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The deformation and growth of a vertical penny-shaped crack, fractured hydraulically, is investiguted
when fluid is injected from an inlet at the center of the crack at a constant flow rate. The total flow rate at
the inlet is divided into three parts: flow rate extracted from an outiet hole at an arbitrary distance above
the center, fluid loss rate from the crack surface, and total fluid mass change in the crack. Two cases are
considered: in case 1, inlet flow rate is initially greater than the sum of the outlet flow and fluid loss rates,
and in case 2 the reverse holds true, Two subcases a and b are also considered, depending on the values of
outlet pressure. Ranges of the inlet flow rate and the outlet pressure are discussed for which the crack
attains stationary states and the fluid can be extracted continuously. Subcase b, where the outlet pressure
is less than or equal to the difference between the tectonic stress and the fluid head at the inlet, is found to
be more practical, and reasonable outlet flow rates are obtained in this case. Itis also found that case 25 is
preferable to case 15 to obtain the fluid with higher temperature. Results are expected to be of use in

considerations of heat extraction from hot dry rock.

INTRODUCTION

The study of the heat extraction from a crack fractured by
hydraulic pressure requires the solution of the appropriate
equations of linear elastic fracture mechanics together with the
appropriate equations of fluid mechanics and heat transmis-
sion. The equations of elasticity are required to establish the
surface area and width of the crack.

Heat extraction problems on the fluid flowing in narrow
spaces have been studied recently by Bodvarsson [1969), Grin-
garten et of. {19731, and Lowell [1976]. These analytical studies
are confined to one-dimensional flow problems. The fluid flow
in the crack should be treated at least as two-dimensional after
driling an cutlet hole. Using a finite difference method, Har-
low and Pracht [1972] and McFarland [1975] of the Los
Alamos Scientific Laboratory analyzed two-dimensional mod-
els numerically. In most of the studies made thus far, however,
the values of the crack radius and the crack width are assumed
in advance, though they are functions of the fluid pressure and
therefore of the flow rate.

The radius and width of the crack generally change with
time for an arbitrarily given inlet flow rate. For example, in
some cases the crack keeps expanding, and in other cases the
crack tends to shut because of the large outlet low rate. It is
therefore of practical use to obtain the range for which the
crack attains a stationary state and the water can be extracted
continuously. In this paper the deformation and growth of a

. crack are investigated for that purpose.

The total flow rate at the inlet is divided into three parts: the
flow rate which can be extracted from the outlet hole, the fluid
loss rate, and the total mass change of the fluid in the crack.
The fluid loss rate is assumed to be a linear function of the
pressure in the crack. From the standpoint of available theo-
retical results it is reasonable to treat two-dimensional prob-
lems of a penny-shaped crack as a starting point for the
analysis of a vertically oriented fracture.

In a previous paper the stable growth of a penny-shaped
crack without outlet holes was investigated analytically (466 et
al., 1976]. 1t was verified there for axisymmetrical problems
that the fluid does not penetrate everywhere in the crack and
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" this result to the present problem the equations of linexf

that the classical solution by Sack is approximately vaiid 7
large cracks expanded under the injection of the fluid ws
constant flow rate. The results there may be applicable 1%
present nonsymmetrical problem of a penny-shaped oz
with outlet hole which is drilled after the crack attains s 7
growth, The examples to be presented subsequently are for 2
case when the flow rate at the inlet is constant, and ranges »-
be given for which the crack will be stationary.

Fruip FLow N A PENNY-SHAPED CRACK

We consider a penny-shaped crack having a radius R s~
width w (in the z direction; see Figure 1). Fluid is injected from=
the inlet at the center of the crack and removed in part at %
outlet, x = a, where x is the distance measured in the vercs
direction from the center. The radii of the inlet and cut'z
holes are denoted by R, and R,, respectively.

