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Low-Velocity Zo ne Under Long Valley as Determined 
From Teleseismic Events 

DON W. STEEPLES l AND H. M. IYER 

u.s. Geological Survey, Menlo Park, California 94025 

A temporary seismograph station network was used to estimate teleseismic P wave residuals in the 
vicinity of Long Valley geothermal area, California. Relative P wave delays of 0.3 s persist at stations in 
the west central part of the Long Valley caldera after regional and near-surface elfects have been removed. 
Ray tracing indicates that low-velocity material exists beneath the caldera at depths greater than 7 km and 
less than 40 km, probably less than 25 km. The velocity contrast with normal crust must be at least 5% to 
satisfy the data and is probably in the range 10-15%. We believe that the low velocity indi..Cates 
anomalously hot rock at depth and that relative teleseismic P residuals may be useful for investigation of 
sources of geothermal energy. 

INTRODUCTION 

This paper reports on the results of a study using teleseismic 
P wave arrival time residuals at temporary seismograph 
networks centered on the Long Valley caldera, California. The 
method allowed the exploration of the crustal velocity struc­
ture to a depth of about 40 km in the caldera. The recording of 
distant earthquakes is a commonly used method of extracting 
velocity information about the crust and upper mantle. For ex­
ample, such studies have been made using the large aperture 
seismic array (Lasa) in Montana [iyerand Healy, 1972; Chill­
neryalld Toksoz, 1967], the Tonto Forest Seismic Observatory 
in Arizona [Niazi and Anderson, 1965], and the U.S. 
Geological Survey (USGS) seismic network in Yellowstone 
[i)Wel al .. 1974; Iyer. 1975]. The investigation at Yellowstone 
is the first such study in a known geothermal area, and indeed 
the Yellowstone network was installed for the purpose of in­
vestigating passive seismic techniques in such areas. Relative 
teleseismic P delays at Yellowstone were interpreted in terms 
of an anomalous hot zone extending downward to at least 250-
km depth (possibly to 400 km), well into the upper mantle. 

Press and Biehler [1964] used correlations between P wave 
delays and gravity anomalies to infer higher than normal 
temperatures in the lower crust beneath the Sierra Nevada 
batholith. An alternate interpretation of their data may be 
possible in view of later work involving azimuthal variation in 
teleseismic P residuals. Boll and Nut/Ii [1966] and Nulfli alld 
Boll [1969] investigated relative teleseismic P residuals in 
northern California. They found azimuthal variations of up to 
2.4 s between Shasta and Berkeley for relative residuals, smal­
ler effects being observed at other stations. They suggested that 
the azimuthal effects were due to changes in depth and/or 
thickness of the low-velocity layer in the upper mantle. 
Koizllllli el at. [1973] interpreted early teleseismic arrivals 
at some stations in Nevada as being due to a dipping 
lithospheric plate in the upper mantle (i.e., a fossil subduction 
zone). Regional effects such as these are not present at Long 
Valley (as will be discussed later). 

The following information is needed to calculate relative 
teleseismic P residuals: (I) hypocenter location and origin time 
To of the earthquake and (2) location and arrival time TA I at 

I Now at Kansas Geological Survey, University of Kansa3, 
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the ith station. Expected trav~1 times TEl from each 
hypocenter to each station are read'(by computer in the pres­
ent work) from the Herrin [1968] tables. The absolute P 
residual RA I for the ith station is cidculated by subtraction: 

RAt = (TAl - To)- TEl 

Absolute residuals are of little use in local crustal studies 
because they are a measure of inaccuracies in the computed 
hypocenter, source-station efrects, and how much the true 
earth P wave velocity differs from the Herrin [1968] earth P 
wave velocity model along path lengths of 'thousands of 
kilometers in the mantle. Hence for local crustal studies, 
relative P residuals RR t are. calculated by subtracting the ab­
solute P residual at some reference station RAR from the ab­
solute P residuals at the ith station: 

RRI = RAI - RAR 

If RRI is pOSitIve, a delay must have occurred somewhere 
along the ray path from the earthquake hypocenter to the ith 
station relative to the ray path to the reference station. Since a 
teleseismic focus represents essentially a point source at its 
origin, the rays todifrerent stations of a small array follow 
very similar ray paths until they are far from the focus. Since 
the lower mantle is thought to be homogeneous on the scale of 
a few kilometers, it is reasonable to assume that most of the 
contribution to relative residuals of a local network comes 
from crustal or upper mantle velocity differences beneath the 
stations. The ramifications of this assumption are discussed in 
detail later. 

The reference station should be situated such that ray paths 
to the station represent some average or 'normal' path that 
does not penetrate the volume of rock under investigation. 
This requires the reference station to be outside the suspected 
anomalous area under investigation but at the same time close 
to the area to keep any regional effects to a minimum. The 
technique is identical to that used by others [UISli. 1973; Wyss 
alld Holcomb. 1973; Cramer and Kovach. 1974] searching for 
temporal variation in P residuals caused by physical changes 
in the vicinity of impending earthquake hypocenters. The only 
difference is that the present emphasis is on spatial rather than 
temporal variations. 

