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ABSTRACT
‘De Bremaecker, J.CL, 1974. Temperatures in a convecting upper mantle. Tectonophysics, 21: 1-13.
Numerical computations show that in a convecting upper mantle the temperature rises rapidly to
about 1006°C near a depth of 100 km; telow this depth it stays essentially constant until about 350
km. This resuit agrees with data obtained from the olivine—spinel phase change.
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INTRODUCTION

Much attention has recently been paid to the phenomena which occur during the descent
of a lithospheric plate through the upper mantle (Minear and Toksoz, 19705 McKenzie,
1972; Griggs, 1972). It is, however, not a priori evident that these kinematic solutions are

also dynamically satisfactory. More precisely, since the temperature and the convective mo-

tion are very strongly coupled, one cannot assume one independently of the other: itis
to say that it is the mo-

just as false to say that the temperature determines the motion as
tion which determines the temperature. We must, thus, perforce, deal with the problem of
determining the temperatures in a convecting upper mantle.
In order to obtain a preliminary answer to this question, I have found it necessary to
. make the following simplifying assumptions:
e v (1) The convective cell is two-dimensional. :
~ (2)Itextendstoa depth of 600 km (Tozer, 1967); its width is between 2,000 and
4,000 km. :
(3) The viscosity is Newtonian and constant.

(4) The thermal conductivity is constant.
(5) The effect of phase changes is unimportant in the convective process (McKenzie,

1969).
) Approximately 75% of the heat is generated internally by uniformly distributed ra-
HING COMPANY dioactive heat sources; the rest comes from below (Clark and Ringwood, 1964). )

. (7) All boundaries are free of stress.
g (8) The surface is at 0°C; the sides are insulated.

Attention is drawn to the fact that assumption 6 is markedly different from the one

made in Rayleigh-Bénard convection (Bénard, 1901; Rayleigh, 1916): in the latter the tem-
perature along the bottom is fixed and constant, in the present case it is neither. Thus, in
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the pruscnt model, the temperatures at the bottom are obtained as a result of the compu-
tations. In many other models (e.g., Torrance dnd Turcotte, 1971a, b) on the other hand,
the temperatures at the bottom are assumed, generally on the basis of a classical, i.e., pure-
ly conductive, solution. This does not appear self-consistent.

The present case has been studied theoretically in simplified form by Roberts (1967)
and experimentally by Tritton and Zarraga (] 967) with noticeably different conclusions.

The problem is solved numerically by first solving the Navier-Stokes equation with an_
assumed temperature distribution; the complete heat-transfer equation is then solved, and
the new temperature distribution is again used in the Navier-Stokes equation.

THE NAVIER-STOKES EQUATION

Muny methods are available to solve the Navier-Stokes equation. The classical one (Tor-
rance and Rockett, 1969) uses the stream function and the vorticity; a biharmonic equa-
tion in terms of the stream function may also be used (Andrews, 1972).

1 have used the Simplified Marker and Cell method (SMAC) of Amsden and Harlow
(1970). In this method one first solves the Navier-Stokes equation for a compressible fluid
using an arbitrary pressure distribution. Using the Boussinesq (1903, vol. 2, p.172) approx-
imation, this equation may be written for steady-state conditions (Bullen, 1963, p.34):

V(Vzﬁ +lﬁ.’)_._ai7_+X=0 . § (1)

For explanation of symbols see Notation 1.

NOTATIONI

coefficient of thermal expansion

increments along the x- and y-axes

potential (eq. 2)

divergence of the velocity field for a compressible fluid (eq. 1)
kinematic viscosity

density -
arbitrary pressure, normally close to the hydrostatic pressure
heat capacity at constant volume

gravity

heat flow through the bottom of the cell

heat produced by radioactivity per unit volume

index for the x-coordinate

index for the y-coordinate

thermal conductivity

index, = 1 for the x-axis, 2 for the y-axis (eq. 1)

relaxation factor (eq. 12)

j-index for the uppermost zone in the cell

heat produced by shear heating per unit volume

temperature

horizontal velocity
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TEMPERATURES IN A CONVEC.

NOTATION I (continued)

vertical velocity
velocity vector (incomp:
velocity vector (compre
body force, normally &

YR

The resulting velocity fielc.
of the pressure — but non-zex
taneously, after which the di-
propriate potential, determir:

r
—— ————-o
o, V¢

and thus:
vig=6
which determines { and thus
Because of the numerica:
of Vis close enough to zero

must be repeated. For the sc
correct pressure distribution

THE HEAT-TRANSFER EQU~.