The total mass flow rate at the inlet well bore can be divides
into the following three parts:

9 =¢qa+qc g

where g, is the effective flow rate equal to the outlet flow r2:2.
qx is the total mass change in the crack, and g, corresponds:2
the total fluid loss in the crack per unit time,

It was shown in the previous paper [4b6 et al., 1976] that 2z
classical solution by Sack [1946] is approximately valid r
cracks with large fracture radius when the crack is expanc:iaz
under a constant flow rate. This means that the pressure disis-
bution is almost independent of the fluid viscosity. By apphicz

any

momentum are found to be

ép/er = —pgcos®  ép/ed = pgrsind

where p is the fluid pressure in the crack, g is the acceleraticn
due to gravity, and p, is the fluid density.
Equation (2) is easily integrated as

pir,8) = po — p,grcos @

where p, is the fluid pressure at r = 0.
The fluid loss term is in general a function of the 5
pressure. Here it is assumed to be a linear function of p 17

simplicity; i.e.,

uid

2pu;, = Cro + Cpilps — pigr cos 8) (H
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Fig. 1. Geometry and coordinate system.

i(y, and Cpy are constants, It is easily seen from (4) that ¢,
Zeed in (1) is expressed by

gL = 7R¥Cro + Cripo) %)

e early stage of the growth of the crack this expression
it have some error [Hall and Dollarhide, 1968].
sshould be noted that & more refined form of (1) is

G = G2 T g * gLt gr

-2re gy is the flow rate due-to the thermal contraction of the
=k, In this paper, {i} is emploved for simplicity, since g
-+ be small, although [ gr 4t is large for farge .

STRESS INTENSITY FACTOR AND OPENING GF CRACK

Consider a vertical crack whose center is situated a distance
wlow the surface of the earth which does not interact with
erack. If the crack is absent, the compressive tectonic stress
>0) is acting across any vertical plane and can be divided
0 a constant stress and a hydrostatic pressure. Hence if the
ity of the rock is p, (ps > py).

g, = -8 = —(So - apsgx) (6)

ere S, is the tectonic stress at » = 0 and K, is the coefficient
“active rock pressure. Thus the boundary condition of the
&k plane is

=={p~8)= —(ps — So) — (Kaps — py)grcosd ]
Tre = Toz = 0 .

The case of a penny-shaped crack opened by non-
nmetrical pressure distribution was studied by Keer [1964].
‘follows from his paper that for r > R and z = 0,

g, = F" + FV cos 8 (8)

“Yere

a2V
. (7!') rdr o (P - 22 dt n=0,1 9)
fluid

for

: 22 tsn;l () d.
4 k(1) = (;) ey A -El—z'—_‘g:—s—;‘—/‘; n=20,1 (10)

re uy is the fluid loss rate per unit area of fracture surface
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with
&(r) = —(po — S.,) &) = —~(Kaps — P/)g" (11

The stress-intensity-factor-near-the tlp of the crack is
= [i — 1/2
K '132 (r—R)"?o, / (12)

Hence

_ (2RY"* £
K= T _[ (1 — g2y

-[8o(RE) + &:(RENE cos 0] dE (13)
Introduction of (11) into (13) yields

1/2 » 2
K= —(2};_) [Po -5, + ?gR (Kaps — py) cos 9] (14)

The crack opening displacement w(r, 8) is given as follows

[Keer, 1964]:

4(1

wir, B)= ————;i) (G + G cos ) (15)

where £ and v are Young’s modulus and Poisson’s ratio,
respectively, and

- vz A1) dt _
¢ () f(z2 Ay n=0L (16

By use of (10) and (11), (15) becomes

wir, gy = S0L=¥) "E”z)
™

2
: [po = So + 5 (Kaps — py)gr cos 0:[(1?’ - 7).

The total mass in the crack is given by

Q= [R j::p,wrdﬁdr (18)

Equations (17) and (18) lead to

Q = 2x/D)R(po — So)] (19)
where
D = 3wE/8(1 — v*)p, (20)

The fracture toughness of the rock defined by K. is assumed
to be constant everywhere in the rock. In this paper it is
assumed that the fracture criterion is expressed approximately
by K = K¢, where K is the average stress intensity factor
introduced by the definition

~ l r _ (ZR)I/Z
K:E;[rKdBfT(Po_So) (21)

Then (19) is written as
0 = (2x*/D)KR*? (22)
Furthermore, ¢, as defined in (1), is
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Fig. 2a.