Signals from distant earthquakes are particularly useful as a 
supplement to refraction or reflection surveys for local crustal 
studies because the ray paths are nearly vertical when they 
reach the surface. Estimated angJes of incidence [Richler. 
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Station 

MLOI 
ML04 
ML05 
ML06 
ML07 
MLOS 
ML09 
MLIO 
MLiI 
MLI2 
MLl3 
MLl4 
MLI6 
MLl7 
MLl8 
LVA 
LVB 
LVC 
LVD 
LVE 
LVF 
LVG 
LVI 
LVJ 
LVK 
LVL 
LVM 
LVN 
LVO 
LVI' 
LVR 
LVS 
LVI'I 
LVP2 
LVP3 
LVI'4 
LVCF 
LVMA 
LVOI 
LV02 
LV03 
LV04 
LV05 
LV06 
LV07 
LV08 
LVII 
LVI2 
LVI6 
LVI7 
LVIS 
LVI9 
LV20 
LV21 
LV22 
LV23 
LV24 
LV25 
LV34 
LV35 
LV36 
LV37 
LV38 
LV39 
LV40 
LV41 
LV42 
LV43 
LV44 
LV46 
LV47 
LY48 
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TABLE I. Station Locations 

North Latitude 

deg 

37 
37 
37 
37 
37 
37 
37 
37 
37 
37 
37 
37 
37 
37 
37 
37 
27 
37 
37 
37 
37 
37 
37 
37 
37 
37 
37 
37 
37 
37 
37 
37 
37 
37 
37 
37 
37 
37 
37 
37 
37 
37 
37 
37 
37 
37 
37 
37 
37 
37 
37 
37 
37 
37 
37 
37 
37 
37 
37 
37 
37 
37 
37 
37 
37 
37 
37 
37 
37 
37 
37 
37 

min 

45.63 
57.49 
49.S6 
45.13 
3S.06 
36.22 
35.S5 
34.98 
32.92 
29.22 
2S.60 
22.69 
23.04 
21.00 
13.57 
36.16 
36.13 
34.97 
45.14 
46.82 
39.03 
44.41 
44.20 
38.50 
42.73 
3S.05 
35.22 
35.87 
29.21 
23.03 
3S.S2 
35.47 
39.53 
40.25 
41.75 
42.29 
37.43 
43.39 
3S.12 
3S.64 
39.27 
40.15 
40.93 
41.50 
3S.3S 
3S.27 
40.01 
40.46 
39.12 
39.63 
40.02 
40.40 
40.61 
40.30 
41.05 
40.75 
40.62 
40.97 
44.46 
44.62 
44.66 
44.72 
44.87 
45.01 
44.88 
43.25 
42.S3 
40.S2 
40.S3 
42.38 
41.36 
43.4S 

West Longitude 

deg 

119 
119 
liS 
liS 
liS 
118 
liS 
118 
liS 
118 
liS 
118 
118 
liS 
118 
118 
118 
liS 
118 
119 
119 
liS 
118 
liS 
liS 
118 
liS 
liS 
118 
118 
118 
liS 
liS 
liS 
liS 
118 
liS 
liS 
liS 
liS 
118 
118 
118 
118 
liS 
118 
118 
liS 
liS 
118 
118 
118 
118 
liS 
liS 
118 
liS 
liS 
118 
liS 
liS 
liS 
liS 
118 
118 
118 
118 
liS 
liS 
118 
liS 
118 

min 

06.52 
09.03 . 
25.98 
46.03 
39.33 
59.60 
20.23 
33.15 
4S.82 
38.19 
2S.65 
33.60 
40.49 
16.97 
36.24 
.59.6S 
51.15 
33.17 
46.03 
04.96 
03.01 
57.SI 
50.36 
48.37 
41.2S 
39.38 
40.42 
20.25 
3S.19 
33.14 
55.67 
50.07 
46.29 
51.25 
53.36 
5S.14 
46.73 
50.25 
4S.32 
47.S0 
47.25 
46.75 
46.28 
45.S9 
46.90 
45.05 
4S.7S 
4S.25 
50.14 
49.1S 
54.31 
53.17 
52.20 
51.57 
50.39 
49.SS 
49.12 
4S.67 
51.26 
52.09 
52.97 
53.75 
54.46 
55.S7 
56.65 
59.82 
55.66 
59.67 
57.02 
51.80 
54.73 
52.66 

Station 

LV49 
LV57 
LV5S 
LV59 
LV60 
LV63 

TABLE I. (continued) 

North Latitude 

deg 

37 
37 
37 
37 
37 
37 

min 

42.00 
42.3S 
43.00 
43.65 
44.20 
44.63 

West Longitude 

dcg 

liS 
118 
liS 
liS 
liS 
118 

min 

45.67 
46.01 
46.41 
47.04 
46.23 
4S.41 

Seventy-eight different station locations were used. M L stations 
operated for 20 days in 1970 (except 1,4, and 10, which only operated 
for about 10 days). LV stations with three-letter names operated 
during the whole month of May 1973, except B, 0, P, and S, which 
were moved the last week of May. LV statiO!)li' A, C, D, and E 
operated through the month of June also. LV'stations with four­
character designations operated for a few hOl)rs to a few days each. 
A complete schedule of operation is giY01 by Iyer and Hitchcock 
[1976].\ 

