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The deformation and growth of a vertical penny-shaped crack, fractured hydraulically. is investig:.lted 
when fluid is injected from an inlet at the center of the crack at a constant flow rate. The total flow rate at 
the inlet is divided into three parts: flow rate extracted from an outlet hole at an arbitrary distance above 
the center, fluid loss rate from the crack surface. and total fluid mass change in the crack. Two cases are 
considered: in case I. inlet flow rate is initially greater than the sum of the outlet flow and fluid loss rates. 
and in case 2 the reverse holds true, Two subcases a and b are also considered. depending on the values of 
outlet pressure. Ranges of the inlet flow rate and the outlet pressure are discussed for which the crack 
attains stationary states and the fluid can be extracted continuously. Subcase b. where the outlet pressure 
is less than or equal to the difference between the tectonic stress and the fluid head at the inlet. is found to 
be more practical, and reasonable outlet flow rates are obtained in this case. It is also found that case 2b is 
preferable to case I b to obtain the fluid with higher temperature. Results are expected to be of use in 
considerations of heat extraction from hot dry rock. 

INTRODUCTION 

The study of the heat extraction from a crack fractured by 
hydraulic pressure requires the solution of the appropriate 
equations of linear elastic fracture mechanics together with the 
appropriate equations of fluid mechanics and heat transmis­
sion. The equations of elasticity are required to establish the 
surface area and width of the crack. 

Heat extraction problems on the fluid flowing in narrow 
spaces have been studied recently by Bodvarsson [1969], Grin­
ganen f![ aI. (1975]. and Lowell [1976]. These analytical studies 
are confined to one-dimensional flow problems. The fluid flow 
in the cracK should be treated at least as two-dimensional after 
ariliing an oLitiet hole. Using a finite difference method, Har­
low and Pra~h( [1972] and McFarland [1975] of the Los 
Aiamos Scientific Laboratory analyzed two-dimensional mod­
els numericaily. In most of the studies made thus far, however, 
the values of the crack radius and the crack width are assumed 
in advance, though they are f\lnctions of the fluid pressure and 
therefore of the flow rate. 

The radius and width of th'e crack generally change with 
time for an arbitrarily given inlet flow rate. For example, in 
some cases the crack keeps expanding, and in other cases the 
crack tends to shut because of the large outlet flow rate. It is 
therefore of practical use to obtain the range for which the 
crack attains a stationary state and the water can be extracted 
continuously. In this paper the deformation and growth of a 
crack are investigated for that purpose. 

The total flow rate at the inlet is divided into three parts: the 
flow rate which can be extracted from the outlet hole, the fluid' 
loss rate. and the total mass change of the fluid in the crack. 
The fluid loss rate is assumed to be a linear function of the 
pressure in the crack. From the standpoint of available theo­
retical results it is reasonable to treat two-dimensional prob­
lems of a penny-shaped crack as a starting point for the 
analysis of a vertically oriented fracture. 

In a previous paper the stable growth of a penny-shaped 
crack without outlet holes was investigated analytically [A be et 
al., 1976]. It was verified there for axisymmetrical problems 
that the fluid does not penetrate everywhere in the crack and 
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that the classical solution by Sack is approximately valid r~ 
large cracks expanded under the injection of the fluid '''''"-l\ 
constant flow rate. The results there may be applicable lQ '!<r 
present nonsymmetrical problem of a penny-shaped G·x). 

with outlet hole which is drilled after the crack attains it5 ;,l~ 
growth, The examples to be presented subsequently are fur::.t 
case when the flow rate at the inlet is constant, and ranges.,.,j; 
be given for which the crack will be stationary. 

FLUID FLOW I~ A PE:-;:-,;Y-SHAPED CRACK 

We consider a penny-shaped crack having a radius R '::4 

width IV (in the z direction; see Figure I). Fluid is injected f,,;:a 
the inlet at the center of the crack and removed in part dt :':;c 

outlet, x = a, where x is the distance measured in the \cr:,oi 

direction from the center. The radii of the inlet and Q:~::C 
holes are denoted by Ro and Ra. respectively. 

The total mass flow rate at the inlet well bore can be di.''::::! 
into the following three parts: 

where qa is the effective flow rate equal to the outlet flow nrc. 
qf: is the total mass change in the crack. and qL corresponds';> 
the total fluid loss in the crack per unit time. 

