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Summary 

The physical model for the creation of the lithospheric plates described by 
Parker & Oldenburg is considered in detail and the method by which a 
solution was obUiined is given in full. The effects of reducing the percentage 
of partial meit, adding radioactive material and allowing temperature 
gradients in the asthenosphere are considered. The model is sufficiently 
flexible to alIo'lV for the creation of a variety of lithospheric plates which 
predict elev:uions (except near the ridge crest), heat Bow, and gravity in 
acceptable agreement with observations. The important prediction by the 
physical m odel that the lithosphere continually thickens with the square 
root of distam:e fro m the ridge has been verified in the laboratory by using 
the wax G odel of Oldenburg & Brune. 

introduction 

lr:c purpC':::: ·:)f :his paper is to present in detail the physical model for the genera- . 
: :.r; .. , ,' ! i i:h os;:~,e=c ?lates described by Parker & Oldenburg (1973). The method for 
0 ~ uir: i:i g a COYT'.p j ~te solution will be developed in full, as well as the effect on the 
:::od.:l of varying ;, uch pa rameters as the amount of partial melt, radioactivity, and 
< lie of the physical constants . It 'will be shown that this model, which is independent 
, :' convective processes existing beneath the littosphere, predicts ridge elevation, heat 
~O \r and free air gravity anomalies in good agreement with empirical observations. 
h addit ion, the physica l model can be realized in a laboratory experiment and the 
:"lportan t predict ion of a continual thickening of the lithosphere with distance from 
: ~e ridge crest will be tested. 

The physical model is basically a refinement of McKenzie's model for crustal 
,'~;"a tion (McKenzie 1967) to include the latent heat of fusion in the heat budget 
~~termin ing the growth of the lithosphere. The existence of an intrusion zone below 
:::e ridge crest and a continual thickening of the lithosphere as a function of crustal 
.:~e are important consequences of this heat budget which have no counterpart m 
\IcKenzie's model. 

Physical model 

A two-dimensional system is considered, namely a vertical cross-section of the 
:!cge system normal to its strike. The lithosphere is modelled by a solid slab overlying 
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FIG. 1. Geometry of the lithosphere-asthenosphere system. 
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an isothermal fluid asthenosphere whose temperature is equal to the melting tempera­
ture, and the interface between these two regions is assumed to be the solid-liquid 
pLase boun.darj of the material . If t he melting temperature is assumed to be inde~ 
pendent o f depth thell this boundary delineates the melting poin t isotherm. In a 
frame of rd~::rence fixed with respect to the ridge axis, we suppose that the lithosphere­
as thenosphere boundary is invarian t in time, even though the soLd is moving hori­
zontally_ Tbis can occur oniy .if material is accreting onto the slab at exactly the right 
rate. Such growth, because it is a condensation of a liquid into a solid, releases latent 
beat tbat must be carried away by conduction to the surface. The boundary con­
ditions on the solid- liquid interface, whose shape is to be defined, are therefore 

A k aT n.upL = - -a;; (I) 

(2) 

where T,~ is the melting temperature and the remaining parameters are explaim!d in 
Fig. 1. Within the solid slab the temperature must satisfy the Eulerian steady state 
heat flow equation 

(3) 
with 

T(x,O) = O°c. (4) 

The right-hand side of equation (3) has been set to zero since we shall assume that no . 
heat sources exist in the slab, and the oceans constitute such a large thermal reservoir 
that (4) is true to a very good approximation. Equations (l}-(4) are not self-consistent 
and lead to a physical paradox. To see this we can examine the region sufficiently 
close to the origin such that the temperature satisfies Laplace 's equation. If the melt­
ing temperature boundary meets the surface at the origin, not only is the vertical heat 
flux infinite at that point, but the energy transported through any finite area containing 
the origin is infinite; yet equation (I) shows that the heat flow and hence the energy 
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!iux must be bounded. This inconsistency forces us to the conclusion that the boundary 
conditions break down in the vicinity of the ridge crest and that a different set of 
conditions must be sought to avoid the close approach of the Tm isotherm and the 
~'Dper surface. 
, Parker & Oldenburg resolve the inconsistency by considering a simple geological 

:iiodei: they assume that material is intruded into a narrow, vertical crack beneath the 
ridge crest and that this region is modelled by a vertical line on which the temperature, 
f( : ) .. is time-averaged over periods of active injection and subsequent cooling. T(z) 
:; equa ted with the steady-state temperature used in equation (3), and this temperature 
T!US: always be greater than or equal to 1f(z), the final temperature to which the 
:-:-; :; gma coois before the next episode of intrusion. The precise relationship between 
f <l 2d If is not known, but near the surface the magma cools so quickly that it may be 
:i,,) ugl1t o f as instantaneously reaching Te, hence r = Tr there. Near the bottom of 
: ~ = cr2.ck only a small error is incurred if T is set equal to 1f because both are nearly 
; '], ual to Tr", \Ve shall set r = Tr everywhere within the crack, and therefore the 
f,e;: t budge t eq uation al o ng this intrusion zone becomes 

(5) 

-\ t IDe origin , equation (5) reduces to kax T = - pu(L + cp Tm) and is not zero as 
;:J:~ii.~ have been irrferred fro m equation (4). However, such a point discontinuity is 
', :'::::' '::-J COU:lte;-ec1 in e:Lpci·: problems with Dirichlet or Neumann boundary con­
i:r:c';"";S :..:rrd presents no dLmculty either to the numerical solution or the physical 

it i ~ con 'Cenient to transform equations (1)-(5) into dimensionless form by scaling 
~ ' ' :,=.: er2.:ures by T,~I and aU distances by 1,. the length of the intrusion zone, The 
~c : : . .' ,:::.; equ;it ions and beundary conditions are 

Ilhere 

2 aT v T-211-- = 0 ax . 

T(x,O) = 0 

aT 
- (0, z) = -211(H + 1- T(z)) ax z :( I, .\"=0 

T(x , z) = 1'0 on bottom of the lithosphere 

iJT = -f1 .. ~2I1H on bottom of the lithosphere an 

pCp vi 
U=---

2k 

i, a dimensionless velocity and 

. (6a) 

(6b) 

(6c) 

(6d) 

(6e) 

(7) 

(8) 

• This equation is identical to equation (3) in the paper by Parker & Oldenburg exccpt Ih:1I the 
te rn; kJvT/ has been replaced by -kaT/ax. The boundary condition given here is the correct one 
}nli can be obtained either by integrating the dift'.!rential equation across the source regioil or by 
,kriv ing it directly from pill-box :u-guments . 

.. \ 

, i 

'l 

" I 
' " ' ;:r , 
1.11 1 
-it1 I , ....u· 



, . 
! : .' 
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For every value of H a complete solution to these equa tions can be found to determine 
the dimensionless velocity II, the shape of the underside of the lithosphere, the length, 
" of the intrusion zone, and the temperature everyw'here within the slab. 

