GLO3311 &= UNIVERSITY OF L1AH RESEARCH INSTITUTE

L)k
S A |

EARTH SCIENCE LABORATORY

420 CHIPETA WAY, SUITE 120

SALT LAKE CITY, UTAH 84108
TELEPHONE 801-581-5283

LNl

August 12, 1982
MEMORAND UM

T0: H. P. Ross

FROM: W. R. Sill
SUBJECT: Self-potential Studies in East Puna, Hawaii by C. J. Zablocki

In the above paper Zablocki proposes a convective model for the self-
potential anomalies as in Figure 1 (his Figure 4). In a recent report (Sill,
1982) 1 investigated the modeling of self-potential effects due to
convection. Figure 2 shows the results for two models.. In both models the
maximum temperature (200°C) is the same as are the velocity fields. The
maximum temperature and velocity are at X = 0, Z = 3'1 as indicated in the
figure. The flow field is upward in the plume (—a_i x < a) and the return
flow takes place in the exterior region. As the figure shows, the self-
potential reaches a maximum near the center of the plume and it is larger in
the case where the cross coupling parameter (L) is zero exterior to the

plune. The normalized potential (dn) in the model is related to the true

potential (¢) by

¢l = ¢n Ll Vol AXI/GIo (1)
where L' = true velocity cross coupling parameter
VO' = true convective velocity (maximum)

Ax' true length scale



o' = true conductivity.

The velocity cross coupling parameter L is related to the better known

streaming potential coefficient (C) by

L = oC/k. (2)

where k = permeability.

In order to scale the model results to any geological setting we have to
estimate the true parameters in equation (1). The length scale (Ax') can be
estimated by noting that the anomaly width at the one-half amplitude points is
around 3 to 4 model units. The one-half amplitude widths in Zablocki's report
are in the range from 500 m to 600 m so the length scale is around 150 m to
200 m. The depth to the maximum temperature (200°C) and the maximum velocity
in the plume is then around 300 m to 400 m. The estimates of the other
parameters is simplified by making use of an approximate relation between the

maximum temperature change Tm and the maximum velocity (VO)

““
Vo= yag Tm k0170 / N{(Tm). (3)

rate of change of water density with temperature

where a

g = acceleration of gravity

ko = permeability at room temperature

Ngs Im =.Viscosity of water at room temperature, Tm

= shape factor for type of convection.
The shape factor y varies from 1/2 for nearly equidimensional flows
(horizontal Tength = vertical length) to values greater than 1 for flows with
vertical length > horizontal length.
Making use of equations (3) and (2) in equation (1) and noting that

parameters for the model are specified at roomn temperature, we get




¢! = Y¢n Cag Tm Ax'no/n(Tm). (4)

In equation (4) the parameters Ax', Tm, Y have already been specified

¢n’ a, g and no/n(Tm) are known so the only free parameter is the streaming
potential C. Typical values of C for rocks full in the range from 5 to 25
mv/atm (1 mv/atm = 10-8 MKS). Taking as a best case, model 2 (¢n = ,4) with
C = 25 mv/atm we get an estimate for the self-potential (¢') of about 200

mv. Since the observed anomaly (Figure 1) is about 400 mv we fall short by a
factor of two. The anomaly could be explained with C = 50 mv/atm but values
this large are not typical of rocks. For model 1 the required streaming
potential is around 100 mv/qtm. One might be tempted to scale up Tm in
equation (4) but the model results are not linear in temperature and the Tm
used in equation (4) must be the same as that used in the calculation of ¢n.
The results of this investigation indicate that the model suggested by
Zablocki 1is in the gray area of plausibility. The required streaming
potentials are very large compared to the typical values for rocks but then
the model fit to the real situation is poorly known. A reduction in the
required streaming potential could result from an increase in temperature but
more 1ikely from an increase in the shape factor y. The latter should
increase some if the flow has a thin plume with a large vertical scale.
Estimating y or the true VO would involve the solution of the appropriate

convection problem. In a “full up" solution of the convection problem the

calculated velocity field can be used to model the self-potential by the

technique presented in Sill (1982).
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Self-potential profile (solid) along traverse A-A'
(Fig. 2) and modified profile (dashed) after
removal of an "elevation" gradient. The cross
section shown below the profile is a conceptual
model of the hydrology and substructure that may
account for the potential distribution as discussed
in the text. Arrowed-lines below water table are
idealized streamlines of fluid (liquid and vapor)
flow, and above water table, are downward migra-

tion of meteoric water.
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