When the outlet hole is provided, the crack radius is still
expanding or ceuses expanding, depending on the value of ¢;.
Therefore the following two cases are considered:

Case i. gy, — g, ~ g. = ¢ge 2 0 and therefore dR/dt = 0

0

and dw/dt 2 0, {23) and (22) yield
gr = 372/ 2V°D)KRY? dR/dt @24

g, — ¢ga — g0 = gg < 0 and therefore dR/dt = 0
< 0, (23) and (19) lead to

g = (27r/D)R" dp,/dt

Case 2.
and dvw/dt

(25)
where ¥ is the average value of crack width w. It can be seen
that dR/dr = 0 for any case when gg = Oorg, = ¢, + q.. In
case 2, dp,/dt = O for gz = 0(qg0 = qa + ¢..), and dp,/dt <0 for
9 < 0(go < gu + qu).

Frow RATE AND FRACTURE RADIUS

It is assumed that the following Bernoulli equation is appli-
cable to the flow in the neighborhood of the throat of the
outlet. Then

Po — gpra = —po* + gp(he — a) + p(C,v.}  (26)

Case |

Go =~ qa = qu = q: <0 dR/dt

Kp !

T ®RSE TR
Ga

%= G (l S,

=0

ﬂcﬁ”zl _5_ (_&
+ ) +2Kn R,

Fig. 2b. Relation between ¢, and R,/R, for subcase a (p,*/$, » &

and subcase b {p*/S, = —0.2425).

where ¢, is the fluid velocity in the outlet well bore just outs<r
the throat and the constant €, (> 1)}is an outlet head loss. T2
fluid density p, has been assumed to be constant in both si=
of the throat. A suction pressure by the outlet pump is dengz2

by pe*.

Since
Ga = TRazvaP;'

where R, is the outlet pump radius, it follows that

(Pr )1'2
“\2
or

qa (pl )1/2
2w \2

by substituting p, from (21).

9o

R,
. o + pa* — prgho)*

C.

R
&

Br , 1z
S, + W — pighy + po

Equation (1) can be written in two ways, depending ¢

cases mentioned in the last section:

dﬂ-"/df <0 at tp = Ips

"L (£) (Z) + ks (2]
) 9 i (Ro + (B, + By) R + KpB, Ry

o

qe qr

(L

{os

niE

(5=

S s




ABE ET AL.: HyprauLic FRACTURING OF RoOCKS, 2 6295

TABLE 1. Case I, Where ¢, > ga(tos) + qu(lns)

Gar X10% g/s Apo/Sq .
R/Ryat
Gor X10* g/s Pa*/Se tp = Ips tp = ® Ip = Ips tp = tp= >
A 2,013 —0.23852 8.247 5.096 0.24077 0.23938 13,500 :
B 1.718 —0.23882 7.671 5.195 0.24077 0.23971 12,500 1
C 1.451 —0.23916 6.965 5.305 0.24077 0.24009 - 11,500 e
D 1.954 —-0.24172 8.008 4,948 0.24491 0.24294 6,750 e
E 1.668 -0.24215 7.449 5.045 0.24491 0.24342 6,250 :
F 1.409 —0.24264 6.763 5.151 0.24491 0.24396 5,750 .
For cases {A-1C, R,/R, = 10,000, h, = 3,000 m, and R,/R, = 0.5.
For cases 1D-1F, R/R, = 5,000, h, = 2,000 m, and Cr = 2.0.
Go— Ga—qr=gs <0  dR/dt =0 di/dt <0 at t, = tys
’ 3
1 PARL R\ d P " Po R\2
=C(—”i-—+“) +<——~) ——<—°.+ B, + B 22 )| =
A VR W) Ro/ Tdi, \S, cTASI\R)

