1

!
¢
¥
|
;

VOL. 76, NO. 17

GL03537

JOURNAL OF GEOPIIYSICAL RESEARCH

Vertical Gradients of Heat Production in the Continental Crust

1. Theoretical Detcctability from Near-Surface Measurements

Artur H. LACHENBRUCH

U.S. Geological Survey, Menlo Park, California 9026

The lincar relation between heat flow and heat production suggests that in a gross sense
the vertieal distribution of crustal heat production beneath granitic rocks has a simple
generalized form. Knowledge of the vertical gradient of heat production near the surface
would permit selection between alternative simple models. However, attempts to determine
a generalized gradient from heat-production measurements from boreholes are complicated by
the occurrence of inhomogencities on all observable scales. Variations in heat production
typieally observed on the hand-sample scale prechide meaningful estimates (even of the sign)
of the generalized gradient in holes a few hundred meters deep, the depth typically drilled
for heat-flow-heat-production measurements. In holes 3 km deep, the uncertainty in the
gradient due to small-scale perturbations is generally reduced to acceptable levels with 100 or
so samples. However, perturbations with wavelengths greater than 1 km and amplitudes sufi-
ciently small to permit the linear heat-flow relation, can still preclude meaningful estimates of
gradient if the phase is unfavorable. Confident determinations of the trend of heat production
with depth in granitic rock will require observations in several holes to depths of a few
kilometers or in very large numbers of holes drilled to lesser depths.

It is generally believed that a substantial
fraction of the heat escaping from the earth’s
continental surfaces is generated by the radio-
active decay of uranium, thorium, and potas-
sium in the earth’s crust. As heat flow from the

“earth’s surface is an integrated effect of under-

lying sources, by itself it provides no direct in-
formation on how this heat production might be
distributed vertically, It does, however, pro-
vide a basic constraint for geochemical studies
of various kinds that clearly indicate a general
upward concentration of sources in the crust
[see e.g., Heier and Adams, 1965; Lambert and
Heier, 1967, 1968a, 1968b; Hyndman et dl.,
1968].

The recently discovered linear relation be-
tween heat flow and heat production in plutons,
first described by Birch et al. [1968] and elab-
orated by Roy et al. [1968] and Lachenbruch
[1968, 1970], provides new information on the
vertical distribution of crustal sources, in cer-
tain regions that have undergone plutonic ac-
tivity at least. In this relation the measured
heat flow q is related to the measured heat pro-
duction in near-surface plutonic rock A(0) by

¢ = ¢*+ DA(0) (0
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where g% and D evidently are relatively con-
stant over large geographic provinces [Roy
et al., 1968]. The parameter g¥, which has the
dimensions of heat flow, is most simply identi-
fied with a uniform flux at depth. The parame-
ter D has the dimension of depth, and it evi-
dently relates to the vertical distribution of heat
production in the region above the depth (z¥),
at which the flux is uniform.

Relation 1 does not determine the heat-source
distribution uniquely; three of the endless
number of distributions permitted [see Lach-
enbruch, 1970, equation 4] are shown in Figure
1. Although the step function (Figure la) has
been favored as an interpretive model largely
because of its simplicity [Birch et al, 1968;
Roy et ol., 1968], it has been shown that the
exponential model (Figure 1l¢) is the only one
that would permit the validity of the empirical
relation (1) in regions of differential erosion
[Lachenbruch, 1968, 1970]. The proper selec-
tion between permissible models may be im-
portant to an understanding of the evolution
of the crust and to estimates of mantle heat
flow. It will also affect estimates of crustal tem-
perature to some extent.

If the true source distribution were a simple,
smooth one-dimensional one like those depicted
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in Figure 1, a measurement of the vertical gra-
dient of heat production near the surface would
help determine its form by independent means,
For convenience we define a normalized gradient
of heat production

