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ABSTRACT 

Rubin, H., 1974. Heat dispersion effect on thermal convection in a porous medium layer. 

1. Hydrol., 21: 173-185. 

Thermal convection resulting from vertical temperature gradients in porous media is analyzed. The 
effect of heat dispersion is taken into account. It is found that heat dispersion increases the thermal 
stability of the flow field and may inhibit the appearance of convection currents, which would appear 
if dispersion effects are omitted. 

The longitudinal as well as the lateral dispersivities affect the thermal stability and the dimensions 
of the convection cells. As a result of the convection currents the horizontal streamlines in the steady 
state are distorted. The thermal convection exhibits internal waves in the field. 

INTRODUCTION 

In some situations associated with geothermal activity it is possible that 
groundwater motion is influenced by convection currents due to large tempe­
rature gradients (Lapwood, 1948; Wooding, 1957). Such groundwater motions 
may happen in the aquifer of Lake Kinnereth springs in Israel (Dagan and 
Kahanovitz, 1968). Heat transfer in the porous layer is affected by the ther­
mal diffusivity of the liquid as wen as the conduction properties of the solid 
fracture. Usually groundwater is under conditions of steady flow. In previous 
investigations. it was found that if Peclet number of the flO\y field is small 
heat transfer can be characterized by convection and by diffusion expressed 
throl~gh the scalar heat diffusivity of the saturated porous layer. At large 
Peclet numbers the scalar heat diffusivity should be exchanged by the dis­
persion tensor which depend~ on the intrinsic dispersivity of the porOllS layer. 
The need for the application ()f the dispersion tensor is typical for inhomo­
geneous porous layers where the characteristic length for heat diffusion is 
large. 

The aim of the present study is to analyze the effect of heat dispersion on 
thermal stability of the flow field in cases of large Peclct numbers. 
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BASIC EQUATIONS OF TIlE FLOW FIELD 

According to the Boussinesq approximation the basic equations for the 
flow field are: 

Po (aqi + qj a_qi ) a = - pgn· - --'!.. -I!: q. 
E at E aXj 1 aXi K 1 

aT + qj aT _ a (E aT) 
at (3 € aXj - aXi ij aXj 

p = Po [1 -aCT - To)] 

(1) 

(2) 

(3) 

(4) 

where qi = the specific flux vector component; T = the temperature; K = the 
permeability of the porous layer; IIi = the component of a unit vector in the 
z direction; Eij = the component of the dispersion tensor; {3 = the ratio be­
tween volumetric heat capacity of the fluid fracture to that of the saturated 
formation (if the solid matrix does not conduct heat then (3 = 1); E = the me­
dium porosity; a = the volume coefficient of thermal expansion; Po = a 
density of reference. Eq. 1-4 were used in a similar manner by other investi­
gators (Lapwood, 1948; Nield, 1968). However, in their analyses dispersion 
effects were neglected; therefore, in eq. 3 instead of the dispersion tensor 
they expressed heat conductivity by the scalar molecular diffusivity of the 
saturated porous medium. 

The dispersion tensor according to previous investigations (Bear, 1961; 
Pfankuch, 1963; Poreh, 1965) is a second order anisotropic tensor which de­
pends on another fourth order tensor expressing the intrinsic dispersivity of ' 
the porous medium. In an isotropic medium the dispersion tensor is axi­
symmetric and can be expressed by the following equation: 

E .. = FI D" + F2l{'1l' IJ 1J 1 J (5) 

where lli = (qj/E), is the component of the barycentric flow velocity vector; 
Dij is Kronecker's delta; FI and F2 are functions of the pore size of the 
porous medium and PecIet and Reynolds numbers of the field. 

In every point of the flow field it is possible to refer to a coordinate system 
which one of its axes coincides with the flow direction. The dispersion 
tensor components in such a case are: 

BEAT DISPERSION EFFECT ON 
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(6) 

(7) 

(8) 

where E 11 is the longitudinal dispersion; E22 and E33 are the lateral dispersion 
components; U is the absolute magnitude of the velociti vector; K is the 
molecular thermal diffusivity of the saturated porous medium. 

If Peelet num bel' of the flow is small, then 1] 1 and 1]2 are small, dispersion 
effects are small and the scalar molecular diffusivity expresses heat conduction. 

