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Abstract. The Jeffreys-Bullard theory of the topographic correction to geothermal 
gradients cannot be applied 'with confidence if the height of the relief is large relative 
to the horizontal distance and depth of the measurement points. It cannot be generally 
applied to shallow probe measurements in the ocean bottom if bold relief occurs on a 
seale exceeding a few meters, or on continents to observation in shallow boreholes in 
extremely rugged terrain. 

In an important special case, where the measurement depth is small relative to the 
distance to the relief, the 'superficial' gradient anomaly may be approximated by the 
,'alue applicable at zero depth. A fairly general two-dimensional steady-state theory for 
this case can be based on the solution for heat fhe.: through an inclined plane of arbi­
trary height and slope angle. These two parameters are easily visualized and repre­
sented graphically so that models which approximate or bracket real topography can 
be identified quickly. The results can be applied to stations on planes, valleys, ridges, 
or benches bounded by irregular slopes. They are valid for points arbitrarily close to 
slopes of any height or inclination. Finite slope and curvature of the surface at the sta­
tion can be accommodated if they are not too great. Even if other theories of the topo­
graphic correction are applicable, the pre~ent method can be useful, as it leads to rapid 
estimates by graphical means and to useful limits even if the superficial condition is 
not satisfied. 

Curvature in an ocean-bottom temperature profile justifies suspicion of a topo­
graphic disturbance from undetected relief. The temperature probe's length should be 
2 or 3 times the uncertainty in local elevation difference, and measured curvature should 
be negligible for reasonable assurance that undetected relief is not caming gradient 
errors greater than ±10%. Relief not detectable with conventional echo sounders, but 
of the type observed with deeply towed sounding equipment, can cause heat-flow 
anomalies of 50-100%, and relatively little curvature will be indicated by probes a 
few meters long. The very high oceanic heat flows are difficult to explain by undetected 
relief, but the very low ones are not. 

1. INTRODUCTION 

The pattern of heat flow from the earth's deep interior is distorted near the 
surface by topographic relief; the flux is intensified by valleys and attenuated 
hy ridges. To obtain regionally significant heat-flow values in areas with apprecia-· 
ble relief, we must correct for these effects. 

Traditionally the theory of the geothermal topographic correction has been 
approached in two different ways [Jaeger, 1965, section 51: In the first [Jeffreys, 
1£138; Bullard, 1938; Birch, 1950], a fundamental mathematical simplification 

1 Publication authorized by the Director, U. S. Geological Survey. 
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results from replacing the irregular surface by a horizontal reference plane upon 
which the temperature varies in proportion to the relative elevation of the actual 
surface. Interaction b~hveen the topographic features is thus neglected, and 
independent effects of elements of the topography can be summed to obtain the 
approximate correction. There is no limit to the fidelity with which the topo­
graphic surface can be represented, as the representation is achieved with a 
numerical procedure. 

In the second approach (applied most recently by Birch [1967] and.l 
and Sass [1963]), the tnle surface is approximated by a simple geometric surface 
and its effects on the gradient are computed directly. Thus the second approach 
yields the exact effects of an approximate representation of topography, and 
first yields the approximate effects of an (effectively) exact representation of __ 
topography. 

As Birch [1950J has shown, the first method is more general, and it lends 
itself readily to refinements accounting for topographic evolution. It has been 
pointed out by Jaeger and Sass [1963] that the second method is useful for­
very rapid estimates of terrain effects if detailed corrections are not warranted 
because of imperfectly known topography or other uncertain sources of dis­
turbance. The last statement depends upon the geometric model being sufficiently 
simple to be easily identified with the topographic surface to be approximated. 
Both methods generally become less satisfactory as the gradient measurement 
to be corrected approaches the surface. This can be explained as follows: In 
general, the frequency of occurrence of features of the earth's topographic relief 
decreases as the size of the feature increases; the largest and most infrequent 
features have a vertical scale of the order of a few kilometers. Howe\'er, the 
effect of topographic features on the geothermal gradient is not large as long as 
their height is (1) less than the horizontal distance to the measurement point 
or (2) less than the depth· of measurement. Thus, for measurements a few 
kilometers heneath the surface, condition 2 is satisfied, even for the most rugged 
relief (at any horizontal distance); a gross representation of the topography, 
used with any reasonable approximation scheme, ,vill generally suffice. Ast.he 
measurement points approach the surface, progressively smaller (and more 
frequently occurring) features will fail to satisfy condition 2, and those that are 
not far enough from the station to satisfy condition 1 will have to be accounted 
for with progressively increasing rigor; although the effects of distant relief do 
not diminish, the effects of close-in relief increase greatly, and small-scale 
irregularities can cause sizable anomalies. Under these conditions the second 
method becomes less satisfactory because it becomes increasingly difficult to 
represent close-in relief in detail and still account for distant relief in a gross 
way with a simple geometrical model. The first method becomes uncertain for 
near-surface measurements because it neglects second-order effects arising from 
lateral variations of the vertical gradient in the relief. These effects can become 
appreciable when close-in relief must be considered. Birch [1950, p. 625J pointed 
out that tat shallow depths, under sharp irregularities, the approximation is sure 
to be poor.' 

Observations of earth heat flow made to elate can be grouped into two rather 
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di:;tinct categories: continental and oceanic, Continental measurements (repre-
5cnting about 10% of the values according to Lee and Uyeda [1965]) are made 
to depths of the order' of a kilometer beneath the land surface. The relief is 
ob~ervable and can be considered known. Oceanic measurements accOlmt for the 
remaining 90% of the observations. They are made to depths of only a few 
meters beneath the sea floor, 'and the pertinent relief must be considered largely 
unknown. On the continents it is often possible to select measurement sites at 
p!:lces where the topographic disturbance is small, and an approximate theory 
C11l1 be used with confidence. In the oceans, however, unseen relief might cause 
,'ery large errors. Attempts to estimate how large these errors might be can be 
misleading if they are based on an approximate mathematical theory. 

In most observational studies of earth heat flow, continental or oceanic, it 
is usually found that for every calculation of a detailed topographic correction, 
many rough calculations are made to determine whether a given feature is sig­
nificant, or to determine the order of magnitude of its contribution. For this 
purpose there seems to be some use for results from an extem'ely simple geometric 
model that can be applied without regard for the validity of any mathema~ical 
approximation. This problem is considered in the present paper. 

The starting point is the exact solution for the gradient disturbance at the 
surface caused by the simplest topographic form, an inclined plane Eegment of 
anv;le p, joining horizontal half planes with elevation difference H. The geome~ry 
is two-dimensional, and the medium is assumed to be homogeneous and in a 
thermal steady state. In return for this loss of generality we gain the advantage 
oi two-parameter representation of results in simple graphical form. These 
parameters, slope angle and slope height, are so easily visualized that models 
which might bracket or approximate real topography can be· identified quickly. 
The results apply directly only to 'superficial gradient measurements,' which we 
define as those for which the topographic correction can be approximated well by 
the value applicable at the surface, Hence they concern measurement.s to depths 
that are less than the horizontal distance to the relief, but the height of the relief 
may be arbitrarily large. They therefore apply to many cases (particularly in 
oceanic applications) for which the standard Jeffreys approximation is quite 
llncertain. The results also yield limits for cases in which the superficial condition 
is not satisfied. 

The plan of this paper is as follmvs. The next section presents numerical 
results for the exact solution just discussed, and section 3 compares them with 
the corresponding results obtained from the Jeffreys reference-plane assumption. 
Section 4 gives upper and lower limits for the surface heat flow where two 
dopes co-exist to form a 'plane valley,' 'plane ridge,' or 'plane bench.' In section 
5, a simple procedure is described for bracketing the anomaly due to a general 
slope with exact result.s for plane slopes. Section 6 combines the first and second 
approaches to terrain corrections (described in the previous paragraphs) to 
obtain a method for approximating and bracketing the effects of a general slope, 
and conversely gives conditions under which a general slope can be represented 
by a plane slope. In section 7, conditions for neglecting gentle slopes at the 
:::lation are presented, and the variation of t.he topographic anomaly with depth 
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Fig. 1. Transformation of the plane boundary of a half-space into a plane slope. 

and the conditions under which a gradient anomaly may be considered superficial 
are discussed in section 8. Transient effects and an additional application of the 
results of section 2, the heat-flow anomaly caused by a down-faulted bedrock 
pediment, are considered in section 9. 

I intend to present results in usable graphical and tabular form and to provide 
some insight into the quantitative behavior of the superficial gradient disturbance. 
For brevity, the mathematical results are generally presented without derivation. 
In some cases they are eliminated altogether, and results are shown only in 
graphical form. For additional discussion and justification of these results, the 
reader is referred to Lachenbruch [1968]. That work will be designated in the 
text by the abbreviation TDT (Two-Dimensional Topography). 