1958) for typical teleseisms used in this study ranged from 
about 28° from vertical for events in Alaska (l1 (great circle 
distance) approximately 40°) to about 19° from vertical for 
events from Japan (l1 approximately 75°). Local refraction 
surveys provide velocity information only for the upper few 
kilometers of the crust. The information supplied by local 
refraction or reflection surveys is essential to the interpretation 
of teleseismic P residuals because it enables us to remove near­
surface effects and concentrate on deeper effects. 

DATA 

It should be pointed out that the data used in the prepara­
tion of this paper were gathered from seismic arrays designed 
to perform entirely different functions than a study of 
teleseismic P delays. For that reason this study should by no 
means be construed to place limits on the accuracy or preci­
sion with which the low-velocity anomaly described herein 
may eventually be delineated. It should also be pointed out 
that the western United States IS in an' ideal position 
geographically to use the P delay method, since many 
teleseisms arrive along northwest-southeast azimuths approx­
imately 180° apart as shown in Table 2. From theoretical 
wave propagation limits the P delay method is incapable 
of detecting a 'root' or pipe extending down into the upper 
mantle if such a pipe is less than perhaps a few kilometers 
in diameter. 

Sixteen portable seismograph stations were deployed for ap­
proximately 9 weeks in the Long Valley vicinity to record 
microearthquakes [Steeples alld Pill. 1976, this issue) and 
monitor seismic noise [Iyer and Hitchcock. 1976, this issue J. 
All well-recorded teleseisms that occurred during these two 
studies were analyzed. The station locations and teleseismic 
events used are given in Tables I and 2, respectively. 

The portable seismograph system is described in detail by 
Eatoll et al. [1970]. Since the system was designed primarily to 
record microearthquakes, picking first arrivals of small 
teleseisms recorded by the equipment is difficult and uncertain 
at best. Large teleseisms occur infrequently, and the data set is 
limited by short periods of recording, so the problem becomes 
serious when small teleseisms must be used to increase the size 
of the data set. 

Some of the uncertainties of emergent first arrivals can be 
eliminated by timing the first peak or first trough. When this 
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TABLE 2. Tcleseisms Used 

Epicenter Epicenter 
Latitude' Longitude* Azimuth Distance 

Depth, From From 
No. Locality Date Origin deg min deg min km LYC, deg LYC, deg 

1970 Data 
I Kamchatka Ocl. 8 04:53:21.8 +53 48.0 -160 24.0 59 315 56 
2 An drcanof Ocl. 8 13: 02: 05.0 +50 24.0 +176 12.0 38 307 42 
3 Rl:ssia-China Oel. 12 09:33:37.0 +42 48.0 -131 00.0 555 315 78 
4 Novaya Zemlya Oct. 14 05:59:57.1 +73 18.0 -5S 06.0 I 2 69 
5 Fiji OCl. 14 10:40:58.0 -18 06.0 + 178 30.0 609 237 79 
6 Honshu Oct. 16 05:26: 13.0 +39 18.0 -140 42.0 24 308 74 

1973 Data 
7 Fiji April 30 08:39:07.7 -17 30.0 -179 36.0 613 239 80 
8 Fiji May 3 13:26:31.0 -17 54.0 +178 24.0 600 237'" 79 
9 Russia May 6 14:39:28.1 +43 30.0 -132 18.0 497 315~ 77 