The heat-transfer equatic

cp %7:— kVAT —cp(V-~
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This equation does not «
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TEMPERATURES IN A CONVECTING MANTLE'

NOTATION1 (continued)

I

\

vertical velocity
velocity vector (incompressible fluid)

velocity vector (compressible fluid)
body force, normally X = 0, X, = g(1-T)

o s

The-resulting velocity field, V, has the correct vorticity — since the latter is independent
but non-zero divergence. These two equations (= 1, 2) are solved simul-
ce is nulled by superposition of the gradient of an ap-
locity field, V, be given by:

of the pressure —
taneously, after which the divergen

propriate potential, determined as follows. Let the correct ve

_o 88 '
Vr_Vr"'axr. . (2)
It follows that:
av, v, o .
—_— V2 = — = 0 ’ (3)
ox, ox, v
and thus:
V=0 (4)

_ which determines ¢ and thus V.
Because of the numerical errors involved it is necessary to check whether the divergence

of Vis close enough to zero everywhere; if not a new ¢ has to be computed, and the process
must be repeated. For the same reasony (in eq. 1) should be taken relatively close to the

correct pressure distribution.

/

THE HEAT-TRANSFER EQUATION

The heat-transfer equation in the time-dependent case is:

oT _, 2 :
CPEZ"kV T—cp(V-VT)+H+S ‘ : (%)
For steady-state conditions the left-hand side is null. .

This equation does not explicitly take the adiabatic gradient into account; alternatively,
it may be viewed as yielding temperatures which use the adiabat as a base line. T his is done
in order to simplify the computations. It may be justified as follows: the adiabatic gradient
(gaT/c) in the upper mantle is ~0.3°C/km u given in Table 1; this is small,
Moreover, it only affects the vertical conduc
Andrews, 1972, eq. 12). Since conductive heat
vective heat transfer (Clark, 1969), the effect o
ligible. As a result, thus, the effect of the adiab
tures resulting from the solution of eq. 5.

sing the parameters

tive heat transfer (Jeffreys, 1959, p.288;
transfer is generally small compared to ad-
f such a small temperature difference is neg-
atic gradient must be added to the tempera-
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TABLE I

Parameters of the models (S.I. and conventional units)

Fig.3 Fig.4 Fig.5
Model 66 Model 12 Modeti 22

Width

(km-10%) = (m- 10%) 2 3 3
Depth

(km- 10%) = (m - 10%) 6 6 -6
Coe_fﬁcien_t of thermal expansion k

cc 107 3.7 3.7 3.5
Specific gravity - 3.35 3.35 3.35
Viscosity )

(kgm™? sec”! - 10%0) = (poises - 102 1 2 2
Heat _capacity

OkglocT 10% = (ergg™ °C™" - 107) 1.3 1.3 1.2
Thermal conductivity S B .

Wm™°C!) = (catem™ °C! sec”! - 2.4-107) 2 2 2.5
Rad'ro_activity

Wm2-10%) = (erg g" year ) 3 6 8.75

Heat flow through bottom
Wm2-1073)= (HF.U.-24-107%) =

(calem 2 sec™ +2.4-107%) 0 8 12.5
Error criterion : )
Onu,»,Div¥,¢ 1073 107 107
OnT 107 107 107
NUMERICAL METHODS

The x-axis is horizontal and designated by the index /; the y-axis is vertical upward and
designated by the index j. The x-component of the velocity is u, the y-component is v.

TVi,J+ 172

Sy

Uiive, [ %'i,jﬂ'i,j Uivi/2,j -

f S

Vi,j-172

ox

Fig.1. Placement of the variables.
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The variables are placed (Fi-
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Uy = 05
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same convergence criterion. .
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The heat transfer equatior
ditions. In the case shown i =

Toi= Ty

At the bottom:
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Near the surface:

—T.
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forward. The advective term:.
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Fig4 Fig.5 : o A LTy
Model 12 Model 22 So,j+To] Uyzz,| W

Y 4= 0] i
3 3 Vo,j-1r2 Vi,j-ir2
6 6 Fig.2. The variables near a boundary.
3.7 1.5 The variables are placed (Fig.1) asin Welch et al. (1966). This placement has also been
3.35 3.35 ; used by Amsden and Harlow (1970) and by Andrews (1972). The area between the mesh