2. HEAT FLOW THROUGH A PLANE SLOPE: EXACT SOLUTION 

An expression is needed for the vertical thermal flux through a plane slope 
on the earth's surface. The earth is assumed to be homogeneous and isotropicr 
and the surface is represented by a plane segment inclined at an angle f1 to 
horizontal surfaces beyond the toe and behind the brink which are at an eleva­
tion difference H. The model is illustrated by the region below the contour r' 
(A'B'C'D'E') in the 7J plane, Figure 1. The slope angle {3 is represented by 7rjn. 
To represent otherwise uniform conditions, it is assumed that the surface (r/) is 
at zero temperature and that at large distances from the slope the temperature is 
proportional to distance beneath the surface. 

The special case of the vertical cliff (n = 2) has been discussed by Castoldi 
[1952J. His solution was obtained by mapping a uniform field in the (j) plane 
into the region bounded by a step-shaped contour of the 7J plane with the 
conformal transformation 

dT} _ A(~ + 1)1/2 
dw - w - 1 

The more general function [Kober, 1952, p. 161] 
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dTj A(W + l)lIn 't" dw = w _ 1 " n a POSl lve mteger (1) 

:ll'hieyes the mapping 'illustrated in Figure 1. 
The vertical gradient of temperature at the contour r' (a plane slope) can 

be obtained by a contour integration. The resulting equations are too cumber­
;:owe to yield insight by inspection, and they will not be reproduced here (see 
T D7', section 2). 

The following notation is used in the presentation of numerical results: 

G = Q/K, where Q is the regional heat flux, l( is the thermal conductivity} 
and G is the regional thermal gradient. 

(K/Q)(ae/az) = q, where () is temperature in the earth and qis normalized vertical 
heat flux at surface (r'). 
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8, distance behind brink (i.e., to the left from D', Figure 1) in 
units of slope height. 

r, distance beyond toe (i.e., to the right from B', Figure 1) in 
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, Figure 1) 

in units of slope width. 

0 -2 

0.41--+-+-+---i'.;-'<-

O.2~1----i--+-+-·1--' 

-1 -2. 

-.X(H cotfJr1 

Fig. 2. V crtical component of normalized heat flow through a plane slope. Solid 
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Fig. 3. Decay. of the heat-flow anomaly with distance beyond the toe (r, upper curves) 
and behind the brink (s, lower curves) for selected slope angles ({J). 
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Fig. 4. Heat flow through the horizontal surface beyond the toe of a plane slope of angle {J. 

r is distance from the toe in units of slope height. 

S, 1', and w will always be used as positive quantities and VJ will never 
exceed 1. Thus stations 011 the lower horizontal half plane will be designated by 
II value of the coordinate 1', those on the upper half plane ","ill be designated by 
a value of s, and those on the slope by a value of w. When a station lies on the 
lower half plane, i.e., beyond the toe, the relief will be referred to as 'positive: 
and when it lies on the upper half plane (behind the brink), the relief will be 

10'~~~~~~ 
o· '---:003 ~06t-'-- -.03 -.(ll :3.7 
0.001 0.002 0.005 0.01 0,02 0,05 0,1 

S 
0,2 0.5 2 5 ·10 

Fig. 5. Heat flow through the horizontal surface behind the brink of a plane slope of angle 
/3. s is distance from the brink in units of slope height. 
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called 'negative.' Where it is not convenient to indicate the sign of the relief 
explicit reference to the coordinates rand s, slopes below the station will be 
designated by ,a negative value of f3 anel those above it by a positive value of 8. 

The general form of the normalized surface heat flow q (x) is best seen fro~ 
Figure 2, where the abscissa is in units of slope width. However, when dealina 

with effects beyond the toe or behind the brink, it is usually more convenient t~ 
consider distances in units of slope height. This is done in Figure 3, which shows 
the decay of the topographic anomaly as a function of l' and s for selected slope 
angles. Although the analytical results are for f3 == 7r/n, n an integer, they are 
easily extended to other slope angles with graphs (Figures 4, 5, and 6). Tabular 
results are presented in Tables 1, 2, and 3. The quantity D in the tables repre­
sents the difference between the exact solution and the conesponding Jeffreys 
approximation (to be discussed in the next section). 

Fig. 6. Vertical component of heat flow through the sloping portion of a plane slope. w 
is horizontal distance from the brink in units of slope width. 
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TABLE I. Normalized Heat Flow (q) on Horizontal Surface at Distance r beyond Toe of Plane Slope with Angle Beta and Unit Height 
(0 is difference between exact solution-and Jeffreys approximation) 

90· 60° 45° 30° 

D q D q D q D q 

~ .0010 1.015 -.0009 1.015 -.0008 1.015 ~.0007 1.014 

- .0034 1.028 -.0027 1.028 -.0024 1.027 -.0019 1.026 

- .0061 1.039 -.0048 1.038 -.0040 1.037 -.0031 1.035 

- .0107 1.052 -.0080 1.051 -.0066 1.050 -.0049 1.045 

- .0240 1.080 -.0166 1.079 -.0129 1.075 -.0088 1.065 

- .0445 .1.111 -.0284 1.108 -.0210 1.101 -.0133 ! .OB5 

- .1223 1.187 -.0640 1.178 -.0422 1.162 -.0227 1.126 

- .2008 1.240 -.0918 1.226 -.0565 1.201 -.0276 1.151 

- .3160 1.299 -.1242 1.279 -.0712 1.243 -.0316 1.176 

- .6130 1.409 -.1827 J.374 -.0932 1.317 -.0349 J .218 • 
- 1.017 1.515 -.2338 1.463 -.1078 1.383 -.0341 1.254 

- 2.328 1.737 -.3173 1.644 -. I 197 1.51 I -.0233 1.319 

- 3.512 1.874 -.3519 1.752 -.1165 1.585 -.0123 1.355 

- 5.136 2.019 -.3759 1.863 -.1063 1.659 +.0018 1.389 

- 9.030 2.268 -.3906 2.050 -.0754 1.779 +.0309 1.444 

- 14.00 2.493 -.3793 2.216 -.0359 1.883 +.0608 1.490 

- 29.23 2.943 -.3029 2.535 +.0659 2.076 +.1272 1.571 

- 60.18 3.483 -. 1397 2,905 +.2171 2.290 +.2144 1.656 

-311 ,7 5.184 +.6772 3.999 +.800~ 2.879 +.5086 1.875 

.,.... .. 

15° 9° 5° 

D q D q D 

-.0005 1.013 -,,0003 1.012 -.0002 

-.0012 1.024 -.0008 1.021 -.0004 

-.0018 1.031 -.001 I 1.026 -.0005 

-.0026 1.040 -.0014 1.033 -.0006 

-.0039 1.055 -.0018 1.043 -.0006 

-.0051 1.070 -.0020 1.052 -.0005 

-.0063 1.098 -.0018 1.070 -.0001 

-.0063 1.115 -.0014 1.080 +.0002 

-.0057 J.131 -.0006 1.089 +.0006 

-.0034 1.157 +.0011 1.104 +.0014 

-.0002 1.179 +.0030 1.1 15 +.0022 

+.0082 1.217 +.0073 1.136 +.0040 

+.0140 1.238 +.0100 1.147 +.0050 

+.0205 1.257 +.0130 1.158 +.0061 

+.0322 1.288 +.0181 1.174 +.0080 

+.0432 1.313 +.0227 I. 186 +.0096 

+.0654 1.357 +.0318 1.209 +.0127 

+.0921 1,402 +.0424 1.232 +.0163 

+.1730 1.514 +.0729 1.286 +.0262 

3° 

q D 

1.011 -.0001 

1.018 -.0002 

1.022 -.0002 

1.026 -.0002 

1.033 -.0002 

1.039 -.0001 

1.050 +.0001 

1.056 +.0003 

1.062 +.0005 

1 .. 070 +.0009 

1.078 +.0013 

1.090 +.0020 

1.096 +.0025 

1.102 +.0029 

1.111 +.0037 

1.119 +.0043 

1.132 +.D055 

1.144 +,0069 

1.175 +,0107 

1.5° 

q D 

1.009 -.OOC 

1.013 -.OOC 

1.016· -.OOC 

1.018 -.ooe 

1.022 +.OOC 

1.025 +.OOC 

1.031 +.OOC 

1.034 +.OOC 

1.037 +.000 

1.041 +.000 

1.044 +.000 

1.050 +.000 

1.053 +.000 

1.056 +.001. 