10 Fiji May 8 04: 44: 56.4 -17 36.0 + 178 54.0 543 238 79 
II Chile May 10 07: 55:07.6 -25 36.0 +70 24.0 44 136 77 
12 Fiji May 14 17: II: 13.8 -16 36.0 -175 54.0 54 242 82 
13 Fiji May 14 21: 15:47.9 -22 00.0 +179 06.0 501 235 82 
14 Honshu 1\lay 17 15:44: 19.5 +33 06.0 -140 42.0 62 303 78 
15 Fiji May 27 06:38: 13.4 -21 18.0 + 177 54.0 422 234 81 
16 Rat Island May 29 01 :46:44.9 +51 42.0 -176 12.0 46 309 47 
17 Peru May 30 12: 39: 54.3 -14 06.0 +72 48.0 90 '131 67 
18 GulforCalifornia May 30 17: 33: 51.0 +26 18.0 + 110 42.0 33 147 13 
19 Guatemala May 31 05: 39: 18.8 + 13 54.0 +90 54.0 99 126 34 
20 Unimac May 29 06: 14:22.3 +54 00.0 +163 48.0 30 312 35 
21 Ecuador May 30 04:38:01.8 -02 18.0 +78 30.0 III 128 54 
22 Guatemala June 7 18:32:42.9 +14 18.0 +92 00.0 78 127 33 
23 Guatemala June 7 18: 34:46.3 +14 12.0 +91 54.0 70 127 33 
24 'Solomon June 9 08:21 :27.3 -10 18.0 -161 24.0 70 255 88 
25 Andreanof June 15 13:38:23.1 +51 18.0 + 179 24.0 50 308 44 
26 Fiji June 15 23: 04: 58.6 -25 54.0 +177 24.0 94 231 84 
27 Hokkaido June 17 03: 55:02.9 +43 12.0 -145 48.0 48 309 69 
28 Hokkaido June 17 20:37:57.3 +42 42.0 -146 00.0 50 308 69 
29 So uthcrn Alaska June 18 10: 17: 26.3 +52 12.0 + 164 54.0 15 310 35 
30 Ilokkuido June 18 17:45:43.7 +42 30.0 -146 00.0 29 308 69 
31 Bolivia June 19 04:46:01.5 -20 48.0 +68 48.0 1I8 132 75 
32 Kcrmadcc June 20 12:01 :56.7 -28 30.0 + 176 48.0 41 229 85 
33 Andreanof June 23 05:26:49.0 +51 54.0 +176 54.0 62 309 43 
34 Kuril June 24 02:43:25.5 +43 18.0 -146 24.0 50 309 69 
35 Kuril Ju ne 24 03:04: 18.6 +43 12.0 -146 48.0 55 308 68 
36 Kuril June 24 03:28:38.5 +43 18.0 -146 48.0 47 309 68 
37 Kuril June 24 05: 07: 46.8 +43 06.0 -146 36.0 44 308 69 
38 So uth Paeilit: June 25 15:03: 18.7 -35 54.0 +103 54.0 33 168 74 
39 Sitka July I 13:33:34.6 +57 48.0 + 137 18.0 33 335 24 

*Positive denotes north and west; negative denotes south and cast. 

method was first used to time the teleseisms, the results showed 
considerable scatter but suggested that the data might contain 
significant new information about deep crustal velocity be­
neath Long Valley caldera. 

I nstead of using the peak and trough method, we tried tim­
ing the zero crossing (i.e., the end ofthe first cycle) (Figure I). 
Somewhat to our surprise the scatter in the relative residuals 
de,creased significantly when this technique was used. The 
standard deviations of relative residuals for a given azimuth 
decreased by approximately a factor of 2 at most of the sta­
tions. 

Other investigators at the U.S. Geological Survey have sub­
sequently adopted the zero crossings as timing points (C. 
Cramer and J. Evans, oral communication, 1975). They have 
statistically compared the technique to the peak-trough 
method and the first-break method. Both agree that the zero­
crossing method is much superior to first breaks and is slightly 
better than the peak-trough method, particularly since the zero 
crossings are more objective picks. 

There are several important advantages to the zero-crossing 
technique: 

I. The second zero crossing often crosses the zero­
amplitude line at a very steep angle, thus effectively filtering 

. high-frequency noise and reducing the picking uncertainty. It 
is usually possible to attain a reading accuracy of ±0.02 s. 

2. The uncertainty due to changes in wave shape is small 
because of the very small aperture (D. = 1/2°) of the seismic ar­
ray used in this experiment. For the best events both the first 
arrivals and second zero crossings were timed, and the stan­
dard deviations of the period of the first cycle for a particular 
event were generally in the range 0.04-0.06 s. This provides as­
surance that the travel time anomalies observed in the caldera 
are not caused by changes in wave shape or the picking tech­
nique. Most events recorded had first-cycle periods of very 
nearly I s, and the wave shape of the first pulse was stable 
across the array. Mack (1969) noted changes in signal shape 
across the Lasa in Montana, but a look at his published 'data 
shows that the first cycle was relatively uniform across the ar­
ray. 

3. For. weakly recorded teleseisms resulting from small 
event magnitudes or low station sensitivity, the first peak or 
trough, the first zero crossing, and the first break are often ob-
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Fig. I. Tracings of seismograms ilhJstrating various picking points. 

scured by noise or attenuated in such a way that the second 
zero crossing is the first and only reliable pick (Figure I). 
Readings beyond the second zero crossing introduce in­
tolerable levels of uncertainty into the data as a result of reflec­
tions, scattering, diffraction, and other common wave de­
formation phenomena [see Mack. 1969]. Since the present 
investigation deals with relative residuals, it is most important 
to pick the same phase of the signal at all stations. 

The data set was recorded in an analog fashion on magnetic 
tape and played back with an ink-squirting strip chart recorder 
at a paper speed of I cm/s. Two radio station WWVB timing 
traces were played back parallel to the signal trace. Zero cross­
ings are read to 0.0 I s, and picking errors vary from 0.02 s for 
the best seismograms to about ±0.05 s for signals that do not 
cross zero at a very steep angle. The uncertainty due to pre­
viously mentioned changes in wave shape is of the order of 
0.04-0.06 s. Hence the maximum likely uncertainty for a given 
reading is normally about ±O.II s for the lower-quality tele­
seisms used. These error estimates are somewhat subjective. 
but reasonable, and they are based on experience and dis­
cussions with other USGS investigators. 