Ky =wK/(2R,} 2S5, Ip = (Dgs/ 2w R3Se )t

32
A= So/p;’gko ( )
o
By = 7R 1, B, = 7RSS,
(33)
. , R, V¥ RS
Cy = 7 (2p,5gh, A2 (——) o
t {2p:°7, A) R, C,

I, = fpsis thet at which the outlet is provided.
Fach case can be {urther divided into the following two
Saases according to the magnitude of p,*:

12

beuse a

PF/Se > 1/3 — 1 (34a)
Lbease b

Pa*/S, < 1/A ~ 1 (34b)

‘e cupability of water extraction from the outlet depends on
4). Let us consider case 1. The term for ¢, in (30) is always a
= number and decreasing function of R. First, it is assumed
W the loss rate gy, is small in relation to other quantities in
.. Since ¢, is a decreasing function of R/R,, the quantity
R‘dr,, does not vanish when g,> ga(tps), 50 that the crack
wps expanding with time if a small difference ¢, — ¢, exists at
= 1;,<. On the other hand, if g, is not relatively small and is

qr qr

expressed by (5), the term g, + ¢, is an increasing function of
R/R,, so that dR/dt, can be equal to zero for t, > 1ps. In case
la the water can be extracted continuously from the outlet. In

case 1b, g, becomes zero when R reaches a critical value R,. .

For R > R, the water cannot be extracted from the outlet,
although the crack may continue to expand with time. R, is
determined from )

Kp 1 p* _
l+__—.——(Rc/Ru)”2 At ] (35)

The differential equation (30) can be integrated for a given
constant ¢,. The solution is

B 57K
o = tos T 3Gy RS RS

"’ ’ RR.?
| R dR {1 — w(2pSp)2 =2
v/[;s w(2p,.S0) 7.C.

. [l + 7K L opt p/gllo]”’
(2R)"%S, S, So

-1
- ;i [(Cu. F CLSR® + —2’—,'71€CL,R3/‘2] } (36)
0

where the initial condition has been introduced as

R =R, at 1, = tps (37)

TABLE 2. Case 2, Where ¢, < ¢4{tps) + ¢.(tps)

oy X 10 g/S Al)o/So

qa, X10° g/s Pa*/Ss tp = Ips tp=® Ip = Ips Ip=®
A 1.289 —0.23852 8.247 4.647 0.24077 0.23923
B 1.232 ' —0.23882 7.671 4.649 0.24077 0.23954
C 1.162 -0.23916 6.965 4.653 0.24077 0.23988
D- 1.183 -0.24172 8.008 3.819 0.24491 0.24245
E 1.127 -0.24215 7.449 3.823 0.24491 0.24288
F 1.059 —0.24264 6.763 3.827 0.24491 0.24337

For cases 2A-2C, R,/R,
For cases 2D-2F, R,/R,

[l

10,000, A, = 3,000 m, and R./R, = 0.5.
5,000, /1, = 2,000 m, and Cr = 2.0
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Fig. 3a. Flow rate q,, pressure differential p, — p,gh,, and crack radius R/R, as a function of time t,, for cuse 16 (R./R, = i
10,000). 7o
: L2fis
The time range 1, < 1,5 corresponds to the initial fracturing Po/So > 1 (4% 5.

state. The relation between R and ¢, in this time range is
obtained as

_ 57K R 2
= 3ayas,Ey I, K AR

.

T

(Cao + CLiSOR® + 517

[

KCL,RW} }_l (38)

For case 2, R is constant, but p, is changing with time. The
relation between p, and ¢, is easily obtained by integrating
(31), where p, is a decreasing function of time. In order to have
real values of ¢, p, must be in the range

The last condition has been obtained from the condition w > | .
0. Case 2a satisfies condition (39) automatically if conditien "3;
(40) is satisfied. For case 26, condition (39) gives a limitation
for p,. After p, reaches a critical value p,., the water cannotbe .
extracted from the outlet. This critical value is determined by +,;.

