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ABSTRACT

Rubin, H., 1974. Heat dispersion effect on thermal convection in a porous medium layer.
J. Hydrol.,21: 173-18S.

Thermal convection resulting from vertical temperature gradients in porous media is amlyzed The
effect of heat dispersion is taken into account, It is found that heat dispersion increases the thermal
stabllity of the flow field and may inhibit the appearance of convection currents, which would appear

if dispersion effects are omitted.
The longitudinal as well as the lateral dispersivities affect the thermal stability and the dimensions

of the convection cells. As a result of the convection currents the horizontal streamlines in the steady
state are distorted. The thermal convection exhibits internal waves in the field.

INTRODUCTION

In some situations associated with geothermal activity it is possible that
groundwater motion is influenced by convection currents due to large tempe-
rature gradients (Lapwood, 1948; Wooding, 1957). Such groundwater motions
may happen in the aquifer of Lake Kinnereth springs in Israel (Dagan and
Kahanovitz, 1968). Heat transfer in the porous layer is affected by the ther-
mal diffusivity of the liquid as well as the conduction properties of the solid
fracture. Usually groundwater is under conditions of steady flow. In previous
investigations it was found that if Peclet number of the flow field is small
heat transfer-can be characterized by convection and by diffusion expressed
through the scalar heat diffusivity of the saturated porous layer. At large
Peclet numbers the scalar heat diffusivity should be exchanged by the dis-
persion tensor which depends on the intrinsic dispersivity of the porous layer.
The need for the application of the dispersion tensor is typical for inhomo-
geneous porous layers where the characteristic length for heat diffusion is

large.
The aim of the present study is to analyze the effect of heat dispersion on

thermal stability of the flow field in cases of large Peclet numbers.
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BASIC IiQUATIONS OF THE FLOW FIELD

1

According to the Boussinesq approximation the basic equations for the
flow field are:
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where q; = the specific flux vector component; 7" = the temperature; K = the
permeability of the porous layer; n; = the component of a unit vector in the
z direction; £j; = the component of the dispersion tensor; 8 = the ratio be-

tween volumetric heat capacity of the fluid fracture to that of the saturated
formation (if the solid matrix does not conduct heat then B =1); e = the me-

~ dium porosity; « = the volume coefficient of thermal expansion; pg = a

density of reference. Eq. 1 -4 were used in a similar manner by other investi-
gators (Lapwood, 1948; Nield, 1968). However, in their analyses dispersion
effects were neglected; therefore, in eq. 3 instead of the dispersion tensor
they expressed heat conductivity by the scalar molecular diffusivity of the
saturated porous medium. ' '

The dispersion tensor according to previous investigations (Bear, 1961;
Pfankuch, 1963; Poreh, 1965) is a second order anisotropic tensor which de-
pends on another fourth order tensor expressing the intrinsic dispersivity of
the porous medium. In an isotropic medium the dispersion tensor is axi-
symmetric and can be expressed by the following equation:

Eij =F15ij+F2“i“j (5

where u; = (g;/e), is the component of the barycentric flow velocity vector;
6jj is Kronecker’s delta; Fy and F are functions of the pore size of the
porous medium and Peclet and Reynolds numbers of the field.

In every point of the flow field it is possible to refer to a coordinate system
which one of its axes coincides with the flow direction. The dispersion
tensor components in such a case are:

THE UNPERTURBED FIELD

HEAT DISPERSION EFFECT ON’
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Ejj=mU+k - (6)
Ep=Ez=mU+tk O
E;=0 (i#j) (8)

where £y is the longitudinal dispersion; £y, and E33 are the lateral dispersion
components; U is the absolute magnitude of the velocity vector; k is the
molecular thermal diffusivity of the saturated porous medium.

If Peclet number of the flow is small, then 11 and 1y are small, dispersion

effects are small and the scalar molecular diffusivity expresses heat conduction.

