;7 /‘/' ’

UNIVERSITY OF UTAH
RESEARGH INSTITUTE

’%")&u SR s

i VOL. 76, NO. 35 JOURNAL OF GEOPHYSICAL RESEARCH DECEMBER 10, 1971

general

GL03521 media.
5 The rig
Geothermal Aspects of Radioactive Waste Disposal posit. of

, into the Subsurface a complic -
h such as ¢

acteristicy ;

Irsuap R, Murr!

medium,
Amoco Production Company Research Center waste.
- ' Tulsu, Oklahoma 74102 Severa
: Goldenbe
A method is presented for calculating the temperature increase that results from heat
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generation by radioactive wastes placed in a subsurface cavity. Cavities of spherical, cylin- N : :
drical, and other shapes are considered. The method takes into account the disintegration (19607, 45

energy released by the various isotopes present in a waste and is applicable to wastes of all [1966]. 3

types, irrespective of their origin, age, or radioactive composition. This has been achieved by by assuni

grouping the isotopes according to their decay characteristics. The procedure described is of heat s

particularly useful when dealing with high-level wastes from power reactors. After a detailed to the 10

examination of all the isotopes identified in significant proportions in a 90-day-old waste, it fo )of(

ace

is demonstrated that when such a waste becomes 1 year old there are only 5 isotope groups
that are mainly responsible for the heat generation. The number of groups reduces to 4
when the waste becomes 2 years old. In the theoretical treatment of the problem dimensionless
. parameters are used. These parameters make it possible to present the results in a few
diagrams, which can be easily used for a rapid determination of the temperature rise for a
subsurface cavity containing radioactive waste. Since these diagrams do not depend on
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specific values of cavity dimensions, thermal constants of subsurface materials, or decay few poig

characteristics of the radioactive isotopes, they are applicable to a wide variety of situations merical ¢

that may be encountered in practice. By comparing the temperature rise from a subsurface in the si

heat source of constant strength with another that decays exponentially with time, the 1 cond

necessary conditions are determined for considering that the radioactive waste is a constant ma 3

source of heat without introducing serious errovs. As an application of the theory, the tem- In the:

perature field from a spherical cavity in rock salt containing a 2-year-old reactor waste has that per
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general and is applicable to other subsurface
media.

The rise in temperature resulting from de-
posit of radioactive waste in a salt cavity is
a complicated function; it depends on factors
such as geometry of the cavity, thermal char-
acteristics of the waste and of the surrounding
medium, and radioactive composition of the
waste.

Several authors have studied this problem:
Goldenberg [1951], Birch [1958], Schlechter
and Gloyna [1959], Kotewale and Ganguly
[1960], Brandes [1964], and Black and Dickey
[1966]. Most of them have tackled the problem

by assuming that the waste is a constant source

of heat and have restricted their investigation
to the temperatures at the center and the sur-
face of the cavity. Other investigators have
taken into account the variation in the rate of
heat generation in the waste, presenting their
results in the form of complieated relations
that can give temperature values only at a
few points; such results require tedious nu-
merical calculations each time a change occurs
in the size of the cavity, the value of the ther-
mal constants, or the radioactive composition.

In the present paper, a method is presented
that permits a ready calculation of the tem-
perature field resulting from a waste having an
arbitrary radioactive composition. The method
provides for the values of the disintegration
energy of the various isotopes present in the
waste and of their decay constants. By using
dimensionless parameters, the results obtained

1. 1Its fission yield is not very low. ‘

2. Its half-life is not very short. Most of-
the short-lived isotopes would have already
disintegrated at the time of subsurface dis-
posal of the waste. The only exception to this
is the short-lived daughter products resulting
from the disintegration of long-lived parents.
The energy released by them must be taken
into account. '

3. The energy of disintegration is not very
small,

4. The half-life is not very long. The rate
of disintegration and hence of heat release for
a long half-life product remains negligibly:
small even when its yield is significant.

The fission yields, the half-lives, and the dis-
integration energies of the various fission prod-
ucts have been reported many times (see for
example Watson [1961]). As the values vary
over very wide ranges, the probability that a
fission product will meet the four conditions

"~ mentioned above is very small. As an example,

the half-life of *Ce is 0.78 year, whereas that
of ™Bu is 1.6 years; both have comparable
amounts of disintegration energy, but the
yield of *Ce is about 200 times higher. There-
fore, in a mixture of fission products in which
both are present, the thermal contribution from
*Eu can be neglected.

By a similar argument, it can be ascertained
[Mufti, 19667 that all the produets whose fis-
sion yield is less than 0.19, collectively release
a negligibly small amount of energy as com-
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pared to the energy released by products whose
tions that may be encountered. yield is more than 0.19%. Consequently, the
A complete list of symbols used is given as isotopes that need to be considered must have
an appendix. - a yield of at least 0.19,, Of these, the isotopes
’ that are very short lived will not be present
Raptoactive WastE as A Source or Hear in significant proportions if the waste has been
The energy released by disintegration from a  allowed.to cool for a period of 1 year or longer,
high-level radioactive waste containing fission  and therefore they also need not be considered.
products is so great that the waste keeps boil- The very few isotopes that still remain are
ing through self-heating, After cooling for some  further reduced in number on account of con-
time, all the fission products but those that  dition 3 mentioned above.
are very short-lived may still be present in . Let us consider an actual example of a 90-
significant amounts. Fission products are pro- day-old waste (Table 1) reported by Bruce
duced in varying proportions, and their energy  [1960]. We call this waste ‘X’. When this
of disintegration varies considerably. waste becomes, let us say, 1 and 2 years old,
A fission product in the waste will make a  the activities of the various isotopes present in
significant contribution to heat generation only it can be easily calculated by using the well-
if it meets the following conditions: - known decay equations (sce, for example,

are applicable to the wide variety of situa-
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TABLE 1. Important Fission Products Identified
in Significant Proportions in a 90-Day-Old Reactor