G(4) = (—1/A)(dA/d&) @
where it is understood that G is evaluated near
the earth’s surface. For the step function (Fig-
ure 1a) G = 0, and for the decreasing linear dis-
tribution (Figure 1) G = (2D)7, Simple de-
creasing functions that are concave toward the
depth axis have G < (2D)™ and those that
are convex have G > (2D)™. In particular, for
the exponential distribution (Figure 1¢), G =
D, (It should be noted that the step model and
the exponential model do not in any sense repre-
sent limiting cases of source distributions per-
mitted by equation 1.) Thus, ideally, a determi-
nation of G from measurements of A in deep
boreholes in plutonic rocks taken with the value
of D determined from relation 1 could yield
mformation on the form of the vertical source

distribution in the hypothetical crustal layer of
depth z*. The relation between G and D for

the models of Figure 1 is shown in Table 1.
From observations available to date, D is evi-
dently 9 or 10 km in the Sierra Nevada and
Basin and Range provinces [Roy et al,, 196S;
Lachenbruch, 1968] and perhaps 6 or 8 km in

A(0)

\\\> - Alz) 0
AN

(=4

N
N

a

Step funetion

A(0)

Linear function

3843
the eastern United States and more stable re-
gions [Birch et al., 1968; Roy et al., 1968].
(Jaeger [1970] has recently reported a pre-
liminary value of 4.5 km from three points on
the Australian shield.) It has been shown
[Lachenbruch, 1970] that z* is likely to be of
the order of D or larger. Hence the depth to
which we are attempting to determine A(z)
is very large relative to the depth of boreholes
and mines, or to the height of topographic re-
lief, which might provide opportunities for
direct sampling in plutonie rocks. Furthermore,
variations in heat production are known to occur
in plutonic rocks on every observable scale
[see e.g., Tilling et al., 1970]. In view of these
facts, the question arises whether it is possible
to obtain significant information on the general
form of A(z) from the measurement of G in
boreholes; we are also led to ask .whether the
failure to observe a particular trend can be used
as a valid argument against a particular model,
or the observation of a predicted trend can be
used as an argument for it. This paper ad-
dresses these questions.

SomE CoNSTRAINTS IMPOSED BY THE
Lingar REnaTION

It is possible that the step distribution (Fig-
ure 1a) could be responsible for the linear rela-
tion (1) at one locality, the linear distribution

A(0)

A(z)

N

Cc

Exponential function

Tig. 1. Three simple heat-production models consistent with the linear heat-flow relation.
G is the normalized gradient at the surfuce,
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Tannk-1. Relation between Norymalized Near-Surface Gradient G(¢) and Simple Models ¢{z) for the
Distribution of Heat Production with Depth

Step Model

Linear Model Iixponential Model

D, km @, km™! G, km G, km™! G-, km G, km™ G, kin
10 0 © 0.050 20 0.10 10
7% 0 © 0.067 15 0.13 7%
5 0 © 0.10 10 0.20 5

Sce Figure 1.

(Figure 10) at a second, and the exponential
(Figure 1c) at a third. However, it scems much
more likely that there is one idealized form for
the heat production with depth, constrained by
geochemical considerations, that is universally
responsible for the validity of (1). Perhaps it is
one of those shown in Figure 1 or perhaps it is
some other. We shall assume such an idealized
distribution exists and denote it by ¢(z). Let

A(z) represent the actual measurable value of

heat production at any depth z beneath a point
on the surface. In general the difference between
these two quantities will be responsible (in part)
for departures of the measured heat flow ¢ and
heat production A(0), from the idealized rela-
tion (1). This difference will be denoted by e(z2).
Hence

A@) = ¢(2) + () (3)
In establishing the linear relation, the heat
flow was measured in holes to some depth !
generally a few hundred meters), one or two
orders of magnitude less than the depth 2* to
which the relation ¢(z) is expected to apply,
ie., :
LD S z* 4

The surface heat production A(0), equation 1,
is generally identified with the mean heat pro-
duetion obtained from samples in such holes.
Departures of A(z) from ¢(z) would gen-
erally result in departures (Ag, AA4) of the
(g, A(0)) point from the idealized values as
follows: .

Ag = ‘/:’ e(2') d | (5)

where 2’ represents depth beneath the ground
surface, and :

t/2
AA = % f (@ & (6)

=i/2

where origin of z is taken as the midpoint of
the hole of depth I (The depth variable z will
be used in this sense hereafter.)

