

8 km north of Brawley. Activity dropped to a low level in both areas after 22 June only to be interrupted by a $2 \alpha_{\text {shour flurry }}$ of earthquakes in the vicinity of Obsidian Buttes and the Salton Sea on ! July. Finally, on 8 July, a swarm began near the? northern end of the Imperial fault, partially filling the gap between the first two swarms. Actiyity in this area had generally subsided by 11 July, fout sporadic activity continued in fall three swam areas until approximately 17 July

The shock of magnitude 4 in the Brawley swarm was the largest earthquake recorded in the network during the year, although three additional earthquakes of magnitude 4 occurred just outside the network (one along the San Jacinto fault zone and two in Baja Californa). The relative number of shocks of a given magnitude to those of a larger magnitude in the swarms is essentially the same, as that reported by" Hileman et al. (1, 6) for earthquakes in the Imperial, Valley region between 1932 and 1972.

The composite focal mechanism based on 30 events from the swarm north of Brayley, shown in Fig. 2, indicates that the swarh activity involved predominantly right-lateral slip on planes nearly parallel with the fimperial flult. Left-lateral motion on conjugate fault planes, however, cannot be ruled out: Composite focal mechanisms for the two southern swarms show similar, but léss well developed patterns:
Hypocenter solutions for earthquakes in the swarms, as well as other earthquakes located within the rietwork, give focal depthss between 5 and 14 km with an uncertainty of roughly $¥ 5 \mathrm{~km}$ (3). An interpretation of secondary P wave arrivals observed on most stations from shocks in the swarm north of Brapley, however, suggests that these earthquakes may actually occur near the base of the sediments at depths of 4 10:5 km (7).

Earthquake swarms are relatively common in the Imperial Valley. kichter (8) has described several swarms including one near Brawley in December 1955, with shocks up to magnitude S.4, Rrune and-AlIen (9) ecorded up to 75 microearthquakes per day near Opsidian Buttes over a 5 -day period in July 4966. Recent activity includes a minor swarm in August 1974 at the northern end of the Imperiat fault and the major swarm in January ' 1975 near Brawley with shocks up to magnitude 4.7 (10) that received wide coverage in the news media. The Imperial fault is capable of producing both earthquake swarms and large earthquakes (magnitude 7) accompanied by normal aftershock segyences.
On a global scale, most edrtiquake swarms appear to be closely-related to 27 JUNE 1975

Fig. 2. Composite focal mechanism for 30 events in the 21-22 June swarm 8 km north of Brawley on an equatarea, lower hemisphere projection. Sold circles represent compressional P wave first motion, onen circles represent dilatation. Two failt-plane solutions are ploted (solld and dashed lines) to suggege the range of possible fablt-plane solutions for individual events in the swarm.
 magmatic procdses: Swarmsin the oceans usually ocetr ior crustal spreading centers along mid-oceanridges, and swarms on the continents usually occur in areas of recent or current volcanism and geothermal adtivity ($/ 1 /$). Clusters of microearthquakes or earthquake swarms are' regarded as promising signs in geothermal resource prospecting (12).

Two of the known geothermal resource areas in the Imperial Valley the Salton Sea and the Brawley geothermal areas) are closely associated with the earthquake swarms that occurred in June and July. The Salton Sea geothermal area inciudes a site of recent, volcanism the Obsidian Buttes rhyolites erupted between: 16,000 and 55,000 years ago (13). A swarm of microearthquakes was also recorded under the East Mesa geothermal anomaly in June 1973, on ${ }^{\frac{t^{2}}{}}$ tight array of six pertable seismic stations of the University of California at Riverside ($/ 4$). Most of these earthquakes, however, were too small to the recorded on four or more stations in the Imperial Valley nework. To date, there is no evidence of microearthguake, achvity associated with the Dunes and Glamis geothermal anomalies in the vicirity of the Sand Hills fault (15):