Waste
Half-life, Concentration,
Isotope years pc/ems?
893y 0.148 1.6 X 104
908 28.0 2.3 X 10¢
oy 0.159 2.3 X 108
9Zr 0.178 2.7 X 108
106Ru 1.0 7.2 X 104
18Ru 0.11 3.5 X 104
129T¢ 0.09 3.1 x 108
11Cs 30.0. 2.0 X 10¢
140Bg, 0.035 5.2 X 108
H1Ce 0.088 9.8 X 10¢
43Py 0.038 5.5 X 103
WCe 0.78 6.9 X 105
4INd 0.032 1.6 X 103
WiPm 2.6 9.0 X 104
1813m 93.0 5.6 X 102

Evans [1955]). The results are presented in
Table 2, which also includes the rate of heat
generation by .various isotopes in calories per
cubic centimeter, The energy data for those
products that have short-lived daughter prod-
ucts includes the energy released by the latter.
In the case of *Sr, *"Cs, and **Ce, which have
very short-lived daughter produets and are
therefore in equilibrium with the corresponding
parent products, the total disintegration energy
could be obtained by simple addition. Such
& procedure is not justified for ®Zr (half-life:
63 days), whose daughter product has a com-
parable half-life of 35 days. The procedure for
evaluating the release of energy for this case
is explained below.

. When the waste has cooled for 1 year or
more, one can assume that

Cnb/Czr 'r: Tzr/(Tzrb_ Tnb) = 2.25 (1)

where C., and C,, denote the activities in
curies of “Zr and *Nb per cubic centimeter
of the waste at a given time, and 7., and 7.,
denote their half-lives. Then the encrgy con-
tributed per cubic centimeter by “Zr and its
daughter product can be expressed as

Ecr+nb = Clrezr + 2°25Czrenb
Etr+nb = Cl.r(e” + 2'250715)

where e, and e, denote the energy/curie re-
leased by *Zr and *Nb, respectively, and can

be expressed as

1.221 X '107* cal/sec

I

€:r

i

1.130 X 107 cal/sec

Since e., and e,, are almost equal, we can take
an average value of 1.176 X 107 cal/sec and
write down '

€np

E.imy = (3.25 X 1.176) X 107°C,,
(cal em™ sec™)

We further note that the half-life of ™Y is al.
most equal to that of *Zr, and that the energy/

curie released by ™Y is 7.251 x 10 cal/see;

Therefore, for purposes of energy caleulations,
1 curie of ™Y is equivalent to 0.1897 curic of
®Zr. Consequently, by assuming an averaze
half-life of 60.2 days for both ®Zr and *Y, hoth
1sotopes can be handled together. Similariy
“Sr and *'Cs, which have almost equal hali-
lives, can be handled together, along with their
daughter products *Y and *'Ba..The energy
released by them per curie is

€yrry = 1.817 X 107* cal/sec
€eorpa = 1.205 X 107° cal/sec

Therefore, by assuming an average half-life of
29 years, we can consider that 1 curie of (s
is equivalent to 0.915 curie of “Sr. By classify-
ing the fission products in this manner, we

finally end up with-a very short list of the-

isotopes that need to be considered in the waste
X when it becomes 1 year old. The results arc
presented in Table 3.

Table 3 shows that the energy released by
the first 5 isotope groups amounts to 7.951 X
107 cal/(cm® sec), whereas the total energy
released from all the remaining isotopes
amounts to 7.077 X 107 cal/(cm® sec), i.e., only
0.09% of the former amount. This leads to the
interesting conclusion that when a mixture of
fission products, such as waste X, is 1 year old,
an accurate estimate of the heat generation
can be made by considering only 5 isotope
groups.

It is easy to verify that when the waste be-
comes 2 years old, the contribution from “Zr,
“Nb, and *Y becomes negligible, and the
number of isotope groups responsible for the
generation of heat is reduced to 4, This simpli-
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TABLE 2. Generation of Heat from the Waste X

Isotope Concentration

Heat Generation from Waste X

Heat Genera-

Daughter After 1 Year,

After 2 Years,

tion per Curie,* After 1 Year, After 2 Years,

Isotope Product ¢/em? ¢/cm? cal/sec cal/(em3 sec) cal/(cm? sec)
8551 oo 4.76 X 10-¢ 4.48 X 10—¢ 6.897 X 10~¢ 3.28 X 1077 3.09 X 10™*
9Sr 0y 2.26 X 1072 © 2.20 X 1072 1.317 X 1073 2.97 X 1075 2,90 X 10~¢
ouy 8.74 X 1078 1,13 X 104 7.251 X 10% 6.34 X 10™% 8.19 X 1078
%5Zr %Nb 1.46 X 102 2.97 X 10 3.822 X 10~* 5.56 X 10~% 1.14 X 10~®
106Ru 106Rh 4,28 X 102 2.14 X 10 1.859 X 10~ 7.96 X 10~% 3.98 X 107¢
137Cs BIRg 1.97 X 10~ 1.92 X 107 1,205 X 107 2.37 X 10~ 2.32 X 1078
144Ce 4Py 3.54 X 107t 1.46 X 107! 1.671 X 107%  5.92 X 1074 2.44 X 10~¢
HWPm 7.36 X 1072 5.65 X 1072 1.048 X 104 7.71.X 1078 5.92 X 10™¢
1618 m 5.56 X 10¢ 5.52 X 104 6.231 X 1078 3.47 X 1078 3.44 X 107

* The data given here include the energy released by the corresponding daughter products,

fication permits the investigation of the geo-
thermal field resulting from the subsurface
disposal of radioactive waste, taking into ac-
count the amounts of energy released by the
various isotopes present in the waste.