Barring large scale systematic departures, (1)
1s much more sensitive to the effect of € on A4
than on Aq. For example, if ¢(z) were a sine
wave with amplitude b and wavelength A, the
maximum value of A4 would be b for wave-
lengths greater than I, whereas the maximum
value of Ag would be Ab/=. Hence

Ad b

O G) @)
Aq R
g — ¢* s xD ¢(0) ®

Thus only for wavelengths A approaching D
(on the order of 5 or 10 km) is the measured
value of ¢ likely to be_sensitive to perturba-
tions unless their amplitude & is very large
(equation 8). However, according to (6) and
(7) the linear heat-flow relation could be ob-
scured by perturbations e{z) of any scale (ex-
ceeding the sampled interval) unless

b << $(0) ()

Thus the observability of the linear relation (1)
implies that the departure e(z) of heat produc-
tion from the idealized distribution ¢(z) be
substantially less than the mean surface heat
production on scales exceeding the interval over
which heat production is sampled. If we denote
this mean heat production by 4., (instead of
A4(0)) where

4, =1 f " AQ (10)

~1/2
the observability of the linear relation seems to
imply that generally

A4 K $(0) g A, (11)
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12 [

3 2€ d:
A P

I
|

AA’
Hence

A, = 6.+ A4

AI fa— ¢P + AA.,
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series, any term ¢, of wave number -

. 2mvz -
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We shall next consider whether perturbations
small enough to allow the observability of the
linear relation may still be so large as to preclude
the determination of the idealized quantity
G(¢) from measurements of A(z) in boreholes.

DerarTURES OF LARGER WAVE LENGTH

A logical way to estimate the vertical gradient
of heat production from several measurements

- of A, throughout a borehole of depth I, would

be to perform a linear regression analysis to
obtain a result of the form ’
l 1
AR >~ A, + Az 5 <z< P (12)
where 4, is the mean value of heat production,
and A’ is defined as the mean gradient over the
interval sampled. In considering departures of
larger wavelength we shall assume that the
sampling is sufficiently dense to characterize 4
as a continuous function of depth. In this case
A,, would be as defined in equation 10, and A4’
would be given by S

fI/Z -

) 24 dz 1/2 ’

4’ = —-:l—l%———— = ll.%f 24 dz (13)
2 dz e

[*1/2

From (3), (10}, and (13) it is seen that (12)
can be considered as the sum of the linear
approximation to ¢ and the linear approxima-
tion to departures from ¢.

6@ = ¢, + ¢”2 (14
(2 >~ AA + AA"z (15)

where ¢, and ¢’ are defined by expressions
analogous to (10) and (13), A4 is defined by
(6), and AA’ is given by

» 1/2 ‘
A4’ = % 2e dz (16)
=172
Hence
Am = ¢, + A4 V)]
Al = ¢} A4’ (18)

If e(z) is represented by a trigonometric
series, any term €, of wave number v is given by

2 2z
€, = a,sin 2—1%: + b, cos ,,1;2_ (19)

where g, and &, are the amplitudes of the odd
and even components respectively, and » (the
number of waves in a hole of length ) can
assume fractional values. The wavelength A of
the perturbation is defined by A = I/v. Substi-
tution of (19) into (6) and (16) yields expres-
sions for the departure of mean heat production
A4 and the departure in the mean gradient
AA’, caused by a departure of wave number v
from the idealized distribution.

AA = b, sin wv (20)
T
AAT = i’l— W) (210)
where
6 sirnl T \
W) = —]—~——— — cosmr (21b)
Ty v

These relations are illustrated in Figures 2 and
3. -
As anticipated in the previous section, if the
even component has a wavelength greater than
the hole depth I, the value of A4 rapidly ap-
proaches the amplitude b,. For shorter wave-

lengths the amplitude can, of course, be sub- -

stantial without significantly affecting the mean
value (Figure 2). ) ’

We are mainly interested in the normalized

gradient G'{¢) and its approximation G (4},
which are represented as follows:

G@) = ¢ /dn S (22)

G(A) = A’/ 4, | (23a)
= [G(qs) /1 + ﬁ;’—l—] + AA'/A,

‘ (230)

By (11), the departure of the first term on the
right in (23D) from G(¢) is of second order.
We therefore take the second term of {23b) as
a measure of the departure of G(A) from the
idealized value G(¢) and denote this departure
by 8@G. Thus for the sinusoidal departure (19)

’
5o = 24 Loy (29)

The observability of (1) suggests that a,/4A.
will be substantially less than unity (inequality
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11), Even so, it is scen from Figure 3 that for
perturbations on the order of the hole depth
(v ~ 1) in holes typically drilled for heat-flow
studies (I ~ 0.3 km), we ean expeet (24) §G ~
1 km™. In such eases the perturbation 8G is
greater by an order of magnitude than the
quantity sought, G ~ D?* ~ 0.1 km™ (see
Table 1).