1.061 +.001 

1.064 +.001 

1.070 +.001 

1,077 +,002 

1.091 +.003 
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TABLE 2. Normal ized Heat Flow (ql on Horizontal Surface at Distance ~ behind Brfnk of Plane Slope with Angle Beta and Unit Height 
(0 is difference between exact solution and Jeffreys approximation) 

90· 60· 45· 30· IS· 9° 5° 3° 
q 0 q D q D q D q 0 q 0 q D q 0 q 

.9829 - .0011 .9834 - .0009 .9836 - .0008 .9840 -.0007 .9849 -.0005 .9858 -.0003 .9872 -.0002 .9887 -.0001 .9911 

.9642 - .0040 .9660 - .0031 .9671 - .0026 .9686 -.0020 .9717 -.0012 I .9746 -.0008 .9784 -.0004 .9820 -.0002 .9668 

.9471 - .0074 .9509 - .0054 .9530 - .0044 .9561 -.0033 .9617 -.0018 II .9666 -.0010 .9726 -.0005 .9779 -.0002 .9844 

.9231 _. .0132 .9306 - .0091 .9348 - .0072 .9403 -.0050 .9499 - .0025/. 9575 -.0013 .9664 -.0005 .9736 -.0002 .9820 

.8G38 - .0:,00 .8845 - .01B,j • tl949 - .0135 .0070 -.0080 .9:?1'j -.OO351·~'115 -.0016 .9558 -.0005 .96(06 -.0001 .9782 

. 7~178 - ,O:)',j • n-$O? .... O:'fj5 • HLyOU ... 0::01 • 07 ~SU -.0 1111 .')0[;1 -.00,11 I, .'J:'()() -.DOlt; .011tHJ -.0004 ,%0/ -.0000 .9750 , 
-.00;; I. """ .5875 - .0942 . 7027 - .O-1l>1 .750} - .028b .0010 -.0145 • tiD)') -.0008 .9299 +.0001 .9502 +.0002 .9696 

.4658 - .0795 .6245 - .0439 .6909 - .0260 .7589 -.0122 .8405 -.0021 i .8839 +.0001 .921 I +.0005 .9447 +.0004 .9667 

.3581 - .0053 .5493 - .0275 .6328 - .0175 .7180 -.0071 .8180 +.0001 1.8695 +.0012 .9127 +.0010 .9395 +.0007 .9641 

.2274 + .2884 .4414 + .0331 .5464 + .0131 .6559 +.0074 .7835 +.0051 .8~7fi +.0035 .8999 +.0019 .9315 +.0011 .9600 

.1546 + .7461 .3662 + .1146 .4825 + .0528 .6082 +.0250 .7564 +.0105 .8302 +.0058 .8897 ,+.0028 .9252 +.0014 .9567 

.0782 + 2.261 .2623 + .3170 .3866 + . :499 .5323 +.0667 .7114 +.0223 .8010 +.0108 .8724 +.0046 .9145 + .0022 .9512 

.0549 + 3.602 .2201 + .4465 .3441 + .2121 .4964 +.0933 .6890 +.0297 .78G2 +.0138 .8636 +.0057 .9090 ·".0026 .9483 I .0392 + 5.405 .1863 j .5809 .3080 + .2771 .4645 t.1212 fGtH:; +.0:174 /.Tl25 +.0169 .8554 +.0068 .9038 '-.0030 .9457 I .0255 + 9.634 .1445 + .8029 .2601 + .3857 .4197 '·.1682 ! .Ii:ltn ,.OC,04 +.022t .8430 +.0086 .8961 ~. 00313 .9416 ,75:?1 
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TABU: 3. Vertic')! Component of Heat Flow (q) on Sloping SurtaCf~ ;)t HorizontQl Distance';!... fr-om Brtnk of Plane Slope witt) AnglQ Bf.:tu ..-:In'J IJni 1 W\d\t~ 
(0 is difference between uxc"lc1" solution and Jeffreys approximation) 

6 45° 30° 15° 

w q 0 q 0 q 0 

.001 .0665 +J.265 .2117 +.4810 .5120 +.1011 

.005 .1138 + .7987 .2922 +.2649 .5928 +.0442 

.01 .1434 + .6061 .3357 +.1802 .6315 +.0234 

.03 .2072 + .3136 .4189 +.0577 .6987 -.0048 

.05 .2461 + .1834 .4649 +.0060 .7329 -.0160 

. 07 .2760 + .0994 .4984 -.0263 .7567 -.0227 

.1 .3121 + .0115 .5371 -.0591 .7834 -.0292 

.2 .4001 - .1587 .6257 -.1195 .8414 -.0403 

.3 .4682 - .2021 .6904 -.1539 .8817 -.0461 

.4 .5299 - .3411 .7467 -.1788 I .9156 -.0498 

.5 .'5908 - .4092 .8009 -.1991 .9474 -.0526 

.6 .6560 - .4730 .8574 -.2171 .9800 -.0546 

.7 .7319 - .5378 ,9217 -.2340 1.016 -.0561 

.8 .8316 - .6097 1.004 -.2505 1.062 -.0567 

,9 .9982 - .7012 1.138 -.2660 1.132 -.0550 

,93 1,086 - .7370 1.206 -.2689 1.168 -.0529 

.95 1.173 - .7646 1.272 -.2687 1.201 -.0502 

.97 1.311 - .7952 1,376 -.2628 1.252 -.0447 

.99 1.651 - .8116 1.619 -.2254 1.3G5 -.0267 

.995 1.903 - .7823 1.791 -.1823 1.441 -.0107 

.999 2.633 - ,5653 2.257 +.0127 1.631 +.0424 

, , 

9° 5.° 

q 0 q 0 

.6850 +.0332 .8172 +.0095 

.7456 +.0125 .8557 +.0031 

.7735 +.0051 .8729 +.0009 

.8202 -.0045 .9012 -.0020 

.8433 -.0082 .9149 -.0030 

.8592 -.0104 .9243 -.0036 

.8768 -.0125 .9346 -.0042 

.9142 -.0159 .9562 -.0052 

.9398 -.0175 .9708 -.0056 

.9610 -.0185 .9829 -.0058 

.9809 -.0191 .9941 -.0059 

1.001 -.0195 1.005 -.0060 

1.023 -.0197 1.018 -.0059 

1.050 -.0194 1.033 -.0058 

1.093 -.0180 1.056 - .• 0052 

1.113 -.0169 1.067 -.0048 

1.133 -.0156 1.078 -.0043 

1.162 -.0132 1.093 -.0034 
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3. HEAT FLOW THROUGH A PLA.NE SLOPE: 
APPROXLMATE SOLUTION 

It, will be useful to obtain an approximate solution to the problem of the 
previous section. For this purpose we shall use the simplification of JejJrey& 

[1938], Bullard [1938], and Birch [1950], in which the irregular topographic 
surface is replaced by a plane reference surface who:3e temperature varies locally 
in proportion to the topographic relief. 

To evaluate the topographic disturbance to temperature by this model at 
point whose horizontal coordinate is Xo and depth beneath the real surface is Zr 
we pass the reference plane through (xo) 0) and assign to it the temperature 

TCx) = GhCx) 

where G is the regional thermal gradient and h (.?:) is the elevation of the 
graphic surface relative to the reference plane. (For simplicity, the l:Ol:>0~7apnle-~ 
surface is considered isothermal in this part of the discmsion.) Because the 
vertical gradient is treated as uniform in the topographic irregularities, the effects 
of heat which escapes horizontally through the sloping surfaces are neglected. 

If the temperature disturbance is denoted by AO, its gradient can be written 

at1.0 1 J+O> C.?: - X n)2 - Z2 

-a = - T(x) [( _ )2 + .,.2J2 dx Z 7r _0> X Xo _ (3) 

At the surface, z = 0, the gradient disturbance approaches [Jeffreys, 1938; TDT, 
section 3) 

(4) 

If GU (x) and Qq (x) represent the vertical gradient and heat flow at (x), 
then 9 (x) and q (x) represent these quantities normalized to the regional values 
G and Q. If we assume positive heat flow in the direction of decreasing Z, 

1 at1.o/ G Q - -- = g(x) - - = q(x) - -'- = t1.q(x) = Ag(X) 
G az FO Go Qo (5) 

Go and Qo, denoting unit gradient and flux, are introduced for dimensional con­
sistency. Throughout this paper 'heat-flow anomaly' will refer to the normalized 
(dimensionless) quantity, Aq(X), ,vhich can be used interchangeably with 
Ag (x), the normalized gradient anomaly. By 'heat flow' we shall always mean 
the normalized vertical heat flux 

q(x) = 1 + Aq(X) 
Equation 4 can be written 

1 l'w T(x) 
Aq(Xo) = -G ( .)2 dx 

7r T _0> X - Xo 
(6) 

Xote that equations 3, 4, and 6 can still be considered exact if T is con­
sidered as that function whichpropcrly represents the topographic relief at the 
reference plane. 

