soil. Concentrations between the upper and lower limits may not cause injury to crops and soil, depending on the composition of the water, the characteristics of the land, and the magrested limits:

The percentage of sodium is obtained by dividing 100 times the figure for sodium by the sum of the milligram equivalents of calciunt magnesium, and sodium:

$$
\frac{\mathrm{Na} \times 100}{\mathrm{Ca}+\mathrm{Mg}+\mathrm{Na}}=\text { percent } \mathrm{Na}
$$

With these limits as a standard for classification, about one-thind of the waters analyzed from the valley of the Gila River and San Simon Creek would be classed as safe for irrigation, one-third as not determinable from the factors in the table, and the remaining third as unsafe.
The presence of fluoride in natural waters has been known for some time, but the relation of the occurrence of fluoride in water to the dental defect known as mottled enamel has only recently been generally recognized. Residents of the Gila and San Simon Valler especially natives, are commonly afflicted with this dental defeet, which is thus described by Smith and Smith: ${ }^{\text {t3 }}$
There are certain sections in Arizona and many parts of the world where evers native-born inhabitant has the peculiar defect of permanent teeth known as simply "stained to as "brown stain", or not be confused with the dot staining is a secondary phenomenon and should mottled enamel is its dull, chall itself. The most outstanding characteristic of has lost its transheency and presents an unance. Sometimes the whole tooth cases paper-white areas are diplazed appearance, but in milder of the tooth. The enamel mistributed more or less irregularly over the surface ing from almost bamel may or may not stain later, the color of the stain vary stain." Usually all of the teeth, thouge-red to yellow, hence the name "brown the stain being more pronounced on the un they may be mottled, are not stained ency is for the stain air and light may be a fallow the hip line, and this fact suggests that exposure to the cnamel is so defective that it is badly pitted and corses of mottled enamel, structurally weak, the enamel tending to chip of and corroted and the teeth are no more subject to decay than norm rate more rapidly. False teeth amal teeth, do not hold if as well and deteriomottled enamel oceurs are not uncommon. Mot tled entm, is primary in which of the second or permanent set of teeth, for only rarely have cases of a defect enamel of the temporary or deciduons teeth been observed. cases of mottled
As to the toxie concentration of fluorine in drinking water, Smith
has stated:
No Arizona water has yet been found containing as much as 1.0 part per millout of fluorine which has not been demonstrated to cause mottled enamel, and mo associated with mottled enamel.

The presence of toxic quantities of fluorides in waters in Grahmm County appears to be associated with a high content of sodium sults and with soft water rather than hard

[^6]The fluoride content of the waters analyzed from the valley of the Gila River and San Simon Creek ranged from 0 to 15 parts per million. Only 2 samples gave no test for fluoride, 9 had 1 part per million or less, and 20 samples had more than 5 parts. In the samples that were examined the smallest quantities of fluoride gencrally were found in sater from wells less than 200 feet deep, and the largest quantities ere found in water from wells more than 800 feet decp.
There is at present no cheap and efficient method known for removing fluoride from water for domestic use.
It seems obvious that drinking-water supplies that will be used by young children should be taken only from wells whose analyses indipite very small amounts of fluoride. Probably in most neighborhoods at least one convenient well supply will meet this requirement.

ANALYEES AND WELL RECORDS

The accompanying tables present data that were collected concernthe 435 wells in the area examined. Amalyses of some of the waters are given in the one on page 222.

Analyses of water from wells and springs in the valley of the Gila River and ses Simon Creek, Graham County, Ariz.
[Parts per million. Numbers correspond to well numbers in following tahle. Letters A, B, C, F, somy $\begin{gathered}\text { refer to sputings described on pp. } 24-217 \text {. E.W. Lohr, analyst] }\end{gathered}$