The common ocdurrence of earthquake swarms in aetive spreading ceilers along mid oceam ridges, the freguent swarms in presumed spreading centers the northerm part of the Gulf of California (16), and the close association of swarm activity in the Imperial Valloy with geothermal anomalies and the Obsidiañ Duttes volcanic area are all consistent with earlier
suggestions that the tectonic regime of the Gulf of Califoniarextends as farks, the Salton Sea and that one or more spacading centers may exist under the Imperigh Val ley (17). The swarm pattem illustrited in Fig; 1 , however, indicates that such $\frac{1}{p r e a d}$ ing.centers are more subtle features than the idealized pictures showing no heast trending zonds bounded by notmat fauls. (I7). Onecanleasily imagine, for ex mple, that the' swarms near Brawley od the Brawley geothermal anomaly aby associated with a spreading center betwen the Imperial and Brawley faults. The timension of this spreading center perpendicular to the faults, however, is only about 10 km , or less than half the crustal thickess in this region (18). This, together wh the composite faut-plane solutiontforevents, in the swarm, suggests to us that the oper ing of the spreading center lakesplate in a diffuse zone of en echeton strike stid fauts (leaky transform faults!) rather thay along short normal laults perpendicula po the Imperial and Brawley faules,
The pattern of seismicity deforbed, above emphasizes that release of 赛ctonic strain as seismic slip in the imperin valley is presently opcurting along two zonts (i) a narrow, zone that concides with the Imporial fauth in the central part of the valley and extends northwatd beneath O Buttes and the Saton Sea, along he inferred location of the Bravey fault ii) and the proader and historically more active zone extending from the central partof the vatley to the northwest along the Son Jacinto fault system (2). The retively broad zone of aftershocks that occuged after the Borrego Mountainearthquthe of magntude 6.8 in 1968 (16) suppots the evidence presented here that the Sin Jacintb fault is a wider, more complex faul zonet than the lmperial fautiond soctions of the San Andreas fault in centrat Gali. fortia (20),
Ihdependent evidence lo a narrob zone of continuing righ-lateral deformation along the Brawley fuut near Oofsidian Buttes is provided by repetated tri angulation neasurement at the soth phad of the Salton Sea betwen 193 and 1972 described by savage et al (2) Sthese measurements show thathe benchy wat Alamo, 3.7 kre northeasp of Ofsidian Butte, has been nipuing to the soutgast at a steady rate of $0.5 \mathrm{~cm} / \mathrm{year}$ with pespeet. to the benchmark on Obsidian Rute. Roth the seismic and triangulation evidebee for continuing displacement noth of the 1 mb perial faute suggest that strain is acoumulatiag along the Banning Mission Creet faulf between Desert HouSprings where an earthquake of magnitule 6.5 ocurred in 1948 , and the Salon Sea. Athoty int in
\qquad
\qquad
\qquad
\qquad
\qquad .
\qquad :

 \checkmark
stretch of the Banning Mission Creck faut has had no etrthquakes above magni; tude 4 since at least 1932 (1), it clearly has the potential for produeing moderate earthquakes in the future.

Davio P. Hiel
IPenelope Mowinckel B. Loren G. Peake U.S. Geological Survey. Menle Park, California 94025

References and Notes

"1. j. A Hileman, C. R. Allen, 3. M. Nordquist, Selamicily of the Soubtrn Callfomia. Rediont
 Pasudcna, 1973).
2. Wasudcaa, Thatcher, I. A. Hileman, T. C. Henks Gedl: , Soc. Am. Bull. in press.
3.f D. P. Hitl, P. Mowinckel, K. 1.ahr, "Catalog of Earthqukes in the Imperial Valley, California; June 1973 May 1974^{*} (USS: Geotogeal Survey Open File Repor, Washingtot, DC. 1974)
4. T. Meidav, Geohemics 1 Sper hsuue 212 (parl 1). 303 (1970):
J. N. Brure and G. Allen, Bull Seimol Soc: Am. 57, $501(967)$.
6. The b value the slope of the frequency-magnitude retation) for earhquakes of magnitude 2 and 0.80 . The b value for itl earthquakes of magnitude 3.5 und greater in the Imperial Valley region from 1932 through 1922 is 0.85 (1).
7. The secondary ${ }^{\circ}$ wave arrivals follow the lirs arTivals bla constan! intervat of abous 2 seconds at distance up to to km. Both sets of arrivals have appirent velocitios of whout $6.0 \mathrm{~km} / \mathrm{sec}$. In the inlerpretation inferms of focal depth it is assumed that the later critically reflected at lhe bascment-sediand then crisaliy retected at lhe bascment-sedt-
2. data indigate that the sedimentary hill is as thuch as 6 km thick in the cental part of the valley iS. Giehter, R. L. Kovach, C.R. Allen, Marine Geol. ogy of the Gulf of Califormm, T. H. van Andel and G. G. Shore, Eds (Amerigan Association of Petrolemm Geologists Memper 3, (ulsa. Okia., 1964). pp. 126.143.
8, C. F. Richer, Elemenary Seishyology (Freman. San Francisco; 1958), pp, $71-72$
9. J. N. Btune and C. R. Allem, Buh, Seismol. Soc. Am. 57.277 (1967).
10. Preliminary analysis of data from the January tech (personat communteation) shows a hidear distribution of epicenters extending some? 15 Xm to thesouth southeast from a point about 4 k masth: of Briwley. Hadley and Johoston flind that with a few exceptions the faull plane solutions for shocks in the swarn ate condstent with right-lateral. strike-stip motion along planes trending nuthnorthwest to north.
11. L. R. Sykes, J. Geophus. Res, '7s, 6598 (1970).
12. P.L. Ward, Geothermior 1. 3 (1972): J. Combs and L. J. P. Mulfer, Geothermal Energy: Resoursest Eds. (Stanford Undv. Press, Stantord, Calif., 1973) Eds. (Stanordy unv. Press, Stantord. ${ }^{\text {pedant. 1973) }} 138$.
13 pe. 95138 .