Applying the Jeffreys assumption (equation 2) yields an approximation for 

~q' ani 

::,.q and 
Fo 

q'(: 

D 



,ruh lem I)i ti;~ 

)n ui Je.i]rr')8 
cr topograph,c 
, Y~lrie5 locally 

I 

'lis model at. a 
d ."urfact> \'" • 
~. ~ ~-, 

p1perature 

(::?) 

of the toP()­
topographic 

Because the 
;,ie", the effect:; 
; neglected. 
ean be writt.:n 

,s, 1938; TDT, 

(-1) 

.r flow at (x), 
i'~ional nllues 
,~ll1g z} 

c) (.5) 

nensional con­
he normalized 
ngeably with 
~dways mean 

(6) 

: if T is con­
: relief at the 

oximation for 

TOPOGRAPHIC DISTURBANCE TO THERMAL GRADIENTS 

Yj which we denote by Arf· 

377 

fiq'(xo) = 1:.1+=> ( hex) 2 elx 
7r _0> X - xo) 

(7) 

,).q' and rf = 1 + Aq' will be referred t() as the 'Jeffreys 
).q and q, respectively. 

approximation' to 

For a plane slope of height H and angle (3, (7) yields 

q'(X) = 1 + fiq'(x) = 1 + ~ tan (3 In C + ; cot (3) 0 < [3 < ~ (8a) 

1 H 7r = 1 - ;. x {3 = ? (8 b) 

Equations 8a and 8b apply for all x except the singular points x = 0 and x = -H 
cotf3. The quantity q and its approximation q' are compared for selected values of 
,8 in Figure 2, and their difference 

D = q - q' 

is illustrated in Figure 7 and tabulated in Tables 1, 2, and 3. 

4 7 0.002 0.004 0.007 0.02 0.04 0.07 0.2 0.4 0.7 2 
0.001 0.01 0.1 1.0 10 

r (SOLID LINES) 

Fig. 7. Difference (D) between the exact solution and the Jeffreys approx.tm:ltiOll to 
the heat flow beyond the toe (solid lines) ~m(1 behind the brink (tln;:;hed lines) of a 

plane slope for yariu\ls an~les (fJ). 
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~ 

Except for the case f3 = +90°, the Jeffreys approximation underestimates . 
the heat flow near the toe and brink (positive D) and at greater distances over- . 
estimates it (negative D). 

From equations 8 we see that !::.q' is symmetrical about the midpoint of the 
slope (x = -0.5H cotf3) , and singularities occur at the brink and toe. The exact 
solution is asymmetrical; the negative infinite heat flow at the brink becomes·. 
zero heat flow in the exact solution, and heat flows are below the regional 
over most of the slope. At the midpoint where !::.q' vanishes, the exact heat-flow, 
anomaly Ilq is given to a very good approximation by 

! 

/:"q ~ -0.8 sin2 f3 x = -O.5H cot f3 
It is clear from the figures and tables discussed that the difference D between 
q and q' generally decreases in magnitude with decreasing slope angle f3 
increasing distance from the slope. 

This example shows the nature of the error in the Jeffreys approximation to 
surface heat flow near sharp tDpographic irregularities of a special kind. If a 
slight departure from the plane slope occurred near the measurement point, this 
error might look quite different. The Jeffreys approximation for the modified 
slope could be obtained, but an exact solution for it could not. Before the results 
for the plane slope can be useful, it is necessary to determine how to apply them 
to more general slopes, as there are no plane slopes on the earth's surface. This 
problem is considered in the sections that follow .. 

(If a general slope is approximated by a series of plane slopes and the exact 
contributions of each are added, it can be shown that the resulting approximation 
is not consistently better than the Jeffreys approximation.) 

4. HEAT FLUX ON A HORIZONTAL SURFACE BETWEEX TWO 
PLAXE SLOPES 

It has been pointed out that the plane slope is a highly idealized topographic 
form but that more complicated exact models generally lose the advantage of the 
two-parameter representation or of intuitive simplicity. To extend the results 
to characterize more general configuration is worthwhile, and it can be done 
with limited success for the heat flux on a horizontal surface between two plane 
slopes. There are three cases. In the first (Figure 8a), the station lies on the 
horizontal surface between two positiye plane slopes, ha(x) and h/)(x). We 
shall call this the 'plane valley.' In the second case, the 'plane'ridge' (Figure 8b), 
the station lies on the horizontal surface between two negative plane slopes. The 
third case is the 'plane bench' (Figure 8e) in 'which the station lies on the hori­
zontal surface between plane slopes of opposite sign. 

The surface heat flux will be considered at a point Xo on the horizontal 
surface-strip a > x > b (Figure 8). The heat flow q (xo) cannot be obtained 
by simply adding the heat-flow anomalies, !::.qa (xo) and Ilqb (xo), of the inde­
pendent plane slopes because the presence of ha modifies the heat flow through 
hb (and conversely) and the modification, in turn, further modifies the heat flow 
through ha and so on. There is, howe,·er, a hypothetical temperature distribution 

h'1 

f----

r-----

f 
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h, 



;nrlerestimates 
~i~tances OYer-

:idpoint oi the 
~oe. The exact 
lrink becomes 
~'egiona{ value 
;;:act heat-flow 
~ 

:roximation to 
:,'11 kind. If a 
,nt. point, this 
'the modified 
're the results 
i) apply them 
~urface. This 

me! the exact 
[)proximation 

~x T,YO 

topogr3phic 
mtage of the 
I the results 
:an be done 
oIl byo plane 

lies on the 
h,,(;r). We 

!Figure 8b), 
~lopes. The 

on the hori-

; horizontal 
:'8 obtained 
I;" the inde­
ow through 
lE' heat flow 
distribution 

TOPOGRAPHIC DISTURBANCE TO THERMAL GRADIENTS 379 

B 

Fig. 8. Coexisting plane slopes forming (A) 
a plane valley, (B) a plane ridge, and (C) a. 

plane bench. 

c 

l' (x) over the plane z = 0 that will affect the heat flow at :to in the same way as 
the isothermal topographic surface hex) = ha(x) + hb(x). Although the plane 
slopes are not superimposable in the geometric sense, the collective contributions 
to the reference-plane temperature are. By considering upper and lower limits 
to these contributions, we obtain the following inequalities (TDT, section 5). 

Case 1. The plane valley; ha (x), hb (x) > O. 

Llq(XO) > l1qa(xo) + l1qb(XO) (lOa) 

/1q(xo) < l1qa(xo)[l + l1qb(a) + l1qa(b) l1qb(a) + l1qb(a) l1qa(b) l1qb(a) + ... J 

+ l1qb(XO) [1 + l1qa(b) + l1qb(a) l1qa(b) + f:,qa(b) l1qb(a) l1qa(b) + ... I (lOb) 

Case 2. The plane ridge; ha (x) , hb (x) < O. 

l1q(xo) > l1qa(xo) + lJ.qb(XO) (lla) 

I1q(xo) < ·l1qa(xo)[l + l1qb(a)} + I1qb(xo)[l + l1q .. (b)] (llb) 

Case 3. The plane bench; h,,(x) > 0, hb(x) < O. 

I1q(xo) > f:,qa(xo)[l + l1qb(a) + ilqa(b)l1qb(a)} + f:,qb(xo)[l + l1qa(b)} (12a) 

l1q(xo) < lJ.q,,(xo) + l1qb(xo)[l + l1qb(a),1qa(b) + (l1q,,(b»2l1qb(a)] (12b) 

As an example of the application of these relations, consider the anomaly 
/:"q (3:0) at the midpoint of a bench of width 2H bounded by 45° slopes of height. 
H. From Tables 1 and 2 

l1qa(Xo) = I1q(45°, r = 1) = +0.178 

l1qa(b) = l1q('15°, l' = 2) = +0.108 
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By (12) 

hence 
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tJ.qb(XO) = tJ.q(45°, s = 1) = -0.249 

tJ.qb(a) = tJ.q(45°, s = 2) = -0.149 

tJ.q(Xo) > -0.127 

tJ.q(xo) < -0.067 

0.87 < q(xo) < 0.93 

By comparison the Jeffreys approximation gives 

q'(Xo) = 1.00 

As a second example, consider a ridge of width 2H bounded by 45° slopes·· 
of height H. The heat flow at a point:!:o, O.lH from point a and 1.9H from point b, 
is found from (11) and Table 2 to be 

0.23 < q(xo) < 0.34 

For the same case the Jeffreys approximation yields 

q'(Xo) = 0.10 

In summary, a lower limit to the heat-flow anomaly on the horizontal surface 
between two plane slopes (ha and hb ) of the same sign (cases 1 and 2) is pro­
vided by the sum of the independent exact solutions for each slope [Aqa (xo) + 
Aqb (xo) ]. The upper limit is provided by adding an overestimate of interaction 
effects. If the horizontal surface lies between plane slopes of opposite sign (case 
3), both the upper and lower limits contain interaction terms, but the sum of the 
independent exact solutions forms the upper limit to terms of second order in the 
interaction. In all three cases the bracketing inten'al (qIlPp~r - qlower) is repre­
sented by the first-order interaction terms with or without higher-order effect,s. 