Thus small-amplitude perturbations of larger
wavelengths can clearly preclude meaningful de-
terminations of G in shallow boreholes. However,
because their wavelength is not small relative to
the interval of observation I, there is no satis-
factory way of identifying them. Indeed, our
best source of information regarding such per-
turbations might ultimately be the validity of
(1) and the restriction it imposes (11). At the
other end of the spectrum are very small-scale
irregularities in A that introduce more pre-
dictable uncertainties in the determination of @.
It is useful to consider them separately.

RanpoM SMALL-SCALE PERTURBATIONS

Having recognized the overwhelming effects
that small-amplitude perturbations of moderate
wavelength can have on the estimation of G(¢)
in shallow boreholes, we shall ignore them for
the moment and see what can be inferred from
the more observable small-scale perturbations.

When the uranium, thorium, and potassium
contents are measured in two adjacent hand
specimens taken from an outerop or core of

typical granitie rock, the ecomputed heat pro-
ductions commonly differ by 209 or more (see
o*/dn*, Table 1, Lachenbruch and Bunker
[1971]). In this scction we shall assume that
such small-scale variations constitute the only
departure of A from ¢. Their effects on the
estimate G(4) of the idealized quantity G(¢)
will be investigated.

In this case we have n samples taken at
depths z,, ¢ = 1, 2, 3, . . . n, extending over the
length of the hole, The origin of z is again taken
as the midpoint of the interval of observation,
normally at a depth /2 beneath the ground
surface. The perturbations are given by

€le) = Az) — ¢@) (25)

We assume that e(z:) is randomly distributed
so that ¢ is approximated by the regression line
through (4., 2¢)

d@) >[4, Lao] +[4" =8z (26)

where « and B are the standard errors of 4,
and A’, respectively.

Denoting by ¢ the root-mean-square devia-
tion of A(z;) from the regression line (26), we
have .

o= Bt - e} e

where ¢(2;) is the value given by (26) at the
depth 2,

T T v T T
081 -
- 04} -
~
- ~ -
AA —
- \//// -1
-~
-04+ -1
-0.8 i 1 L L. L
0.l 0.2 0.5 2 ‘5 10 20

Wave number, ¥ = 0/\

Tig. 2. Relation between the wave number v of a cosine perturbation of amplitude b, and
- the error A4 it causes in the mean heat production in a hole of depth 1.

VER®
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and
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(£

= I[n/12]"°1 + 3/2n + 0(1/x%)] (29)

For samples large enough to be significant the
higher order terms in (20) can be neglected.

Hence we shall use

g = (12/m)"*a/l (30a)

ave number » of a sine perturbatio
an gradient of heat production in

n of amplitude a» and the
a hole of depth L

8= (12)/%a/! (300)
Thus insofar as random small-scale fluctua-
tions are concerned, the uncertainty in deter-
mining the slope of the heat-production curve
in a 3-km hole with ten samples is the same as
that in a 0.3-km hole with 1,000 samples. In
reality, the deeper, sparsely sampled hole should
give a more satisfactory estimate because of the
diminishing effeets of larger wavelength per-
turbations with increasing hole depth, ie., with
increasing wave number v (se¢ Figure 3).
We are interested in determining the nor-
malized gradient G(d). Denoting its standard

error by y we have
G(A) £y = (4" £ B)/(4n = a - (8D
and

V/GA) = /AL + B/A7 (32
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Combining (28), (30), and (32) yiclds

v = (o/14,)(12/0)"*(1 4+ PG°/12)'*  (33)

As G < D™ (Table 1), by (4) the term in
F'G* ean be neglected, Hence the standard error
i the estimate of (G is taken to he

y = (o/LA,)(12/n)"" (340)
y =B/A, (340)

The validity of the foregoing analysis de-
pends on the assumption that e(z,) has a normal
frequency distribution. It is well known, how-
ever, that random variations in the distribution
of trace elements are usually described better
by a log-normal distribution (see e.g., Rogers
and Adams [1963]). To accommodate this re-
finement we can rewrite equation 26

¢() >[4, = o[l — (6G(4) =72 (39)