TEMPERATURE RiSE DUE T0 SUBSURFACE
CavrTies FILLED WITH RADIOACTIVE YWASTE

Spherical Cavities

We shall consider the simple theoretical
model of a spherical ecavity filled with radio-
active waste. The spherical cavity is assumed
to be located in an infinite, homogeneous, and
isotropic medium at a uniform initial tempera-
ture. We further assume that the thermal
properties of the sphere are the same as those
of the surrounding medium. To start with, we

TABLE 3. Heat Generation from Various Isotope
Groups When the Waste X Becomes 1 Year Old

Heat Generation,
cal/(em?® sec)

Isotope
Zr 4 %Nb + 9Y 6.25 X 107
WSy 4 0Y . 137Cs - 197Ba 5.33 X 107¢
Ry 4 196RK 7.96 X 107
Wi - WPy 5.92 X 10~
WPy 7.71 X 107¢
89S 3.28 X 1077
103Ry 4 105Rh 2.65 X 1077
2w 4. 29T 2.46 X 10-8
wpy, negligible
ety 9.01 X 10-®
HIND negligible
WPy negligible

" shall consider the case when the cavity gener-

ates heat at a constant rate.

We shall base our treatment on dimension-
less parameters. Such an approach, besides
being more generally applicable, will enable
us to investigate more complicated cases, such
as an exponentially decaying heat source.and
a mixture of such sources decaying at different

rates.
Let us introduce the following notation:
T, temperature, °C.
t, time, sec.
r, distance from the cavity center, em.’
R, cavity radius, em.
To, initial temperature of the medium, °C.
¢, heat capacity of the medium per unit
volume, cal em—3 °C—t,
K, ‘thermal conductivity, cal em~=tsec™t °C-1L
k, diffusivity, cm? see™1.
4;, rate of heat generation, cal em~3 sec™1.
The boundary-value problem for the constant
heat source can then be stated as

op
6T = Ix(é“ + gﬂ) + A,

6t r ar
0<r<R t>0 (2

oT o°T 20T
¢S, I(ar r6r>r>Rt>0(3)
,T(T) 0) = TO (4)
lim T@, ) = T, (5)
TR+0,0) =TE&-—-0,1 (6)
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T(0, t) isfinite for ¢ > 0 ®

Birch [1958] has solved this problem by
using the method of Laplace transformation.
If we introduce the following new variables,

T = kt/R’ (9
p=r/R (10)
U=T-17T,°C (11)
A; = A,R*/K °C (12)

the equations given by Birch can be written
in the form

L(‘Z; 7) = 1[1 + EaV (1,'3 erfe —~——12+ P

p VT
s 1-p) g(.z 1+ p
1 erfe 2vr +p 1 erfe /T

. 1 -
— i erfe G p):, 0<p<1 (13)

and

U(P;T)__ﬁ[ » (-3 pt+ 1
————-Ao = - 24/71 47 erfe T

p+1
24T

p—1
2V'r

— 4% erfe

) + 4% erfe

+ 4% erfe "2:/TIJ p>1 (14

where
<«

" erfe z = / "' erfe ¢ dE
z

n=1,23 -, (15
and

efcr = 1 — oaf 2 (16)-

The temperature rise for the steady state
can be very easily obtained by setting 7/9t =
0 in equations-2 and 3 before performing the
integrations. The results expressed in terms
of 4, and p are

U(p)/ 4o = 3(1 — p/3)
and

0<p<1 (17

U/ 4o =3p p> 1 (18)

Note that all quantitics appearing in equationg
13, 14, 17, and 18, including the ratio U/4,, are
dimensionless.

Hitherto we have considered the case of a
constant spherical heat source. We shall noyw
assume that this source consists of radioactive
waste containing only one type of isotopes. 1f
A is the decay constant, the heat generation
can be expressed as

A(t) = Ae™ (19)

A, denotes the heat generation from the waste
at an initial time ¢ = 0. This is the time when
the waste is deposited into the ground. By
using the dimensionless time scale 7, relation
19 can be rewritten as

A(r) = A = g% (20)

where

A =Rk (21)

is also a dimensionless parameter. The tempera-
ture for this case can be obtained with the
help of Duhamel’s theorem [Churchill, 1958]
from relations 13 and 14. One gets as result

U(p: 7 = Ao V(P’ T)

— AoA _[ eV, ) de (22
)]

where V is the value of U in equation 13 or
14 for 4, = 1.

The integral appearing in relation 22 can be
written in the form

f e V(p, 1) du

0

= V{(p, lr)f e xm du
3

[ Vo

- _I'_’(P; 7'1) (1 _ G—Xr)

1
X 0<iI<

Therefore

limf V(p, w)e X0 gy = ‘K(%{—OQ
(1]

T-s00

where V(p, o0) c‘orrcsponds to the temperature
in the steady state, Whence

and:
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0
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AEL;EIQ.(I __‘8~Xq

A 0< i<t

Km0 g V(px, )

-} corresponds to the temperature
state. Whence

p, we

Rapioactive WasTE DisposaL

lim U(p, r) = 0

Tt

and

T=1T,
ie., after a very long time, the disintegration
energy released from the waste is dissipated
away into the surrounding medium, and the
medium has everywhere its original tempera-
ture 7.

