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Abstract. The Jeffreys-Bullard theory of the topographie correction to geothermal
gradients cannot be applied with confidence if the height of the relief is large relative
to the horizontal distance and depth of the measurement points. It cannot be generally
applied to shallow probe measurements in the ocean bottom if bold relief occurs on a
scale exceeding a few meters, or on continents to observation in shallow boreholes in
extremely rugged terrain.

In an important special case, where the measurement depth is small relative to the
distance to the relief, the ‘superficial’ gradient anomaly may be approximated by the
value applicable at zero depth. A fairly general two-dimensional steady-state theory for
this case can be based on the solution for heat flux through an inclined plane of arbi-
trary height and slope angle. These two parameters are easily visualized and repre-
sented graphically so that models which approximate or bracket real topography can
be identified quickly. The results can be applied to stations on planes, valleys, ridges,
or benches bounded by irregular slopes. They are valid for points arbitrarily close to
slopes of any height or inclination. Finite slope and curvature of the surface at the sta-
tion can be accommodated if they are not too great. Even if other theories of the topo-
graphic correction are applicable, the present method ean be useful, as it leads to rapid
estimates by graphical means and to useful limits even if the superficial condition is
not satisfied.

Curvature in an ocean-bottom temperature profile justifies suspicion of 2 topo-
graphic disturbance from undetected relief. The temperature probe’s length should be
2 or 3 times the uncertainty in loecal elevation difference, and measured curvature should
be negligible for reasonable assurance that undetected relief is not causing gradient
errors greater than +10%. Relief not detectable with conventional echo sounders, but
of the type observed with deeply towed sounding equipment, ean cause heat-flow
anomalies of 50-100%, and relatively little curvature will be indicated by probes a
few meters long. The very high oceanic heat flows are difficult to explain by undetected

relief, but the very low ones are not.

1. INTRODUCTION

The pattern of heat flow from the earth’s deep interior is distorted near the
surface by topographic relief; the flux is intensified by valleys and attenuated
hy ridges. To obtain regionally significant heat-flow values in areas with apprecia-
ble relief, we must correct for these effects.
Traditionally the theory of the geothermal topographic correction has been
approached in two different ways [Jaeger, 1965, section 5]: In the first [Jeffreys,
1938; Bullard, 1938; Burch, 1950], a fundamental mathematical simplification

1 Publication authorized by the Director, U. S. Geological Survey.
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results from replacing the irregular surface by a horizontal reference plane upon
which the temperature varies in proportion to the relative elevation of the actual:
surface. Interaction between the topographic features is thus neglected, and. the
independent, effects of elements of the topography can be summed to obtain' the
approximate correction. There is no limit to the fidelity with which the topo-
graphic surface can be represented, as the representation is achieved with a
numerical procedure, : :
In the second approach (applied most recently by Birch [1967] and Jaeger
and Sass [1963]), the true surface is approximated by a simple geometric surface
and its effects on the gradient are computed directly. Thus the second approach
yields the exact effects of an approximate representation of topography, and the
first yields the approximate effects of an (effectively) exact representation of.
topography. -
As Birch [1950] has shown, the first method is more general, and it lends
itself readily to refinements accounting for topographic evolution. It has been
pointed out by Jaeger and Sass [1963] that the second method is useful for
very rapid estimates of terrain effects if detailed corrections are not warranted
because of imperfectly known topography or other uncertain sources of dis-
turbance. The last statement depends upon the geometric model being sufficiently
simple to be easily identified with the topographic surface to be approximated. -
Both methods generally become less satisfactory as the gradient measurement
to be corrected approaches the surface. This can be explained as follows: In
general, the frequency of occurrence of features of the earth’s topographic relief
decreases as the size of the feature increases; the largest and most infrequent
features have a vertical scale of the order of a few kilometers. However, the
effect of topographic features on the geothermal gradient is not large as long as
their height is (1) less than the horizontal distance to the measurement point
or (2) less than the depth-of measurement. Thus, for measurements a few
kilometers heneath the surface, condition 2 is satisfied, even for the most rugged
relief (at any horizontal distance); a gross representation of the topography,
used with any reasonable approximation scheme, will generally suffice. As the
measurement points approach the surface, progressively smaller (and more
frequently occurring) features will fail to satisfy condition 2, and those that are
not far enough from the station to satisfy condition 1 will have to be accounted
for with progressively inereasing rigor; although the effects of distant relief do
not diminish, the effects of close-in relief increase greatly, and small-scale
irregularities can cause sizable anomalies. Under these conditions the second
method becomes less satisfactory because it becomes increasingly difficult to
represent close-in relief in detail and still account for distant relief in a gross
way with a simple geometrical model. The first method becomes uncertain for
near-surface measurements because it neglects second-order effects arising from
lateral variations of the vertical gradient in the relief. These effects can become
appreciable when close-in relief must be considered. Birch [1950, p. 625] pointed
out that ‘at shallow depths, under sharp irregularities, the approximation is sure
to be poor.’
Observations of earth heat flow made to date can be grouped into two rather
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distinct categories: continental and oceanic. Continental measurements (repre-
senting about 10% of the values according to Lee and Uyeda [1965]) are made
to depths of the order of a kilometer beneath the land surface. The relief is
obzervable and can be considered known. Oceanic measurements aceount for the
remaining 90% of the observations. They are made to depths of only a few
mefers beneath the sea floor, and the pertinent relief must be considered largely
unknown. On the continents it is often possible to select measurement sites at
places where the topographic disturbance is small, and an approximate theory
can be used with confidence. In the oceans, however, unseen relief might cause
very large errors. Attempts to estimate how large these errors might be ean be
misleading if they are based on an approximate mathematical theory.