However, in a nonhomogeneous porous medium the typical length of heat
diffusion may be large. Therefore, Peclet number may attain large values.
Then ny and 7, are almost constants and the thermal diffusion as well as
terms depending on the thermal diffusivity in eq. 6 and 7 are negligible . In
such cases it was found experimentally that (Pfankuch, 1963):

11/my =10+ 30 ' &)
From eq. 5—8 we get the following expressions:

F1=T]2U+K (10)

Fy = (ny — a)IU | (11)

THE UNPERTURBED FIELD

As a model that describes the steady state flow field we refer to Fig. 1.
We refer to a Cartesian coordinate system x, y and z which are the horizontal
lateral and vertical directions, respectively. The porous medium lies between
z =0and z =d. In this field the steady state barycentric flow velocity com-
ponents are: ’

u, =ug v, =0 w,=0 (12)

where u,, v, and w, are the longitudinal lateral and vertical components,
respectively. We assume that the medium is made of a poor conductor. There-
fore, B~ 1 in eq. 3. We assume that the horizontal boundaries of the porous
layer (z = 0 and z = d) are impermeable having constant temperature (Tg and
Ty, respectively). The temperature distribution in the steady state is linear as
follows: ‘
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Fig. 1. Schematical description of the steédy state flow field.

r=1,-41; (13)
where:
AT=Ty— Ty

For the unperturbed density and pressure fields we obtain from eq. 1-4:

AT :

AT
Po—Px = Po (z +a—2d-22) +EI§ Ugx

(15)
where pg is the density at z = 0; Po is the pressure at the coordinate origin.

The dispersivity tensor components in the unperturbed flow field are ac-
cording to eq. 6—8:

Dy =niug +k o (16)
Dyy =D,; =nug+« : 17)
Dyy =Dy, =Dy, =0 | v (18)
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THE PERTURBED FIELD

The flow field is now subjected to small perturbations in the velocity
(u, v, w), temperature (8), pressure (p') and the dispersion tensor (£';).

For stability analysis we may refer to a two-dimensional flow field (Kuo,.
1961; Veronis, 1965, 1968). Thus the velocity perturbation in the longitudinal
(1) and vertical (w) directions may be expressed with the aid of the stream
function y:

_ 0y - _ 9y )
U= w oW a9y

Our analysis is referred to large Peclet numbers. In such cases the velocity
perturbations would usually be smaller than the steady state horizontal flow
velocity (. Hence in such cases the absolute magnitude of the barycentric
velocity vector in the perturbed flow field is approximately given by:

U+ U =Jug+u)2+w2 ~upy+u - -0

By applying eq. 5, 10, 11 and 1620, we get after neglecting small quantities
the value of the dispersion tensor perturbation components as follows:

E;(x=n1u=nlg%p : (2D
E,, =nyu=n, 3V
zz = MU= M 5 (22)
? ? ) o
Eyy =Epx =y —m) w=—(n1 —m3) 51711 (23)

Thus in the perturbed flow field the horizontal and vertical directions are
no more the principal directions of the dispersion tensor.

Substituting the various perturbation components in eq. 1-4, neglecting
second order terms, eliminating the pressure perturbation and applying eq.
21-23 we obtain:

1{a 1)(_82_ _ai) - _ gl ,v_(_zzi 6_2)
¢ lartuoar) \j %329 - 2 29
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This method was similarly applied by Prats (1966). However, as he ignored
the flow field accelerations his analysis did not require the assumption that
the solid fracture is a poor conductor. In his analysis the frame of coordinates
moves with the velocity of the heat in the porous layer. In our analysis it
moves with the steady state barycentric flow velocity.

Substitution of eq. 26—27 in eq. 2425 yields:

1050, -_0830 v 9 ‘ '
eatvw € X KV‘p : (28)
00_ "oy AT 320 . 3%
o ax d M0 TM0
AT[ a2y a2¢/] " :
AL gy =) LY 4, X 29
where:
2 52
“'2=_a_..+_§_..
v ox2 gz2

We define dimensionless variables as follows:

Knyu
¥ =;§E °1 =V7A?;"dge |
| GO
¢=7/d E=%/d 'r=%t
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) ) oy AT 220 220 Substituting these variable:
4 _— = - T - _— =
(61‘ “o a.x') 0 ox d Mo a2 T2t 9z2 :
13 o 3
-~V =—R 0,
AT , 32y 32y €or 1 FY !
kN — 2y — 25
d [ (771 "72) ax2 2 9z2 ] (23) .
. 18 g - W, mo
In eq. 25 we have assumed that k is much smaller than njug. ror -1 B3 ;); ‘6“
We may refer the flow field to a moving coordinate system in which: : )
np—m 9~
7=z (26) d :
X=x—ugt 27 where:

2= az + 82 R =&
a2 at2 n

The parameter R is Raylei_
flow field perturbations mz

¥y = ’\If (©) explikE + o7
©1 =0 ({) explikt + g7
In eq. 34 and 35 kis the hc
0=0; tiw |
where o, expresses amplific
perturbation oscillations.

From eq. 31, 32, 34 and.

(1+0/e)( D2 - K2) ¥ =

D2 -12-g/r)O®=ik¥
where:

1=ln/ny/n, D=

The boundary condition:=
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Substituting these variables in eq. 28 and 29 we obtain:

§§v2w1~—Ra£@1—v ' G1)
19 : a\I’l'+n1 6291 +32@1
ror 1 3 my ag2 a2
. 62\11 82
LS m 1 m %Yy 32)
d 322 d a§2
where:
2.2, 2 p_ogATd - _Kmug (33)
aE2  ag2 nauger vd? ,

The parameter R is Rayleigh number; r is a modified Prandtl number. The
ﬂow field perturbations may be expanded as follows:

\Ifl = \I" (D) expliké + o7] (34)
01 =0 () explikt + o7] _ (395
In eq. 34 and 35 k is the horizontal wave number; ¢ is a complex number:

=g, tiw (36)

where o, expresses amplification of the flow field perturbations; expresses

perturbation oscillations.
From eq. 31, 32, 34 and 35 we obtain:
(1+o0/e) (D2 — k2) ¥ = - ik RO 37

(D2—12—o/r)®=ik\1/+k2$-§"— y +—d—1)2\p : (38)

where: -

l=k\/7]1/7)2 ’ D=[“1d§,

- The boundary conditions of impervious boundaries at constant temperature
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yield:
40).

v,0=0 at ¢§=0,1

From eq. 37 and 38 we obtain the following ordinary differential equation:
(D2 —12 —o/r) (1 + ofe) (D2 — k2) ¥

n—n
d

2

W +ikR — D2¥ =0 _ (41)

— K2R W +ik3R

This is the differential equation of thermal instability of flow in a porous

medium layer.
According to eq. 37—40 the boundary conditions of this equation are:

Y=0andV2¥ = ¢ ot ¢ =01 Y

STABILITY ANALYSIS

The instability condition is characterized by o, = 0 in eq. 36. Therefore, in
this case we get from eq. 41 after separating real and imaginary parts:

2
(D2—12)(D2—k2)\If+(:7(D2—k2)\If—k2R\If=0 (43)

CD-) D2k Y -T2 - k)Y

r 3R M ;7?2 + kR %21)2\1: =0 (44)

Eq. 43 and 44 with the boundary conditions 42 form a linear eigenvalue prob-

lem. ,
It is possible to solve the set of eq. 43 and 44 and to substitute the bound-
ary conditions as Eliasson (1971) did. However, a simpler variational approach
is to assume that W may be expressed by a sine series which fulfils the bound-
ary conditions (Chandrasekhar, 1961; Nield, 196 8). In this method we obtain

an independence between the various sine modes. The lowest mode of insta-

bility requires:

HEAT DISPERSION EFFECT ON 7
W =sinw¢

By substituting eq. 45 in ec

~
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¥ =sinw¢ 45)
By substituting eq. 45 in eq. 43 and 44 we obtain:
@2 +12) (w2 + k2) — Ee)ri(ﬂz +%k2) — k2R =0 . (46)

N2 _ar =0 @)

L@ +P2) (12412 + 2 (2 + k) + R

According to eq. 46 and 47 w cannot vanish in the case of instability. As
‘then R should get complex values. Therefore, no possibility of true marginal
stability (Chandrasekhar, 1961) does exist. Non vanishing value of ¢ is re-
quired by the two last terms in eq. 47. These terms result from the dispersion
tensor perturbation. Such a case of instability is characterized by overstable
motions (internal waves) which are observed by an observer moving with the
steady state barycentric flow velocity.