Relation 22 shows that by considering a de-
caying source of heat to be constant and of a
strength equal to that at = = 0, the values of
temperature rise will be overestimated by the
amount

F o= AQXf e Y (p, p) dpe
0

F< ARG, [ S (29)
1]

= 4, V(p, DL — )
Now the temperature rise for a constant heat
generation 4, is given by

If = 110‘7

Therefore

F/lU<1—e"=1—¢" (24)

Note that the expression on the right does not
include R or 4,, ie, the percentage error de-
pends only on ¢t and A and is independent of
radioactive concentration of the waste or cavity
size. The error will remain less than 10% if

1—e™ <ol
ie., when

t < 0.152T . = T1y/6

where T, denotes half-life of the isotopes con-
stituting the waste. Therefore if we accept 95%
of the temperature rise corresponding to A (%)
= A, (which is the rate of heat generation of
the waste at t = 0) as the probable value, the
error introduced thereby will remain <5% as
long as t < Ty/6. A similar procedure shows
that 909% of the value of the temperatures ob-
tained by setting A (t) = A involves an error
of <109 when t < T.u/3. Thus, for an old
waste that mostly contains *Sr and *Cs (both

8573

have an almost equal half-life of about 29
years), the subsurface heating results will be
reasonably accurate for the first 10 years.
Finally we consider the case of a waste con-
taining 7 different types of isotopes. Let A,
denote the generation of heat (cal em™ sec™)
due to the isotope of type s at time ¢t = 0.
Then the heat generating function will be given

by

A = 2 Ape ™ = 3 Ae™ (25)

2=l 2=1
and the expression for temperature will take
the form

U(P; T = ,i,; AOs[V(P) n — &,

: f MR Y, 1) d#:\ (26)

where .

Aoy = AR/
Relation 23 must now be replaced by

Fmixture = Z A037\a f e——X.(r—p) V(p, }l,) dpL
[

a=1

Fmixtura < V(p: 7’) Z AOs(l - e—Xn) (27)
s=1

I

V(P: ) :‘; Ao

T V(P) 7) Zl Ao.e—X.f

Therefore

U> Vi, 1) 2 Ao
g=1

But on account of relation 26 we have

U< Z Ao V(p, T)

=1

Therefore we can write

V(P) T) Z Ags > U> V(p; 7') Z AOne—x‘f
2=1 sl

whence

n

U= —K%—L) S At M) (29)

a=1




8574 Irsuap R, Murrms

This approximate relation underestimates the
temperatures for short times, and overestimates
them for long times.

Cylindrical Cavities

. We shall now consider a heat source havmg
the form of a eylinder. It seems natural to in-
“vestigate this case by using cylindrical coordi-
nates, The corresponding heat equations ecan
be written as

OT 19T 6“1’

¢ r or
0<r<R —-b<2z<b (>0
ar T 18T
. cc’)t K[ar +;dr + ] (30)
2l >b, 0<r<ew, t>0
(el <b, r>R, t>0

where b denotes the half-length of the eylinder.
These equations are independent of the direc-
tion of r and are valid for an isotropic and
homogeneous medium. The method of Laplace
transformation is not suitable for solving this

- problem because the equations derived by

transformation are again partial differential
equations. An expression for determining tem-
perature rise for this case can, however, be ob-
tained by employing the method of instantane-

~ ous heat sources [Carlslaw and Jaeger, 1959,

p. 253]. This method deserves special consid-
eration because a radioactive isotope is a
physical example of an instantaneous source
of heat, .

The heat equation

°U
dz°
is satisfied by the functlon

62 14U
LAY

U= @%t)m exv.{-[(w - ')
+ =)+ -2t} (32

Relation 32 can be interpreted as the tem-
perature rise at a point (2, y, z) at time ¢ due
to an instantancous point source . located at
(2’, ¥, 2’) which releases Ac¢ units of heat at
t = 0. A is called the strength of the source,
and ¢ and %, respeetively, denote the heat ea-
pacity per unit volume and diffusivity of the
medium. If the source, instead of being instan-

taneous, continuously acts from t = 0to t = t,
being variable with time, the temperature rise
from it will be given by

A z/) 372 €Xp {"‘[(‘L - x,)z

8(7:'16)“ g f (¢t —

+ @ — v+ &= )4k - )} ar
(33)

Let this source be represented by a radioactive
substance confined around the point (z/, 3, 2')
in a volume element dz’ dy’ dz’ and releasing
heat at the rate of A;e=*¥ cal em~3 sec—t. We
further assume that the thermal properties of
the radioactive substance are the same as those

of the surrounding medium. Then equation 33
will be replaced by

80(1rk)3/2f (t — )"~
=@ =2 + @~y (349)
+ (e —2)%)/4k(t — )} da’ dy’ d’ 4

where 4, and A are as previously defined.