It was shown in the previous paper [Abe et 01., 1976} that ::c 
classical solution by Sack [1946} is approximately valid :~r 
cracks with large fracture radius when the crack is expand,::! 
under a constant flow rate. This means that the pressure dis:,:­
bulion is almost independent of the fluid viscosity. Byappl:-irg 
this result to the present problem the equations of lir.~.H 
momentum are found to be 

cp/c8 = Ptgr sin IJ 

where p is the fluid pressure in the crack. g is the acceleraticrl 
due to gravity. and Pr is the fluid density. 

Equation (2) is easily integrated as 

p(r. IJ) = po - Ptgr cos 8 (3) 

where po is the fluid pressure at r "" O. . . 
The fluid loss term is in general a function of the fl~l(l 

press\lre. Here it is assumed to be a linear function of p rer 

simplicity; i.e .• 

~ , 
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Fig. I. Geometry and coordinate system. 

::r~ IlL is the fluid Joss rate per unit area of fracture surface 
::CL0 and eLI are constants. It is easily seen from (4) that qL 
::~~d in (I) is expressed by 

(5) 

:ne early stage of the grOlHh of the crack this expression 
:hl have some error [Hall and Dollarhide. 1968J. 
: should be noted that a more refined form of (I) is 

qD = q~ -'- qE -+ qL + qT 

':re Cjr is the flow rate due' to tn(: thermal contraction of the 
::k. In this paper, (j) is employed for simplicity, since qT 
,\ be small, although F,r qT dt is large for large t. 

S-:-RESS r'-:TE7':SiTY F \CTOR AND OPE"'''G OF CRACK 

Consider a venicai crack ''\''hose center is situated a distance 
Jdo\\ the surface of the earth which does not interact with 

':crack. If the crack is absent, the ::ompressive tectonic stress 
> 0) is acting across any vertical plane and can be divided 

:J a constant stress and a hydrostatic pressure. Hence if the 
:";it~ of the rock is Ps (ps > PI)' 

Uz = -5 = -(So - KaPsgx) (6) 

:ere So is the tectonic stress at r = 0 and Ka is the coefficient 
acti\'e rock pressure. Thus the boundary condition of the 

'lck plane is 

'" -(p - 5) = -(Po - So) - (Kaps - Pr )gr cos 0 (7) 

Trz = Toz = 0 

The case of a penny-shaped crack opened by non­
l1metrical pressure distribution was studied by Keer [l964J. 
'iollows from his paper that for r > Rand z = 0, 

Uz = FOI + pll cos 0 (8) 

'lere 

(l )1/2 _1 ~ iR 

rr 1"'+1 dr ° II = 0, I (9) 

~P for "d 

1/ = 0, I ( 10) 

i 

with 

The stress intensity factor near the tip of the crack is 

K = lim (r - R)1/2 UZ 
r-R 

(12) 

Hence 

Introduction of (II) into (13) yields 

(2R)1/2 r 2 ] 
K = --rr- l!0 - So + '3 gR (KaP. - Pr) cos fJ (14) 

The crack opening displacement w(r. 0) is given as follows 
[Keer. 1964]: 

w(r, 0)= 4(1 - v
2

) (G(O) + GIl) cos fJ) (15) 
E 

where E and v are Young's modulus and Poisson's ratio, 
respectively. and 

By use of (IO) and (I I), (15) becomes 

8(1 - v2
) 

w(r, 0) = rrE 

n = 0, L (16) 

. &0 - So + ~ (Kaps - pr>gr cos oJ (R2 - ,-2)1/2 (17) 

The total mass in the crack is given by 

Q = i R 1: PrwrdO dr (18) 

Equations (17) and (I8) lead to 

Q = (27r/D)[R 3(po - So)] (19) 

where 

D = 3rrE/8(I - 1,2)Pr (20) 

The fracture toughness of the rock defined by Kc is assumed 
to be constant everywhere in the rock. In this paper it is 
assumed that the fracture criterion is expressed approximately 
by K ::?: Kc , where K is the average stress intensity factor 
introduced by the definition 

Then (19) is written as 

Q = (21/2rr2/D)KRSf2 

Furthermore, qE, as defined in (I ), is 

qE = dQ/dt 

(21 ) 

(22) 

(23) 

~\lS5alll .......... ____ .. T""n!il!llU __ ""_I!ll!Ift!!W!_'!!I~M._!!!!~ .. R i1§@-I1-~~_!.'!i!I!!!i!ire!!i_1iI1_~_~e __ !1!!!1!! """':!''''~~'""'''''- "-.~_:~~.r-..f7".[·_""':~~-~:'<"J'.'<"-t>:,·",-~c;;:,,,'At~""-'>',~~J""~r,:::-";'A!~~~"""~""l~'+."" •. -> 
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Fig. la. Reiation between qo and Ra/ Ro for subcase a (Pa * ISo = 0) 
and subcase h (Pa * / So = -0.2384). 