By eliminating w from eq. 46 and 47 we get the following second order
equation for R:

aR2+bR+q=0 (48)
where:
_ (—k?’ i +/€ d 7r2) :
(2D (a2 +12) — 12 @
_erk? (2 a2
—-W q= er(7r +1/ )

The critical Rayleigh number (R,) is the minimum value of R which satis-
fies eq. 48; a is very small, its order of magnitude is about 10—12 (as n1/d is
about 10—2; r is about 10~9; e is about 10—!). Therefore, R may be approxi-
mated by:

R=-

SR

, _
_aq ‘ (50)
b3 « o

The last term in eq. 50 is extremely small and negligible, thus:

@2 +12) (22 + k2) : (51)~

k2
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Eq. 51 is'the exact solution for R if the last two terms in eq. 47 are ne-
glected, namely, when neglecting the effect of the dispersion tensor perturba-
tion. Thus the dispersion tensor perturbation hardly effects the criterion of
instability, but it induces overstable motions in the flow field.

According to eq. 51 the critical wave number (which is related to the crit-

ical Rayleigh number) is:

ke = m(ny/p )14 (52)
The critical Rayleigh number is:
(53)

R, =72[1+(ny/ny)12]2

An increase in the horizontal flow velocity in the steady state reduces

‘ Rayleigh number of the ficld and thus stabilizes the flow field. Moreover it

increases the ratio n1/m7. Therefore it also increases the critical Rayleigh
number of the flow field.

DISCUSSION

The length (L) of Benard cells (the convection cells) is connected with the
value of &, by the following equation:

L=-d=@m/npa (54)
C o
Hence the length of Benard cells increases when the ratio between the
longitudinal and lateral dispersion coefficients increases.
According to eq. 34:
(55)

Y1 =Aysin[m(ny/n)/4€] sinrécos wr

where A4 is a constant. The total stream function for the case of convection
currents is:

3 . [w (n2) 1/4 ] . NZ wy
Y =upz+Asin [d (771) (x—ugt)| sin J Cos (7<— t)

(56)

where A is a constant.
According to this equation we analyze the effect of instability on the flow
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field pattern. In the absence of a steady horizontal flow (ug = 0), n 1 =7y and
w = 0, then eq. 56 yields the flow pattern presented in Fig. 2. When ug # 0,
the total velocity in the horizontal direction consists of a constant term,

namely, uq and an oscillatory term due to the convection currents. The magni-

tude of this term changes with time and location.
In Fig. 3 a hypothetical flow pattern for ¢ = 0 is presented. This figure is

related to a field in which ug equals to the amplitude of the oscillatory term.

A new horizontal coordinate appears in this figure:

xy =x(y/n)lA

(57

Actually we cannot estimate the magnitude of the oscillatory term according
to the linear stability analysis presented in this article. Such an estimate re-

quires nonlinear stability analysis.
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SUMMARY AND CONCLUSIONS

The linear stability analysis can be applied for evaluating the effect of heat
dispersion on the thermal stability of the flow field in porous medium.

If the horizontal flow velocity is comparatively large, the expressions for
the dispersion tensor perturbation may be simplified with the aid of the velo-
city perturbation.

Instability of the flow field is affected by the laterl as well as by the
longitudinal dispersion coefficients. The critical Rayleigh number and the
length of the convection cells increase when the ratio between the longitudinal
and the lateral dispersivities increases.

The convection currents appear as oscillations in the flow field. The fre--
quency of these oscillations depends on the barycentric steady state horizon-
tal flow velocity, the ratio between the longitudinal and lateral dispersivities
and the aquifer thickness.

The dispersion tensor perturbation scarcely affects the criteria of instability
but it leads to oscillations in the flow field which may be called “overstable
motions™ being observed by an observer who moves with the steady state
barycentric flow velocity.
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