In most observational studies of earth heat flow, continental or oceanie, it
is usually found that for every caleulation of a detailed topographic correction,
many rough calculations are made to determine whether a given feature is sig-
nificant, or to determine the order of magnitude of its contribution. For this
purpose there seems to be some use for results from an extemely simple geometrie
model that can be applied without regard for the validity of any mathematical
approximation. This problem is considered in the present paper.

The starting point is the exact solution for the gradient disturbance at the
siwrface caused by the simplest topographic form, an inclined plane segment of
angle 8, joining horizontal half planes with elevation difference H. The geometry
is two-dimensional, and the medium is assumed to be homogeneous and in a
thermal steady state. In return for this loss of generality we gain the advantage
of two-parameter representation of results in simple graphical form. These
parameters, slope angle and slope height, are so easily visualized that models
which might bracket or approximate rea) topography can be identified quickly.
The results apply directly only to ‘superficial gradient measurements,” which we
define as those for which the topographic correction can be approximated well by
the value applicable at the surface. Hence they concern measurements to depths
that are less than the horizontal distance to the relief, but the height of the relief
way be arbitrarily large. They therefore apply to many cases (particularly in
oceanic applications) for which the standard Jeffreys approximation is quite
uncertain, The results also yield limits for cases in which the superficial condition
is not satisfied.

The plan of this paper is as follows. The next section presents numerical
results for the exact solution just discussed, and section 3 compares them with
the corresponding results obtained from the Jeffreys reference-plane assumption.
Section 4 gives upper and lower limits for the surface heat flow where two
slopes co-exist to form a ‘plane valley, ‘plane ridge,’ or ‘plane bench.” In section
3, a simple procedure is described for bracketing the anomaly due to a general
slope with exact results for plane slopes. Section 6 combines the first and second
approaches to terrain corrections (described in the previous paragraphs) to
obtain a method for approximating and bracketing the effects of a general slope,
and conversely gives conditions under which a general slope can be represented
by a plane slope. In section 7, conditions for neglecting gentle slopes at the
station are presented, and the variation of the topographic anomaly with depth
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and the conditions under which a gradient anomaly may be considered superficial
are discussed in section 8. Transient effects and an additional application of the
results of section 2, the heat-flow anomaly caused by a down-faulted bedrock
pediment, are considered in section 9. ‘

I'intend to present results in usable graphical and tabular form and to provide .
some insight into the quantitative behavior of the superficial gradient disturbance.
For brevity, the mathematical results are generally presented without derivation.
In some cases they are eliminated altogether, and results are shown only in
graphical form. For additional discussion and justification of these results, the
reader is referred to Lachenbruch [1968]. That work will be designated in the
text by the abbreviation T'DT (Two-Dimensional Topography).