But 

lIenee 

It.qn(Xo) I > It.qa(b) \ 

!t.qb(XO)! > !t.qb(a) I 

(13) 

(14) 

in all three cases if higher-order terms arc neglected. These results are not 
restricted to pla;:te slopes; they apply to any topographic elements ha and lib for 
which IAq,,1 and IAqbl decrease with distance from the toe and brink. 

In all these cases the Jeffreys approximation gins surprisingly goorl results 
over a wide variety of conditions. It CHn, howcycl', contain con<:iiderable error 

at points very near steep slopes. 
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Useful upper or lciwer limits to the superficial effects of fairly general features 
can sometimes be determined quickly from the results for plane slopes selected. 
to o,'erestimate or underestimate the effects. 

Let h (x) be a general two-dimensional mrface and h" (x) and hi (:c) be two 
other surfaces such that 

+oo>x>-oo (15) 

The heat-flow anomalies on each surface are denoted respectively by :!:.qu. (x), 
t.q(x) , and Aql(X). It can be shown (TDT, section 6) that at any point ;1.'1) (not 
a sharp corner) at which 

hu(xo) = h(xo) (16a) 

we have 

~qixo) > ~q(xo) (16b) 

and where 

h(xo) = h,(xo) (17a) 

then 

~q(xo) > ~ql(XO) (17b) 

It follows that where 

h"(xo) = h(xo) = hl(xo) (18a) 

we have 

~qu(xo) > ~q(xo) > .1q/xo) (1Sb) 

Equations 15 to 18 will be referred to as the theorem on geometric bracketing. 
It is illustrated in Figure 9, where h (x) is represented by the horizontal lines 
OL and V'P and the wavy line Ltlt2V' joining them, The plane slope OUV'P 
represents hI, and the plane slope OLUP represent"" hi. Then (18) applies for all 
points (xu) on OL and V'P. One-sided limits are given at the points of tangency, 
;co = tl (relations 16) and Xo = t2 (relations 17). 

The results of this section can be applied to tho::;e of section 4 to establish 
limits to the heat-flow anomaly at stations interior to many real valleys, ridges, 
and benches or to section 2 to obtain limiting values to, the anomaly near 
simpler slopes. 

Fig. 9. Geometric bracketing of a general 
slope with two plane slOPeS. 

'I , 
! 
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The method of geometric bracketing can quickly lead to a det€rmination" 
whether specific. topographic features are significant in heat-flow studies. 
example, the effect of any positiYe feature is overestimated by that of a cliff 
the same height and distance from the station. Thus a positive feature TI·h,"~'~ ,,' 

height is less than 10% of its distance from the station cannot affect the heat flow 
there by more than 2.8% (Table 1) ; if its height is 5% of the distance, the limit.~, 
is 1.5%. The corresponding limits for negative features are 3.670 and 1.7%. (I~ 
is surprising that the anomaly 10 slope heights from the toe of a 90° cliff, 2.8% ' 
is not very different from the anomaly 10 slope heights from the toe of u, 
slope, 2.1 %, Table 1.) If features of the same sign occur at such distances on 
sides of the station, their interaction would be negligible (relation 14), and 
limiting effects are obtained by adding the individual limits. If the features 
of opposite sign, the limiting effect is the one having the larger magnitude. 
examples can quickly be taken from Table 1. A positive slope whose height 
equal to its distance from the station cannot affect the heat flow by more than 
10% if its maximum slope angle is 9". A valley 1 km deep with a 10-km flood­
plane will not increase the heat flow at its center by more than 10% if the walls. 
are not steeper than 30°. (The interaction is negligible by (14).) 

If holes are drilled to determine heat flow, it is desirable to select sites at 
which the topographic anomaly is minimized. Thus site selection orten involves 
making many calculations of the type just discussed. I have found it helpful to­
take H copy of Figure 3 to the field for this purpose. 

Although the bracketing described is achieyed with a two-dimemional model,. 
it can .. of course, be applied to three-dimensional topographic forms. 

6. EQ-CIYALENT SLOPES 

The methods of the preceding section often give a useful upper or lower­
limit to the topographic anomaly, but the condition that the bracketing slopes 
be pre3ent everywhere above or below the real surface usually leads to bracket­
ing intervals that are rather large. A more refined method is therefore considered 
in this section. 

Returning to the discussion of section 3, we see that an exact expression 
analogous to the approximation (7) can be obtained from (6) if the Jeffreys 
assumption (2) is replaced by 

T(x) = C/h(x) [1 + e(x)] 

where e is the unknown function that adjusts (2) to give the required value of 
T at the reference plane. 

() 11+<0 h(x')[l + el d' 
/1q Xo = - (' , .)2 X 

7r _0> X - Xo 
(19) 

= /1q'(x
o
) + 1.1+0> h(x)e 2 dx 

or -co (x - Xo) 
(20)-

11+0> hex1e 
D(xo) = /1q(xo) - D.q'(xo) = - (' I )2 dx 

7r _0> X - XI) 
(21)-
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It is seen that e (x) can be viewed (for positive h (x» as the mean value of 
the gradient disturbance at (x) between the topographic surface and the refer­
ence plane, or the mean value of the heat-fiow disturbance there. (For negative 
Ii, it is, of course, a fictitious quantity but no less useful as a concept.) Thus e 
i~ positive where the topography concentrates the vertical filL''', generally near 
the toe of a slope. It is negative where the vertical fiux is attenuated by the re­
lief, generally near the brink of a slope. (Its value must be greater than -1 over 
[lI1Y finite interval if overhanging topography is excluded.) Thus a bump on a 
plane slope generally contributes more to the reference plane temperature if it 
occurs near the toe (positive e) than near the brink (negative e). This notion 
forms the basis for the approximating schemes of this section. 

To discuss rather general topographic features and still restrict consideration 
to slope-like forms, we shall define a 'slope form' as two horizontal half planes 
joined by a general (two-dimensional) surface whose highest point is the inter­
section with upper half plane (the brink) and whose lowest point is the intersec­
tion with the lower half plane (the toe). If no ambiguity will result, this figure 
"'ill be referred to simply as a 'slope.' 

Consider a slope form hab (x) as the sum of a plane slope ha (x) and the 
irregular surface of finite width, hb• The anomaly at a point Xo on the horizontal 
portion is (19, 20) 

() 1 r+o> hah(l + eab) 1 
J.ljaQ Xo = - -(----)-2- ex 

7r • _00 X - Xo 
(22) 

= A (.) + A '( ) + 1. 1 +ro h"en d + 1. 1+
00 

hnh(enh - en) d 
J..J.q. Xo J..J.qb Xo ()2 X ()2X 

7r _0> X - Xo 7r _'" X - Xo 

In this way the anomaly clue to a rather general surface can be expressed in 
terms of the anomaly due to a plane slope plus correction terms. 

If we choose a plane slope ha which yields the same Jeffreys approximation 
at :Co as the giyen slope huh, then 

1. 1+0> h,'h - ha = A I - 0 
( )

2 - J..J.qb -
7r _0> X - :fo 

and the second term of (22) vanishes. The choice also ensures canceling effects 
in the third and fourth terms. Such slopes, yielding the same .Jeffreys approximation 
at a point xo, ,,,ill be referred to as 'equivalent at xo.' It is clear that any two slopes 
equivalent to a third slope at Xo are equivalent to each other there. For any slope 
Ii"b there is a family of plane slopes equivalent to it at any point Xo not on the 
slopes. This can be seen by noting that, given ha equivalent to hub (Figure 10), 
another slope, !La *, equivalent to l~a can be drawn by increa.;;ing the slope angle and 
distance from the station simultaneously in such a 'way as to keep t:.'l/ constant. 
Thus, the flatter the equivalent plane slope, the closer it extends toward the 
station. The 'equivalent cliff' is the member of the family farthest from the station. 
In general it is found that flatter members of the family yield algebraically larger 
anomalies, Llqa) irrespective of the sign of the slope. Thus for any slope hub it is 
possible to bracket the exact effect at Xo by finding flatter and steeper plane slopes 
equivalent there (TDT, section 7). 
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For example, the plane slope ka is flatter than the slope hob (Figure 10) in the 
sense that they 'cross at only one point, so that kb is composed of one negative·c 
region (hbJ near the toe and one positive region (kbJ near the brink. Because 
c" is greater near the toe, the third term in (22) takes the sign of kb ,. The third 
term generally dominates the fourth (TDT, section 6), and hence 

f1qab(XO) < f1qa(XO) 
Similarly the steeper equivalent slope h,/ yields a lo\ver limit to Aqab because it 
makes the third term in (22) positive. Generally 

f1q*(xo) < f1q(xo) < f1q(xo) 
where the asterisk denotes quantities associated with a steeper equivalent plane 
slope and the circumflex denotes a flatter one. If the given feature is a slope 
form, such bracketing plane slopes can always be found for points, Xo, beyond 
the toe or behind the brink. The inequality (23) can be violated for very special 
shapes, hab, that are generally unimportant in physical applications. Also, for 
points very close to the brink where the heat flow is close to zero, higher-order 
effects can invalidate (23). These departures are small, and they can generally 
be checked by geometric bracketing (see example, this section) . 