: ) ’ lines will be called a Zone. The uppermost zone inside the convective cell will be designated.
2 2 byj=s.A fictitious row (or column) is introduced outside each boundary to make the com-
putations easier; in the case shown in Fig.2:
1.3 1.2 : - A _ . _
y ;=0 S 50° Vo, on = V1ivh ©)
2 2.5 ! Similar conditions are used at other boundaries.
| methods. I have used the method

p : Eq. 1 and 4 may be solved by a variety of numerica
8.15 ‘ of successive 1OW overrelaxation (S.R.0.) and the tridiagonal algorithm (T.D.A) (Forsythe

and Wasow, 1960, pp.103—105 and 266—271; Peaceman, 1966, pp.66—69). When the rel-

8 12.5 ; ative root-mean-square change on #i and ¥ falls below 1073 or 107 (see Table I), the itera-
: " tions on these quantities are terminated, and the same process is repeated for § using the

4 same convergence criterion. The test for approximate nullity of the divergence is that it be

N A ' less than 10'_3 (or 107) X volume of each zone (i.e., 6x X §y) in a time inferval equal to ‘

the shortest time needed for any particle to traverse a Zone.
The heat transfer equation (eq. 5) is then solved taking into account the boundary con-

ditions. In the case shown in Fig.2:

e N s X s Rty

107 10
107 10

sxis is vertical upward and
. the y-component is v. To,]- = Tl,i Q)
At the bottom:
T;0=Tin * (F/k)-8y ®
Near the surface:
Ti,sﬂ = _—Ti ) &)
so that the surface, atj=s+ 3%, be at 0°C.
se and for a steady-state case.

n is different for a time-dependent ca
k-Nicolson method (Forsythe and Wasow, 1960, p-142;

0. and T.D.A. are used. The methiod is long but straight-
(Welch et al., 1966, p.38)in conservative form:

The method of solutio:
In the time-dependent case the Cran
Peaceman, 1966, pp.105—108), S.R.
forward. The advective term is written
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V-vT= [(“T)i#/z,j - (“T),'__x/z’]'] [6x + [(VT)i,j#/z - (VT),",'_%]/‘S}’ (10)
where, for example:
@Dy =Pty [Ty ¥ T3 ) . an

&t is chosen so that the fastest moving particle traverses only a fraction, f, of the zone dur-
ing this interval. The best compromise between computational speed and accuracy appears
to be f= 0.4,

In the steady-state case the conventional method of taking differences does not yield a
diagonally dominant equation (Forsythe and Wasow, 1960, p.181). In order to obtain such
an equation, “upwind” differences are used. This term was first used by Isaacson (Forsythe
and Wasow, 1960, p.397), but the method has been rediscovered since (Greenspan, 1968,
pp.122—147; Torrance and Rockett, 1969). The name is due to the fact that the tempera-
tures at each point are differenced “upwind” (or upstream) from that point. Some care is
necessary because u and v are not defined at the center of the zone. The equation is also
solved by S.R.O. and T.D.A. ‘

After convergence (convergence criterion 107 or 10™) the new tempetatures 7™ are
combined with the temperatures of the previous iterate 7 in an under-relaxation scheme

to obtain the k + 1 iterate:
7% = 7R 4 ger* — Ty ‘ (12)

where R is the relaxation factor.
The k + 1 iterate is then used in the Navier-Stokes equation, and the whole process is

repeated until no appreciable changes occur after a complete iteration, i.e.:

T(k) T(k+1)

- Some care is necessary in choosing R ; the optimum value appears to vary between 0.8
and 0.1. It may be noted that this method does not guarantee an exact steady-state solu-
tion, which in fact may not exist, but only one which fluctuates only slightly.

" RESULTS

All the computations were made with the depth divided into eight equal intervals, and
the width into fifteen, The depth was always taken as 600 km but the width varied from
2,000 to 4,000 km. (The middle of the top zone is thus at depth of 37.5 km.)

Time-dependent solutions

As remarked by Foster (1969) it is not possible to choose entirely realistic initial condi-
tions; the method is, however, useful in excluding impossible ones. In particular, a series
of experiments confirm that any model with a highly super-adiabatic gradient is unstable:
such a gradient always produces a convective overturn accompanied by extremely high (sev-
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Flg 3. Temperature and velocity fields for \/Iodel 66.after 70 108 years starting w1th a super-adiabatic
gradient,

eral mfyear) surface velocities. This stage is followed by a long quiescence. This behavior
was predicted by Elsasser (1966), and explains the results of Shimazu et al. (1967). Fig.3
shows the results of such an experiment (Model 66) after 0.9+ 10° years; the initial temper-
ature distribution was fairly conventional, but with a slight lateral temperature variation
(3.3°C/100 km). The parameters of the models are listed in Table 1. The figure shows that
two vortices have developed, and that surface velocities exceed 1 m/year. These velocities
continue to increase with time, and after an additiona! 75,000 years a third vortex develops
in the middle of the cell, followed by a rapid convective overturmn.