2. HEAT FLOW THROUGH A PLANE SLOPE: EXACT SOLUTION

An expression is needed for the vertical thermal flux through a plane slope
on the earth’s surface. The earth is assumed to be homogeneous and isotropic,
and the surface is represented by a plane segment inclined at an angle B to e
horizontal surfaces beyond the toe and behind the brink which are at an eleva-
tion difference H. The model is illustrated by the region below the contour 1”
(A’B’C’D’E’) in the 4 plane, Figure 1. The slope angle g is represented by =/n.
To represent otherwise uniform conditions, it is assumed that the surface (I*) is
at zero temperature and that at large distances from the slope the temperature is
proportional to distance beneath the surface. _

The special case of the vertical cliff (n = 2) has been discussed by Castolds Y
[1952]. His solution was obtained by mapping a uniform field in the o plane
into the region bounded by a step-shaped contour of the 7 plane with the
conformal transformation

f]_Q == [1(9') + 1)1/2

dw w — 1

The more general function [ Kober, 1952, p. 161]
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i/n
EZ% = A(%) , & positive integer a

schieves the mapping illustrated in Figure 1.

The vertical gradient of temperature at the contour I (a plane slope) can
he obtained by a contour integration. The resulting equations are too cumber-
:ome to yield insight by inspection, and they will not be reproduced here (see

TDT, section 2).
The following notation is used in the presentation of numerical results:

G = @Q/K, where @ is the regional heat flux, K is the thermal conductivity,
and @ is the regional thermal gradient.

(K/Q)(90/9z) = ¢, where @ is temperature in the earth and g is normalized vertical
heat flux at surface (I’).

s, distance behind brink (i.e., to the left from D’, Figure 1) in

units of slope height.
7, distance beyond toe (i.e., to the right from B’, Figure 1) in

units of slope height. o
w, horizontal distance from brink (to the right from D’, Figure 1)

in units of slope width.
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Fig. 2. Vertical component of normalized heat flow through a plane slope. Solid
curves represent exact results; dashed curves represent the Jeffreys approxima-
tion. '
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Tig. 4. Heat flow through the horizontal surface beyond the toe of a plane slope of angle 8.
7 18 distance from the toe in units of slope height.

s, r, and w will always be used as positive quantities and w will never
exceed 1. Thus stations on the lower horizontal half plane will be designated by
a value of the coordinate », those on the upper half plane will be designated by
a value of s, and those on the slope by a value of w. When a station lies on the
lower half plane, i.e., beyond the toe, the relief will be referred to as ‘positive;
and when it lies on the upper half plane (behind the brink), the relief will be

10 20

‘ Tig. 5. Heat flow through the horizontal surface behind the brink of a plane slope of angle
pper curves) B. s is distance from the brink in units of slope height.
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called ‘negative.” Where it is not convenient to indicate the sign of the relief p
explicit reference to the coordinates » and s, slopes below the station will be
designated by a negative value of g and those above it by a positive value of 8.

The general form of the normalized surface heat flow g (x) is best seen from
Figure 2, where the abscissa is in units of slope width. However, when deahn&
with effects beyond the toe or behind the brink, it is usually more convenient tg
consider distances in units of slope height. This is done in Figure 3, which shows .~
the decay of the topographic anomaly as a function of r and s for selected slope

angles. Although the analytical results are for g = =/n, n an integer, they are

easily extended to other slope angles with graphs (Figures 4, 5, and 6). Tabular:
results are presented in Tables 1, 2, and 3. The quantity D in the tables repre-

sents the difference between the exact solution and the correspondmg Jeﬂreys
approximation (to be discussed in the next section).

