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two problems are discussed in this paper.

The existence of the low-velocity layer (or
“ layers) in the uppermost parts of the mantle,
at least in oceanic and tectogenic regions, is now
accepted without any doubt [Press, 1970; Hales
¢t al., 1968; Anderson, 1967]. There is strong
proof in favor of the presence of a shear-wave
low-velocity zone even in shield areas [Dorman,
1969], in spite of a probable absence of P-wave
channels in these regions. In various parts of
the’ earth low-velocity layers have different
thicknesses and are situated at different depths,

The problem of the physieal or physico-chemi-
cal nature of low-velocity layers is one of the
most important in geophysics, geotectonics, and

tructure of the eru :
° ) t and )
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Vs | lion and the
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magmatism, because these layers are commonly
“identified with the zone of the asthenosphere.
Hence the problem of the origin of low-velocity
layers is intimately connected: with problems of
isostatie readjustment due to low viscosity in
these layers [Artyushkov, 1966] and with prob-
lems of partial melting. Consequently the whole
problem of the thermics of the earth’s interior is
involved in the consideration of the nature of
the low-velocity layer. '
Many authors have suggested different ex-
planations for the origin of low-velocity layers.
For review see Birch [1969]1 and Magnitsky

ved July 2, 1970,)

and Zharkov [1969). Examining various aspeets
of the problems, many scientists concede the

suggestion of partial melting as the prineipal
cause of low-velocity zones [Press, 1970; Ander-
son and Sammis, 1970; Takeuchi et al., 1968;
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The existence of the low-velocity layer (or layers) in the uppermost parts of the mantle, at
least in oceanic and tectogenic regions, is now accepted without any doubt. Different ex-
planations for the origin of the low-velocity layers have been suggested. One suggestion has
been that partial melting is the principal eause; however, this suggestion presents two prob-
lems: (1) poor knowledge of the temperature at each respective depth, and (2) discovery in
some areas of high-velocity layers that are situated just above the low-velocity zones, These

Fedotov, 19661, However, this suggestion con-
fronts two difficuities: (1) poor knowledge of
the temperature at each respective depth, and
(2) discovery in some areas of high-velocity
layers that are situated just above the low-
velocity zones, These two items are the subject
of this paper.

DerterMINING GEOTHERMS

The principal method of caleulating geotherms
is based on solving the steady-state thermal
problem. To solve this problem, the heat flux
at the earth’s surface, the mechanism of heat
transfer, the effective thermal conductivity and
heat capacity, and their dependence on tem-
perature, pressure, and composition of the me-
dium must be known. In addition, distribution
of heat sources in the erust and mantle must be
known. In a non-steady problem, i.e., thermal
history, the difficulties only augment the in-
vestigation [Lubimovae, 1968]. Unfortunately,
the present distribution of heat sources in the
mantle and crust of the earth is not known with
sufficient plausibility. Our information on this
subject is too meager. Hence geotherms calcu-
lated in such a manner are very uncertain. It
would be highly desirable to employ a different
method of caleulating geotherms to check the
results obtained with the classical method.

Here the adopted method is based on caleu- -
lation of geothermal gradients at various depths
in the crust and mantle. The gradient at the
surface is calculated at a chosen region without
difficulty if the heat flux and thermal conduc-
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tivity are known. Calculations were performed
for the western part of the Black Sea and a
typical oeean region. With proper data [Lubi-
mouva, 1968; Simmons and Ioral, 1968;- Clark,
1966] the following values were caleulated:

(dT/dZ), = 18°C/km " DBlack Sea

(dT/dZ), = 25°C/km typical ocean bottom

It 15 possible to ealeulate d7/dZ at any d(‘.ptil
by using the ordinary formula

B (2) Ly (2) ar
az =~ \op/p.c."? T \oT), 0. dZ

(), m ). o
».T.¢ d’ ».T.C az
where v is the velocity of seismic waves, p is the
pressure, p is the density, ¢ is the acceleration
of gravity, C is the composition factor, and ¢
is the phase transformation factor.

All needed partial derivatives, p, g, and the
dependence of composition and phase transition
on Z can be determined. The term dv/dZ is
supposed to be available from seismic data. Un-
fortunately dv/dZ as a rule is unknown.- Thus
(1) could not be used, except for a very rough
appraisal in some instances.

Seismic sounding in the Black Sea with sea-
bottom seismographs offered an exceptional op-
portunity to employ (1) for determining dT'/dZ.
Travel-time curves of head waves were obtained
at the Mohorovicic discontinuity (depth, 18 km;
v, 82 km/sec) and at another discontinuity

V. A, MagN11sKy

(depth, 30 km; »,, 8.8 kin/sec), and the ampli.
tudes of these waves and of refracted waves
penetrating the underlying layer were observed,
as i1s shown in Figure 1. From Figure 1 it ean he
seen that dv/dZ at a depth of 20-30 km is 0.017
sec™ and that just below 30 km, dv/dZ is 0.015
see™,

There are no grounds to suspect any phase
transition betwcen the discontinuities at 18 and
30 km just below 30 km. Hence in (1) the last
term could be omitted. There are also no reasons
to  suspect considerable variations in composi-
tion, and so, as a first approximation, dC/dZ
= 0.