When the radioactive material is uniformly
distributed inside a cylinder, the resulting rise
in temperature at any point (r, 6, z) and at
time ¢ can be written as

v =g [ L[

cexp {—[r* 4+ 1'® — 21’ cos (0 — ) (35)
+ (& — )]/ 4k} dr’ o de" dp
where

~exp |

z =1 cos @ 2’ =1 cos ¢’ (36)
y = rsin @ y' = 7'sin 0 (37)

and '
={— (38)

Relation 35 ean also be written as

4 ‘G—M [ c)‘u b
= Se(ak)”2 fo Rzl dp /: ,
vexp [—(z — 2')*/4ky] a2’

R
: f oxp [—(* + )/ dku]s” ar”
0

2x
f exp [2r" cos (0 — 0')/4kp) dO’
0

We now 1
[Carlslaw

, j
f exp [~
-5

= (wkp)'

2x ;
f exp [1:
0 i
f exp [
o :

= 2Rk ’
We finally

AR
24

4
e
0
@
. f e—kpu
[
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U = —

parameter
p =1/R
7 = ki/l
Expressed
takes the
Age

U — o

o«
f Pl
0

When we
n differen
be replace
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ously acts from ¢ = 0 to t =1,
~1th time, the temperature Tise
~en by

A !
ZE-:(—%‘_/_"' exp {'— [(z — 3;'):'

+ (& — )1/ 4k(t — )} ar

(33)
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oM
)+ (y — y)? (34)
t— )} do’ dy’ &z’ dt

re as previously defined.
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a cylinder, the resulting rise
. any point (r, 6, z) and at
‘=0 as

/\2' fb R Ax
I ‘/; Rz
® — 21 cos (0 — 0) (33)

ulr’ dr' do' &2 du

" =1’ cos §’ (36)
! = ¢’ gin @' 37)

«
i

=i (39)
<0 be written as °

LAa b
Kz dy.f
- —b
_ vz')"’/‘u\.#] s’

— (" ) k] dr’

2’ cos (0 — 0)/4ky) 0’
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Relation 44 gives the temperature rise in and
outside a eylinder of finite length filled with a
waste of arbitrary radioactive composition,

From the symmetry of the problem it fol-
lows that the highest temperature is reached
at the point (p = 0, { = 0); that is,

We now make use of the following relations
[Carlslaw and Jaeger, 1959, p. 250]:

fb exp [—(z = 2)/4ky] de’
1/2 a2+ b L z2—b
= (why)"/ [erf Wﬁ - elf"—*“(4k#)1/z] (39)
f“ exp [2r' cos (8 — 0')/4ku] 4o’
= 2rl 0<2 ku) (40)
j;x exp [—(° + r'z)/4ku]10< )r ar’

~ 2Rk f e o) Ju(Re) dae (41)
, .
We finally get

U _ A‘.Izgce—')\l
e (et Gyt = et )
./;“’ e " Jo(ra) J1(Re) da] du (42)

Once again we introduce a set of dimensionless

parameters:

p =r1/R ¢ =z/R h = b/R

r = ki/R® A, = AR’/K % = \R'/k
Expressed in these parameters, equation 42
takes the form

_ Aoe-Xr
U= 2
N O g'—h)
Le [(elf N erf N
. fn e Jo(pa) J i (er) da] du (43)

When we are considering a mixture containing
n different types of isotopes, relation 43 must
be replaced by

n —Rer
U — .Zl A()aze

_/:x [(xfhj_/g. e;'f%f)

.]:D e““"'.ln(pfx).],(a) da] du ’ (44)

T

Kot h
Ulpeo = Z Age™ f " erf o/

=0 g=] 0

f e Ji(e) da du (45)
1]
By using the relation

f FTe) do = 1 — MW (46)
o

equation 45 ean be expressed in a simpler form

Ulpeo = E Age™
{=0 s=1
/; erf \/ &1 — e V) du (47

And the highest temperature in the surround-
ing medium will be reached at the point (p =
1, =0).

When the length of the cylinder is much
greater than its radius, it can be treated as
an infinite cylinder. The temperature rise for '
an infinite eylinder can be obtained from re-
lation 44 by setting b = ¢o:

n T
. =X X
U = Z AO,G o f [ i
a=1

0

'»/;m e_“a’Jo(POl) Ji(@) de dp (48)

The temperatures everywhere along the axis of
an infinite cylinder and also at all points that
are equidistant from the axis are the same.
The axial temperature is given by

= Z AoaeaX.' f ex'“ f 8_‘“!,:.’1((1) da d[l
a=1 0 " Jo
Z Al)s f X'p(l -

s=1
Cavities of Other Shapes

In actual practice, a cavity that may be
considered for waste disposal may not always
correspond to a perfect sphere or a regular
eylinder, It could be, for example, a hollow

™M) du (49)
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space in an abandoned salt mine from which
salt has been excavated, or a naturally devel-
oped solution cavity within a body of limestone
meeting the conditions of environmental safety.
It could also be one or more porous layers on
a synclinal structure or a system of layers
artificially created in the subsurface such as
those resulting from hydraulic fracturing.
Therefore it would be of interest to consider
those cavities that can neither be approximated
to a sphere nor to a cylinder. ,
Parallelopiped. 'The temperature field for a
parallelopiped (— ¢ <z < ¢ —-b <y < b,

—d £ z £ d) can be easily derived from equa-,

tion 34 by integration. The resulting expres-
sion is

—Ast
l!e
o= S| [ L

e [~[@ = )+~ ¥
G (z — 2)°)/4ku} d2’ dy’ dz’ du
where

=t—t

. It can be written in the form

a A g™t [t e '
U= ;Wf —573 dp e
f exp [—(z — 2')°/4ky] do’
b : .
. f exp [—(y — ')’/ 4ku] dy’
-~b

'-/;a exp [—(z — 2)*/4ky] d2’

B n A;,e—)m fz fk.n[( x4+ a
U= E Sc . [ erf (4]\7#)1/2

a=]

LT a y+& y — b)
elf(4k”)]/2><elf (thﬂ)l/n erf (4]\ )1/2

erf (Z ,;) ‘f)] du  (50)

( LY
er (4L )1/2

By setting ¢« = b = d in equation 50, one gets
temperatures for a cavity of cubical shape.