By inequality (4) we may add terms of higher
degree in Gz to the approximation without
significantly affecting the linear terms. Hence
(35) could be replaced with the approximation

#(2) >~ [4,* + ¥
-{1——(G*:i:'y*)z—l—zi!(G*:l:'y*)?z?.%.'. : }
(36a)

86 [ 4,* £a¥] expl— (G* £192]  (36D)

Thus fitting the exponential function (365) to
(d:, z¢) is not significantly different from fitting
a straight line to the same data in these appli-
cations. However, the starred quantities in (365)
can be identified with the parameters of a linear
regression analysis of (In Ay, 2,), which is based
on the assumption of log normally distributed
A

In¢ = In(4,* £ o) — [G* & y*]z (370)

o*

AL*
a* K A,*

> n A,* + — [G* £ y*]z

FlK1 (37b)

The standard error o* of A.* and the standard’
error y* of G* for a regression line through log
normally distributed 4, are given approximately
by expressions corresponding to (28) and (34)

¥/ (n)'? (38)
(a*/1A,%)(12/n)'"? (39)

*

i

[+4

,Y*

i

where

*

ot = n_A—’LE {Z [l A, — In¢()]*}'"* (40)

where In ¢(z) is the value given by (37} at the
depth 2.

For the most part the difference between the

starred and unstarred quantities is not signifi-

cant in this application, and the choice be-

‘tween the normal and the log-normal analyses

is somewhat arbitrary. The log-normal assump-
tion was favored in this study because it seemed
to account better for the distribution of ex-
treme measured values.

UNCERTAINTIES IN THE DETERMINATION

or G(4)

We have considered two cases. In the first

the only departure of the heat production from
the idealized value ¢(z) is that represented by
a sine wave of wavelength A = I/v where ! is
the length of the interval of observation (typi-
cally the hole depth). If this interval is com-
pletely sampled with no observational error, the
value of G determined from a regression anal-
ysis can contain an error 8§G as large as

3G = W()a,/ Al (41)

where W is given by equation 215 and Figure
3, and @, is the amplitude of the perturbation.

In the second case the only departures from
the idealized relation ¢(2) are random ones on
the hand-sample scale that are assumed to be
normally (or log normally) distributed. In this
case the standard error y of @ resulting from a
linear regression analysis of n specimens spaced
equally over the interval 1 is

=1ﬁ“ (12{72,)’/2 (42)

where ¢ is the standard deviation of the heat-
production sample,

As (41) and (42) have similar form, the
dependence on ! of these two types of errors in
the estimate of G' can be represented on a single
graph (Figure 4). The values of # on the curves
refer to the evaluation of y; the values of v
refer to 8G. On the left-hand ordinate scale
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Fig. 4. Relation between hole depth I and the error in the normalized gradient G associ-
ated with a large-scale perturbation of amplitude ¢. and wave number »; or the error v as-
sociated with small-scale random perturbations with standard deviation o, sampled with n
equally spaced specimens. 4,, is the mean heat production.

y is normalized by the ratio of the mean heat
production to its standard deviation, and 3G
by the ratio of the mean heat production to the
amplitude of the perturbation,

The standard deviation ¢ of heat-produc-
tion samples tends to lie in the range from 10
to 309% of the mean A, with 209, being a
typical value (Table 1, Lachenbruch and Bunker
[19711). The right-hand ordinate scale of Fig-
ure 4 gives numerical values of y with this value
of the ratio substituted. It also gives numerieal
values of 8@ for the case in which the amplitude
of the perturbation is 209% of the mean heat
production. This value is consistent with (11)
and is probably rcasonable to illustrate the
possible magnitudes of 8G consistent with the
linear heat-flow relation.