14: Combs and D HadRy, EOS Jrans. Am.
15. Brophe and Allen found no microcarthquakes atong the Sand Hill's fault near the Glamis geothermal anomaly during a recording periga between 26 February and 5 Marchl 1966 .
16. W. Thatcher and J. No Brune, Geophys. I. R. Astron. Soc. 2 d 47 (1G7): R, H. Tatham and S . M Sayno. J, Losphys Res. 79,2643 (1974).
17. G Combit, F. Mooser, C. R. Alten, J. N. Brape ders. R Y Rex. T. Meiday, P. T. Robinson, S. ders. R Stencer. Science $178,15(1972)$
18. See Bichler, ef af (7): W. Thatcher, I N. Brane D - N Clay Geol Soe Am. Abstr. Progranz 3, 208 9. (1971) Mamith, U.S. Geol Surv. Prof Pag. 787

20 (1972), P. 31. Waton W. K. Lee, L. C. Pakisar, Tectonophycics 9. 259 (1970).
21. J. C Savige, D. Goodreau, W. H. Pgesfott, Bull. Seimal. Soc tht 64, 713 (1075).
22. R, Vt, Sharp, US. Geof Surv Prof Pop: 737 . (1912), p ?

17 Januar 196

HL-A LD (Lymphocyte Defined) Typing:'A Rapid Assay With

 Primed LymphocytesAbstract. When human lymphocytes are culured for 9 to $\frac{1}{4}$ days with stimuldting cells Of a family member difering by a single HL-A haplotype they become "primed"' to recognize specific $H L-A L D$ (mixed lymphocyte culture) antigens. Thespaprimed lymphoc粦es respond specifically and rapidly when "restimulated" with celf of a person that contain the same $L D$ antigens as those of the priming haplotype: Specific $H L-A L D$ antigeris can be detected within 2 h hours by this primed LD typing.

Rejection of atransplanted tissue or organ is initiated when the graft recipient's immune system recognizes genetically controlled "foreign" antigens on the grafted tissue. In hymans a single genetic region, called HL-A or the major histocompatibility complex (NHC), appears to control the majority of strong antigens impotant in graft rejection(1), Minimizing antigenicdisparity between donor and recipient (matching) for the MHC increases the probability the the transplant will survive:

Two methods are commonly used for detecting antigens associated with the major histocompatibility complex: (i) serological testing for HL-A SD (serologically defined) antigens, and (ii) mixed lymphocyte culture (MLC) tests that define disparity at an H1-A LD (lymphocyte defined locusi (or at several loci) In MLC tests, lymphocytes from one individual (the "responder") are cultured for 4 to 7 days with "stimulating" Jymphocytes from another individual. Toprevent their proliferation, stimulating cells are treated with maltomycin C or x-rays before they are mixed. When the stimulating cells are from unrelated persons or family members whose MHC is different from that of the re-齐ponder, the untreated lymphocytes proliferale; this proliferation is assayed by incorporation of aritiated thymidine into the proliferating cells. All SD and LD loci are closely linked genetically, and within families they are inherited as a unit called a haplotype. However, since the SD and LD loci are genetically separable (2), both the serological and MLC tests are necessary in the evaluation of the MHC relationship between two individuals.

In transplants between SD matched persons who are not telated, the frequency and severity of rejection generally have been much greater than in transplants beTween siblings with identical MHC's (3); moreovar, most unrelated individuals who are SD identical are LD disparate when tested by the MLC assay. There is some evidence that MLC matching for HL-A LD antigens may be useful for predicting the success of a transplant (4).
Two majot obstacles preven the wide. spread use of MLG. tests- for transplant matching. (i) The result cannotbe obtained
in less than 4 to 5 days - a time that exceeds the limits for cadayer kidney preservation. (ii) Although MHC tests can identify individuals that are matched for their LD antigens, it does not indicate which specific LD antigens the 1 wo persons bear; therefore lymphocytes from all potential donors must be tested in MLC with tymphocytes from all potental recipients. This last problem , would be alleviated by an "LD typing" method (ahalogqus to serological typing that has been done for blood groups and HL-A SD antigens) that would identify specific LD antigens. Because LD typing would preclude the necessity of the récipient and potential donor being present in the same MLC-testing laboratory at the same time, the LD type of any potential tissue donor could be determined, and the donor organ or bone marrow could be sent to an LD matched recipient at any center in the world.
One approach to LD typing has been: MLC testing with stimulating cells homozygous for an LD haplotype (5). Such'cells. should fail to stimulate cells of individuals bearing the 'LD antigens of the hotnozygous haplotype, since no foreign antix gens are presented. LD antigens can be identified in this manner, but a homozygous cell donormust be found libr every identifiable LD haplotype; rare LD haplotypes will be particularly difficult to obtain in homozygous form. Moreover, this test also. requires several days. In other approaches to LD typing antiserums are used (6) ini an attempt to define LD serologically. However, it is not clear whether these antisera actually detect the LD antigens.
We have developed an LD. typing method, designated primed LD typing (ILT), that seems to have some advantages over these other methods. (i) PLT appears to recognize LD. (ii) Results are. obtained in less than 2 days, usually within 24 hours. (iii) Even very rare LD haplotypes can be conveniently typed. This method is based on the finding (7) that lymphocytes stimulated in a primary MLC exhibit an accelerated secondary response when stimulated 14 days later.

- PLT cells are prepared in MLC; cells of individual A are "primed" by stimulating