~ The impossibility of maintaining a super-adiabatic gradient is essentially mdependent of
the constitutive relation for, as pointed out by Jeffreys (1959, p.288) “if (the gradient) be-
came greater (than adiabatic) convection currents would increase in vigour and redistribute
the temperature adiabatically. If it became less, convection currents would be damped down
by viscosity, cooling at the top would become more rapid, and the gradient would steepen”.
Clearly, this reasoning applies to all likely constitutive relations.

These experiments also showed that models which start with an adiabatic gradient can
convect as a single cell for an appreciable time - up to 70+ 10° years — depending on the
parameters of the system and the initial conditions. Whether the eventual breakdown of
the convective system is real, or is due to numerical inaccuracies, cannot be definitely

stated.
Steady-state solutions

Two typical results are shown in Fig.4 and 5 (Models 12 and 22, respectively). Their

VAR Y. Y W s
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Fig.4. Temperature and velocity fields for Model 12, The arrows marked with a dot have been displaced
for clarity.

main difference is that the radioactivity is lower than normal in the first one and normal
in the second one (see Table I); as a consequence the theoretical surface heat flow (see be-
low) is also below normal in the first one (44 mW m™ = | H.F.U.) and normal in the sec-
ond one (66 mW m™2 = 1.5 H.F.U.). ’ :

The parameters of both models are given in Table 1. Shear heating is taken into account
in both cases. By comparing results with and without shear heating it was found that the
effect of the latter is to raise the temperature of the whole system by 45-49°C depending
on the exact location. The absence of localized shear heating may appear remarkable, but
is due to the fact that the dynamics of the present situation are quite different from those
that prevail when a slab is moved through a stationary mantle,

340
a
10®m /sec = 315 cm/ year
S e . b i e e b s .—-——-——»
— e ']v -y ey ....—»...;._,-):;:’—v——-’ _*

—
/Q“\.'\. /_;aa—a.a/r/r—«v
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— 7 [PUNIRS U PORS U I

—— \.___4___..-—._.4_,__..,._.._(.____4_._.,_.4_

b
Fig.5. Temperature and velocity fields for Model 22. The arrows marked with a dot have been displaced

for clarity.
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0700 800} 800 850 °C
T ¥ T
500+
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a

Fig.6. Temperature profile through section AA" of Fig.4 (Model 12). a. Without adiabatic temperature
increase. b, With adiabatic temperature increase.

©

The asymmetry of the figures will be discussed later.

The temperature profiles (Fig.6 and 7) are similar in both cases, but, as a consequence
of the low radioactivity of Model 12, its temperatures are probably lower than acceptable.
When we take the effect of the adiabatic gradient into account, we see that a rapid temper-
ature rise in the upper 40 km is followed by a slower rise to a depth of about 100km. Be-
low this depth the temperature stays essentially constant,

This profile is markedly different from those that are now classical; the reason is that
the latter result from purely conductive solutions (e.g., Clark and ngwood, 1964). Since
the advective heat transfer exceeds the conductive heat transfer as soon as the vertical ve-

locity exceeds 0.03 cm/year (Clark, 1969), a conductive solution is not relevant to the prob-
lem at hand. Instead, it is helpful to think of the top layer (lithosphere) as a thermal bound-

ary layer, below which, as Jeffreys noted (1959, p.288) the temperature is essentially adi-
abatic. It is, perhaps, worth emphasizing that the temperatures everywhere result only from
the stated assumpnons and the values of the parameters; they are independent of the ini-

. tial guess.

It appears likely that the effects of relatively high temperatures and low pressures near
100 km combine to cause partial melting and thus form a low velocity—low viscosity layer.
Below this depth the gradual rise in pressure would correspond to a gradual increase in vis-
cosity. This picture conforms with that proposed by Carter and Ave'Lallemant (1970).