Bracketing with equivalent plane slopes can usually be accomplished quickly 

with the following steps: 
(1) Determine Aq' for the given slope. This can often be done by breaking 

it into component plane slopes and adding the contributions determined from 

Figure 11. 
(2) Select a steeper equivalent plane slope (h*) and a flatter one (h) from the 

family represented by the appropriate ordinate line, Aq', Figure n. (The smallest 
bracketing interval is achieved by selecting the permissible h farthest from the 

station and h* ciosest to it. 
(3) Determine f1q and f1q* from Figure 4 or 5. 

Fig. 10. Notation for the discussion of 
equivalent plane slopM (It" * and kG)' 
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Fig. 11. Jeffreys approximation (t.q') as a function of distance from the toe or brink of a 
plane slope, whichever is closest to the station (r or s, and lower left eUlTes), or whieheyer is 

farthest from the station (r + cotp or s + cotf'l, and upper right eun·E:s). 

Because the slopes represented by the three parts of (23) are equivalent, each 
i3 associated with the same Jeffreys approximation, t1q'. Subtracting this from (23) 
yields 

D*«(J*. t1q') < D < D(S, t1q') (24) 

The discrepancy (D) in the Jeffreys approximation is shown as a function of the 
.Jeffreys approximation (t1q') for plane slopes of various slope angles (solid lines) or 
distances from the station (dashed lines) in Figures 12 and 13. This representation 
provides additional insight and short cuts for estimating anomalies. Vertical co­
ordinate lines represent families of equivalent slo'pes t1q' ((J, 1') = con.stant (Figure 
12) or t1q'({3, s) = constant (Figure 13). The·meml;lers of the family can be identi­
fied by the curves of constant f3 and l' (or s). Given any positive slope for which 
/).q' = 0.6, and which can be bracketed (in the sense of Figure 10) by plane slopes 
with S = 45° and f3* = 60°, it is seen from Figure 12 that D lies between -0.11 
and -0.18 and hence 1.42 < q < 1.49. 

:Most natural slopes decrease in inclination near the toe and brink, making it 
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possible to draw h through the toe for positive slopes and through the brink for 
negative slopes. (Such slopes are referred to as 'concave at the toe' or 'convex at 
the brink,' TDT, section 6.) The station is the same distance (r or 8) from such 
slopes as it is from h. Thus, from Figure 12, any positive slope, concave at the toe, 
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whose height does not exceed 20 times its distance to the station (r 0.05) and 
\rhose maximum inclination does not exceed 30°, can be represented by the Jeffreys 
approximation with errors not exceeding 3%. (Such slopes can be bracketed by 
equivalent plane slopes which lie in the region between curves r = 0.05 and (:J = 

:lO°.) Other conditions for validity or failure of the Jeffreys approximation can 
readily be obtained from Figures 12 and 13. From Figure 13 it is seen that negative 
slopes, convex at the brink, can be approximated by the Jeffreys method to within 
:3% if their height does not exceed about 3 times their distance from the station 
and the maximum slope angle does not exceed about 45°, Almost any slope, positive 
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or negative, irrespective of slope at the toe or brink, can be represented by the 
Jeffreys approximation within a few per cent as long as Aq' does not exceed 0.15 
and f3* < 60°. 

In general it is seen (Figure 13) that for negative slopes the Jeffreys ap-
proximation is poor when Ac/ is large because the approximation becomes nega­
tively infinite at the brink where the actual heat flow approaches zero. 

Three points should be emphasized: (1) Although the Jeffreys approxima­
tion might apply to the independent effects of slopes on either side of a station, 
it does not apply in general when the two co-exist. Their interaction must be 
considered, as it must for any other slopes. (2) Small Ar{ is not a sufficient con­
dition for validity of the Jeffreys approximation unless co-existing slopes are 
of the same sign. (3) Effects of a given monocline-like slope can be represented 
well at a station by selecting an equivalent slope to approximate (not bracket) 
there. (See example of next section.) Conversely, if plane slopes are used for 
calculation of effects of hypothetical topography (as in the case of unseen relief 
on the ocean bottom, section 8), they can be viewed as representing a variety of 
much more general equivalent forms. 

As a numerical example of bracketing with equivalent plane slopes, consider 
the anomaly one-tenth of a hill height behind the slope illustrated in Figure 14. 

Step 1. From Table 2 or Figure 11 

Aqab'(S = 0.1) = Aq'(900, S = 0.2) + Aq'(45°, S = 0.2) = -2.16 

Step 2. To obtain the smallest bracketing interval, h* is picked through 
the brink and h through the toe with the aid of Figure 11. 

f3* = 84°, s* = 0.1 

S = 60°, § = 0.600 - cot 60° = 0.023 

Step 3. Figure 5 and (23) yield 

0.11 < qab(S == 0.1) < 0.13 (25) 

By contrast, the Jeffreys approximation yielded (step 1) 

qa/ = -1.16 

and the sum of exact solutions for slope components (Figure 5 or Table 2) 

qab ~ 1 + Aq(90°, S = 0.2) + Aq(45°, S = 0.2) = -0.36 

8=0,1 
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Fig. 14. Illustration of numerical example, 
section 6. 
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The second t,yO results are, of course, physically impossible, as qab cannot be 
a negative quantity. 

In this example Xo was very close to the brink, where; as we haye seen, the 
left side of the inequality (23) might not be rigorously correct. If we had chosen 
/3* = 90° instead of 84°, the same lower limit (to two significant figures in 
equation 25) would have resulted. If, however, there is concern about the lower 
limit given by (23) in cases like this, we can resort to simple geometric bracket­
ing which yields 

q(900, S = 0.1) < qab(S = 0.1) 

and, from Figure 5 or Table 2, 

0.08 < qab(S = 0.1) 

This demonstrates that the lower limit of 0.11 in (25) cannot be much in error. 

7. STATIONS ON GENTLY SLOPING SURFACES 

Many of the results of the preceding sections apply only to stations lying on 
geometrically horizontal surfaces, although these stations may be yery close to 
steep and irregular slopes. The earth's surface cannot be considered geometrically 
horizontal over extended areas, but much of it is inclined at angles of less than a 
degree or two. Although slope angles may change very rapidly near the toe and 
brink of topographic scarps, the distant transition to horizontalness is generally 
gradual. :Many heat-flow stations requiring topographic correction will lie on 
gently sloping surfaces adjacent to bold features. It is necessary to comider how 
to apply the foregoing results to stations on such surfaces. 

It can be shown (TDT, section 8) that if the topography is gently sloping in 
the vicinity of a station (x = 0) ard smooth in the sense that the surface and 
l.he heat flow through it can be represent€d by a few terms of ).Iuclaurin's series, 
then the topographic anomaly can be computed by flattening the slope in the 
vicinity of the station, as illustrated in Figure 15. The true slope heo is replaced 
by the slope ha, which is flatt€ned over the interval lxl < lJ2 and adjusted up­
ward or downward to eliminate discontinuities x = ± lJ2. 

If y(x) denotes the slope of the tangent to ha1)(x) measured clockwise from 
negative x and 

b.'Y = 'Y(l/2) - 'Y( -l/2) 

A = qa,,(l!2) - gal,( -l/2) 
, qab(O) 

then the error due to flattening can be expressed as 

(26) 

The result accounts for the reaction of close-in topography to higher-order effects 
of distant topography but neglects the much smaller higher-order effects of 
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Fig. 15. The general slope, hob, represented as the sum of the flattened 
slope h. and the increment hb • 

close-in topography acting through distant topography. It is seen that the ab­
solute error Iqab (0) - qa (0) I is independent of the heat flow if the curvature is 
negligible and independent of the slope if the lateral change of heat flow is 
negligible. 

If the change in slope (~y) over the flattened interval is less than 2" t the 
curvature term will not contribute more than 1% to the error; if it is less than 5" r 
the contribution will be less than about 21;20/0. In general, A, the relati .... e change 
in heat flow across the flattened interval, will not be known, but inspection of the 
slope ,,,ill normally permit an estimate of its order of magnitude. If A is 50%, a 
rather extreme ca:3e, the second term will contribute about 1 % to the error if the 
slope at the station is 2°. If A is 20%, a 5° slope will contribute 1%. 