The temperatures at the center of the cube are
given by

L c—-)\.c ¢ \ a 3
U= “*'"——-—[ e "‘(erf w—r) d
;1 4 o (4]‘7#)1/21 #
" (51)
The maximum temperature that the surround-
ing medium will attain will be at the eenter of

cach side of the cube, for example, at the point
(x = e,y = 0,2 = 0); it can be expressed as

" ~Aet :
Ac’ae ) kS
Umax = Z 2C € "
[}

=1

rf (4;(;1/2 (elf (4k )1/2) dp (52)

The minimum temperatule at the surface of
the cube will bé at the comels, such as . the
point (2 = @,y = a,2 = @) -

T a A.-se_l" fc M‘( 2 )a
Unin = E 8¢ A [4 erf (4ky)l/2 du
- (53)

Thus the temperatﬁre field close to a cubical

cavity ranges between a number of maxi-
mums and minimums.

A layer of infinite extension and wuniform
thickness. A layer of infinite extension and
uniform thickness can be regarded as a rec-
tangular parallelopiped with any two of its op-
posite faces of infinite extension. The tempera-
tures for such layers can therefore be readily
obtained from equation 50 by taking the limit
as e¢ and b approach infinity. We get as a

result

n —Ast
U= E A;,C

$=1 2c

¢ Nent o 2 + d
‘/; € [elf (4]\?[1,)1/2 (4’» )1/2] d,u (51)

A system of pardlel layers of infinite ex-
tension. An interesting possibility for dispos-
ing of waste into the subsurface is disposal by
means of hydraulic fracturing. Let the number
of layers be denoted by m. Let the thickness of
each layer be denoted by 2d and the separation
interval between the layers by f. If each layer
is filled with radioactive waste, then the zones
of heat generation will be as follows:
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. € Nen
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L0 o
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pthlayer (@p—3d+(@—1D/<2<@p— Dd+ (p—1f

The temperature rise due to the pth layer will
be given by

n A,', —Aet
U= N

‘| cz—(@p—3d—(p— 1)
ST ¢/ —(42‘31/— = 1)1] "

Therefore for the entire system of layers, we
can write

n A“e-—)\;t ft -
U = Z % \ €

o[ 2= (2p—3d—(p— 1f
Z:x [exf ' (dkp)'”®
B R ¢ —(4231/— (p — l)f] du (55)

The derivation of relation 55 is based on the
assumption that all the layers are filled with
the waste at the same time. If the various
layers are filled at different times, each layer
being filled subsequent to the one below it, the
heat generation in each layer will start at dif-
ferent times. Let these times be denoted by
foy B3y « v oy tpay -+« , Ema for the first, second,
. .., mth layer, such that

<<t < - < by < vvr < e

The expression for temperature rise for this
case can be written as

U= 3 35 ew (A0~ )
o] 2= @p—3)d—(p— 1f

(k)"

This expression reduces to equation 54 by set- .
ting £, = 0 and m = 1. One should also note
that ¢ appearing in relation 56 must be greater
than t..,. The situation ¢ < f,.. implies that
the mth layer either does not exist or has not
yet been filled with the waste.

Cavities of irregular shape. All cavities of
irregular shape can be treated by considering
them as consisting of a number of parallelopi-
peds and superposing the temperature fields
resulting from each.

Throughout our discussion, we have ‘treated
the waste as a solid. Therefore, strictly speak-
ing, the theory presented above is applicable
only to those wastes that have been reduced
by necessary treatment to solid form either
before or immediately after their disposal into
the subsurface. )

NUMERICAL EVALUATION OF TEMPERATURES
- AND RESULTS

We shall give below an account of the nu-
merical evaluation of temperatures based on the
theory presented in the above section on tem-
perature rise. The calculations were carried out
by using an IBM digital computer. As we men-
tioned in the beginning, most of the numerical
work refers to rock salt.

Spherical Heat Sources

The temperatures for this case were obtained
by using relations 13, 14, and 22. For comput-
ing # erfc  and # erfe x appearing in relations
13 and 14, the following formulas [Carlslaw
and Jaeger, 1959, p. 484] were employed:

- RS S N
1 erfe @ T exp (—2°) — z erfex  (57)

mi"erfer = " erfex — 228" erfcz  (58)

(n=23 )
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The function erfc x was computed by using the
following series [Jahnke et al.,, 1960]:

f _ L g zco: (_1)nz2n+l . < 9 5 )
eriex = 7 23 Cn + Dn! -
e 1 1-3
efez = [1 ~ 22 T )
1-3-5
j—-m§+ ] (59)
| (2.5 < z < 7.0)
etfcx =0 (x > 7.0

The temperatures were calculated for different
sets of values of p, X, and 7. In each case, 4, was
taken as unity. Temperatures for any other value
of A, can be obtained by simple multiplication.

For determining a suitable range within which
the practical values of A would lie, the following

' ranges for N, &, and B were adopted (both values

of k are from Birch, 1959):

Moax = 5.06/year (corresponding half-life, 50
days). T

Amin = 0.023/year (corresponding half-life, 30
years).

kgax = 10.5 X 105 em/year (diffusivity of

- salt at 0°C).

koin = 30.0 X 10¢ cm/year (diffusivity of
salt at 400°C).

Ro.x = 1000 cm.

Rmin = 50 cm.