When the outlet hole is provided, the crack radius is still 
expanding or ceases expanding, depending on the value of qF:. 
Therefore the following two cases are considered: 

Case f. If qJ - qa -- qI.. = qE ;?: 0 and therefore dR/dl ;?: 0 
and d';'/dt ;?: 0, (23) and (22) yield 

(24) 

Case 2. !f qo - qa - qL = qE ~ 0 and therefore dR/dl = 0 
and dli/ dE ~ 0, (23) and (19) lead to 

(25) 

where Ii' is the average value of crack width w. It can be seen 
that dR/dl = 0 for any case when qF: = 0 or qo = qa + qL. In 
case 2, dpo/dl = 0 for (jF: = 0 (qo = qa + qd, and dpo/dt < 0 for 
qr. < 0 (qo < qu + qd. 

FLOW RATE AND FRACTURE RADIUS 

It is assumed that the following Bernoulli equation is appli­
cable to the flow in the neighborhood of the throat of the 
outlet. Then 

Case I 

10Tr---------------------------____ _ 

Cy qo ( ) ---C;-' grlsec 

10' 

So -19 -p,h-' 
f g 

0 

0.4 0.6 

Ra l Ro 

po. 
o 

S;=Q 

ho =2000m 

Rsl Ro =5000 

0.8 1.0 

Fig. 2b. Relation between q. and Ra/ R. for sub case a (Pa */S. " 
and subcase b (Pa*/So = -0.2425). 

where Va is the fluid velocity in the outlet well bore just outy.;\f 
the throat and the constant C. (> 1) is an outlet head loss. E" 
fluid density Pt has been assumed to be constant in both \:';':1 

of the throat. A suction pressure by the outlet pump is d~r;,;;=.; 
by Pa *. 

Since 

where Ra is the outlet pump radius. it follows that 

or 

q (p )1/2 R Z ( K 7r )1. • 
2; =; ~v So + (2R )1/' - Prglro + pa * 

by substituting po from (21 ). 

, ,-

Equation (I) can be written in two ways, depending en.~ 
cases mentioned in the last section: 

dR/dt = 0 at tD = t Ds 

( 
Kip * )1121 5 ( R )312 d (R) ( R ), ( R )3.2 

qo = C 1+ (R/~)1/2 - T + ;0 + TKo Ro qo dto Ro + (Bo + B1) Ro + KoBl Ro 



-

A 
B 
C 
D 
E 
F 
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TABLE I. Case I, Where qD > qa(los) + qL(tOS) 

qa, X 10' g/s 6p.IS. 

q., XIO' g/s Pa * IS. 10 = los 10 = 00 10 = los 

2.013 -0.23852 8.247 5.096 0.24077 
1.718 -0.23882 7.671 5.195 0.24077 
1.451 -0.23916 6.965 5.305 0.24077 
1.954 -0.24172 8.008 4.948 0.24491 
1.668 -0.24215 7.449 5.045 0.24491 
1.409 -0.24264 6.763 5.151 0.24491 

For cases IA-IC, RsIR. = 10,000, h. = 3,000 m, and RaIR. = 0.5. 
For cases I D-I F, Rsl R. = 5,000, h. = 2,000 m, and CF = 2.0. 

to = co 

0.23938 
0.23971 
0.24009 
0.24294 
0.24342 
0.24396 

- RIRoat 
to = CD 

13,500 
12,5QO 
11,500 
6,750 
6,250 
5,750 

dR/dl = 0 at to = I/)8 

_ (PO I Pa * )1/2 (R)3 d (po) ( . PO) ( R )2 
qo - C1 So - .:l + -s; + Ro qo dtD So -+ Bo + Bl So Ro 
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(3\) 