No.	Date of collection	Total dissolved solids (calculated)	Calcinm (Ca)	$\underset{\substack{\text { Mags. } \\ \text { (Mg) }}}{ }$	$\left\{\begin{array}{l} \text { Sodium } \\ \text { and } \\ \text { potassi- } \\ \text { uma } \\ \text { Na+K) } \\ \text { (calcu- } \\ \text { lated) } \end{array}\right.$	Bicar- bonate $\left(\mathrm{ILCO}_{3}\right)$	Sulphate $\left(\mathrm{SO}_{4}\right)$	Chor ride (Cl)	Fluoride (E)	$\begin{gathered} \mathrm{Ni} \\ \text { crate } \\ \left(\mathrm{NO}_{3}\right) \end{gathered}$	
2	Nov. 22, 1933.	531	47	12	140	244	80	130	2.0	0, 0	1 宸
3	Nov. 23, 1933.	296	33	6. 5	71	152	51	59	1.2	. 70	1
16	Nov. 22, 1983-	14,035	133	85	5,976	492	1,835	6, 6 S ${ }^{\text {d }}$	4.5		U
59	Nov. 23, 1933-	1192	42	12	11	144	50	6.0	. 2	. 0	15
73	Apr, 7, 1934...-	136	28	5.1	15	100	234 357	${ }_{1,190}^{4.0}$.4 3.3	. 510	\%
87	Nov. 20, 1933-	2, 568	78	10	878	106	357	1, 190	3.3	. 0	\%
A	...do.......-	2, 0906	78	$9.1)$	1.043	198	401	1, 4 (20	3.7	${ }_{0} 0$	${ }^{2}$
13	do	3, 016	80	9.4	1, 018	100	405	1, 420	4.1	. 0	7
0	do.	3,455	102	12	1,182	114	518	1,580	4.3	. 50	\% 4
97	Nov. 30, 1933.	3,351	73	7.2	1. 190	96	419	1, 610	4.9	. 0	31
F	Feb, 9, 1934...	1,715	62	27	549	178	319	675	3.3	1.2	\%
Q	Nov. 9, 1933-	228	4	7.2	38	240	210	10	. 8	. 20	143
130	-.-.-do...-...-	$5(\%)$	39	5.0	142	124	84	168	. 0	-51)	14
131	.-do	1,124	97	9.2	305	102	211	450	1.6	. 0	24
132	do.	411	22		167	163	77	96	7.1	. 20	(14)
135	.do.	1,282	90	8.5	369	112	269	4910	5.0	. 0	(34\%
143	Dec. 27, 1933.	217	${ }^{2} 1$		87	* 91	${ }^{2} 50$	38	5.0	. 10	(3) ${ }^{3}$
154	Feb, 16, 1934..	2, 880	236		1,085	60	514	1.265	7.1	, 50	${ }^{51}$
155	.do.	2,352	226		891	63	521	975	7.3	. 50	1%
182	July 23, 1934..	1,672	158	51	388	507	325	480	. 2	20	fin
189	Apr. 11, 1934.	1,045	129	26	231	446	115	305	. 8	15	123
190	July 21, 1934..	1,183	141	27	252	513	121	315 906	6 3 3	$\underline{10}$	${ }^{1 / 2}$
224	Apr. 3, 1934...	1,081	77	23	305	486	158	200	3.3	18	8
225 do-.	1, 1989	78	25	301	486	150		3.2	18.70	24
245	Dec. 19, 1983...	941	${ }^{2} 11$		358	276	220	19.5	9.3	\therefore	ma
246do........	1,166	67	17	367	326	102	26)	5.8	4.7	\%
233	Jan. 22. 1934.	1,873	201	62	387	484	437	569	1.6	46	is
257	Feb. 13, 1434	1,851	210		738	229	262	$\times 30$	1.3	50	\%
258	...do.	5771	217		285	215	211	181	1.6	51	18
271	Nov. 17, 1033.	718	${ }^{2} 5$		280	- 65	164	251	15	0	4
273	- do.	1,488	40	2.2	509	48	349	5515	14	0	103
278	Nov. 18, 1938	807	${ }^{2} 10$		313	481	180	87	5.3	15	132
285	Nov. 16, 1933-	1,682	${ }^{2} 2$		658	243	370	590	7.9	1.0	15
283do.	857	27		332	176	193	268	5.3	0	116
295	do.	1, 479	30	2.2	512	48	389	519	13	. 0	3
295	do	536	25		209	122	134	143	8.7	. 10	1
305	Nov. 15, 1983.	577	25		221	116	136	173	6.1	. 0	11
308	Nov. 18, 1933	944	${ }^{2} 10$		364	19	223	345	14	. 0	\%
309	Nov. 17, 1933.	768	26		275	78.5	172	230	13	, ib)	19
314	Nov. 16, 1033	1,977	228		725	${ }^{3} 60$	512	7415	11	0	18
320	...do....---	1,308	222		489	56	333	489	13	10	14
325	Nov. 18, 1033.	651	219		231	170	211	125	6.1	. 90	114
332	Nov. 17, 1933.	225	27		88	122	130	4.5	4.4	. 10	1tin
350	Nov. 18, 1933	193	2118		42	130	229	1/i	10^{-4}	. 0	
358	Nov. 17, 1933.	786	${ }^{2} 18$		310	96	176	150	13	. 75	13
392	Geb. 2, 1931...	${ }^{3} 639$	218		230	152	171	124	1.2	1.1	1 m
409	Nov. 13. 1933-	549	${ }^{2} 38$		178 389		347	215	11.	. 0	4 is
483	Nov. 7, 1433.-	1, 024	28 28 28		389 359	186	311	197	12	, 0	114
432do...-.-.	940	26		85	180	S.				