The criterion for playback of a teleseism was that it be well 
recorded at easa Diablo Mountain (L Vel, the reference sta­
tion (l-'igure 2). The uncertainty of the timing at LVe is ±0.02 s 
for picking error and ±0.06 s for wave shape change, since all 
events except onc at the reference station had excellent second 
zero crossings. Since we are dealing with relative residuals, the 
usual maximum uncertainty in a relative residual value is the 
sum of the uncertainties at the reference station and the station 
of interest, in this case about 0.19 s for the poor events and 
about 0.16 s for the good events. 

At many stations three or more readings from the same 
azimuth are available. Residuals at these stations were 
averaged for each approach azimuth, and standard deviations 
of the data were generally in the range 0.04-0.11 s. We con­
clude that the likely uncertainty of average relative residual of 

three or more events from a particular azimuth at a given sta­
tion is about 0.1 s. 

The interpretation of P delay data in some cases requires 
removal of regional azimuthal variations [see Press and 
Biehler. 1964; Bolt alld Nut/Ii. 1966]. As is shown below, such a 
correction was not needed at Long Valley, partly because of 
the local .nature of the array. 

Figure 2 shows relative residuals with respect to LVe for 
stations outside the Long Valley caldera. Some of these 
readings (six events) come from a network that operated for 
20 days in 1970 to record microearthquakes in the northern 
Owens Valley-Mono Lake region [Pitt alldS/eeple.~. 1975]. The 
data in Figure 2 indicate that regional effects for events from 
the northwest and southeast azimuths are less than 0.05 s, even 
though two stations have values of +0.16 and -0.18 for events 
fcom the southeast. The limited data from southwest events 
suggest a possibility of relative arrivals southwest and north­
west of the Long Valley caldera 0.2 s earlier than those at 
stations near Bishop, which is about 50 km southeast of Long 
Valley. Elevation cgrrections were not used but would add 
0.01":0.03 s to residuals in the caldera, since the elevation of the 
reference station (L VC) is 50-200 m greater than the elevation 
at stations in the caldera. 

Figure 3a shows stations in and near the Long Valley 
caldera that recorded at least one event from the northwest. 
Relative delays (positive residuals) are about 0.2 s near the 
northwest corner of the caldera, increasing to about 0.5 s 
toward the center of the caldera. 

Figure 3b shows stations that recorded at least one event 
from the southeast. For this azimuth, delays of the order of 
0.5 s are present in the northwest section of the caldera. Thus 
the largest delays are for stations on the opposite side of the 
caldera from the approach direction. As is shown below, this 
change in the spatial pattern for delays for opposite azimuths 
can be caused only by material deep under the center of the 
caldera. 
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Interpretation of the delays requires the removal of near­
surface effects. Three different techniques were used to es­
timate the surface effects: 

I. A crustal refraction survey by Hill [1976, this issueJ was 
centered on the caldera. Ray tracing and travel time calcula­
tions show that the effect of the upper 6 km of the crust should 
produce only delays of the order of 0.15-0.2 s in most of the 
caldera including the area where 0.5-s delays were found. The 
travel times are highly dependent on the thickness of shallow 
sediment near the surface (velocity 1.5-1.7 km/s) along the 
Owens River in the northeast section of the caldera. Delays ap­
proaching 0.4 s may occur in this region, but it is east of the 
deep anomalous zone. 

2. Teleseismic rays that are recorded near the edge of the 
caldera but that do not pass up through the center of the 
caldera show relative delays of 0.2 s, whereas some of the same 
stations show 0.5-s delays for ray paths that traverse the center 
of the caldera (Figure 4c). This indicates that the near-surface 
effects are of the order of 0.2 s and that deep effects are 0.3 s 
beneath the center of the caldera. 

3. Some of the larger local microearthquakes south and 
east of the Long Valley caldera [Steeples alld Pitt, 1976J could 
be well located without the use of arrival times from stations 
within the caldera (LVG, LVI, LV J). The local earthquake 
residuals thus obtained at these three caldera stations are a 
measure of ncar-surface velocity anomalies in the caldera. Sta­
tions L VG and LV J had local residuals suggesting near­
surface delays of 0.2 s. Station LVI, which is near Owens 

0.14 

River, has local residuals indicating near-surface delays of 
0.30-0.35 s. 

Figures 4a and 4b show residuals from northwest and 
southeast at stations in the caldera and vicinity after estimated 
surface effects have been removed. Surface effects were taken 
at 0.35 s near Owens River Valley (in the hachured area of 
Figure 4c) and 0.2 s elsewhere. Only stations in the caldera 
that had readings from both northwest and southeast are 
shown in Figure 4c. The estimated near-surface effects have 
been removed at the five stations shown. Note the azimuthally 
dependent differences of ~ to ~ s as mentioned in the second 
technique above. Figures 4a and 4b show all the available data 
from the two different azimuths. 