(32) 

expressed by (5), the term qL + qo is an increasing function of 
R/ Ro, so that dR/dIu can be equal to zero for tv> tvs. In case 
la the water can be extracted continuously from the outlet. In 
case I b, qo. becomes zero when R reaches a critical value Re .. 
For R > Re the water cannot be extracted from the outlet, 
although the crack may continue to expand with time. Rc is 
determined from 

(33) (35) 

'i L. = to' is the time at 'which the outlet is provided. 
E1;:~ case can be further divided into the following two 

.Jca:,:-:~ according to the rnagnitude of Pa *: 

The differential equation (30) can be integrated for a given 
constant qo. The solution is 

Pa*/So> 1/;1 - 1 (34a) 

(34b) 

'ie carability of water extraction from the outlet depends on 
:,j). Let us consider case I. The term for qo. in (30) is always a 
·~jl number and decreasing function of R. First, it is assumed 
:at th~ loss rate ql. is small in relation to other quantities in 
I. Since qa is a decreasing function of R/ Ro, the quantity 

57rK 

:.~!dl:, does not vanish when qo> qa(tIJs), so that the crack 
;eps expanding with time if a small difference qo - qo. exists at 
." 1/,,;. On the other hand, if ql. is not relatively small and is 

where the initial condition has been introduced as 

A 
B 
C 
D 
E 
F 

R = Rs 

TABLE 2. Case 2, Where qo < qa(tOs) + ql.(tos) 

q,,, XIO' g/s 

qa, X 10' g/s pa *IS. tD = IDs 10 = 00 

1.289 -0.23852 8.247 4.647 
1.232 -0.23882 7.671 4.649 
1.162 -0.23916 6.965 4.653 
1.183 -0.24172 8.008 3.819 
1.127 -0.24215 7.449 3.823 
1.059 -0.24264 6.763 3.827 

For cases 2A-2c' R.I Ro = 10,000, h. = 3,000 m, and Ral Ro = 0.5. 
For cases 2D-2F, R.I R. = 5,000, II. = 2,000 rn, and C,. = 2.0. 

10 = los 

0.24077 
0.24077 
0.24077 
0.2449\ 
0.24491 
0.24491 

at to = (/lS 

;lPo/So 

10 = 00 

0.23923 
0.23954 
0.23988 
0.24245 
0.24288 
0.24337 

(36) 

(37) 

i i 

I' 
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(x 104
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10. 12.0. 

8 C 

6 
C 

B 11.0. 

4 0.241 

C 

I! B 

0. 0.239 
10.'0 10" 10." 

10.0 
10." 

Fig. 3a. Flow rate qo. pressure diflerential Po - Ptgh •• and crack radius R/Ro as a function of time tlJ for case Ib (R.J Ro = 
10.000). 

The time range ED ::; tos corresponds to. the initial I'racturmg 
state. The relation between R and to in this time range is 
o.btained as 

_ Dqo • _ 57rK lRR3t2 dR 
to - ')_<, v l I - 2(2)'/2S.,Ro3 Ro 

~/I Uf).L\'O v--

( - r ] }-I < 1 ,,! r' 2 7f' - 312 
. !' - -;:- ! (~LO T CLlSo)R + 21t2 KCL1R 

\ '10 L 
(38) 

For case 2. R is co.nstant, but Po is changing with time. The 
relation between po and tf) is easily o.btained by integrating 
(31 ). where po is a decreasing junctio.n o.f time. In o.rder to. have 
real values of qa, po must be in the range 

Po/So> 1/ c. - Po * ISo (39) 

qo(gr/sec) boPo/ So 

Po/So> I 

The last co.nditio.n has been o.btained from the conditio.n \';' > 
O. Case 2a satisfies co.ndition (39) auto.matically if co.ndition 
(40) is satisfied. Fer case 2b, co.ndition (39) gives a limitation 
fer Po. A fter Po reaches a critical value Pac. the water cannot be 
extracted from the o.utlet. This critical value is determined by 

When po co.ntinues to. decrease with time and reaches the vaj~ 
So. the width of the crack is reduced to. zero, at lea!,t at the 
inlet, as shewn in (17). In a strict sense. (17) must be rr:o.dified. =i 

since negative values of the displacement are not permitted .hill 
physically. The area with the negative displacement is hrge :5)~ 
when po = So. so that the so.lutio.n o.f the problem with 3 ~erri 