The technique used to solve these equations is analogous to the method of images 
often llsed in potential problems, The lithosphere is embedded in an infinitely thick 
slab (x ~ 0, z ~ 0) which is moving horizontally with velocity u and shares all the 
phys ical properties of the lithosphere. Temperatures within this quarter space can be 
ca lculated from a knowledge of the temperature on the vertical axis and the Green's 
function appropriate to equations (6a) and (6b). The temperature distribution on the 
vertical axis is adjusted until a value of u is found to satisfy equation (6c) and simul­
taneollsly, equations (6d) and (6e) are obeyed on a curved line which meets the vertical 
wall a t the base of the intrusion zone. The region above the curved line is clearly the 
lithospheric slab and the temperatures below are not physically significant. 

T he G reen's function for this problem is derived in Appendix A and the relation­
ship between the temperature on the vertical boundary and that at a point (x. z) is 
given by 

T(x , z) = I T(O, z' )G(x, z; z' )dz' 

0' 
00 

It-,,,ex~ (ux) I T(0, Z,){K1.';Ur_) _ K 1'(Ur+)}dZ' 
o - r + 

(9) 

'v\'h~re Xl is:l m o111ilt:(l Bessel function of order 1 and r+ 2 = X2 + (Z+ Z')2 and 
r _ l = x2 + (.: _.: ')1 , ,45 x -+ 0, G(x, z;z') acts as a delta function making equation (9) 
d iffi:ult to evciu:ne quickly a nd accurately, and therefore an alternate method of 
calculatrng tbe temper3xures close to the vertical boundary is desirable. For this 
p urpose, we consider a r..o rizontal slab of fi nite thickness D with a surface temperature 
T ::: 0 and a bottom tempera ture T(x, D) = T(O, D) = TD• The temperature within 
the iegion x ;:;" 0, z ~ D is given by (McKenzie 1967) 

T vZ 00 '(!l nz ) T (x, z) =--+ L: ansm - exp(-Ynx) 
D n=1 D , 

(lOa) 

(lOb) 

J) 

(I II = ~ I T(O, z) sin C~Z)dZ, 
o 

(JOe) 

The coefficients an are the sine transform of T(O, z ) a nd are easily calcula ted by ex­
tending T(O, z) as an odd function, discret~ing, and computing the digital Fourier 
transform of the resultant series. The accuracy of the (III'S computed in this way 
degenerates with increasing !I because of the assumed periodicity in the Fourier 
transform algorithm, but this error amounts to only a few per cent when 11 - NI5 ' 
(N 1s the total number of points in the series) and thus no difficulty is encountered 
even when the upper limit of the sum in equation (lOa) is large. In general, for 
x < 1'0 the temperatures were computed by the above method, while for x ~ 1'0, the 
temperatures were computed by using equation (9). 

To find a value of 1I and a temperature distribution on the intrusion zone such that 
equation (6c) is obeyed, we proceed as follows . A slab of thickness D (D = 3·0 or 
4·0 were found to be adequate) is used with an assumed initial temperature on the 
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vertical axis and value of II. An iterative technique is used to adjust the temperature 
for z ~ 1 while temperatures at greater depths remain fixed. For 0 ~ z ~ 1 the 
horizontal temperature derivatives may be computed from equation (6c), while for 
I ~ z ~ D they may be determined from equation (10). The heat flow equation, 
with the specification of the normal derivative of temperature on the vertical wall, as 
well as temperatures on the upper and lower surfaces of the slab, has a solution given 
by equation (lOa) with coefficients 

an = - _2_ JD ~T (0, z) sin (IlTrZ)dZ. 
}'n D uX D 

o 
(11) 

The solu tion of this boundary value problem will not, in general, satisfy the condition 
that T (O, 1) = 1'0, and the value of II must be adjusted such that this requirement is 
rul fiiIed . The updated value of!l and the new temperature distribution are then used 
[0 calculate n eVv values of the horizontal derivatives and the procedure is repeated. 
COilvergei1ce bas been found to be rapid \ovith acceptable accuracy attained after three 
or fou r !ter:'.[102S. 

. The sh::.pe of the underside of the lithosphere is determined- by finding a curved 
li ne which e.>::e;:ds ou tv;a.rd from the base of the intrusion zone and on which equa­
,ions (6d) :l !1Q (6e) are simult.:meously obeyed. The location of the melting point 
botherm, T = I, is easily calculated and the line on which equation (6e) is obeyed, 
[~·. e isofuse line. caD be deterwined from the solution of a first order differential 
:>~u2.tion (~::c !:"'}:'Fe:ldix B) 

dZ(x) oT/az 
(12) Z(O) =: 1·0. 

2!iH + (aT/ax) 

;::~< ::n 3,,::; iLr:lry ten,perature distribution the isotherm and isofuse lines will not 
coi"cide ac.: ~herefore adjustment to the boundary temperature below the intrusion 
W ne is oeC~"" Ey. This adjustmen t is readily effected because of the constraints 
imposed by tne existence of an asymptotic solution to equations (6). We shall first 
derive this nsyn-:pto tic solution and la ter return to the question of how the adjustments 
are carried out. 

At sufficiently large distances from the ridge crest, IIX ~ J, 0/ T is negligible ­
c('mpared to 2u(, T and the differential equation (6a) reduces to 

a2 T aT 
-- -2u-- = o. az2 ax (13) 

If T(x, 0) = 0 and 1'(0, z) = Tw = constant, this system has a very simple solution 
(Carslaw & Jaegar 1959, p. 58) 

T(x, z) = Twe1f(Z J 2~.J . (14) 

When equation (14) is substituted into equation (12) and evaluated on the boundary, 
Z(x), we obtain 

dZ(x) 

dx 
211H~ -erf Z(x) - Z(x) -Tw ' ( Jll) JlI 

2x 2x 2x 

(IS) 

.-L·: 
! 

. ,I 

.j . 
" . 

I • 

I. i ' .. 
·f :"1 . ~ 
, I, : . 
I. i ,I' 
I . f ( 
I I . 
I'; ! , 
" I " I ' .~ . 

·i I'. . I . 

',,": 
, i ' 

' ! 



, , ' , ' 

430 D. W. Oldenburg 

The substitution 

j 2X 
Z(x) = Cf. -

1I 
(16) . 

reduces this to 
2Ha = Twerf'(a) if 2ux ~ (.(2. 

For any value of Tw, an Cf. can be found which satisfies this relation and the location of 
the isofuse line is then directly obtained from equation (16). The demand that this 
line coincides with the melting temperature isotherm requires that Tw = l/er! (a), 
and hence, both conditions are satisfied if CI. is the solution to 

2HCl.er!(a) = erf'(a). (17) 

It will be shown later that ,the range of values of H relevant to lithospheric problems 
require rhat u and CI. are in the order of 1, and thus the asymptotic approximation (l6) 
is valid at distances greater than a few intrusion zone lengths away from the ridge crest. , 

The temperature structure on the vertical wall is therefore weU constrained: for 
o :~ :: ~ 1 thi5 temperature is chosen to satisfy equation (6c) and for depths greater 
lh2 G a fe\Oi in~rusion zone lengths the temperature must be very close to its asymptotic 
vaL e Tw' There remains only a small segment of the vertical boundary along which 
th~ temperature must be adjusted to make the isotherm and isofuse lines agree, and 
tr:is tJ.sk i5 ea5ily ::iccomplished. This procedure will affect the value of u and the 
te:=::lerature distrib'.ltion on the intrusion zone found from equation (6c) and these 
ql;iln::ties s-houid De recDmputed if major adjustments have been made. 

A numerical exa."11ple will now be discussed and the predictions from the model 
compared with geophysical observations. We p rescribe the following material 
parameters; 

T. = 1200'C m 

Cp "" l'05xl03 Jkg- 1 0C- 1 (0'25calorieg- 1 0C- 1) 

L = 4·2 X 105 J kg- 1 (100 calorie g-l) 

p = 3·3 X 103 kg m- 3 (3'3 g cm- 3
) 

k = 2·9 W m -1 °C- 1 (7 X 10- 3 calorie cm- 1 S-1 °C- 1). 

The latent heat and melting temperature are typical of materials such as ,pyroxene or 
peridotite, and the other constants have been commonly used in thermal studies of 
ridges (Sclater & Francheteau 1970; McKenzie 1967). From these numbers H = 0·33. 
The solutions to equations (6) yields a dimensionless velocity II = 0·60 and a tem­
perature along the intrusion zone which is shown in Fig. 14. Equation (7) indicates 
that the thickness of the intrusion zone varies inve:rsely with spreading rate and that 
the constant of proportionality is determined by the numerical value of II. For this 
example, vi = 32 m2 y-l, so a ridge spreading with velocity 10 mm/year has an intru­
sion zone depth of 3·2 km. Petrological studies of marine basalts (Bass 1971) indicate 
that their depth of origin is indeed inversely related to spreading velocity, although the 
depth estimates of 20-50 km are much larger than our values. The thinness of the 
lithosphere at the ridge crest is supported by recent inversions of surface waves 
crossing the Pacific. Leeds (1974), using Rayleigh wave dispersion data, has indicated 
that this thickness is only a few kilometres and Forsythe (1974), inverting both Love 
and Rayleigh wave data, concluded that the average thickness in the region 0-5 My 
must be less than 30 km. 
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The exact shape of the underside of the lithosphere, as well as the asymptotic 
solut ion, is snmvn in Fig. 2. Tne close agreement between the two curves for x > 3 
means that even f Of a spreading rate of 10 mm/year the asymptotic solution is a good 
approximation at distances greater tban 10 or 15 km from the ridge crest. The 
asymptotic relation between crustal age and dimensional lithospheric thickness is 

Z (t) = 35·4ct /(~) km 
"J pCp 

= 9·5.j(t) 1crn (18) 

where t is given in millions of years . There is evidence supporting the functional form 
of (18) as a relationship between crustal age-and lithospheric thickness. The litho­
sphere obtained by Leeds' inversion of Rayleigh waves has a thickness of about 8 km 
at the ridge crest, 57 km at 30 My, 90 km at 100 My and 157 km after 150 My, and 
Ihese thicknesses are in good agreement with equation (18). There is a problem of 
non-uniqueness involved with such inversions, but at worst this qualitative agreement 
indicates that the Rayleigh wave data are not inconsistent with a continually thicken­
I?g lithosphere. Davis & Lister (1974) have plotted empirical sea floor depth observa­
tions as a function of the square root of crustal age and obtained a linear relationslll p 
between these quantities for all ridges examined. We shall show that such a linear 
relationship is expected if the lithosphere thickens as .Jt. Additional evidence for the 
validity of equation (18) is that older oceanic plates require longer times to be thermally 
~esorbed in the mantle (Oeffeyes 1972). The resorption time is defined as the distance 
lrom the trench to the deepest earthquake, divided by the plate to plate closure rate at 
the trench. The 11 different plates, distributed in age from 9 to 130 My, suggest a 
"near relationship between the resorption time and the age of the sea floor. If the 
resorption time of a subducting plate is primarily determined by a diffusive process, 

I 

i 
I · 

, f 

; 
: t ~._ "..I I 

;~ . :-:! ~ ' i 
~:-:;~ f; 
•• ;"'"'I ' .~ 

~ ... ' · t~ . 
.<: ~ .. - .i} 

I -. \ 

1 1 ~ < 

If -
I ! , 
~ . 
I. 



------~------ ==~==~~-----

432 D. W. Oldenburg 

and hence is governed by the square root of time, then this linear relationship suggests 
that the thickness of the plate also increases as .j t. . 

The increasing thickness of the lithosphere as predicted by equation (18) has a 
dominant effect on the elevation of the ridge crest, heat flow, and the observed gravity 
anomaly. We shall first consider the elevation of the ridge crest. Because the 
asthenosphere is assumed to be weak (a fluid in this example), the elevation at a 
crustal age t can be calculated from the principle of isostasy, and is given by 

h(/) = (Z(t)-l) ~L =PA~ 
A Pw 

(19) 

where PL' PA' and Pw are the densities of the lithosphere (mean value, vertically 
averaged), the asthenosphere and water, respectively. 

Two comments should be made: The absolute depth of the crest below sea level 
is not predicted by this model, and the evaluation of equation (19) requires the 
knowledge of /:"P = PL - PA which is the difference between two numbers of nearly 
equai magnitude and is therefore not well determined. Thus, we are forced to regard 
6p as a free parameter, which we shall adjust within reasonable bounds, to obtain a 
good fit to the empirical data. The observed elevations of the North Pacific (Sclater, 
Anderson & Bell 1971) have been plotted in Fig. 3 as a function of ..)t. The data 
were \,,-eighted inversely as their standard deviations and a least squares procedure 
,vas used to fi t a straight line to all the observations except the value of t = O. The 
rms deviation of the straight line from the data is 76 m and the slope of this line 
yields ~p = 86 kg m- 3

• The calculated elevation, shown in Fig. 3, has been lowered 
by a const.1Dt value of 2783 m. This results in excellent agreement between the model 
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FIG . 4(b) . Predicted heat flow and observations from the North Pacific (observa­
tions from Sclater & Francheteau 1970). 
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and observed elevation everywhere except at the ridge crest where the misfit is 256 m. 
The predicted heat flow is also strongly dependent upon lithospheric thickness. 

The inverse relationship between the length of the intrusion zone and spreading 
velocity requires that in faster spreading ridges the melting temperature isotherm is 
closer to the surface, resulting in higher heat flow than for slower spreading ridges. 
However, at distances sufficiently far from the ridge crest such that the asymptotic 
solution is valid, the heat flow for all ridges is a function only of crustal age and is 
independent of spreading velocity. The asymptotic expression is easily obtained from 
equation (14) 

Heat flow = koz T = 4·22 X 10- 3 Tm Tw J ( k~Cp ) W m- 2 = O~:6 W m- 2 (20) 

where t is measured in millions of years. The heat flow near the ridge crest for three 
different spreading velocities is shown in Fig. 4(a). We present the heat flow only for 
crustal ages greater than 0·01 My since an analytic solution valid at the junction 
between the intrusion zone and the surface shows that the heat flow suffers a 
logarithmic singularity there. * The values are considerably higher than most observa­
t ions bur there i3 reason to believe that an alternate mechanism of heat transport, 
result.ing fro:n hydrothermal circulation, is important near the ridge crest and might 
be re~ponsib ! e for th.is discrepancy (Lister 1972). The asymptotic heat flow calculated 
f:-Oll qU::': · J Il (20) is compared with empirical results from the North Pacific in 
Fig. 4(0). A:;ai~ the model predicts higher heat flow than existing observations, at 
least re r t Le trst .:: 0 l\iy, but this discrepancy may not reflect too unfavourably upon 
the model. hC3t DOW observations tend to be biased toward low values because 
probes are often p ut into sediment ponds surrounded by significant topography 
(LePicbon &. Lar:g~eth 1969), the probes are not exactly vertical when inserted, and 
there [;[e possibie effects of hydrothermal circulation. In addition, the error· bars in 
Fig. 4(0) represent the standard deviation of the mean of the heat flow observations 
which is considerably smaller (by factors of 2-5) than the standard deviations of the 
hcat flow observ·ations themselves. We conclude that the model provides a moderately 
acceptable fit to the empirical heat flow results, nevertheless, the effect of varying 
some of the physical parameters to obtain closer agreement will be considered later. 

Al though gravity is generally considered to be a moderately insensitive deter­
minator of geophysical quantities, it still provides a useful test of the model. A 
gravitational anomaly measured at the sea surface may result from mass anomalies 
supported by finite strength of the lithosphere, fluid motions below the lithosphere, 
and/or a horizontal variation of vertical composition in an isostatically balanced 
lithosphere-asthenosphere system. We shall consider only the latter contribution. 
If the depth of the crest below sea level is known, the geometry of the ridge is com­
pletely specified and the free air gravitational anomaly can be efficiently calculated by 
a method proposed by Parker (1973). The results, presented in Fig. 5(a) for three 
spreading velocities, show that the predicted free air gravitational anomaly is positive 
over the ridge crest, becomes slightly negative a few hundred kilometres onto the 
flank, and that the magnitude of the total anomaly decreases with increasing spread­
ing rate. 

If the density difference, I1p = PL - P A, is caused by thermal contraction in the 
lithosphere, then an average value of the coefficient of volume expansion, r:t.v , for 
lithospheric rocks can be obtained from 

. Z(x) 

I1p(x) = Z~x) J Po (/.v T(x, y)dy (21) 
o 

* The author is grateful to Dr N . Sleep for pointing this out. 
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Free Air Gravity Anomaly 

( b. P = 86 kg m-3 ) 
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FIG. 5(b). Predicted free-air gravity anomaly using five layers and a coefficient of 
volume expansion of 3' 86 ( C. 
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where Z(x) is the lithospheric thickness at a distance x . Substituting the asymptotic 
temperature from equation (14), and setting !J.p = 86 kg m - 3 we obtain 

Ct.v = 3·8 x 1O-5;oC. 

This is a value frequently used for lithospheric rocks (McKenzie 1967). 
Alternatively, this coefficient of volume expansion, with the known temperature 

distribution, can be used to calculate the density everywhere in the lithosphere, and 
hence, refinement of the gravity calculation can be obtained by integrating the resultant 
density structure. In practice, the lithosphere was divided into layers whose top and 
bottom surfaces were isotherms, and each layer was ascribed an average densitv 
depending upon its temperature distribution. Usually five to seven layers wer~ 
required before the gravitational anomaly, calculated by summing the contributions 
of each layer, had converged. The free air gravity anomalies for three spreading 
\·clocities are shown in Fig. 5(b). The anomalies are enhanced compared to those in 
Fig. 5(a) because this method concentrates the high density material near the surface. 

Free-air gravity observations from the mid-Atlantic ridge and the East Pacific Rise 
(redrawn from Talwani, LePichon & Ewing 1965) are shown in Fig. 6. The inverse 
relationship between amplitude of the anomaly and spreading rate is apparent despite 
the roug}l topography of the mid-Atlantic. The dashed line represents the free air 
anomaly p redicted by the model using the above coefficient of expansion. We have 
used a spreading velocity of 44 mm/year for the East Pacific Rise and a value of 
13 mm/year for the mid-Atlantic (Pitman & Talwani 1971). The gravity calculated 
from the modd appears as an acceptable fit to a smoothed version oftlle observations, 

crest of the east Pacific rise 

Distance (km) 

FIG. 6(a). Free-air gravity anomaly over the mid-Atlantic ridge from TalwaDi el 

af. (1965) with predicted anomaly from the model for a spreading rate of 13 mm /yr. 

FIG. 6(b). Free-air gravity anomaly over the East Pacific Rise from Talwani el 

af. (1965) with predicted anomaly from the model for a spreading ratc of 44 mm :yr. 
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altho ugh the observed anomaly over the East Pacific Rise does not exhibit the peak 
Nedicted by the model. Additional observational evidence of the existence of a 
~osit i\'e free -air gravity anomaly over ridges is given by Kahle & Talwani (1973). 
l: sing I: x 1° averages in the Indian Ocean, they showed that ridges there are associated 
\\i th positive anomalies of 20--50 mgal. 

.-\ laboratory test of the model 

The wax model of Oldenburg & Brune (1972, 1975) has been used primarily to 
l.:: derstanc the de\'e!opmen t of the orthogonal ridge transform fault pattern which 
cinracterizes oceanic spreading centres. However, this model also shows that the solid 
!'hte continually thickens with increasing distance from the ridge crest; and indeed 
~f,om to expia..c:U tpjs phenomenon resulted in the physical model by Parker & Olden­
o1.!rg (197.3 ). Tnere are two differences between the wax model and the Earth: the 
nm is the conc~pt of an intrusion zone, which exists in the Earth, but not in the wax 
<nee tr, ,= melti.1g teri1perature isotherm intersects the su(face. This introduces the 
;~c0nd c i ~Tere!1ce ; the top of the lithosphere is approximately at a constant tempera­
::.:~e, 'i'hile in the laboratory model, the surface temperature must decrease from the 
:::e!ting ce::l;Jerat'Jre at the ridge crest to some value on the fl anks determined by the 
~.:.te c,f SU;';'il -::e cooling. The I:lck of an intrusion zone is probably unimportant in 
.::':·~:,:ng t ::t:: L ~,ickn ess of the solid plate at distances greater than a fraction of a 
,,:nti;;-,e:;'-~ fro s t~e crest, D'-1t t he non-constancy of surface temperature may be 
: ::'.~'():'2.~: '-;ewrthelcss, the wax model offers a rare opportunity to test a prediction 
"f a l;-ie -:; ,cti~ai rode!, and we shall compare the measured thickness of the soLid plate 

7_'~, ,-= ,:,~ ;,:o:1dit ions 01 constant rates of spreading and surface cooling, the wax was 
:: :i,:;\\ ::-ri Ui s~'reai symmetrically until plates ~0'2 m in length were formed; the plate'> 
·\ere :h~i; lifted out of tne wax and the thickness measured with a microscope. All of 
:i:: samples taken under these co ntrolled conditions were consistent with a thickening 
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proportional to the square root of distance from the ridge crest, although the constant 
of proportionality varied by up to 25 per cent, depending upon rates of spreading and 
surface cooling. A representative thickness profile is shown in Fig. 7. 

The values of H = L/cp(Tm- 7',), where T, is the surface temperature, must be 
known before equation (16) can be applied. The surface temperature was recorded 
with an infrared scanning device (Texas Instrument Thermoscope ~700) which 
measures the temperature of the equivalent blackbody source. The true surface 
temperature, obtained by correcting the blackbody temperature for the finite skin 
depth of the wax remained approximately 10 °C below the melting temperature at 
distances greater than 10 mm from the ridge. With L = 2·2 X 105 J kg- 1

, Cp = 2·9 X 

103 Jkg- 1 0c- 1, k = 2'5Wm- 1 °C- 1 and p = 8·7x 102 kgm- 3, we obtainH = 7·6 
and a = 0·25. The half·rate spreading velocity was 1·5 x 10-3 m s-1 so the predicted 
theoretical thickness is Z(x) = 4·1 X 10- 3 .J(x) m. In view of possible uncertainties in 
the values of the physical constants, errors in reading the thermograms and in carrying 
out the experiment, we judge this predicted value to be in good agreement with the 
experimentally measured value of Z(x) = 5·2 X 10- 3 .J(x) m. 

:\1odlfkuric!ls Df the mocel 

Tbe numerical results have shown that this physical model predicts ridge elevation, 
heat now, and g,uvity in reasonable agreement with observations, and yet there are 
serious criticisms wlcich must be considered before the model can be representative 
of thc Elrt'J. 1t is ~erally agreed that the seismic low velocity zone, which we shall 
equa te to the asthenosphere, cannot be accounted for by temperature gradients alone 
U'.ncersoD ~ Sar:H71i.:-; 1970), and the most acceptable hypothesis is that the astheno­
sphere is a ;:one of partial melt. However, this region cannot be completely molten, 
as '.. ... e .have <~ssumed in the numerical model, or no shear waves would be transmitted 
a.t a ll. Unfcrtu natelv. tbe percentage and distribution of partial melt is not known. 
FcrroJogists require 11ig..'1 values (~~30 per cent) beneath the ridge crests in order to 
explain the obseryed composition of rocks dredged from the sea floor (Kay, Hubbard & 
Gas! 1970). This is consistent with seismic evidence which shows that Sn phases are 
not seen to propagate across oceanic ridges (Molnar & Oliver 1969) and that shear 
waves propagating parallel to or across an oceanic ridge suITer high attenuation 
(Solomon j 973). The average value of partial melt throughout the low velocity zone 
is probably considerably lower than the value beneath the ridge crests. Anderson 
et al. (1971) have shown that the low velocity zone for shear waves can be explained by 
an asthenosphere with a partial melt value of 1-10 per cent, depending on the aspect 
ratio of the partial melt zones, nnd therefore a reasonable estimate for the average 
value of partial melt existing in the asthenosphere is a few per cent. 

In addition to considering the effecls of varying the amollnt of partial melt we 
must allow the melting temperature to change with depth, and also consider the effect 
of heat sources other than latent heat, on the heat budget whiCh determines the growth 
of the lithosphere. Radioactive matter in the lithosphere and temperature gradients 
in an asthenosphere composed of a variety of chemical species are potentially impor­
tant heat sources. We will later discuss in detail the region near the ridge crest, but 
for the present we shall concern ourselves only with the effects of these modifications 
to the mode.! on the global growth of the lithospheric plate. 

(a) Effect of partial melt 

A partially molten asthenosphere is easily incorporated into the model by multi­
plying the latent heat of fusion, or equivalently H, by the percentage of partial melt. 
The effect of this is to increase CI. and therefore increase the plate thickness via equation 
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Percent Partial Melt ( cp Tm= 300) 
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i IS) . The relation ship between 'f. a nd H for the range of physical parameters used 
he re is showo in Fig. 8. Importantly, a varies by only a factor of 2 while the partial 
mel t changes by tv,'o orders of magnitude. Since the plate thickens as Jt for each 
yalue of H , there always exists a value of /:,.p such that an excellent fit can be made to 
the topography. Al so, the increased thickness is balanced by a corresponding decrease 
in /1p a nd hence the predicted free air gravity anomaly is not greatly changed. The 
surface heat flow is insensitive to a reduction in the amount of partial melt, and a 
decrease from 100 to I per cent lowers the heat flow by only 23 per cent. The con­
clusion therefo re is that topography, heat flow, and gravity ca·n be fit as well, and 
perhaps slightly better than in the numerical example by allowing smaller amounts of 
partial melt. The two primary constraints to allowing arbitrarily small amounts of 
partial melt are the thickness of the lithosphere and the relationship between /:"p ll sed ' 
to calculate the elevation and ct v' the coefficient of volume expansion. For example, a 
5 per cent partial melt predicts a thickness of 178 km at a crustal age of 100 My and 
this is considerably deeper than the lid of 90-120 km predicted by models for the low 
velocity zone (Dziewonski 1971). If the maximum allowable thickness for the litho­
sphere at a crustal age of 100 My is 130 km, then the percentage of partial melt 
beneath the plate must exceed 30 per cent (see Fig. 8). Also, a lower bound for .the 
coefficient of volume expansion for lithospheric rocks is ~2 '5x 1O-5;oC (Clark 1966) 
and therefore /:"p must be greater than 62 kg m - 3 again requiring a percentage of 
partial melt of at least 30 per cent. This is approximately the limit to which a model 
usi ng heat derived only from latent heat can be pushed and still satisfy the geophysical 
Observations. If it is unacceptable to have such large values of melt beneath the 
lithosphere, then additional modifications to the model are required. 
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The value of IIp = 87 kg m - 3 found in the numerical example provides a con­
straint to the physical model in another way. This value was obtained by assuming a 
completely molten asthenosphere. Since the density difference between the liquid and 
solid phases is likely about 10 per cent, IIp should have been at least 300 kg m -3. 

Hence, if the lithosphere is grown from a material with a large amount of partial melt 
then this melt must be confined to a fairly narrow zone beneath the plate. 

(b) Radioactivity 

The effect of radioactive materieins 'to reduce the thickness of the lithosphere and 
to increase the surface heat flow by a small amount. An approximation to the 
asympto tic equation (20), may be obtained by assuming a heat budget in a vertical I' 
column. If the thickness of the solid plate is h(t) at a distance x = vt from the ridge 
crest , then the heat budget, with the differential equation d 2 T/dz2 = 0, yields __ 

Ivhi;::h can be integrated to give 

J2kTm t h(t) = - --- . 
pL 

(22) 

Imponantly, this form ulation still yields a square root dependence of thickness on 
tirr; c_ The thicknesses predicted by equation (22) are about 30 per cent too large when 
cOillpred to the correct solution, but if L is replaced by an artificial value, r. = L/2H(J.2 
t~eIl equation (22) is exact. (Since 2Hrx2 ~ I for larger H, the discrepancy between 
these two form ulations is reduced as H increases.) To treat the effect of radioactivity 

_ .:::.ided to a lithosphere grown from a partial melt, we assume a vertical heat budget 
'';' itl; ~he pseuQovaiue of latent heat. Since the radioactivity is distributed 1 hroughout, 
the assumption that the heat from this source flows vertically is very good. The heat 
Dlldget equati on becomes 

_ dh(t) aT 
pL -[- +qlz(t) = k -;l-

et (JZ 
(23) 

whe re q is the rad ioacti ve concen tration q W m - 3 . From the one-dimension steady­
state equation for temperature, d 2 T/dz 2 = - (q/k), and the boundary conditions 
T(t,O) = 0 and T(t, h(t)) = Tm we obtain 

and 

dlz(t) = ~{Tmk _ ~h(t)} 
dt pL h(t) - 2 

2kT. _ 
h2 (t) = __ m (I-exp (-qt/pL»). 

q 
(24) 

The thickness of the lithosphere at a crustal age of 100 My for different values of 
radioactivity and partial melt is given iii. Fig. 9. The effect of radioactivity is to reduce 
the thickness by only moderate amounts; for example, a crustal thickness of 120 km 
is thinned by about 8 km with a radioactive concentration of 1·25 x 10- 7 W m- 3 

(0'3 x 10- 13 cal cm- 3 S-1). Radioactivity will also increase the heat flow at the 
surface by an amount qh(t)/2 and hence, a value of 8·4 x to- 8 W m -3 for a 100 km 
thick lithosphere will increase the heat flow by about 4·2 x 10- 3 W m -3 (0·1/1 cal 
cm- 2 S-1). 
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The assumption~ (hat L1.e meiti ng temperature was independent of pressure and 
: : ': . ~~ the asthenosphere W;15 cOiT'posed of a single chemical species at the melting 
:~ i : l per2ture led us tc tbe concbs i,:m that the rate of growth of the lithosphere was 
.j,'t-:r",i"ed hy the he.2t of' fusion released when partially molten material solidified 
.. ·.,i aII2(;Q-ed to the underside o!" the plate. A more realistic model must allow an 
.. -:t:<:' !lo3phe,<;:: composed of a v:lriety of mineral assemblages with different melting 
::': :~p ;:'r::\[ure s; and hence permit a range of temperatures over which melting can Qccur. 
I:: ,1:Jdition, the melting temperature of dry rocks increases with increasing pressure. 
h 8.: Kennedy (l967) have shown tha t the melting temperature of dry peridotite, a 
:- ,)ssi blc man tle rock , increases by approximately 3 °C km -1, and therefore the geo­
:;1crmal gradient must be at least as large if the asthenosphere is to be partially 
'·.Lliten. Further complications to the possible temperature structure in the astheno­
' ;'ilere arise if a smail amoun t of water is present, for then (incipient) melting of a 
,I:,all percentage of the rock may occur substantially below the dry solidus temperature 
\i yll ie 1971). These considerations suggest that substantial thermal gradients may 

c\ist in a partially molten asthenosphere and the associated heat flux must therefore 
~ ~ included in the heat budget for the growth of the lithosphere. 

Let us assume that the variation of melting temperature with depth has the for In 

T,:( :) = Tmo +yz where Tmo is the melting temperature at the surface, z = O. We shall 
~ l sCl assume that the geotherm in the asthenosphere is independent of the x co­
:'iJ inate and has the form T(x, z) = Tmu + pz. The heat budget equation at the 
2L' ttom of the slab is 

oT 
-fl.zkP+fi .. ~pvL = -ka;; 

.:nd this can be put into a first order differential equation (see Appendix B) 

/ dZ(x) 

dx 
(oT/oz)- f3 

(pvL/k) + (uT/ox) 
(25) 
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which must be solved simultaneously with the heat flow equation in the slab and the 
condition Tex, Z(x») = T,no +yz. If we let T(x, z) = r (x, z) +yz then T (x, z) stilI 
satisfies the heat flow equation and 

dZ(x) (8Tj8z) + (y-{J) 

~ = (pvLjk)+(8T/8x) 
(26) 

In the special case that {J = y, that is, the melting point gradient and geothermal 
gradient are equal, the problem is reduced to that of the previous section. 

The effect of a geothermal gradient greater than the melting temperature (fJ > y) 
is to reduce the thickness of the lithosphere, and we shall compute the magnitude of 
this thinning as a function of {J when y = O. To a good approximation, the temperature 
distribution in the lithosphere is given by 

Tm eli (~jPCp V) 
-2 kx 

f'(x,z) = -------
(27) 

erf( Z(x) jPCp V) 
2 kx 

\Y'i ~h this tempelilcure distribution, equation (26) can be integrated to find Z(x). 
Fig. 10 shows ti:le ;'esulting thickness of the lithosphere at a crustal age of 100 My as a 
Cuuction of percentage of partial melt when gradients up to {J = 3° C km -1 exist. 
F or large amOttnts of melt, 50-100 per cent, these gradients reduce the thickness by 
only a few kilo metres, while for a 10 per cent melt a gradient of 2 °C km -1 thins the 
lithosphere by 30 len. The solution for Z(x) and the temperature distribution above 
do not sc!lve the belt flow equation exactly, and the dashed lines in Fig. 10 indicate 
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\\here the solution may not be r eliable because of reasonably large, (,.." 10 per cent), 
cifOfS in sOlving that equation, Nevertheless, there is reason to believe that even the 
dashed iir:es provide a good i.ndication of the amount of thinning caused by linear 
te mperature grad ients . "Vith 25 per cent melt and fJ = 0, the thickness of the slab at 
100 My is 134 km and the avemge heat flow into the base of the slab from 40 to 
100 My is 8·8 x 10- 3 W m - 2 but this is the same heat flow as that obtained from 
fi = 3'0, for which the solution in Fig. JO gives a thickness of 128 km for a I per cent 
melt. 

In Fig. 11 we have plotted the relative contributions to the heat flow into the 
bottom of the lithosphere. If the percentage of partial melt is high, > 50 per cent, 
then the latent heat dominates the heat flow into the slab, while for very small amounts 
of melt, '" I per cent, the latent heat released is negligible compared to that from small 
temperature gradients. 