An attempt was also made to use regional events from the 
San Andreas Fault and explosions from the N~yada Test Site 
in the hope of further constraining the low-velocity volume in 
the caldera. That effort was a failure becaJlse the' Long Valley 
caldera was at or near the critical distaii'ce from both sources 
and it was impossible to distinguish PIl, P*, and Pg. 

DISCUSSION 

Figures Sa and 5b show two sectional views of the caldera 
using readings in a zone 2 km wide centered along AA' of 
Figure 4(' with typical distant ray paths drawn from northwest 
and southeast teleseisms to the surface. Unfortunately, few 
large events were recorded from the southeast azimuth because 
of the relatively short period of recording. Thus there is a scar­
city of ray paths from the southeast in a critical part of our 
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Fig. 2. Teleseismic P wave residuals relative to Casa Diablo Mountain (I.VC) at stations surrounding the Long Valley 
caldera. The lines from the stations show the three primary azimuths used. Each number is an average of three or more 
residuals from the azimuths indicated by the lines. Refraction survey lines are from Hill [1976]. 
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Fig. 3a. Teleseismic P wave residuals for events from the northwest relative to Lye (not shown). Residual values 
with bars are averages of three or more events and values without bars are averages of only one cir two events. Uncer­
tainty expected is ±O.I s for barred values and ±O.16 s for unbarred values. 

model. It is assumed that somewhere along these ray paths in 
the crust below 7-km depth (the vertical extent of the refrac­
tion survey [Hill, 1976, this issue]) a velocity anomaly exists. 
We consider velocity anomaly models with decreases of 5, 10, 
and 15% in the P wave velocity, and the path lengths required 
to produce the observed delays. The equation governing path 
length required is 

37° 45'+ 

EXPLANATION: 
Seismograph Station-
Caldera Boundary ____ LOra 

c' -o 2km 
'----' + + 

where LI' is path length, 61 is amount of time delay, V, is nor­
mal crustal velocity (taken as 6.0 km/s), and V2 is the 
anomalous low velocity. 

When this equation is used, a 5% velocity decrease requires 
34.2 km of anomalous ray path to produce 0.3-s delay. Ray 

-0' 
c· 

-~ c' 

-
0'" o· 

+ + 37° 35' 

o 
0:> 

Fig. 3b. Teleseismic P wave residuals for events from the southeast relative to Lye (not shown). Otherwise the same as 
Figure 3a. 
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Fig. 4c. Teleseismic P wave relative residuals at stations within the caldera that recorded events from both northwest 
and southeast with estimated near-surface etfects removed. Cross-hatched area shows where near-surface effects are esti­
mated to be 0.35 s; elsewhere in the calder<\, 0.2 s. Note remaining corrected relative residuals of 0.3 s for ray paths that 
have penetrated up through the center of the caldera. Stations mentioned in text are identified by three-letter names. 
Stations within dashed lines are projected onto section AN in Figures 5a and 5b. Small squares represent hot springs 
in the caldera. 

paths outside the stippled zone in Figure Sa do not detect the 
velocity anomaly, so the low-velocity material must be above 
the depth where they intersect (approximately 40 km). It is im­
possible to fit all the required 34.2-km-long ray paths inside 
the stippled zone, so we conclude that the velocity decrease in 
the anomalous zone must be greater than 5%. 

A 10% velocity decrease requires anomalous ray paths only 
16.2 km long. Figure Sa shows a hypothetical model of an 
anomalous zone with' a 10% decrease in velocity. The heavy 
parts of the ray paths are proportional in length to the delay 
seen by the ray paths. It is assumed that the material is iso­
tropic with respect to P wave velocity. The heavy parts of the 
intersecting ray paths must then form an internally consistent 
body, putting constraints on the volume that may be occupied 
by the anomalous zone. The models are drawn as a first ap­
proximation to fit the data and do not take into account the 
refraction that would occur if such an anomalous body were 
present. This was taken into account (and shown not to be of 
first-order impohance) by computer ray tracing [Steeples. 
1975]. 

Figure 5b shows a 15% velocity decrease model. One event 
from the southeast occurred at an epicentral distance of 1450 
km (~ = 13°). Events from this distance have angles of in­
cidence determined by the upper mantle velocity and the 
granitic crustal velocity from Snell's law. A mantle velocity of 
7.9 km/s yields an angle of incidence of 49° from vertical when 
a normal crustal velocity of 6.0 km/s is assumed. If one 
chooses to believe data from this single event, an additional 
constraint is placed on the depth of the low-velocity material, 
since station LVE shows a delay of 0.1 s for the event. If that 

ray path to L VE and the 10% velocity decrease model were 
used, the delay at station L VE would be 0.3 s instead of 0.1 s 
for this event. On the other hand, the 15% velocity decrease 
model requires a delay of only 0.1 s at L VE and is thus pre­
ferred over the 10% velocity decrease model. This particular 
ray path arrived from a slightly different azimuth, however, 
and may not have passed through the heart of the anomalous 
volume. 