However, in a nonhomogeneous porous medium the typical length of heat 
diffusion may be large. Therefore, Peelet number may attain large values. 
Then 1] 1 and 1]2 are almost constants and the thermal diffusion as well as 
terms depending on the thermal diffusivity in eq. 6 and 7 are negligible. In 
such cases it was found experimentally that (Pfankuch, 1963): 

(9) 

From eq. 5-8 we get the following expressions: 

(10) 

(11) 

THE UNPERTURBED FIELD 

As a model that describes the steady state flow field we refer to Fig. 1. 
We refer to a Cartesian coordinate system x, y and z which are the horizontal 
lateral and vertical directions, respectively. The porous medium lies between 
z = 0 and z = d. In this field the steady state barycentric flow velocity com­
ponents are: 

(12) 

where u*, v * and w * are the longitudinal lateral and vertical components, 
respectively. We assume that the medium is made of a poor conductor. There­
fore, {3 ~ 1 in eq. 3. We assume that the horizontal boundaries of the porous 
layer (z = 0 and z = d) are impermeable having constant temperature (TO and 
T1, respectively). The temperature distribution in the steady state is linear as 
follows: 
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Fig. 1. Schema tical deSCription of the steady state flow field. 

/J.T 
T= TO - d Z 

where: 
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(13) 

For the unperturbed density and pressure fields we obtain from eq. 1-4: 

(14) 

(15) 

where Po is the density at Z = 0; Po is the pressure at the coordinate origin. 
The dispersivity tensor components in the unperturbed flow field are ac­

cording to eq. 6-8: 

(16) 

(17) 

(18) 
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(13) 
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THE PERTURBED FIELD 

The flow field is now subjected to small perturbations in the velocity 
(u, v, w), temperature (8), pressure (p') and the dispersion tensor (E'ij)' 

177 

For stability analysis we may refer to a two-dimensional flow field (Kuo,. 
1961; Veronis, 1965, 1968). Thus the velocity perturbation in the longitudinal 
(u) and vertical (w) directions may be expressed with the aid of the stream 
function 1/1: 

II = a1/l oz 
_ a 1/1 w---· ax (19) 

Our analysis is referred to large Peelet numbers. In such cases the velocity 
perturbations would usually be smaller than the steady state horizontal flow 
velocity uo. Hence in such cases the absolute magnitude of the barycentric 
velocity vector in the perturbed flow field is approximately given by: 

u + U' = J(UO + u)2 + w2 ~ Uo + U (20) 

By applying eq. 5, 10, 11 and 16-20, we get after neglecting small quantities 
the value of the dispersion tensor perturbation components as follows: 

(21) 

(22) 

(23) 

Thus in the perturbed flow field the horizontal and vertical directions are 
no more the principal directions of the dispersion tensor. 

Substituting the various perturbation components in eq. 1-4, neglecting 
second order terms, eliminating the pressure perturbation and applying eq. 
21-23 we obtain: 

(24) 
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(25) 

In cq. 25 we have assunled that K. is much smaller than 712 110' 
We may refer the flow field to a moving coordinate system in which: 

z=z (26) 

(27) 

This method was similarly applied by Prats (1966). However, as he ignored 
the flow field accelerations his analysis did not require the assumption that 
the solid fracture is a poor conductor. In his analysis the frame of coordinates 
moves with the velocity of the heat in the porous layer. In our analysis it 
moves with the steady state barycentric flow velocity. 

Substitution of eq. 26-27 in eq. 24-25 yields: 

where: 

_ a2 a2 
V 2 =-+­

a:x2 022 

We define dimensionless variables as follows: 

~ =z/d ~==x/d 
v 

T=-( 
K 

(28) 

(29) 

(30) 

HEAT DISPERSION EFFECT ON -

Su bstituting these variable:: 

!~ V2q,1 = - R ~0r 
€ OT o~ i 

I 0 aWl 711 a~ 
r oT 01 = - a~ + 112 -; 

where: 

'" I 
R -'-'-'-I --, 

71,1 
! 