The temperature profiles without the adiabatic gradient (Fig.5a and 6a) agree qualita-
tively with those predicted by Roberts (1967) for the roll and the down-hexagon; the large
difference in Rayleigh numbers in his case (R = 2.1-10%) and in the present one (R = 2.7 -
107), and other differences, make a quantitative comparison impossible. -

0, 900 950 {000 IOrSO °C
S\~ SE—— S
--—-120 km

T

500, == 500 km
km a b

Fig.7. Temperature profile through section AA’ of Fig.5 (Model 22). a, Without adiabatic temperature
increase. b. With adiabatic temperature increase. )
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TABLE I

Theoretical (7F) and computed (CF) heat flow for Models 12 and 22 (in W-m™2 - 1073)

TF CF Error
(%)
Model 22 65 59.5 9

The theoretical heat flow TF is given immediately (Table II) as:

he depth. The heat flow computed

where / and F have been defined previously, and [’ 13
from the results (CF) (Table 1I) is:

CF=k-T, [%dy

where T_I ¢ is the average temperature in the near-surface zone. If all the computations were
exact, these two values should agree; the errors due to discretization, round-off, etc., cause

them to differ. Table I shows that they differ by 15% in Model 12 and by only 9% in Mod-
el 22. This agreement is satisfactory considering the preliminary nature of the present work.,
It may be remarked that a comparison between the theoretical and the computed heat flow
cannot be made for models in which the bottom temperature is fixed, '

The lateral temperature difference is of the order of 100°C. In a restricted sense this
may be viewed as the driving mechanism, although, in a larger sense, the system is, of course,
driven by the presence of heat sources and heat sinks.

The surface velocities are reasonable, and increase downstream. This provides an unfore-
seen way out of the dilemma caused by the fact that, on the one hand the cooling of the
upper 100 km cannot account for the whole heat flow, while, on the other hand, no heat
can flow from below 100 km due to the absence of a thermal gradient. The system responds
to this problem by constantly bringing hot material from below. This, of course, also ex-
plains the gentle rising of the streamlines in the downstream direction (i.e., the tilting up-
wards of the arrows). It is unclear whether this phenomenbn has any geologic relevance;
if it does, such an increase in velocity might perhaps take place in the low-velocity zone.

DISCUSSION

The temperatures found in Model 22 (which is closest to being realistic), are markedly
lower than those generally proposed. Nevertheless, the temperature near 350 km (985°C)
is in excellent agreement with that obtained from studies of phase changes. According to
Ringwood (1972) the change from an olivine of pyrolite composition first to spinel and
then to a B-phase takes place in a zone 27 km deep centered at 342 km if the temperature
is 1000°C.

TEMPERATURES IN A CONVECTITN
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ceed as if the whole downgoing
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plex one, [t would, howe;vgr, appe
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CONCLUSIONS

All the evidence agrees with.tix-
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The gradual increase in temperature in most of the bottom flow of the cell is expected.
On the other hand the rapid temperaturé rise near the “plume” is physically impossible be-
cause the necessary heat sources do not eXist. This rise is due to the approximation of de-
rivatives by one-sided differences, i.e., to the “upwind” differences. Such a one-sided ap-
proximation is satisfactory when the function is monotonic, but not when it passes through
an ¢xtremum. '

The asymmetry of the solution is due to the same cause. Efforts to find a _steady-sfate
solution in which the plume rises at one side — because of the periodicity implied in the
stress-free conditions on the boundaries, this would make for a symmetry solution — have
been unsuccessful, - : o

The grid taken for the computations is coarser than is desirable for good resolution. The
reason for this coarseness is the fact that computer time - and the attendant expense —
rises rapidly with the number of points in the grid. The computations for Model 22 were
repeated using a 8 X 25 grid; although the fluctuations remained siightly larger than desir-
able, the temperatures near the end of the run differed only by about 25°C from these in
Fig.4. -
Another defect of the present solution is the constancy of 8y. This has two disadvan-
tages: a minor one is the fairly poor temperature resolution near the surface. The more se-
rious one is less obvious: the temperature at the middle of the near-surface zone (37.5 km
depth) is of the order of 900°C while the surface is at 0°C. Thus the average temperature
of the upper 20 km is only about 450°C. When the current turns downwards the effect of
this cool material effectively vanishes from the computations, i.e., the computations pro-
ceed as if the whole downgoing material was at the temperature of the center of the zone.
This effect is likely to be appreciable,

Other shortcomings are due to the other simplifying assumptions. However, until a sat-
isfactory solution is obtained in this simplified case, it seems unwise to attempt a more com-
plex one. It would, however, appear that the effect of the phase change near 350 km will
be to alter the temperatures below that depth.

CONCLUSIONS

All the evidence agrees with the fact that the temperature rises rapidly from near 0°C
near the surface to approximately 900°C at 40 km and 1000°C near 120 km. Below this
depth the temperature changes little until the first phase change is encountered (near 350
km). '
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