Additional models with greater velocity contrasts could un­
doubtedly be constructed without developing inconsistencies 
in the data. At some point the wave shape of the first pulse 
would begin to show changes as diffraction around the low­
velocity body occurred. While we cannot now put a maximum 
limit on the decrease in velocity, it does not seem reasonable to 
expect a decrease of more than 20-30% in the P wave velocity 
for this material, even if it is fully molten. Murase alld Me­
Birney [1973] observed velocity decreases of up to 40% in rock 
melts at low pressures. A similar 40% velocity drop occurs at 
the core-mantle boundary, but some of that drop is due to 
compositional change [Bul/ell, 1965]. Mizutani alld Kanamori 
[1964] observed a P velocity drop of only 20% in a metal alloy 
upon melting. On the basis of these limited observations, P 
velocity drops of 40% are too high for most rock melts at pres­
sures of a few kilobars. 

One may speculate upon the cause of such low-velocity 
material. Earthquakes of magnitude 6.0 have occurred near 
Long Valley caldera in the not too distant past (1927, 1941 ), so 
the idea of a low-velocity volume signaling an impending 
moderate earthquake cannot totally be ruled out. A more at­
tractive (and more likely) hypothesis is that the low velocity is 
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associated with the intrusive body or bodies that fed the extru­
sions from the caldera vicinity in the past 700,000 years. It is 
interesting to note that rhyolitic extrusion has occurred in the 
Long Valley caldera vicinity within the past 1500 yp.ars [Bailey 
et aI., 1976, this issue). The resurgent part of the caldera is 
where the low velocity is most pronounced. 

Compressional velocity in rock decreases with increase in 
temperature [e.g., Murase and McBirney, 1973). If this 
hypothesis is true, eventually it may become possible to make 
a reliable heat anomaly estimate for Long Valley using the hot 
rock hypothesis. Such reliable estimates, however, await the 
collection of velocity data at 10 kbar and 1000°C. A 15% 
decrease in velocity could represent at least partial melt, but 
the degree of melt could be highly dependent upon the amount 
of water present [Spencer, 1975). 

If a large volume of magma were present under the caldera, 
teleseismic S waves would not be transmitted up through the 
caldera (analogous to S wave attenuation at the earth's liquid 
core). The seismic equipment used for this experiment was not 
designed to record teleseismic S waves, but four stations near 
and in the caldera (including L VG and LV J) had I-s horizon­
tal seismometers. Stations both inside and outside the caldera 
recorded teleseismic S waves, but the quality was very poor 
because most of the shear energy occurred at lower frequen­
cies. It was shown, however, that the low-velocity material 
beneath the caldera transmits some S wave energy (assuming 
that the angles of P and S incidence are equal, which may not 
be strictly true). This indicates that if true magma is present 
along the ray paths in question, it is in small pockets (probably 
less than 4 km thick, the approximate wavelength of the S 
waves recorded), or it has sufficient viscosity to transmit S 
waves. Local earthquake S waves did not penetrate deep 
enough to pass through the heart of the anomalous body in the 
caldera [Steeples alld Pitt, 1976, this issue). 

The question arises whether a few thousand meters of sedi­
ment or other low-velocity material at the surface caused the 
observed velocity anomalies. We believe not for three reasons 
that have already been discussed, but we mentioned them 
again for emphasis because the point is critical to our study: 

I. Teleseismic ray paths reaching the earth's surface are 
very nearly vertical, so that the amount of low-velocity 
material traversed near the surface is relatively independent of 
approach azimuth. Four stations in the caldera showed 
azimuthally dependent differences of 0.3 s, which would re­
quire highly unlikely lateral heterogeneity to be explained by 
near-surface material. 

2. The refraction survey does not show near-surface 
material that could cause the delays except near the Owens 
River valley away from most of the stations which show de­
lays of + s or morl!. 

3. M icroearthquake residuals in the caldera are out of 
character with the residuals normally seen in the region when 
t;atIJI1's [1966) model is used. The arrivals suggest that the 
near-surface effects are correctly calculated by the methods in 
points I and 2 above. 

Bailey et al. [1976) and Lachenbruch et al. [1976) believe that 
any residual magma from mid-Pleistocene intrusion must be at 
a depth of 10 km or greater in the caldera. The·seismic data in 
this paper do not conflict with that conclusion, although Hill 
[1976) detected arrivals on some of his refraction records that 
are compatible with a low-velocity volume beginning at 7-8 
km depth. Those arrivals could, however, be multiple reflec­
tions from some shallower interface. From Figures 5a and 5b 

it is evident that much of the low-velocity material probably 
lies in a depth range of 10-15 km. 

While the vertical and linear horizontal extent of the low­
velocity material has been somewhat constrained, nothing has 
yet been stated about the areal extent of the velocity anomaly. 
Only limited data are available to make such an approxima­
tion, but an attempt is depicted in Figure 6. In addition to data 
already presented, a Russian nuclear explosion and events 
from the southwest Pacific are plotted. 