Equation 26 probably should not be used for fly and yo much larger than 5° 
or 6° because of the condition, 21hb (±lj2) W1«1, required in the approximation. 
When A is large, qab (x) is likely to have considerable curvat.ure in Ix[ <Zj2; and 
this can be tolerated in (26) if fly is very small. If not., it is probably best to 
restrict the application to cases in 'which A does not exceed 25% or so. This will 
include most cases of interest. 

It is seen that, after the flattening procedure is applied, most stations will 
lie on the horizontal surface between two co-existing slopes (the valley, ridge, 
or bench, section 5), one of which can often be neglected. 

As a combined example-of the flattening procedure, approximating with 
equivalent slopes, and the results of section 4, we consider the surface heat flow 
in the vicinity of the brink (xo = +0.55) of a 'monocline' of the type considered 
by Jaeger and Sass [1963, equation 11 with a = 1.01] as illustrated in Figure 16. 

The monocli.ne is flattened from x = 0.50 to x = 0.60 (i.e., l = 0.10). The 
slope to the left of the flattened interval is denoted ha and to the right by hb• 

In this interval Ay = -3.1°, y (xo) -3.4°, and A is large, as this is the region in 
which q (x) has its largest gradients. (Its actual value is about 25%.) The con-
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Fig. 16. Illustmtion of numerical example, section 7. 
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tribution of the slope term to the flattening error (equation 26) is +0.01q (x~L 
and the curvature term contributes -0.015q(x~). As we shall see, q(xo} ~ 0.5, 
and hence the flattening error amounts to only a few tenths of 1 % of the regional 
heat flow and can b&neglected. The reiOults for this case follo·w. 

Exact solution: 

,feffreys approximation: 

-0.58 

I1q'(Xo) = -0.675 

6,q/ -0.69 

6,q,.' +0.015 

From the discussion of the previous section 

I1qa 6,qa' = 0.015 

(27a) 

(27b) 

(27c) 

(27d) 

The portion of the slope hb near the station has an average slope of about 45°, 
and hence an approximating equivalent slope iib is selected "with an angle (j = 

-t.5°. From Figure 13 

6,Qb ~ 6,qb = I1qb' + D«(3 = 45°, b.q' = -0.(9) = -0.69 + 0.11 = -0.58 

Substituting these values in (14) yields 

I1q = 0.015 - 0.58 + (0.015)(0.58)[1 ± 1] 

~ -0.57 ± 0.01 

I 
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This is to be compared with the exact result of -0.58 and contrasted with the ... 
Jeffreys 'approximation of -0.675. To obtain the above result it was not even· 
necessary to determine the coordinate s of ii. However, it can readily be obtained 
from Figure 11, permitting ii to be drawn on the cross section to verify the fit. 
From Figure 13 it is seen that near the brink the results are rather insensitive to 
the choice of if; taking 30° or 60° would have raised or lowered the result by only 
0.03. (Actually 60° is a f3* which must give a lower limit to Aqb by (23).) It is clear 
from Figure 16 that if = 45° is the more reasonable choice. 

8. VARIATION OF THE TOPOGRAPHIC AN01vlALY WITH DEPTH 

General relations. To this point the discussion has been concerned only with. 
the flux of heat across the surface, i.e., with the limiting value of the thermal 
gradient at zero depth (z = 0). Even in oceanic measurements of geothermal 
flux, however, temperature gradients are determined from observations to finite 
depths (1 to 10 meters). It is necessary to determine the conditions under which 
topographic anomalies computed for the surface can be applied to gradients 
determined beneath it without appreciable error, i.e., conditions under which the 
gradient anomaly may be treated as superficial. 

To investigate depth variations of heat flow analytically, we rewrite (3) in 
the form of (19). 

A (. ) _ 1:. f+<» h(x)[l + e(x)] "'(..\ d 
I-lq X O , Z - ()2 ""\Xl X 

7r _00 X - Xo 
(28) 

where 

x = Ix - xolz- 1 

cpCx) = 1 - x-2/(1 + x-y (29) 

Equation 28 is an exact expression for the effect of any two-dimensional 
topographic surface, h (x), on the vertical gradient at the point (xo, z). Although 
e (x) is unknown, its physical interpretation is clear; it is the mean anomalous 
gradient in the relief at x. 

Inspection of the form of the function cp (Figure 17) and equation 28 points 
up a fundamental problem of attempting regionally meaningful measurements 
of thermal gradient at or near the surface. The function cp greatly diminishes 
effects of topographic features whose horizontal distance from the station (x - xo) 
is not large relative to the depth of observation, i.e., relief for which X is not 
large. It is just these features that can haye a very great effect on the gradient 
at the surface because of the_ inverse square growth of the fraction in the in­
tegrand of (28). As z approaches the surface, <I> approaches unity for all x, and 
very small features very close to the station can haye very large effects on the 
gradients. 

The following results can he obtained from equat.ion 28 (l'DT, section 9) : 

1. All topography of olle sign: General [hex) ~ 0 01" h(x) ~ 0, 00 > x > 
w J. In this case 

z>o (30) 
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which can be stated as a theorem: If the topographic relief 1'S of one sign at the 
station (xo) the heat-flow anomaly caused by this relief at (xo, z) attains its 
greatest magnitude. at the surface z =0, 

The theorem applies to the Jeffreys approximation as well as to the exact 
result, However, it does not apply in general to the discrepancy [D (xo,z) J be­
tween the two, Hence it is quite possible for the error in the Jeffreys approxima­
tion to be greater at depth than at the surface. It can be shown that the theorem 
applies also to the transient case if the change of h(x) with time is of the same 
sign as h (or is zero). 

II. Relief is of one sign and lies farther from the station than the depth of 
measurement. [h(x) = 0, Ix - xo! < z; h(x) 2 0 or h(x) ::; 0, Ix - xo! > zJ.lf 
the closest point of the relief to the station is at Xl and 

then 

l1q(Xo• z) > <I>(x) 
l1q(xo, 0) 1 

.ig(Xo , z) > 'l'(Xt) 
l1q(xo• 0) 

(31) 

(32) 

where 8q (xo, z) represents the heat flow computed from two temperature measure­
ments, one at the surface and the other at depth z, and 

() 
" -1 1 1 'l' X =;:;X tan --

X 
(33) 

It is shown with '1> (~;) (equation 29) in Figure 17. 
III. If relief is of one sign and is distributed throughout the region 

Ix - xol < 2z, then l1q (xo, z) is generally an order of magnitude less than 
Aq(xo, 0). 
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IV. It can also be shown that (a) if the relief is of both signs and lies in 
the region Ix - Xol > z, then l6.q(xo, z)! is less than the magnitude of the contri- . 
bution of the positive or negative portion considered individually, whichever is 
larger, and (b) if the relief is of both signs and distribution is unrestricted, 
l6.q(xo, z) I is less than the sum of the magnitudes of the contribution or the posi­
tive and negative portions considered individually. 

Discussion. From Figure 17 it is seen that 

<I>(x) > 0.89, X > 5 

'If(x) > 0.86, X > 2 

Hence, by IIa and IIb and IVa, for most purposes the gradient anomaly 
depth z can be considered superficial if the closest significant relief is at a hori..; 
zontal distance greater than 5z; the mean gradient anomaly to depth z is super­
ficial if the closest relief is at a distance greater than 2z. (The latter case applies 
to suboceanic gradients based on a temperature measurement in the bottom 
water and one measurement in the sediment or to continental gradients deter­
mined from mean annual air temperature and bottom-hole temperature.) Inas­
much as the discrepancies referred to in II are relative ones, the height of the 
topography does not enter. 

To put these results in perspective it i.3 wort.h considering four cases: 
(1) The gradient measurement is superficial and t.he height of the relief is 

greater than its distance from the station. In this case the present theory applies, 
but the Jeffreys approximation is uncertain. 

(2) The measurement is superficial and the height does not exceed the dis­
tance from the station. Here the Jeffreys approximation generally applies, but 
the presenli method may still be used for com-enience. 

(3) The gradient measurement is not superficial but the height does not 
exceed the distance to the station. The present theory does not apply (except 
for limit.s imposed by I and III), but the Jeffreys approximation generally does. 

(4) The measurement is not superficial and the height is larger than the 
distance to the station. This represents a trouble spot for the Jeffreys approxi­
mation not covered by the present theory (except for limit.s imposed by I and 
III). 

Although the present methods can be convenient for rapid estimates in cases 1 
and 2, it is only in case 1 that they pro\-ide information not obtainable from the 
Jeffreys approximation. \Vhere continental measurements can be considered 
superficial, the application often falls under case 2 because the measurement 
depth is commonly of the same order as the relief. 