03
I o<1
0.2
<\(° L
5+
01 |-
: patle)
Q0L Ll 1
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Corresponding to these ranges of A, k, and R,
relation 21 yields

Amax = 16.88 Amin = 5.5 X 107°

Therefore X should range from 5.5 X 107 to
16.88. Preliminary calculations revealed that
the data corresponding to A < 4.0 X 10-¢ dif-
fered very little from data obtained by assuming
a constant rate of heat generation, and therefore
the smallest value of X for which calculations
were done is 4.0 X 104,

The results for p = 1, i.e., » = E, are presented
in the form of a diagram (Figure 1), showing
U/ A, as a function of 7 for different values of A.
The curve corresponding to A = 0 (infinite half-
life) yields temperatures for a constant rate of
heat generation. Figure 1 can be used for a rapid
determination of temperatures at the surface
of a cavity containing waste of arbitrary radioac-
tive composition. The procedure is quite straight-
forward and consists of the following steps:

1. From a knowledge of the decay constants
and concentrations of various isotopes that are
present in significant proportions in the ‘waste,
calculate the values of X and 4.

2. Corresponding to each value of A computed,
read off U/ A, from the diagram for a given value
of 1. )

3. Multiply each value read by the correspond-
ing value of 4, and add the results. That gives
temperature rise at a given time. 4

102 10 j
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’ o0
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Fig. 1. Temperature rise at the surface of an exponentially decaying spherical heat source as a
function of 7.
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4. Repeat steps 1 to 3 for several values of 7
to obtain the temperature rise as a function

of time.

It can be seen from Figure 1 that, except for
very large values of A (which are not likely to
be encountered in practice), all the curves run
pretty close to the curve for A = 0 as long as
the temperature maximum is not reached; after
that the difference in temperatures in the two
cases increases rapidly. This means that when
we are interested in the long-term effects of sub-
surface waste disposal, the assumption of a
constant rate of heat generation leads to large
erTors.

Since the range of A is very large, the values
of X arising in practical cases will not likely fall
on the curves presented in Figure 1, and the
‘temperatures must be obtained by interpolation.

To avoid this difficiilty, diagrams were prepared
- that give ‘the temperature rise as a continuous

function of X for a set of values of 7. They are
presented in Figures 2 to 7. Each of these dia-
grams refers to a certain value of p. All of them
look quite similar. Let us examine one of them,
say Figure 5, more closely. It gives the tempera-
ture in the surrounding medium at a distance
of 3 times the eavity radius. To each value of the
temperature for a given A, two values of 7 cor-

05
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respond. The smaller value gives the time at
which the medium will first reach a given tem-
perature during the process of heating, and the
larger value gives the time when it returns to
this temperature during cooling. In this manner
one knows how long various points of the sur-
rounding medium will remain at temperatures
higher than a given temperature. Since salt
becomes very plastic at high temperatures, this
information is of great importance for investi-
gating possible plastic flow of the salt when
subjected to radioactive heating. To each value
of &, there is only one 7 curve that is touched by
the envelope tangentially. This curve gives the .
time at which the maximum temperature will
be reached.
Cylindrical Heat Sources

The temperature field for an exponentially
decaying cylindrical heat source of finite length
is given by relation 43. On account of equation
16, the evaluation of the error function terms
in 43 was done using equation 59, explained
previously. For computing the integral

4 = [ o (o) i) de

which also appears in qumion 43, the follow-

T [ II]
yasil

03

U/A,

l['llll]

02

01

lll{]ll

bl

(@]
(o]

1

10-3

3
A

Fig. 2.

101 1

Temperature rise at the center of an exponentially decaying spherieal heat source as a
function of X. The numbers on the curves denote corresponding values of =. ’
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Fig. 3. Temperature rise at the surface of an exponentially decaying spherical heat source as a
function of A. The numbers on the curves denote corresponding values of 7.

“ing relations for ¢(0) [Magnus and Oberhet-

tinger, 19487 were used: '

[10 for p<1
f " Ja(pa) T dee = 105 for p=1 (60)
' ]\0.0 for p>1

It is obvious from relation 43 that the tempera-
tures for a cylindrical source depend not only
on 1, X, and p but also on two additional param-
eters h and {. The temperature ficld from a
eylindrical source is therefore much more com-
plicated. Preliminary calculations, however,
revealed that for practical purposes a cylinder
whose length is 5 times or more its diameter
can be treated as an infinite cylinder. In such
case, the temperatures depend only on 7, A, and p.
In other words, the number of practical cases
for cylindrical heat sources is quite limited.
Several diagrams for the determination of
temperature field in and outside an exponentially
decaying cylindrical heat source were computed
[Mujti, 1966). They can be used in the same
manner as those presented for the spherical
sources, and they yield similar information.

A Practical Example

As an example, we shall apply the theoretical
diagrams of Figures 2 to 7 for calculating the
temperatures in and outside a spherical salt
cavity filled with the waste X mentioned m
the second section. Let us assume the following
data: '

|

Age of the waste = 2 years.

To = OOC.
R = 2 meters.
k = 64 X 105 em¥/yecar =

0.02 cm?/sec.

0.0086 cal/em sec °C.

= ki/R* = 16¢, when { is in
years. ‘

TR
Pl

The value of A4, for various isotopes present in
the waste ean be determined by using Table 2.
" The results of the caleulations ‘are presented
in Figure 8, which shows the evaluation of the
temperature at the center of the cavity for
each of the isotope groups present in the waste.
The temperature rise due to the waste X is ob-
tained by summing up the contribution from
these isotope groups, Although ™Ce is much
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Fig. 4. Temperature rise at p = 2 from an exponentially decaying spherical heat source as a
function of A. The numbers on the curves denote corresponding values of 7.
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groups present in the waste.
se due to the waste X is ob-
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8. Although ™Ce is much’

shorter-lived than *Sr and *Cs, its thermal
contribution is much greater even than that of
“Sr and *Cs together. This is because both
the activity and the energy of disintegration
of *Ce are very high. On account of its shorter
half-life, however, the effect of *'Ce dies away
more rapidly. At ¢ = 10 years, the contribution

from all the isotope groups except *Sr and

“Cs becomes negligible.