In an effort to estimate the maximum horizontal extent of 
the velocity anomaly, rays were projected along straight paths 
back toward the epicenters to a depth of 12 km, a technique 
similar to that used by lyer and Healey [1972) at Lasa. A 
velocity contrast of 15% is assumed so tha~ the diameter of the 
dots plotted in the caldera are thicknesi' estimates. Figure 6 
shows all the rays available for projection from the teleseismic 
P delay study at Long Valley.,.. . 

A surprisingly consistent trend;'emerges as almost all the 
anomalous points plot in the west-central part of the caldera 
with only minor anomalous points plotted outside the caldera. 
The northern boundary is quite well constrained, but the 
eastern boundary is poorly constrained because of a lack of 
data points. The western and southern boundaries appear to 
be constrained to within about ±3 km horizontally. 

It is interesting to note that the western two thirds of the 
caldera appears to be more anomalous than the eastern third. 
Lachenbruch et al: [(976) indicated that heat flow evidence sug­
gests that the eastern half of the caldera may have been extinct 
for some time. Heat flow data show a positive anomaly in the 
western half of the caldera. This supports our hypothesis that 
the western half of the caldera may have low velocity at depth 
due to hot rock. However, it should be remembered that heat 
flow data involve a time lag of the order of thousands of years 
for conductionfrom depths as shallow as 10 km. The heat flow 
data therefore may not show any indication 0f intrusions oc­
curring in the last thousand years or so. 

A negative complete 130uguer gravity anomaly with 30-
mGal closure is centered on the Long Valley caldera [Pakiser 
et al., 1964). Kane et al. [1976, this issue) have interpreted most 
of this gravity low in terms of up to 3 km of sedimentary or 
brecciated fill. They also pointed out the existence of gravity 
gradients outside the caldera that suggest a deep-seated mass 
deficiency beneath the caldera. 

If a volume of hot rock or partial melt were present at depth 
in the caldera, a gravity low would result, since rock decreases 
in density with increase in temperature. Igneous rocks general­
ly decrease in density from 6 to 10% upon melting [Harris et 
al., 1970; Murase and McBirney, 1973). 

A simple theoretical deep gravity model was constructed to 
fit our teleseismic P delay data. The anomaly in and around 
the caldera can be explained in part by a buried spherical mass 
with its center 13 km deep centered on section AA I as shown in 
Figure 5b. The calculation was done by using the gravitational 
field equation for a sphere given by Dobrin [1960, pp. 172-177) 
and the gravity map of Pakiser et al. [1964). The spherical 
model used in the calculation had a radius of 7 km, resulting in 
a required density contrast of 0.018 g cm- 3 mG -1. If one 
chooses to attribute a lO-mGal anomaly to this hypothetical 
sphere, a density contrast 0 f 0.18 g cm- 3 is required. The 
observed gravity gradients outside the caldera do not allow a 
spherical mass much larger, deeper, or less dense than the 
model just discussed. Density of rock decreases with increase 
in temperature because of thermal expansion, so up to 10 
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mGal in excess of the observed 30 mGal gravity anomaly in 
the caldera could be due to hot rock and/or partial melt. It 
should be pointed out that rock density decreases only about 
1% for each 400°C change in temperature [Skinner. 1966]. That 
in turn implies that the density change of hot rock without par­
tial melt could produce no more than about 3 mGal of gravity 
anomaly for the model just discussed. This indicates that if the 
deep gravity model is accurate and compositional change is 
not a factor, then some degree of partial melt is needed to ex­
plain the rest of the gravity anomaly. 

. CONCLUSIONS 

The low P velocity observed beneath Long Valley is 
probably caused by anomalously high temperature. The 
anomalous zone is more than 7 km but definitely less than 40 
km deep, probably less than 25 km deep. The velocity contrast 
with the surrounding material is more than 5% and is probably 
in the range 10-15%. The areal extent of the low-velocity 
material is poorly constrained but is probably confined to the 
caldera, possibly to the west half of the caldera. A possible 
deep-seated gravity low lends circumstantial support to our 
hot rock/partial melt hypothesis. 

The teleseismic P delay technique may become a viable 
method of exploring the sources of geothermal energy. It 
should not be used without a thorough knowledge of the upper 
crustal velocity structure such as that normally obtained from 
seismic reflection or refraction surveys. In addition to vertical 
instruments, it is desirable to use horizontal seismometers 
capable of recording teleseismic S waves so that S delays and 
possible S attenuation can be investigated in conjunction with 
P wave studies. 

Timing the first or second zero crossing may be one way of 

attaining better relative accur'acy in measuring arrival times, 
particularly for marginal quality events. The technique is 
probably most useful on small aperture arrays. One can deter­
mine the applicability of the zero crossing timing method by 
timing both first arrival and zero crossings for high quality 
events and comparing the two methods. In our case, the two 
timing methods produce the sam,e results, but the zero crossing 
method allows the use of about 50% more data while it 
decreases the scatter in the data. 

The estimation of heat anomalies by the teleseismic P delay 
method awaits the laboratory measurement of rock velocities 
at pressures approaching 10 kbar and temperatures of lOOO°C. 
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