Poc/So — 1/A + p*/Se = 0 (41

When p, continues to decrease with time and reaches the vaive 7,
S,. the width of the crack is reduced to zero, at least at the
inlet, as shown in (17). In a strict sense, (17) must be modified. | =
since negative values of the displacement are not permitted ki

.

physically. The area with the negative displacement is large 13,

Po/So > 1/8 = pa*/S, (39) when p, = S,. so that the solution of the problem with 3 -epy
a,lar/sec) AR/S, R/R,
14x10%- 0246 T Ty ———r 64 x [0 R
i . §
12} 0zas {62
101 0244 F {60
- E B
8 0243 F 58
6| 0242 156
E
i —
4 024 154
] h, =2000m
2t 0240 52
R¢/Re =5000
ol 0239 1 g el i [ N L Lt nileg
10° 10'° 1oV 10'2

Fig. 3b. Flow rate ¢,, pressure differential p, — p,gh,. and crack radius R/R, as a function of time #,, for case 16 (R./R, =
5000).
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‘dffect of this area on (31) may be small unless p, is very close to
;5. When thermal contraction is not negligible, the crack will

.ot close,

. As has been stated abave, it is necessary to introduce the
1u1d loss term in case | to design the hot water extraction from
<he stationary crack, t.e.. the crack whose radius does not
neeed a finite value. The loss term introduced here resulted
“rom the definition of m) or {5} and is an approximate ex-
session, The rate g, migh: be a function of time 7 even though
Rand p, are COI‘S’JP‘ Yhen g, is a slowly decreasing function
of 1 [Delisle, 1973], the crack radius R increases and tends to
afinity with sm’all propagamm velocity even if dR/di, = 0 at
» = {os. In subcase @ the water can be extracted continuously,

while in subcase b it cannot for R = R., which is defined in

-35). In case 2 the crack might close after a long period if the
Aermal contraction of the rock is negligible. However, if g,

will reopen. The exact expression of the loss rate for hot dry

rocks has not yet been determined, and more systematic ex--

periments may be required. The relation between R and ¢, in
case | depends largely on the loss rate term. On the other
hand, in case 2 the crack radius remains constant, and the
pressure p, may converge to a certain value regardless of the
magnitude of ¢, if (39) and (40) are satisfied, since both ¢, and
q., are decreasing functions of p,. If g, decreased with time ¢
after arriving at dpo/dt;, = 0, the rate g, would be larger than g,
+ ¢., and the pressure would increase. The relation between p,
and 1, caa be obtained from (31) also when dpo/dty, > 0
provided that py(tp) < po(tps).

The flow rate ¢, in subcase b is less than that in subcase a,
and hence the fluid temperature in subcase b is expected to be
high in comparison with that in subcase a. If a large quantity
of hot water is required, the multiply fractured system should

! gulgr/sec) AR/S,

§ , 14 x 10 0246 ] S Tt

i ] ho =2000m T
R /R, = 5000
F _
3 _
b ]
Gq

2 | oza0}- _

0 - 0239 Lo vl Lot grggl RN
10° 10° 1g'e 10"

tp

Fig. 4b. Flow rate ¢, and pressure differential p, — p,gho as a function of time ¢, for case 2b (R/R, = 5000).

3
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14 x 10% 0246 ., — e et S B
i i ho = 3000m 1 BT
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-t - A
10 |- 0244}~ - i
- L . !
’},
8 |- 0.243 - |
6}~ 0242 -
- q° -4
4| ozail- -
I AP,/S, ]
21 02401 ¢
B
L L _ A
ol g239 i o el t Lol N
10° 10° 10% ot
to A
Fig. 4a. Flow rate ¢, and pressure differential p, — p,gh, as a function of time 1, for case 2b (R/R, = 10,000).
tnoving boundary is required instead of (17). However, the remains still constant, the pressure increases, and the crack
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be adopted. The pressure p,* plays an important role in con-
trolling the outlet flow rate in practical problems.
NUMERICAL EXAMPLES '

The dependency of ¢, on various parameters is studied when
there is the condition of a stationary crack (dR/dt, and

dpy/dt, = 0). Equations (30) and (31) are rewritten as
G =G = Cega At 1y = lps (42)
where Cp is a fluid loss term such that
gr = (Ce — 1)ga (43)