The parameter R is RaylerJ 
flow field perturbations m:::-: 

'11 1 = 'lr Cr) exp[ik~ + aT 

01 = 0 en exp[ik~ + or' 

In eq. 34 and 35 k is the he 

a = or +iw 
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Substituting these variables in eq. 28 and 29 we obtain: 

! ~ V 2Wl = - R ~ 81 --V2w 1 
e ar a~ 

1 a Ow} 711 a28 1 a28 1 
rar 8 } = - ag- + 712 ar-+~ 

where: 

71}-712 a2wl 712 a2wl 

+ d ar-d a~2 

R = exgATd 
712 uOev 
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(31) 

(32) 

(33) 

The parameter R is Rayleigh number; r is a modified Prandtl number. The 
flow field perturbations may be expanded as follows': 

WI = w- (n exp [ik~ + ar] 

81 = e (n exp[ik~ + ar] 

(34) 

(35) 

In eq. 34 and 35 k is the horizontal wave number; a is a complex number: 

a = ar + iw (36) 

where ar expresses amplification of the flow field perturbations; w expresses 
perturbation oscillations. 

From eq. 31, 32, 34 and 35 we obtain: 

(1 + a/e) (D2 - k2) W = - ikR8 

where: 

1 = hl71Ii712 
d D=-
d~ 

(37) 

(38) 

The boundary conditions of impelvious boundaries at constant temperature 
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yield: 

'It, e = 0 at ~=O,l (40). 

From eq. 37 and 38 we obtain the following ordinary differential equation: 

(41) 

This is the differential equation of thermal instability of flow in a porous 
medium layer. 

According to eq. 37- 40 the boundary conditions of this equation are: 

'It = 0 and \72'l' = 0 at ~ = 0.1 (42) 

STABILITY ANALYSIS 

The instability condition is characterized by ur = 0 in eq. 36. Therefore, in 
this case we get fr0111 eq. 41 after separating real and imaginary parts: 

(43) 

(44) 

Eq. 43 and 44 with the boundary conditions 42,form a linear eigenvalue prob­
lem. 

It is possible to solve the set of eq. 43 and 44 and to substitute the bound­
ary conditions as Eliasson (1971) did. However, a simpler variational approach 
is to assume that 'It may be expressed by a sine series which fulfils the bound­
ary conditions (Chandrasekhar, ,1961; Nield, 1968). In this method we obtain 
an independence between the variolls sine modes. The lowest mode of insta­
bility requires: 
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'l! = si111rt (45) 

By substituting eq. 45 in eq. 43 and 44 we obtain: 

(46) 

w 2 2 2 2 w 2 2 3 171 - 172 2 172 - (1f + 1 ) (1f + k ) + - (1f + k ) + k R - 1f kR - = 0 
€ rd, d (47) 

According to eq. 46 and 47 w cannot vanish in the case of instability-. As 
then R should get complex values. Therefore, no possibility of true marginal 
stability (Chandrasekhar, 1961) does exist. Non vanishing value of w is re­
quired by the two last terms in eq. 47. These terms result from the dispersion 
tensor perturbation. Such a case of instability is characterized by overstab1e 
motions (internal waves) which are observed by an observer moving with the 
steady state barycentric flow velocity. 

By eliminating w from eq. 46 and 47 we get the following second order 
equation for R: 

(48) 

where: 

(49) 

The critical Rayleigh number (Re) is the minimllm value of R which satis­
fies eq. 48; a is very small, its order of l11(}gnitude is about 10-12 (as 17dd is 
about 10-2 ; r is about 10-6 ; €is about 10-1). Therefore, R may be approxi­
mated by: 

_ q aq2 
R-----+ 

b b3 

The last term in eq. 50 is extremely small and negligible, thus: 

R ~ ..:....( 1f_2_+_1--'.2 )_<::-1f_2 _t _k2~) 
k2 

(50) 

(51) 
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Eq. 51 is' the exact solu tiOll forR if the last two terms in eq. 47 are ne-
1 z=dr--'~--~ __ ~ __ _ I glected, namely, when neglecting the effect of the dispersion tensor perturba-i 

r: tion. Thus the dispersion tcnsor perturb;) tion hardly effects the criterion of I i instability, but it induces overstable lIlotions in the flow field. , 
r According to eq. 51 the critical wave number (which is related to the crit- J1 

ical Rayleigh number) is: 

(52) 

The critical Raylcigh number is: 

(53) 

An increase in the horizontal flow velocity in the steady state reduces 
Rayleigh number of the field and thus stabilizes the flow field . Moreover it 
increases the ratio 771/772' Therefore it also increases the critical Rayleigh 
num ber of the flow field . 