Thus steady-state topographic corrections throughout a 300-meter borehole 
can be computed from solutions that are yalid at ~he surface if the (two-dimen­
sional) topographic relief is more than a kilometer or two from the station. 
Under such circumstances the Jeffreys approximation and the exact solution 
would give comparable results (case 2) unless the relief was very great (case 1). 
The topographic anomaly in the upper 30 meters of the hole could, of course, 
be considered superficial for relief extending to within 100--200 meters. For 
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relief of one sign at any distance, the surface correction will provide an upper 
Jimit. 

Several problems associated with oceanic observations fall under case 1 be­
eause of the small depth of measurement. 

Ocean-bottom heat-flow measw·emenis. It is well knO\\ll that oceanic heat­
flow values often show considerable yariation and that in most areas the spacing 
of the measurements is inadequate for a determination of the lateral scale over 
which these variations occur. Without such information it is difficult to determine 
the cause of the variation. 

Inasmuch as relief is unknown in detail near an oceanic heat-flow station 
(with uncertainties of the order of meters to hundreds of meters, TDT, section 
9), many workers have considered the effects of undetected relief as a possible 
source of these variations [e.g., Bullard et al.] 1956; Langseth et al., 1966; 
Lachenbruch and lvI arshaU] 1966; Birch] 1967]. 

The problem can be investigated by considering the theoretical effects of 
credible two-dimensional models of undetected relief. (The two-dimensional 
case is intermediate between the various three-dimensional possibilities; in the 
worst case, three-dimensional topography could produce anomalies that might 
exceed the corresponding two-dimell3ional ones by a factor of about 1Y2.) An 
upper limit to the scale of these models is imposed by the uncertainty Sh in the 
determination of local elevation difference on the ocean floor. A lower limit to 
their scale is imposed by the length of the probe ,\ and the presence or absence 
of curvature in the temperature profile. 

Suppose a temperature probe penetrates the ocean bottom at point :Co (Figure 
18) to depth A and that local elevation differences are uncertain by -+- 8h. According 
to III, if unseen relief is distributed within a distance 2;\ of the station, it will 
generally produce a change in gradient over the length of the probe of the same 
order of magnitude as the mean gradient anomaly measured at the station. If such 
effects are large, they are easily identified with probes containing three or more 
sensors; if they are not large, they are unimportant. Relief beyond 2;\ can produce 

...• /." •....... 
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Fig. 18. Possible undetected rdief (±lih) that would produce a superficial 
gradient disturbance to depth ;I, = O.1lih (solid lines) and A = oh (med­

ium dashed lines). 
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anomalies in the mean gradient that are large relative to the curvature detectable . 
with a few temperature sensors. Such unseen relief can have a height of ±ok, and 
the worst case occurs when it is of the same sign on both sides of the station. What­
ever the forms of these unseen slopes, they can be replaced by equivalent plane 
slopes of angle P at distance 2A. The resulting anomaly (oq) can be considered 
superficial (35) and expressed approximately as 

oq ~ 2 lliiCP. 2Aj ok) (36) 
The fraction represents r or 8, depending on whether the relief is positive or nega­
tive. If it is very small, interaction should be considered (equations lO or 11). 

Because so little is known of small-scale sea-bottom topography, the choice 
of values for the height oh and mean slope P of unseen local slopes is an open question 
at present. Recent observations with deeply towed sounders have revealed relief 
on the order of 100 meters, with slopes as great as 30° [Loughridge, 1966; Birch, 
1967] or even 45° to 90° [Spiess et al., 1967]. Taking P = 30° and assuming the 
uncertainty oh is 10 times the probe penetration (A), we find from (36) (modified 
by equations 10 and 11) that positive anomalies up to 90% and negative ones up 
to 70% could occur with relatively little curvature (Figure 18). If A is 2 meters, 
this amounts to 20 meters of unseen relief. If the relief were 50 meters, the same 
anomalies could be caused by slopes beyond 5A, and, by (34), no measurable 
curvature would occur. 

Increasing the probe length by a factor of 10 (from A = O.13k to )( = Sh, 
Figure 18) decreases the limits of error (Sq) to +20% and -25% plus a sub­
stantial fraction of the measured change in gradient with depth. In these ex­
amples the relief indicated by first arrivals on a eonventional echo sounder 
would be of the order of 1 meter or less (TDT, section 9). 

From (36) and Tables 1 and 2 it is seen that the probe length should be 
2 or 3 times the elevation uncertainty, and the curv'lture should be negligible 
to reduce the topographic uncertainty to about ±10%. As these conditions are 
rarely fulfilled, the best assurance against undetected topographic anomalies is 
the agreement of closely spaced measurements [Reitzel, 1963; Lister, 1963; Lee 
and Uyeda, 1965; Lachenbruch and lvlarshall, 1966]. 

The lower limit of heat flow is approximately zero, and its upper limit is 
unrestricted. Hence we tend to view the frequency of occurrence of large heat­
flow anomalies in the log-normal sense [Girdler, 1966]; a yery low heat flow of 
one-fourth the regional average is an occurrence roughly comparable to a very 
high heat flow of 4 times the average, though the actual anomalies are -75% 
and +300%, respectively. In this sense, very low heat flows are much more 
easily explained by unseen relief than are very high ones, as the comparable 
high ones generally require elevation differences one or two orders of m1)gnitude 
greater (Tables 1 and 2 and Figures 4 and 5). This observation is consistent 
with the recent discussion by Birch [1967]. 

9. TIME DEPENDENCE AND OTHlm EFFECTS 

Time dependence. Birch [1950] has shown that the finite times elasped 
during and since thE: evolution of topography can have appreciable effects on the 
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geothermal terrain correction. The present discussion concerns corrections to 
superficial gradient measurements, primarily a problem of accmmting for close-in 
topography with short time constants. However, an approximate theory of the 
transient effect has been considered (TDT, section 10) to place the foregoing 
discussion in a time context. 

Selected results are presented in Table 4 for unconsolidated sediments 
(thermal diffusivity a == 0.0025 cm2 sec-1) and 'rock' (a = 0.0125 cm2 sec-i). For 
topographic features whose height and distance are small relative to the sediment 
thickness, the value for sediment is probably more realistic. Larger, more distant 
features are probably represented better by the column headed 'rock.' In the 
table a feature should be considered as represented by its equivalent cliff. 

From the second line we see that an open pit or mine dump made in this cen­
tury would not affect the surface heat flow in a borehole only 100 meters away_ 
By (30) the result applies to gradients throughout the borehole. More or less 
uniform relief approaching to within a kilometer or two of the station can be 
described by the equilibrium theory if the topography has not changed much 
since early Pliocene time and the sediments are thick-or early Pleistocene time 
if the sediments are thin. The latter case might apply, for example, to the walls 
of an oceanic trench for stations on the floor. A substantial fraction of the effect 
of slopes forming 10 m.y. ago would be felt at stations 5 or 10 km away_ It is 
seen from the last column of Table 4 that effects of such slopes would generally 
be small. 

Finite lapse rate. For convenience it has been assumed that the topographic 
surface is isothermal. If the temperature of the surface decreases linearly with 
elevation with gradient G', the topographic anomaly would be given by 

(G - G')/G] t.q (37) 

For terrain above sea level, approximations to G' are found to range from about 
3 to 9°G/km. This is often 10 to 50% of G, and the topographic correction is 
substantially reduced. At abyssal depths in the oces.n we normally have G'/G 
:::::: 10-3

, as G' is of the order of the adiabatic gradient in sea water, and the as­
sumption that the surface is isothermal is realistic . 

A buried bedrock slope. Equation 37 suggests an additional application of 
the results presented in section 2. Suppose a bedrock surface dips under sedimen­
tary material of conductivity J{l and there is no topographic expression at the 
surface, as illustrated in Figure 19. If the conductivity of the rock is IC, the 
gradient G1 in the sediments at points distant from the slope is 

G1 = (K/K1)G 

As an approximation we assume that the gradient G1 obtains throughout the 
sediment above the bedrock surface. Replacing G' by G1 in (37) yields 

(38) 

where Aqb is the heat-flow anomaly caused by the buried bedrock topography 
at points on the surface behind the brink (AB, Figure 19) and at the buried 
interface (BCD, Figure 18). 
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KJ 
Fig. 19. Model of the down-faulted bed­
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rock pediment. 

If the conductivity of the bedrock is approximately twice that of the sedi­
ment (a common situation), the lower curves in Figure 3 give the negative of 
the anomaly along AB (Figure 19), and the upper curves of Figure 3 give the 
negative of the anomaly along the interface CD (Figure 19). 

The model describes a common situation in the Basin and Range province 
of the western United States, where bedrock pediment surfaces are downfaulted 
on the basin side and the depression is subsequently filled with alluvium. The 
results are useful in the interpretation of geothermal data from boreholes in 
5'uch areas. 
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