The properties used in the calculations are the following: p; =
1 g/em?® [Kpli ake = 1.118, R, = 10 cm, and C, = 1.25. The
ratio Sy/pgh, has been assumed as 1.3, 1.5, and 1.9. For
example, if S; = Kqpsghe, where K, is the coefficient of active
rock pressure, then S,/p,ghy = 1.3 for p; = 2.65 g/cm® and K,
= (0.49. The results are shown in Figures 2a and 2b. The curves
for po*/ S, = O correspond to subcase a, and those for p,*/S, =
—0.2384 and —-0.2425 correspond to subcase b, It is seen from
these figures that g, depends largely on R,/R,. Values of mass
flow rate employed so far in the calculations and experiments
are fairly small. For example, g, = 1.44 X 10° g/cm? is used by
McFarland [1975]. Relatively small values of R,/R, and/or the
compressive pressure p,* are required even when there is no
fluid loss, t.e,, when Ce = 1.0,

Actual mass fow rates at the inlet are usually above or
below the 4, curve at ip = tps. It follows from Figure 2 and
(42) that g, for subcase ¢ is {arger than that of subcase b. In
order 1o extract the fujd with higher temperature, subcase g is
not necessarily advantageous, as was stated in the previous
section. Then two exa'npks are calculated: cases 15 and 2b.

Equ.t:ons {30) and (31) « re xmeorated for given values ¢f ¢,
and p,*/5,. where R,/ R, = 0.5, Cr is assumed as 2.0, and B, is
taken as zero, since the effect of the fluid pressure on the fluid
loss is small {as has been discussed by Hall and Dollarhide
[1964]). Numerical data and the results are given in Tables 1
and 2, in which the following quantity is employed:

Apo/So = po/So — 1/4 (44)

Case 1B, 1C, 1E, and 1F in Table | are graphed in Figures 3a
and 3b, and all cases in Table 2 are graphed in Figures 4q and
4b. Tt is scen from these figures that g, Apo/So, and R/R,
converge to stationary values within ¢, < 10'° ~ 10'?, depending
upon the numerical data. As has been stated previously.
smaller values for the flow rates g, and ¢, are required in order
to get the fluid with higher temperature. In all cases treated in
Tables | and 2 and also in Figures 3 and 4 those flow rates are
fairly small. The flow rate ¢, is proportional to (p,* +
- Apo)/S,. and this sum is found to be very small in comparison
with each quantity. It is therefore required for the effective
working of the actual geothermal system that the pressure p,*
be carefully controlled.

Furthermore, it is desirable that the distance a (<R) be close
to R, since the fluid temperature is expected to be higher near
the edge of the crack. Case 26 is preferable to case 15 in this
regard, since a/R decreases with respect to time in case |.

: HYDRAULIC FRACTURING OF Rocxs 2

CONCLUSIONS

The deformation and growth of a vertical penny-shanes
crack-has-been-investicated when the fluid is injected fron
inlet at the center of the crack and extracted in part from .,
outlet at an arbitrary distance above the inlet. Four cases }m,
been considered: cases 1 and 2, with respect to the tota} o “oay
change in the crack, and subcases @ and b. which depeng .
the suction pressure of the outlet well bore. The conclusiya,
are summarized as follows:

I. In case I, dR/dt = 0 (Equation (24)). and in case -
dR/dt = 0 (equation (25)). i

2. The possibility of obtaining a stationary crack (dRd; »
0) at t — « in case | depends largely on the fluid loss term

3. fdR/dr = 0 (R < h) at ¢ — =, the water can 3,
extracted continuously from the outlet in case la. In case 12
the water can also be extracted for R < R.. where the crities
radius R, is given in (35).

4. In case 2a the water can be extracted continuousis
whereas in case 2b the same holds true if p, = p,., where a;~:<
critical pressure p,. is determined by (41).

5. Subcase b is expected to be more practical than subcase
a to obtain the water with higher temperature (Figures 2g and
2b).

6. The pressure p,* should be carefully controlled for e
effective working of the actual geothermal system. Further-
more, case 2b is preferable to case [b to obtain the water witx
higher temperature (Tables 1 and 2, Figures 3 and 4).
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