In the two remaining right-hand terms in
(1), p and g are well known. The problem is to
obtain  (8v/8p)r.¢,s and (3v/87), c.s. The
value of (8v/dT),. ¢. . was accepted as —4 X
107 km/sec °C [Anderson et al., 1968] as typi-
cal for rocks of the uppermost mantle. The
difficulty in estimating (dv/dp) arose from the
experimental fact of the possible effect of pores
at the pressures under consideration. Thus the

value

(0v/0D)r.c.o = 0.065 km/sec kb
which was obtained for dunite and eclogite
nodules and peridotites- and pyroxenites from
Kola peninsula [Maghnani and Woollard, 1968;
Volarovich and Levykin, 1965], was accepted as
suitable. By using all these values and (1), the
value of dT/dZ at Z = 30 km at the Black Sea
area was determined as (d7/dZ)y =~ 10°C/km.

Discontinuity

A
100k 1 @V
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o . Rl Q
§ TRy S e
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Fig. 1. Theoretical and observed amplitudes of P waves in the Black Sea region. The
solid line represents the theoretical amplitudes (in millimicrons) of head waves at the
Mohorovicice discontinuity. The dotted line represents the theoretical amplitudes of penetrat-
ing waves calculated with various values of dv/dZ. Open circles are the observed amplitudes.
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1y average of dT/dZ in the low-velocity zone

SV,

" 1f a low-velocity layer in the uppermost man-
~« at the depth 60-200 km is the average zone
i partial melting, dT/dZ must be of the order
¢ the gradient of the respective solidus curve.
ufortunately the composition of the upper-
st mantle is still not known exactly. There
e diffcrent opinions in regard to this prob-
vm [Clark and Ringwood, 1964; Sobolev,
js; O’Hara, 1968]; yet the problem is not
entirely hopeless. ‘Most silicates at pressures
corresponding to a depth of ~100 km have
melting gradients in the range 2°-5°C/km.
tven the presence of H.O does not signifi-
cantly alter these values [Kushiro et al., 1968;
Lambert and Wyllie, 1970; Kadik and Khita-
rop, 1070].

Another widespread point of view is that
the low-velocity zone is caused by the pre-
vailing  effect of the temperature-gradient
term in (1). In this way, and for various com-
positions of the upper mantle, the critical tem-
perature gradients were obtained for S waves

..uld be estimated in the manner described be-
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in the range 32°-55°C/km and for P waves
in the range 5.5°-7.1°C/km [Birch, 1969].
Hence in the low-velocity zone the value
(dT/d%)s-n = 3°~5°C/km could be accepted.
At present there is little doubt that the
rapid velocity inerease near the depth of 400
km is asseciated with olivine-spinel transforma-
tion [Press, 1970; Ringwood, 1970; Fujisawa,
1968]. Consequently it is possible to cstimate
the value of dT/dZ at the depth of ~400 km.
High-pressure experiments give a phase dia-
gram in the MgSiO-FeSiO, system [Akimoto
and Fujisawa, 1968; Ringwood and Major,
1970; Kawai et al., 1970]. The composition of
olivine was adopted as 909% Mg.SiO,. The slope
of the transition curve was accepted as 62
bars/°C [Akimoto and Fujisawa, 1968]. Nearly
similar results were obtained by using a routine
procedure given by Magnitsky and Kdlashni-
kova [1970]. Boundaries of the olivine-spinel
transformation zone are plotted in Figure 2.
The thickness of the seismic transition zone
was taken in the range 50-80 km [Johnson,
1967; Green and Hales, 1968; Press, 1970].
The intersection of these boundaries with the

T -36°
7 =3:6°C/km

a7
7 ° 1.8°C/km

km, respectively.

A
1500 |
[&]
-3
- 1000}
500 b—1 ‘ l g
5o {50 200

P kb

Fig. 2. Determination of temperature gradient in the transitional layer. A-A and B-B
are the limits of the olivine-spincl transformation zone; a is the upper boundary of scismic
transition layer, and b and ¢ are lower boundarics corvesponding to thickness of 50 and 80

i
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Fig. 3. Limits of dT/dZ in the mantle,

olivine-spinel transition zone gives .a value
(dT/dZ) e = 18°-8.6°C/km, as can be seen
from Tigure 2. Finally dT/dZ could be calcu-
lated at the depth of ~1200 km by using the
law of corresponding states. This method gives
(@T/dZ2)ww = 12°-18°C/km [Magnitsky,
1968].

Plotting all values of dT/dZ obtained
above, we draw, in Figure 3, two curves rep-
resenting, as a first approximation, the upper
_and lower boundaries of geothermal gradients.
Integration of these curves gives upper and
lower limits of expected temperature in the
mantle. In Figure 4 these temperature limits
and, for comparison, continental and oceanic
geotherms according to Clark and Ringwood
{1964] are plotted. Comparison with solidi of

some rocks in the presence of H.O are also
plotted in Figure 4. Kushiro et al. {1968] and
Lambert and Wyllie [1970] strongly support

“the idea that partial melting is the principal

cause of the low-velocity layer.

Hicu-VeLociry LAYER

Another problem is how to explain the ex-
istence of the layer with high-velocity P waves
just above the low-velocity zone. Layers of
this kind were discovered in the Black Sea
region, under some parts of Indian Ocean and
Pacific Ocean, and beneath many continental
regions [Roller and Jackson, 1966; Dainty
et al., 1966]. Similar layers could be seen also
in some models of the upper mantle [Green
and Hales, 1968; Lewis and Meyer, 1968]. A

Z km
100 150

0 50
i
500
'
.
000} 2
3
500 ¢
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t l

—_ —-Oceanic

Continental
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] 1 L

L

30 40 50 60

P, kb

Fig. 4. Temperature in the mantle. A-4 is the upper boundary; B-B, the lower boundary.
The broken line represents the Clark and Ringwood geotherms. The numbered lines are: 1-1,
dry Therzolite ; 2-2, lherzolite - Hz0; 3-3, gabbro 4 H:0; and 4-4, granite + H.0.
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