R/Ro 

14.10' 0'246,.--"'T"---,,-....-r-'r-,...,..,. r.,---r--,-ro--r--rr,..,..----r--r-r-r-"r-t-rr, 6.4 • 103 

E 

6.2 12 0.245 
1=:::::::---_ 

10. 0244 
F' 60 

E 

8 0.243 F 5.8 

6 0..242 
E 

5.6 

qa F 

4 0..241 5.4 

ho =2000m 
5.2 2 0.240 

Rs/Ro =5000 

10" 
50 

10" 

Fig. 3b. Flow rate qo. pressure differential Po - Ptgho. and crack radius R/Ro as a function of time to for ca~e tb (R,:Ro = 

5000). 
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qa(grlsec) fj, Pol So 

14 X 10· 0.246 r---,--,.-..,.-r-r""',.,--,.--.--,--,.--.-r,..,.,----,--,.-,-r-r-.-r,., 

12 0.245 

10 0.244 

8 0.243 

6 0.242: 

4 0.241 

to'" 
o 0.239 

10' 

A 
B 
C 

fj,Po/So 

109 

to 

ho = 3000m 

R I Ro = 10,000 

10 10 

c 
B 
A 

lO" 

Fig. 4a. Flow rate q. and pressure differential Po - p,gho as a function of time 10 for case 2b (R/ R. = 10,000). 

boundary is required instead of (17). However, the 
. :lfect of this area on (31) may be small unless po is very close to 

So. When thermal contraction is not negligible, the crack will 
;ot close. 

: As has been stated above, it is necessary to introduce the 
;luid loss term in case I to design the hot water extraction from 
·he stationary crack, j,e .. the crack whose radius does not 
:xce<:d a finite value. The lOss term introdUi.;ed here resulted 
:rom the definition of (4) or (5) and is an approximate ex-
1res,ion. The rate qL m;ght be a function of time t even though 
l and po ai'e constant. When qL is a slowly decreasing function 
)f ( [Dr/is{e. 1975 J. the crack radius R increases and tends to 
nfinity with sm·all propagation velocity even if dR/dID = 0 at 
9 = I",. In subcase a the water can be extracted continuously, 
'hile in subcase b it cannot for R 2:: Re , which is defined in 

·35). In case 2 the crack might close after a long period if the 
,lermal contraction of the rock is negligible. However, if qo 

q~(grlsec) fj,p"/So 

14 x 10'~ 0.246 

12 0.245 

10 0.244 

8 0.243 

6 0.242 

4 0.241 

2 0240 

0 0.239 
10· 

remains still constant, the pressure increases, and the crack 
will reopen. The exact expression of the loss rate for hot dry 
rocks has not yet been determined, and more systematic ex- . 
periments may be required. The relation between R and Iv in 
case I depends largely on the loss rate term, On the other 
hand, in case 2 the crack radius remains constant. and the 
pressure po ·may converge to a certain value regardless of the 
magnitude of qL if (39) and (40) are satisfied, since both qa and 
qi. are decreasing functrons of Po. If qL decreased with time I 
after arriving at dpo/dlo = 0, the rate qo would be larger than qa 
+ q L, and the pressure would increase. The relation between po 
and If) ca 1 be obtained from (31) also when dpo/dlv > 0 
provided that PoCto)::;; PO(tDS), 

The flow rate qa in subcase b is less than that in subcase a, 
and hence the fluid temperature in subcase b is expected to be 
high in comparison with that in subcase a. If a large quantity 
of hot water is required. the multiply fractured system should 

to 

ho =2000m 

R I Ro = 5000 

F 

E 

o 

10" 

Fig.4b. Flow rate qo and pressure differential po - p,gho as a function of time t" for case 2b (R/ Ro = 5000). 



6298 AilE ET AI..: HYDRAL'UC FRACTURING OF ROCKS. 2 

bc adopted. The pressure Pa * plays aI' important role in con­
trolling the outlet flow ratc'in practical problems. 