1 Irou (Fe) 0.65 part per million.
? By turbidity.
3 Less than 5 parts per million.
betermined.
3 Inclutes ernivalent of 30 parts of carbonate (CO_{3}).
${ }^{5}$ Inclutdes 0.5 pars of horate $\left(\mathrm{EBO}_{3}\right)$.
Inchudes ecuivitent of is parts of corbomate $\left(\mathrm{OO}_{3}\right)$.
8 Inchates equivalent of 12 parts of earbomate $\left(\mathrm{CO}_{3}\right)$.

- Includes $1 . \frac{1}{2}$ parts of horate $\left(13 \mathrm{O}_{3}\right)$.

[^0]: Coph Ceil, v. Soll survey of the Solomonstille area, Ariz: U. S. Dept. Agr., But Soils, Field Operations, 1903, pp. 10-20, 1904.
 Schwennesen, A. T.,
 Paper $425-\mathrm{A}, \mathrm{p} .5,1917$.

[^1]: ${ }^{13}$ Ohmstead, F. H., Gila River flood control: 65th Cong., 3 a sess., S. Doc. $436,1919$.
 Supply Paper 425, A. T., Ground water in San Simon Valley, Ariz. and N. Mex.: Geol. Survey WaterSupply Paper 425, pp. 5-6, 1917.
 Soils, Field Operations, 1921, pp 584 , $5 . \mathrm{S}^{2}$, , Soil survey of the San Simon area, Ariz.: U. S. Dept. Agr., Bur. Soils, Field Operations, 1921, pp. 584, 594, 1924.
 43, no. 4, pp. $337-355,1935$.

[^2]: ${ }^{20}$ Paige, Sidney, Rock-cut surfaces in faimy well rounded and are in genemal
 ${ }^{2}$ Johnson, D. W., Planes of lateral corrasion: Science, nour, Geology, we. 20, pp. 442-450, 1912 ol. 22, pp, 65f-665, 1932. Sci., 5th ser., vol. 23, pp. 389-416, 1932; Rock ri...14. 174-177; 1931; Rock fans of

[^3]: ${ }^{28}$ Gilbert, G. K., op. cit., pp. 540-541,
 ${ }^{\text {an }}$ Schwemnesen, A. T., Ground water in San Simon Valley, Ariz. and N. Mex.: Geol. Survey WaterCarlos Indian Reservation, Ariz: Geol. Survey Water-Suphy Paper 450, pp. 7-9, 1919 ,

[^4]:

[^5]: "Collins, W. D., Notes on practical water analysis: Geol. Survey Whter-saphy Paper mat. Ib
 Eng. Chemistry, anal. eth, vol. 5, p, $234-236,1933$.
 ti Drinkint-water stamber
 1029, April 10, 1925.

[^6]:

