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ABSTRACT 
De Bremaecker, J .Cl., 1974. Temperatures in a convecting upper mantle. Tectonophysics, 21: 1-13. 

Numerical computations show that in a convecting upper mantle the temperature rises rapidly to 
about 1000"C near a depth of 100 km; below this depth it stays essential1y constant until about 350 
lan. This result agrees with data obtained from the olivine-spinel phase change. 

INTRODUCTION 

Much attention has recently been paid to the phenomena which occur during the descent 
of a lithospheric plate through the upper nlantIe (Minear and Toksoz, 1970; McKenzie, 
1972; Griggs, 1972). It is, however, not a priori evident that these kinematic solutions are 
also dynamically satisfactory. More precisely, since the temperature and the convective mo
tion are very strongly coupled, one cannot assume one independently of the other: it is 
just as false to say that the temperature determines the motion as to say that it is the mo
tion which determines the temperature. We must, thus, perforce, deal with the problem of 

determining the temperatures in a convecting upper mantle. 
In order to obtain a preliminary answer to this question, I have found it necessary to 

make the following simplifying assumptions: 
(1) The convective cell is two-dimensional. 
(2) It extends to a deptll of 600 km (Tozer, 1967); its width is between 2,000 and 

4,OOOkm. 
(3) The viscosity is Newtonian and constant. 
(4) The thermal conductivity is constant. 
(5) The effect of phase changes is unimportant in the convective process (McKenzie, 

1969). (6) Approximately 75% of tIle heat is generated internally by uniformly distributed ra-

dioactive heat sources; the rest comes from below (Clark and Ringwood, 1964). 

(7) All boundaries are free of stress. 
(8) The surface is at O°C; the sides are insulated. 
Attention is drawn to the fact that assumption 6 is markedly different from the one 

made in Rayleigh-Benard convection (Benard, 1901; Rayleigh, 1916): in the latter the tem
perature along the bottom is fIxed and constant, in the present case it is neither. Thus, in 
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the present model, the temperatures at the bottom are obtained as a result of the compu
ta tions. In many other models (e.g., Torrancc and Turcotte, 1971 a, b) on the other hand, 
.the temperatures at the bottom are assumed, generally on the basis of a classical, i.e., pure

ly conductive, solution. This does not appear self-consistent. 
Thc present case has been studied theoretically in simplified form by Roberts (1967) 

and cxperimcn tally by Tritton and Zarraga (1967) with noticeably different conclusions. 

Thc problem is solvcd numerically by first solving the Navier-Stokes equation with an., 

assumed tcmperature distribution; the complete heat-transfer equation is then solved, and 

the new tcmperature distribution is again used in the Navier-Stokes equation. 

TIlE NAVIER-STOKES EQUATION 

Many 1l1ethods are available to solve the Navier-Stokes equation. The classical one (Tor

rance and Rockett, 1969) uses the stream function and the vorticity; a biharmonic equa

tion in terms of the stream function may also be used (Andrews, 1972). 
1 have used the Simplified Marker and Cell method (SMAC) of Amsden and Harlow 

(1970). In this method one first solves the Navier-Stokes equation for a compressible fluid 

using an arbitrary pressure distribution. Using the Boussinesq (1903, vol. 2, p.l72) approx

ima tion, this equation may be written for steady-state conditions (Bullen, 1963, p.34): 

( 
2 ~ 1 (8) a", V'i/V+ 3 ---+X=O 

r ax ax r 
r r. 

For explanation of symbols see Notation I. 
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coefficien t of thermal expansion 
increments along the x- andy-axes 
potential (eq. 2) 
divergence of the velocity field for a compressible fluid (eq. 1) 

kinematic viscosity 
density 
arbitrary pressure, normally close to the hydrostatic pressure 
heat capacity at constant volume 
gravity 
heat flow through the bottom of the cell 
heat produced by radioactivity per unit volume 
index for the x-coordinate 
index for the y-coordinate 
thermal conductivity 
index, = I for the x-axis, 2 for the y-axis (eq. 1) 
relaxation factor (eq. 12) 
i-index for the uppermost zone in the cell 
heat produced by shear heating per unit volume 
temperature 
horizon tal veloci ty 

(1) 
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NOTATION I (continued) 

I' vertical velocity 
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TEMPERATURES IN A CONVECTING MANTLE 

NOTATION I (continued) 

v vertical velocity 
V velocity vector (incompressible fluid) 
iT velocity vector (compressible fluid) 
X body force, normally XI'" 0, X 2 '" g(1-CiT) 

The resulting velocity field, V, has the correct vorticity - since the latter is independent 
of the pressure _ but non-zero divergence. These two equations (r = 1,2) are solved simul~ 
taneously, after which the divergence is nulled by superposition of the gradien t of an ap

propriate potential, determined as follows. Let the correct velocity field, V, be given by: 

N a~ 
V =V-, , ax, 

It fqllows that: 

av, av, 
__ V2~=- =0 
aXr ax, 

and thus: 

V2~= 0 

(2) 

(3) 

(4) 

. which determines t and thus V. 
Because of the numerical errors involved it is necessary to check whether the divergence 

of Vis close enough to zero everywhere; if not a new ~ has to be computed, and the process 

must be repeated. For the same reason II' (in eq. 1) should be taken relatively close to the 

correct pressure distribution. 

THE HEAT-TRANSFER EQUATION 

The heat-transfer equation in the time-dependent case is: 

aT cp at= kV2T - cp(V' VT)+ H + S 
(5) 

For steady-state conditions the left-hand side is null. 
This equation does not explicitly take tlle adiabatic gradient into account; alternatively, 

it may be viewed as yielding temperatures which use the adiabat as a base line. This is done 
in order to simplify the computations. It may be justified as follows: the adiabatic gradient 
(gaT/c) in the upper mantle is ~0.3°C/km using the parameters given in Table I; this is small. 

Moreover, it only affects the vertical conductive heat transfer (Jeffreys, 1959, p.288; 
Andrews, 1972, eq. 12). Since conductive heat transfer is generally small compared to ad
vective heat transfer (Clark, 1969), the effect of such a small temperature difference is neg
ligible. As a result, thus, the effect of the adiabatic gradient must be added to the tempera-

tures resulting from the solution of eq. 5. 
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TABLE I 

Paramctcrs of the models (S.1. and conventional units) 

Width 
(km· 103

) = (m' 106
) 

Depth 
(km' 102

) = (m' lOS) 

Coefficient of therlllal expansion 
n~-I ,10-5) 

Specific gravi ty 

Viscosity 
(kg m -I sec -I . 102°) ,;, (poises' 1021

) 

Heat capacity 
(J kg-I °C-I .103 ) = (erg g -I °C-I .107

) 

Thermal conductivity 
(W m -I °C-I ) = (cal cm -I °C-I sec-I. 2.4 .. 10-3

) 

Radioactivity 
(W m -3. 10-8 ) = (erg g -I year-I) 

Heat flow through bottom 
(W m -2. 10-3 ) = (H.F.U.· 2.4 ,10-2

) = 
(cal cm -2 sec -I .2.4.10-6 ) 

Error cri ferioll 
On II, v, Div V, t 
On T 

NUMERICAL METHODS 
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The x-axis is horizontal and designated by the index i; the y-axis is vertical upward and 
designated by the indexj. The x-component of the velocity is u, the y-component is v. 
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Fig.!. Placement af the variables. 
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forward. The advective term 
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TEMPERATURES IN A CONVECTING MANTLE 

_ r~~:"~ __ -..L--VI-.j_+_I/_2_1---

?; o,j+To.j 

_.l. __ ~~_----.i.---+---
VO.j -1/2 

Fig.2. The variables near a boundary. 

The variables are placed (Fig.l) as in Welch et a1. (1966). This placement has also been 

used by Amsden and Harlow (1970) and by Andrews (1972). The area between the mesh 
lines will be called a zone. The uppermost zone inside the convective cell will be designated, 

by j == s. A fictitious row (or column) is introduced outside each boundary to make the com-

putations easier; in the case shown in Fig.2: 

v o,i+'iz == v l,j+'iz 
(6) 

Similar conditions are used at other boundaries. 
Eq. 1 and 4 may be solved by a variety of numerical methods. I have used the method 

of successive row overrelaxation (S.R.O.) and the tridiagonal algorithm (T.D.A.) (Forsythe 
and Wasow, 1960, pp.103-105 and 266-271; Peaceman, 1966, pp.66.-.:.69). When the rel

ative root-me an-square change on f1 and v falls below 10-
3 

or 10-
4 

(see Table I), the itera
tions on these quantities are terminated, and the same process is repeated for ~ using the 
sanle convergence criterion. The test for approximate nullity of the divergence is that it be 
less than 10-3 (or 10-4 ) X volume of each zone (i.e., oX X a y) in a time interval equal to 

the shortest time needed for any particle to traverse a zone. 
The heat transfer equation (eq. 5) is then solved taking into account the boundary con-

ditions. In the case shown in Fig.2: 

To,j == T1,j 

At the bottom: 

T;o ==T; 1 + (F/k)'OY 
, ' 

Near the surface: 

T; s+1 = -Tj s , ' 

(7) 

(8) 

(9) 

so that the surface, atj == s +~, be at O°C. 
The method of solution is different for a time-dependent case and for a steady-state case. 

In the time-dependent case the Crank-Nicolson method (Forsythe and WasoW, 1960, p.142; 
Peaceman, 1966, pp.l05-108), S.R.O. and T.D.A. are used. The method is long but straight

forward. The advective term is written (Welch et aI., 1966, p.38) in conservative form: 
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(10) 

where, for example: 

(ul). tl . = ~l. Il .(T. . + T . . ) 
I-ll,} I-ll,} I-I,} I,} 

(11) 

8t is chosen so that the fastest moving particle traverses only a fraction,!, of the zone dur
ing this interval. The best compromise between computational speed and accuracy appears 

to be!= 004. 
In the steady-state case the conventional method of taking differences does not yield a 

diagonally dominant equation (Forsythe and Was ow, 1960, p.18I). In order to obtain such 

an equation, "upwind" differences are used. This term was first used by Isaacson (Forsythe 

and Wasow, 1960, p.397), but the method has been rediscovered since (Greenspan, 1968, 
pp.122-147; Torrance and Rockett, 1969). The name is due to the fact that the tempera
tures at each point are differenced "upwind" (or upstreanl) from that point. Some care is 
necessary because u and v are not defined at the center of the zone. The equation is also 

solved by S.R.O. and T.D.A. 
After convergence (convergence criterion 10-3 or 10-4

) the new temperatures T* are 
combined with the temperatures of the previous iterate y{k) in an under-relaxation scheme 

to obtain the k + 1 iterate: 

(12) 

where R is the relaxation factor. 
The k + 1 iterate is then used in the Navier·Stokes equation, and the whole process is 

repeated until no appreciable changes occur after a complete iteration, Le.: 

Some care is necessary in choosing R; the' optimum value appears to vary between 0.8 
and 0.1. It may be noted ,that this method does not guarantee an exact steady-state solu

tion, which in fact may not exist, but only one which fluctuates only slightly. 

RESULTS 

All the computations were made with the depth divided into eight equal intervals, and 

the width into fifteen. The depth was always taken as 600 km but the width varied from 

2,000 to 4,000 km. (The middle of the top zone is thus at depth of 37.5 km.) 

Time-dependen t solutions 

As remarked by Foster (1969) it is not possible to choose entirely realistic initial condi
tions; the method is, however, useful in excluding impossible ones. In particular, a series 
of experiments confirm that any model with a highly super·adiabatic gradient is unstable: 
such a gradient always produces a convective overturn accompanied by extremely high (sev-

ITMPERATURES IN A CONVEC 
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Fig.3. Temperature and velocity fields for Model 66.after 70 . 106 years starting with a super-adiabatic 
gradieo·t. 

7 

eral m/year) surface velocities. This stage is followed by a long quiescence. This behavior 
was predicted by Elsasser (1966), and explains the results of Shimazu et a1. (1967). Fig.3 
shows the results of such an experiment (Model 66) after 0.9 . 106 years; the initial temper
ature distribution was fairly conventional, but with a slight lateral temperature variation 
(3.3°C/1 00 km). The parameters of the models are listed in Table 1. The figure shows that 
two vortices have developed, and that surface velocities exceed 1 m/year. These velocities 
continue to increase with time, and after an additional 75,000 years a third vortex develops 
in the middle of the cell, followed by a rapid convective overturn. 

The impossibility of maintaining a super-adiabatic gradie-nt is essentially independent of 
the constitutive relation for, as pointed out by Jeffreys (1959, p.288) "if (the gradient) be
came greater (than adiabatic) convection currents would increase in vigour and redistribute 
the temperature adiabatically. If it becan1e less, convection currents would be damped down 
by viscosity, cooling at the top would become more rapid, and the gradient would steepen". 
Clearly, this reasoning applies to all likely constitutive relations. 

These experiments also showed that models which start \vith an adiabatic gradient can 
convect as a single cell for an appreciable time - up to 70' 106 years - depending on the 
parameters of the system and the initial conditions. Whether the eventual breakdown of 
the convective system is real, or is due to numerical inaccuracies, cannot be definitely 

stated. 

Steady-state solutions 

Two typical results are shown in FigA and 5 (Models 12 and 22, respectively). Their 
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a A' 
lo-9m /see..:,3.15 em/year 

b 

FigA. Temperature and velocity fields for Modcl12. The arrows marked with a dot have been displaced 
for clarity. 

main difference is that the radioactivity is lower than normal in the first one and normal 
in the second one (see Table I); as a consequence the theoretical surface heat flow (see be
low) is also below nomlal in the first one (44mW m-2 = 1 H.F.U.) and normal in the sec
ond 'one (66mW m-2 = l.5 H.F.U.). 

The parame ters of both models are given in Table 1. Shear heating is taken into account 
in both cases. By comparing results with and without shear heating it was found that the 
effect of the latter is to raise the temperature of the whole system by 45-49°C depending 
on the exact location. The absence of localized shear hea ting may appear remarkable, but 
is due to the fact that the dynamics of the present situation are quite different from those 
that prevail when a slab is moved through a stationary mantle. 

A 

I0-9m / see .:,.3.15 em/year 

_ _ 'I - - - ---+ --+--,--+~~----J> 

/, - --........ /.-. --" --t- ---J" --'" --.- ~ --" 

-- ~ --- 1 ~ --Jo ---+ --...- ~ ---.- --" ~ • 

\
11\ '-> ~. ',', ,1 : ," ," ~.. ~~ ~~ ~~ .: ...-' l'j . ---+_,.. ___ .-+--+--"""'-<1'--- __ 

--..... ---flO --' +-- +-- ____ ___ ......--

-+ -.~ '+-- +--- _ __ +:---f---<4--....--

b 

Fig.S. Temperature and velocity fields for Model 22. The arrows marked with a dot have been displaced 
for clarity. 
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500 
k 

a 

800 -=8--r0.::..O~~.-"8--r50-'-.-oC-T---o-~ 

b 

Fig.6. Temperature profile through section AA' of FigA (Mode112). a. Withou t adiabatic tcmperature 
increase. b. With adiabatic temperature increase. 

The asymmetry of the figures will be discussed later. 

9 

The temperature profiles (Fig.6 and 7) are similar in both cases, but, as a c'onsequence 
of the Jow radioactivity of Model 12, its temperatures are probably lower than acceptable. 
When we take the effect of the adiabatic gradient into account, we see that a rapid temper
ature rise in the upper 40 km is followed by a slower rise to a depth of about 100 km. Be
low this depth the temperature stays essentially constant. 

This profile is markedly different from those that are now classical; the reason is that 
the latter result from purely conductive solutions (e.g., Clark and Ringwood, 1964). Since 
the advective heat transfer exceeds the conductive heat transfer as soon as the vertical ve
locity exceeds 0.03 em/year (Clark, 1969), a conductive solution is not relevant to the prob
lem at hand. Instead, it is helpful to think of the top layer (lithosphere) as a thermal bound
ary layer, below which, as Jeffreys noted (I 959, p.288) the temperature is essentially adi
abatic.1t is, perhaps, worth emphasizing that the temperatures everywhere result only from 
the stated assumptions and the values of the parameters; they are independent of the ini-
tial guess. 

It appears likely that the effects of relatively high temperatures and low pressures near 
100 km combine to cause partial melting and thus form a low velocity-low viscosity layer. 
Below this depth the gradual rise in pressure would correspond to a gradual increase in vis
cosity. This picture conforn1s with that proposed by Carter and Ave'Lallemant (1970). 

The temperature profiles without the adiabatic gradient (Fig.5a and 6a) agree qualita
tively with those predicted by Roberts (I967) for the roll and the down-hexagon; the large 
difference in Rayleigh numbers in his case (R:: 2.1 '104

) and in the present one (R :: 2.7' 
10'), and other differences, make a quantitative comparison impossible .. 

Fig.7. Temperaturc profile through scctionAA' of Fig.5 (Model 22). a. Without adiabatic temperature 
increase. b. With adiabatic temperature increase. 
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TABLE II 

Theoretical (TF) and computed (CF) heat flow for Models 12 and 22 (in W. m -2. 10-3) 

TF CF Error 
(%) 

.----.-~--------.-'--.--------'--=---------

Model 12 
Model 22 
---,._---

44 
65 

38 
59.5 

The theoretical heat flow TF is given immediately (Table II) as: 

TF=H'D+F 

15 
9 

(13) 

where Hand F have been defined previously, and Iti'$:the depth. The heat flow computed 
from the results (CF) (Table II) is: . 

CF= k· 1'. /Y28y 
I,S 

where r; s is the average temperature in the near-surface zone. If all the computations were 

exact, th~se two values should agree; the errors due to discretization, round-off, etc., cause 

tilem to differ. Table II shows that they differ by 15% in Model 12 and by only 9% in Mod

el 22. This agreement is satisfactory considering the preliminary nature of the present work. 

It may be remarked that a comparison between the theoretical and the computed heat flow 
cannot be made for models in which the bottom temperature is fixed. 

The lateral temperature difference is of the order of 100oe. In a restricted sense this 

may be viewed as the driving mechanism, although, in a larger sense, tile system is, of course, 
driven by tile presence of heat sources and heat sinks. 

The surface velocities are reasonable, and increase downstream. This provides an unfore

seen way out of the dilemma caused by the fact that, on the one hand the cooling of the' 

upper 100 km cannot account for the whole heat flow, while, on the other hand, no heat 

can flow from below 100 km due to the absence of a thermal gradient. The system responds 

to this problem by constantly bringing hot material from below. This, of course, also ex

plains the gentle rising of the streamlines in the downstream direction (Le., the tilting up

wards of the arrows). It is unclear whether this phenomen~n has any geologic relevance; 

if it does, such an increase in velocity might perhaps take place in the low-velocity zone. 

DISCUSSION 

The temperatures found in Model 22 (which is closest to being realistic), are markedly 

lower iliaD. those generally proposed. Nevertheless, the temperature near 350 km (985°C) 
is in excellen t agreement with that obtained from studies of phase changes; According to 

Ringwood (1972) ilie change from an olivine of pyrolite composition first to spinel and 

then to a {3-phase takes place in a zone 27 km deep centered at 342 km if the temperature 
is looooe. 
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The gradual increase in temperature in most of the bottom flow of the cell is expected. 
On the other hand the rapid temperature rise near the "plume" is physically impossible be
cause the necessary heat sources do not exist. This rise is due to the approximation of de
rivatives by one-sided differences, i.e., to the "upwind" differences. Such a one-sided ap
proximation is satisfactory when the function is monotonic, but not when it passes through 

an extremum. 
The asymmetry of the solution is due to the same cause. Efforts to find a steady-state 

solution in which the plume rises at one side - because of the periodicity implied in the 
stress-free conditions on the boundaries, this would make for a symmetry solution - have 
been unsuccessful. 

The grid taken for the computations is coarser than is desirable for good resolution. The 
reason for this coarseness is the fact that computer time - and the attendant expense -
rises rapidly with the number of points in the grid. The computations for Model 22 were 
repeated using a 8 X 25 grid; although the fluctuations remained slightly larger than desir
able, the temperatures near the end of the run differed only by about 25°C from these in 
FigA. 

Another defect of the present solution is the constancy of oy. This has two disadvan
tages: a minor one is the fairly poor temperature resolution near the surface. The more se
rious one is less obvious: the temperature at the middle of the near-surface zone (37.5 km 
depth) is of the order of 900°C while the surface is at O°C. Thus the average temperature 
of the upper 20 km is only about 450°C. When the current turns downwards the effect of 
this cool material effectively vanishes from the computations, i.e., the computations pro
ceed as if the whole downgoing material was at the temperature of the center of the zone. 
This effect is likely to be appreciable. 

Other shortcomings are due to the other simplifying assumptions. However, until a sat
isfactory solution is obtained in this simplified case, it seems unwise to attempt a more com
plex one. It would, however, appear that the effect of tlle phase change near 350 km will 
be to alter the temperatures below that depth. 

CONCLUSIONS 

All the evidence agrees with the fact that the temperature rises rapidly from near O°C 
near the surface to approximately 900°C at 40 km and 1 OOO°C near 120 km. Below this 
depth the temperature changes little until the first phase change is encountered (near 350 
km). 
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