DISCUSSION 

The length (L) of Benard cells (the convection cells) is connected with the 
value of kc by th e following equation: 

L = t d = (77!i772) 1/4 d 
c 

Hence the length of Benard cells increases when the ratio between the 
longitudinal and lateral dispersion coefficients increases. 

(54) 
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where A 1 is a constant. The total stream function for the case of convection 
currents is: 

l/J = uOz + Asin [~(~n 1/4 (x-uOt) J sin rr; cos (': t) (56) 

where A is a const~\I1 t. 

According to this equation we analyze the effect of instability on the flow 

r 

I 

z = d ~~--'-=====r=:::. 

I 
I 
I 
I 
I 

, I 
I I 
I I 

z=OL-~_~-L _______ L-__ 

x,=-~d x,=O x,= t . 
Fig. 3. now ficld pattcrn when Uo equals 

~1... .~~ l tt-.~~, ~;;·?~l'~.\ .'-7-i1'!¥'£i? kWfl"(.j~.~~·~~~~"?'!.'~.1f.7.":1~~-,j~_JtiiO ..... 

I 
I 

~~ i:! _ ~?". """"_ ....... ,..."......".,.. 

. . ~,.,,'-~~ .<',.' .. ~;,. '.<.'f.~~~.t~~ ·- ·.~{T~·~~~ ~-.~//~.~~~ _ .. i\-: I, 
~ . 

• • .• ' . • d •• ~. "::"<J ... ~-.w. -: ....... ~ ., . ,..,,,,,,.v: _'~~;-l~ ,i~_ 



H. RUBIN 

o terms in eq. 47 are ne-
-;:' dispersion tensor perturba­
.. ::.iy effects the criterion of 
.. ;:? flow field. 
\\'hich is related to the crit-

(52) 

(53) 

::ready state reduces 
.. e flow field. Moreover it 
-.::s the critical Rayleigh 

c:::l1s) is connected with the 

:be ratio between the 
3.ses. 

(54) 

(55) 

JT the case of convection 

(56) 

)f instability on the flow 

I 
I , 
f 

HEAT DISPERSION EFFECT ON THERMAL CONVECTION 183 

Z=o~--~--~--~~--7-__ ~ __ -L __ ~ __ ~. 

x=-l.d x=o X=-ZI d x=d x=l. d 
2 Z 

Fig. 2. Convection currents when Uo = O. 

field pattern. In the absence of a steady horizontal flow (uO = 0), 1]1 = 1]2 and 
w = 0, then eq. 56 yields the flow pattern presented in Fig. 2. When ltO =1= 0, 
the total velocity in the horizontal direction consists of a constant term, 
namely, ltO and an oscillatory term due to the convection currents. The magni­
tude of this term changes with time and location. 

In Fig. 3 a hypothetical flow pattern fQr t = 0 is presented. This figure is 
related to a field in which uo equals to the amplitude of the oscillatory term. 
A new horizontal coordinate appears in this figure: 

(57) 

Actually we cannot estimate the magnitude of the oscillatory term according 
to the linear stability analysis presented in this article. Such an estimate re­
quires nonlinear stability analysis. 
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Fig. 3. Flow field pattern when 110 equals to the eOI1V1:ctioll velocity amplitude. 
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SUMMARY AND CONCLUSIONS 

The linear stability analysis can be applied for evaluating the effect of heat 
dispersion on the thermal stability of the flow field in porous medium. I 

If the horizontal flow velocity is comparatively large, the expressions for 
the dispersion tensor perturbation may be simplified with the aid of the velo- . 
city perturbation. 

Instability of the flow field is affected by the later! as well as by the 
longitudinal dispersion coefficients. The critical Rayleigh number and the 
length of the convection cells increase when the ratio between the longitudinal 
and the lateral dispersivities increases. 

The convection currents appear as oscillations in the flow field. T11e fre- · 
quency of these oscillations depends on the barycentric steady state horizon­
tal flow velocity, the ratio between the longitudinal and lateral dispersivities 
and the aquifer thickness. 

The dispersion tensor perturbation scarcely affects the criteria of instability 
bu t it leads to oscillations in the flow field which may be called "overs table 
motions" being observed by an observer who moves with the steady state 
barycentric flow velocity. 
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