Figure 9 shows the complete picture of the
temperature field and its variation with time.
The temperature curves correspond to various
distances from the cavity center. There is a

O —

ANANAN
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UIA,

regular shift of the point of maximum tem-
perature away from the center of the cavity.
The growth of temperature is much faster than
its decay. Thus at the surface of the cavity,
the temperature rises from 85°C to a maxi-
mum value of 340°C in 69 days, but more than
4 years are required for it to drop to 85°C
again, The results for p = 10 show that the
temperatures at a distance of 20 meters from
the cavity center are very low. The maximum
temperature there is only 8°C and is reached
3 years after the waste is disposed of. These
results show that, once the salt medium is
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Temperature rise at p = 3 from an exponentmlly decnying spherical heat source as &
function of X, The numbers on the curves denote corresponding values of 7.
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heated by the waste, it requires a very long
time to cool down (for the case under con-
sideration, it requires many years) and the
temperature field penetrates very slowly and
only up to a very limited distance into the
surrounding medium.

Similar calculations of the temperature field
when the waste X at the time of disposal is
1 year old, show [Mufti, 19667 that the maxi-
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mum temperature that would be attained by
the surrounding salt medium is 760°C. Since
salt melts at this temperature, the theory pre-
sented is not valid for those conditions.
Heating of salt beyond its melting point may
endanger the structural integrity of the cavity.
However, even if the melting of salt were to be
restricted to a zone close to the cavity surface,
another difficulty is met. The melting may lead
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i
to a firm attachiment of the waste to the salt

mass when the molten salt solidifies. In fact,
experimental studies by Kappelmeyer [1966]
indicate that a solid body attached to salt by
resolidification is extremely hard to detach.
Therefore such a procedure of waste disposal
should be considered only at those sites where
a need for eventual recovery of the waste for
emergency or other reasons is not foreseen.

CONCLUSIONS

The properties of the temperature field in
and outside a subsurface cavity containing
radioactive waste were investigated in detail.
Cavities of spherieal, cylindrical, and other
shapes were considered. The results for spheri-
cal cavities were presented in several diagrams.
These diagrams can be conveniently used for
rapid caleulations of temperatures for spherical
cavities of diffcrent sizes containing waste of
arbitrary radioactive composition.

As an example, the diagrams were used for
caleulating the temperature field for a spherieal

cavity of 2-meter radius located in a salt med-
ium and containing a high-level nuclear reactor
waste. Even for a cavity of such small size,
the calculations reveal that when the waste is
2 years old at the time of emplacement, the
maximum temperature that would be reached
at the surface of the cavity is 340°C; when
the waste is 1 year old, the resulting tempera-
tures would be sufficient to melt the surround-
ing salt. The increase of the temperature is
much faster than its decay. Thercfore the salt
medium, once heated by the waste, requires
a much longer time to cool down, which for a
large cavity may mean several decades or even
more. The temperature ficld extends very
slowly and is effective only up to a limited dis-
tance into the surrounding medium. This indi-
cates that when several cavities are to be used,
the geothermal changes brought about by the
waste are not likely to produce significant
changes in major geologic structures such as
a salt dome if the distance between cavities is
larger than the effective penetration for a single
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cavity. On the other hand, a system of cavities
located too close together will behave like a

single Jarge cavity whose geothermal field will -

Insyap R, Murrt -

be more persistent and deserves a considerable
amount of further theoretical and experimental

-

A;

APPENDIX:

_investigation to ascertain its safety.
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is the rate of heat generation at an
initial time in cal cm=sectat { = 0.

4o = ARYK, °C.

A
a
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C.
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d
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10°

is the strength of a time-dependent
heat source, em? °C.

is the half-length of a parallelopiped,
cm.

is the half-length of a cylinder or the
half-width of a parallelopiped, cm.
is the activity of the radioisotope z,
‘¢ ecmT3, -

is the heat capacity per unit volume,
cal em~3 °C-1,

is the half-thickness of a parallel-
opiped or the half-thickness of a
layer, em.

is the energy released per curie by

erf
erfc x

f

h
L(z)

i erfe x
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radioisotope z, cal sec-1,

is the error function.

is the complementary error function

=1- efz).

is the separation interval between
two parallel layers, ecm.

is b/R.

is a modified Bessel function of the
first kind and of order n.
= [minterlc £ dE n=123-..
where t° erfc 2 = erfe .
is a Bessel function of the first kind

~and of order n.

K

k
l
m

is thermal conductivity, cal em=! sec~t
°C,

is thermal diffusivity,
is a fraction, 0 < I < 1.
is the number of layers constituting
a system of parallel layers.

is the number of types of radioisotopes
present in significant proportions in
a waste at a given time.

is the radius of a sphere or a cylinder,
em.,
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Fig. 9. Temperature field as a function of time in and outside a salt cavity of 2-meter radius
containing the waste X,
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r is one of the spherical or cylindrical
coordinates, cm.

s is the Laplace transformation param-
efer.

is the half-life of a radioisotope, sec.
is temperature, °C.

T, is temperature at an initial time,

¢t = 0,in °C.
¢t is time, sec. )

U istemperature risc = T — T, in °C.

u(p, 8) is the Laplace transform of the func- -

tion U(p, 7).

is one of the cylindrical coordinates,
em.

is the decay constant, sec™?.

= R\/k.

= { — ¥, sec.
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