NUMERICAL EXAMPLES 

Thc dependency of qo on various parameters is studied when 
there is the condition of a stationary crack (dRldl u and 
dpoldlv = Q). Equations (30) and (31) are rewritten as 

at If) = t[)S (42) 

where CF is a fluid loss term such that 

(43 ) 

The properties used in the calculations are the following: P: = 

I g/cm 3
• [K/)lR~Kc = 1.118, Ro = 10 Col, and Cu = 1.25. The 

ratio So/Ptgho has been assumed as 1.3, 1.5, and 1.9. For 
example. if So = KaPsgho, where Ka is the coefficient of active 
rock pressure, then Sol Plgho = 1.3 for Ps = 2.65 g/cm3 and Ka 
= 0.49. The results are shown in Figures 2a and 2b. The curves 
for pa */So = 0 correspond to subcase a, and those for Pa * IS" = 
-0.2384 and -0.2425 correspond to subcase b. It is seen from 
these figures that qo depends largely on Ral Ro. Values of mass 
flow ratt: employed so far in the calculations and experiments 
are fairly small. For example. qo = 1.44 X 10' g/cm3 is used by 
M cFarfand [1975]. Relatively small values of Ral Ro andlor the 
compressive pressure Pa * are required even when there is no 
fluid loss. i.e .. when CF = 1.0. 

Actual mass flow rates at the inlet are usually above or 
below the cia curve at if) = t08' It follows from Figure 2 and 
(42) that 'h lor subcase a is larger than that of subcase b. In 
order to extract the t1uid with higher temperature, subcase a is 
not necessarily advantageous, as was stated in the previous 
section. Then two examples are calculated: cases I band 2b. 

Equations (0) and (31 ) are integrated for given values of qo 
and pa * / So. where Ra/ Ro = 0.5. CF is assumed as 2.0, and 111 is 
taken as zero. since the effect of the fluid pressure on the fluid 
loss is small (as has becn discussed by Hall and Dollarhide 
[1964]). Numerical data and the results are given in Tabks I 
and 2. in' which the following quantity is employed: 

t:..po/So = Po/So - lit:.. (44) 

Case I B, I C. I E. and I F in Table I are graphed in Figures 3a 
and 3b. and all cases in Table 2 are graphed in Figures 4a and 
4b. It is seen from these figures that qa, t:..po/So, and R/Ro 
converge to stationary values within tf} < I 010 ~ 1012

, depending 
upon the numerical data. As has been stated previously. 
smaller values for the flow rates qa and qo are required in order 
to get the fluid with higher temperature. In all cases treated in 
Tables I and 2 and also in Figures J and 4 those flow rates are 
fairly small. The flow rate qa is proportional to (Pa * +' 
~Po)/So. and this sum is found to be very small in comparison 
with each quantity. It is therefore required for the effective 
working of the actual geothermal system that the pressure pa * 
be carefully controlled. 

Furthermore, it is desirable that the distance a «R) be close 
to R, since the fluid temperature is expected to be higher near 
the edge of the crack. Case 2b is preferable to case I b in this 
regard, since aiR decreases with respect to time in case I. 

CO:-;CI.CSIO:-;S 

The deformation and growth of a vertical pennv-,hJ"". 
crack has been investicated when the fluid is injected- frorr::: 
inlet at the center of the crack and extracted in part from ~'~ 
outlet at an arbitrary distance above the inlet. Four cases h~~~ 
been considered: cases I and 2. with respect to the total "",' 

t ....... \. 

change in thc crack. and subcases a and b. which depend ;:., 
the suction pressure of the outlet well bore, The condU51l.h 
are summarized as follows: ," 

I. In case I, dR/dt ~ 0 (Equation (24». and in ca,;c' 

dRldl '" 0 (equation (25». " 
2, The possibility of obtaining a stationary crack (dR 'dr ~ 

0) at I -> ro in case I ,depends largely on the fluid loss tl!reL 
3. If dRldt = 0 (R < Izo) at ( -> roo the water can ~ 

extracted continuously from the outlet in case la. In case i:­
thc water can also be extracted for R < Re. where the criticti 
radius Rc is given in (35), 

4. In case 2a the water can be extracted continuou~i\" 
whereas in case 2b the same holds true if Po ~ Poe. where L~ 
critical pressure Poe is determined by (41 ). 

5. Subcase b is expected to be more practical than subCJ.~ 
a to obtain the water with higher temperature (Figures'2a and 
2b). 

6. The pressure Pa * should be carefully controlled for t~ 
effective working of the actual geothermal system. Further­
more, case 2b is preferable to case Ib to obtain the water \~ii:t 
higher temperature (Tables I and 2, Figures 3 and 4). 
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