The existence of temperature gradients in the asthenosphere may therefore be a 
major factor in determining the rate of growth of the lithosphere if the amounts of 
partial melt are small. In order to compare the predictions from lithospheric slabs 
produced under conditions of linear temperature gradients in the asthenosphere with 
geophysical observations, we shall consider the effect of a temperature gradient of 
3 °C km -1 and values of partial melt from 100 to 1 per cent. The predicted elevations 
as well as empirical observations from the Pacific are shown in Fig. 12. The values of 
6.p used to calculate the elevation and the corresponding coefficients of volume 
expansion are also listed there. For crustal ages between 2 and 80 My the agreement 
is moderately good and perhaps not significantly different for all values of partial melt. 
Near the ridge crest, 0-2 My, the agreement worsens as the amount of partial melt 
decreases. We shall discuss this discrepancy later, but for now appeal to the COll-
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,lusiofi5 (if Da ,-is & Li,;ter (1974) that the elevation near the ridge crest may be 
.'.noma!ou :i:Y low when compared to the whole elevation profile. The predicted heat 
110w as \vell as oosen ca tions L-om the North Pacific are shown in Fig. 13. For low 
frac tions of melt, the heat flow is decreased slightly from that in the numerical example 
and the val ues of :tv all fall within acceptable bounds. These results suggest an 
important conclusion: in the heat budget determining the growth of the lithosphere, 
a trade-off eyjsts between the heat derived from latent heat and that obtained from 
(e mperature gradients, and a decrease in tht! melt fraction can be counteracted with 
increased gradients to produce a lithosphere which satisfies geophysical observations. 

\'ear the ridge crest 

Both seismic and petrologic studies require large amounts of partial melt beneath 
(he ridge crest, thus the major heat source is most likely that derived from the latent 
hea t of fusion, and the growth of the lithosphere in this region should be explained by 
(he solution to the equations of the physical model. Full solutions to the set of 
equations (6) to find ii, the temperature distribution along the vertical wall, and the 
shape of the underside of the lithosphere for H corresponding to different values of 
partial melt will be found. Also, different relationships between T(z), the steady state 
or time averaged temperature distribution, and 1[(z), the final temperature to which 
the magma cools before the next episode of intrusion, will be discussed. 

The true relationship between T(z) and Tf(z) is not known but is likely dependent 
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1.0 

UP C' I1 He sp~:Hi:J. ,·b~riCutI0n of dike injection, spr~ading velocity, and time between 
1'1[[115io'l episodes . At e:::::h depth z the relationship between T and Tr will be similar 
Ii' 0fje or Ihe diagr3.ms Jr, Fig. 14. We shall model the relationship as 

f(:;) = Tr(z)+P(z)(Tm (z)-7f(z») (28) 

wtth O :~ P(=) < 1·0 so bat if F(z) = 0 the injected material is assumed to cool 
instTntaneously to iis TInal temperature, while if P(z) = I, the material is always at 
its melt~ng pOiJ1t and hence the injection process proceeds continuously. This modi­
ticltion requ ires that equation (6) be replaced by 

cT { I _ } 
- - A- =211 H+---(1-T(z») . 

ex 1- P(z) . 
(29) 

Fig. I 5 shows six arbitrary curves for P(z) and the resulting value of lI. The values of 
the physical constants are those used in the numerical model. The effect of P(z) > 0 is 
to reduce II slightly or equivalently, to reduce the iength of the intrusion ?:one. The 
temperature distributions on the vertical wall are not significantly changed from that 
shown in Fig. 16 fo r 100 per cent melt and P(z) = O. The heat flow in the vicinity of 
the ridge crest is raised in accordance with the reduction of II. . 

The effect of reducing the value of the partial melt in the numerical example is to 
lengthen the intrusion zone and increase the thickness of the plate close to the ridge 
crest. The temperature di stribution on the vertical walls, as well as the relationship 
between u and the melt fraction are shown in Fig. 16. The shape of the underside of 
the lithosphere is well approximated by using Fig. 2 with the value of II appropriate 
to the amount of partial melt. 

Conclusions 

In an effort to match the ridge elevation, we were able to find a value of I1p such 
that the predicted and observed elevations were in agreement everywhere except near 
the ridge crest. Davis & Lister (1974) have plotted ridge elevation as a function of 
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.Jt and shown that for profiles longer than 10 My the height of the ridge crest con­
sistently lies 200-300 m below the x = 0 intercept of a straight line fitting the observa­
tions . The existence of an intrusion zone in the physical model reduces this dis­
crepancy but cannot be the sole cause of it. ' For the Pacific, with a spreading rate of 
40 mm/year, the thickness of the intrusion zone was 0·8 km, and this reduced the 
deviation by only 30 m. The thickness of the intrusion z~>ne increases with decreasing 
spreading rates but the standard deviations of ridge crest elevations are too large to 
detect any dependence of this deviation on spreading velocity. 

An arbitrary amount of hydrothermally cooled lithosphere can be added on top 
of that generated by the physical model without violating the heat flow equations. The 
depression at the ridge crest can be accounted for if a few kilometre thi~k layer of 
water-cooled material exists and if conduction gradually replaces convection as the 
dominalit heat transport mechanism so that this layer vanishes by a crustal age of 
4 or 5 My. This amounts to an artificial lengthening of the intrusion zone in equation 
(19) and is the essence of a suggestion put forth by Davis & Lister (1974) 10 explain 
the depression. Alternatively, this phenomenon might be the response of a floating 
so;id plate to the dynamics of flow of a viscous fluid beneath. Whatever the cause, 
the misfit behveen predicted and observed elevations at the ridge crest are significant 
ad additional modifications to the model are required to explain this deviation. 

It is also possible to speculate that there is an additional mechanism which should 
raise the predicted elevation of the ridge crest, assuming that region is in isostatic 
equijbrium. If an appreciable volume of partial melt exists below the ridge, an 
J.ssGcia.ted 10 per cent density change from liquid to solid would require that this 
materiai have a density considerably less than the rest of the asthenosphere, and this 
bucyant mass shoDid increase the height of the predicted elevation and make the 
T.is:1~ between observation and prediction even worse. For example, a 6 km thick 
,e:.:,jon of 25 per cent partial melt would raise the ridge crest by about 200 m. 

The beat flow predicted by the model is in moderately good agreement with 
observations (see Figs 4(b) and 13). Nevertheless, Sclater & Francheteau (1970) have 
speci fi ed the mean heat flow at 15 My to be 0·0922 ±:0·00447 W m -2 and this value lies 
below the prdicteci val ues from any of the models. If the heat flow from the physical 
model is to be adjusted to fall within these bounds, then changes to the values of the 
material parameters are required. Equation (20) shows that a lowering of the heat 
flow is most easiiy effected by reducing the value of the melting temperature, but 
changes in the val ues of k or cp may prove important. 