Table 1 shows the value of G(¢) that would

result from various simple models of ¢. As-

these values are of the order of 0.1 km™, it is
clear that uncertainties in G must be kept to
a few hundredths km™ if we are to diserimi-
nate between the simplest alternative models.
Holes drilled for the determination of heat flow
and heat produection are typically of the order
of 0.3 km deep and normally about 10 heat-
production samples are taken. Although these
seem adequate for the determination of A, it is
scen (curve = 10, Figure 4) that the standard
crror y in @ determined from them would
generally be several hundred per cent of the
larger values of G($) in Table 1. If the numbér
of samples were increased to several hundred,
v could be reduced to less than 0.1 km™ (see

sk
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curves 1 = 300, n = 1000, Figure 4), but this
is likely to be a fruitless excreise insofar as the
estimate of (7 is concerned. Tt is scen from the
curve v = 3 (Figure 4), that no matter how
many samples were taken in a 0.3-km hole, a
perturbation with a wavelength of 0.1 km and
an amplitude of only 209, 4,, could cause an
error 3G in G'(¢) of 0.4 k™. The curve v = 3
also represents the case v = 0.1, which means
that a perturbation with a wavelength of 3 km
and the same amplitude could cause an error
of similar magnitude. Intermediate wavelengths
(0.1 to 3 km) could canse substantially larger
errors in G, and none of these perturbations
would seriously upset the linear heat-flow rela-
tion (see equations 7 and 8). Although the
higher frequency perturbations might be fil-
tered out by a numerieal procedure, the larger
wavelengths could not. It is seen that in the
worst case (v = 24) a perturbation with a
wavelength between 0.4 and 0.5 km could cause
and error 8G of 0.1 km™ in a 0.3-km hole even
if its amplitude were only 1 or 29 of 4,.

A most comprehensive study of the vertical
distribution of heat-producing elements has
been made in the Conway granite with hun-
dreds of samples from a maximum depth of
0.3 km [Rogers et al., 1965]. According to the
foregoing discussion these obseivations cannet
be expected to yield useful estimates of G, al-
though they are, of course, useful for other
purposes.

A few holes have been drilled to depths of
the order of 3 km in crystalline rock. It is seen
(Figure 4) that 100 heat-production samples
from such holes would yield y ~ 0.02 km?,
and they might lead to useful estimates of
G(¢p) if larger wavelength perturbations were
not severe. Perturbations with wavelengths of
a few tenths of a kilometer, so important in
the previous cases, are generally insignificant
in a 3-km hole (sec curve v = 10, Figure 4). It
is seen, however, that if the phase is unfavor-
able, wavelengths of the order of the hole depth
could cause errors in G of the order of 0.1
km™ even if their amplitude were only 10-209
of A,. Thus, even in a 3-km hole, departures
from the idealized distribution that would not
significantly alter the linear heat-flow relation
can completely mask those values of G(¢) pre-
dicted by the simple models (Table 1).

SUMMARY

Any member of a large family of vertieal dis-

tributions of heat production is compatible with
the lincar heat-flow relation, but the relation
is most simply explained by assuming a geo-
chemical tendency toward one partieular ideal-
ized form ¢(z), unspecified, but the same
(exeept for the value of D) from one province
to another. Some arguments have been ad-
vanced for assuming this distribution to be a
step function, others for its being an ex-
ponential function. For these cases the normal-
ized gradient of heat production [G($) =
—¢7(d¢/dz)] would be zero, or D ~- 0.1
km™, respectively. To distinguish between these
(or other) models from measurements of heat-
production gradients in boreholes, it is neces-
sary to determine ¢ with an uncertainty sub-
stantially less than 0.1 km™. However, the
actual heat production A(z) can depart con-
siderably from the idealized form ¢(z) with-
out measurably affecting the validity of the
linear heat-flow relation. In general, such de-
partures can completely obscure G{¢) in holes
to 3 or more km, but the likelihood of their
doing so diminishes sharply with inereasing
hole depth.
" In a hole a few hundred meters deep, such
as those usually drilled for heat-flow studies,
random fluctuations of heat production known
to oceur on the hand-sample scale generally
obviate meaningful estimates, even of the sign,
of G/(¢). Even in holes 1 km deep, small-scale
fluctuations, combined with perturbations with
wavelengths of the order of a kilometer with
amplitudes of only a few per cent, will render
meaningless most estimates of G(¢). In 3-km
holes the uncertainty in G(¢) due to small-
scale random perturbation is reduced to accept-
able levels with 100 or so samples. However,
moderate departures from ¢ with wavelengths
greater than 1 or 2 km can create errors in the
estimate of the same order as the quantity
sought if the phase is unfavorable.

Although estimates of G'(¢) from measure-
ments in individual holes might be highly un-
certain, several determinations in separate holes
might be collectively significant if each hole

" could he assumed to represent the same ideal-

ized gradient, G(¢), and departures of all

wavelengths from it were random.
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