The free-air gravity anomaly predicted by the physical model is positive over the 
ridge crest and the magnitude increases with decreasing spreading rates. Variations in 
the values of partial melt and allowing temperature gradients in the asthenosphere wiII 
not drastically alter the predicted free-air gravity anomaly if the value of /).p is adjusted 
to make the predicted and observed elevations agree. 

Unfortunately, the rough topography over slow spreading ridges makes it difficult 
to determine what the maximum value of the gravity anomaly would have been had 
the surface of the lithosphere been smooth. Fast spreading ridges on the other hand, 
are often associated with rather smooth topography, and the flatness of the free-air 
gravity anomaly may provide a constraint on the cause of the depression of the ridge 
elevation. If the ridge is in isostatic equilibrium and the depression is caused by 
adding a layer of hydrothermally cooled rock, the free-air gravity anomaly will be only 
slightly decreased over that predicted from the model. If the depression is the result 
of viscous flow, then an absence of mass beneath the ridge crest may significantly 
reduce the anomaly. The flatness of the observed gravity anomaly over the East 
Pacific Rise and the 10 mgal misfit there may already be the result of visco LIS flow 
beneath the ridge. 

We have shown that the rate of growth of the lithosphere is determined by a heat 
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l'Ji dget and that important sources of heat may be latent heat of fusion and that 
2ssoc iated with temperature gradients in the asthenosphere when these gradients 
~\ceed the melting point gradient. The existence of a free parameter, 6.p, permits a 
1\ ide range of contributions from either of these heat sources such that the resultant 
):thospheres still satis fy geophysical observations. When the only heat source is latent 
hea t, the partial melt must exceed 30 per cent or thicknesses greater than 130 km will 
,'CCllr at a crustal age of 100 My. Also, such a large melt fraction, if it exists, must be 
confi ned to a narrow zone beneath the solid plate. When heat from temperature 
~n'. d ient s in the asthenosphere are admitted into the model, the rate of thickening of 
[he plate can remain small even when the percentage of partial melt is reduced to a 
lery small value, ..... l per cent. Lithospheres grown under such conditions indicate a 
g,'cater amount of misfit bet"ieen the predicted and observed elevations of the ridge 
crest (sec Fig. 13), but otherwise p rovide an acceptable fit to the observed heat flow 
2nd elevation . 

i':ear the ridg,; crest, latent heat is probably the major source of heat and full 
' oi urions to the heat flow equation \vi th boundary conditions have been obtained for 
\'2rio us amouo;s of partial melt and different relationships between fez), and time 
,!\'::,rag~d tempera ture on the in tnlsion zone, and 1{(z), the final temperature to which 
[lie magma cool:; hefo re the next intrusion episode. A decrease in the value of partial 
melt inc reases the dime:1sioniess velocity tI, and hence lengthens the intrusion zone. 
C0ili'ersely, if T (::) > Tr(::), the intrusion zone is shortened. 

Tile result of this sUldy indic2.tes that the physical model described by Parker & 
O:den bur,g (i 973;, -.",iIb some r;:i :lO ; modifications, predicts a growth of the litho­
<' :~ cre, ridge ·::k;-ation. heat flo" .. , and free-air gravity anomaly in good agreement 
".I,h ~wfJhy3i c:ll c,bserY3. tions. Only the elevation in the vicinity of the ridge crest 
cC;:1l10 t be predicted by thi s physical model and the discrepancy there may be in 
~ :':::::;O'.~ cO vi~·::ous no"Y benc2th the float ing plate or an artificial lengthening of the 
: .... ~ru<i)n zone r~5u1ti.ng from hydrothermal circulation. 

[inirersity c:l California. 
Scn Diego, 

Tnsti!ute of Geophysics and Planetary Physics, 
La Jolla, California 92037. 
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Appendix A 

Green's function for a quarter space 

The Eulerian steady-state heat flow equation is 

2 aT v T-2u-- = 0 ax (1) 

where T (x, z) is defined for x ~ 0, z ~ 0 and u is the dimensionless velocity. Define 

{
T(X, z) 

T1(x,z) = 
- T(x, z) 

z~O 

z ~.O 

and leI 

be the ' 
the Fo 

IS 

where z' 

or 

or if we 

'" Bate 



persion data, 

,(COllic upper 

,I peridotite 

Z. Geoplzys., 

,,!lei origin of 

i,PhD Thesis, 
1 f Ridges and 
, 
be, Geo'Phys. r Is. J. geop/zys. 
• 

Gpper mantle 

l '~ pattern in 

lo~onality of 
35. 
:('pi:ys. J. R. 

j,:;es, 'Nature 

:,:1 Atlantic, 

11 heat flow 
it and upper 

ld evolution 

·iid-Atlantic 

Mid-Ocean 

' ork. 

(1) 
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and let 
00 

/T 1 (x, k) = J T\ (x, z) exp ( - ikz)dz 

be the Fourier transform of Tl (x, z). If we replace T by Tl in equation (1) and take 
the Fourier transform we obtain 

(2) 

Take the inverse Fourier transform of equation (2) and interchange the order of 
integration. Then 

00 00 

T(X'Z)=~X~~IX) I T1(O,zl)dz ' J exp(ik(z-z'»)exp(-~(u2+k2)x)dk. 
-IX) 

The second integral , with the factor exp (lIx)/27t is by definition G(x, z; z'), the Green's 
functio£! for the problem. Hence* 

"'. ,ux Kl(II~[(Z_Z')2+X2J) 
vlx. =;;;) = - exp (ux) ~( ')2 2 

7t z-z +x 

Jf temperatures are prescribed on the vertical axis for only z ~ ° then we obtain 

Appendix B 

A differential equation for the isofuse line 

\V~ define tne i::iofuse 1ine to be that on which the equation 

_ aT 
Ii. vpL = -k a;;- (I) 

is obc)-cd. Parametrize the curve by x = xes) and z = z(s). Then Ii = -.~z' +2x' 
where z' = dz/ds and x' = dx/ds. If v = _~ v then equation (1) becomes 

(-.x::' +zx') .xvpL = -k( -,Xz' +2X'). (_x aT +2 aT) 
ax OZ 

or 
dz dx ( aT/oz ) 
ds = as (pvL/k) + (aT/ax) . 

(2) 

The slope at any point (x, z) on the isofuse line is therefore given by 

dz ( oT/oz ) 
dx = (pvL/k) + (a T lax) . 

If the isofuse line is denoted by z = Z(x) we obtain the desired result 

dZ(x) ( aT/az ) 
~ = (pvL/k) + (oT/ox) z=Z(.<) 

(3) 

or if we scale temperatures by Tm, lengths by I, and let H = L/cp Tm and u = pCp vl/2k 
we obtain equation in dimensionless form 

dZ(x) ( oT/oz ) 
~ = 2uH+(oT/cx) z=Z(x) (4) 
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