Fig. 6. Vertical component of heat flow through the sloping portion of a plane slope. w
1s horizontal distance from the brink in units of slope width.
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TABLE |. Normallzed Heat Flow (q) on Horizontal Surface at Distance I beyond Toe of Plane Slope with Angle Beta and Unlt Height
(D Is difference between exact solution and Jeffreys approximation)

900 45° 30° 150 9° 5¢ Co3e

D D D q 0

~.0007 ~.0003 ~.0002 | 1.011} ~-.000! -.0000
~-.0024 -.0019 -.0008 -.0004 | 1.018( ~,0002 | - -.0000
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-.0359 +,0608 +,0432 +,0227 +.0096 | 1,119 {+,0043 +,0014
+.0659 +.1272 +,0654 +.0318 +.0127 ) 1,132 | +,0055 +,0017
+.2171 +.2144 +,0921 +,0424 +.0163 | 1,144 | +,0069 +,0021

+,800¢ +,5086 +,1730 +.0729 +.0262 § 1,175 14,0107 +.,0031




TABLE 2. Normalized Heat Flow (q) on Horizontal Surface at Distance s behind Brink of Plane Slope with Angle Beta and Unit Height
(D 1s difference between exact solution and Jeffreys approximation)

90° 60° 45¢ 30° i5° 9° 5¢

q 0 q b q b )

.9836 ~.0007 1 .9838 | -.0003 | .9872 | -.0002 ~,0001 -.0000
9671 -.0020 L9746 | -.0008 | .9784 | -.0004 -.0002 ~.0000
L9530 .0033 1 L9666 | -.0010 | L9726 | -.000% -.0002 | .9844 | ~.0000
0091 | o348 0050 .9575 | =.0013 | .9664 | ~.0005 -.0002 | .9820 |~.0000
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TABLE 3, Vertical Component of Heat Flow (q) on Sloping Surface at Horizontal Listance w from Brink of Planc Slope wlth Angle Beta and Unit wWidin
(D is difference between exact solution and Jeffreys approximation)

30° e 5° 3° 1.5

D q D D D q o]

+.4810 . .6850 { +.0332 +.0095 +.0033 .9432 | +.0008
+,2649 . L7456 | +.0125 +.0031 +.0010 L9561 | +.0002
+.1802 27735 | +.0051 +.0009 +.0002 L9617 | +.0000
+.CS77 .8202 .00454 .0020 .0008 .9708 | -.0002
+.0060 . .8433 { -.0082 ~.0030 L0012 L9751 | ~.0003
L8592 | -.0104 -.0036 ~-.0014 .9781 | ~-.0004
-.0292 L8768 | -.0125 .0042 .0016 L9813 | ~.0004
-.0403 9142 1 -.0159 .0052 L0019 .9880 | ~.0005
-.046] L9398 | -.0175 .0056 .0020 .9924 | -,0005
-.0498 L9610 | ~.0185 .0058 .0027 L9961 | -,0005
-.0526 .9809 | -.0191 L0059 .0021 +9995 | -.0005
1.001 .0195 . 0060 .002] 1.003 | -,0005
1,023 0197 .0059 =, 0021 1.007 | -,0005
1.050 | ~-.0194 -.0058 .0020 § 1,011 |} -,0005
1,093 | -.0180 -.0052 -.0018 | 1,018 [-,0004
1.3 | -.0169 | ~,0048 -.0016 | 1.021 |~,0004

1133 | -.0156 -.0043 1~.0014 § 1,024 |-,0004
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1,162 | -.0132 -.0034 =011 | 1,029 |-,0003
-,0267 71,226 |~-.0057 -.0009 -,Q002 § 1,038 | ~,0000
-.0107 | 1,208 |+,0007 +,0011 +.0005 | 1.044 |+,0002

+.0424 § 1,369 [ +.0206 +.0074 +.0028 | 1,058 |+,0007
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3. HEAT FLOW THROUGH A PLANE SLOPE:
APPROXIMATE SOLUTION

It will be useful to obtain an approximate solution to the problem of the -

previous section. For this purpose we shall use the simplification of Jefireys

[1938], Bullard [1938], and Birch [1950], in which the irregular topographie -
surface is replaced by a plane reference surface whose temperature varies locally

in proportion to the topographic relief.

To evaluate the topographic disturbance to temperature by this model at a
point whose horizontal coordinate is o and depth beneath the real surface is z;
we pass the reference plane through (zo, 0) and assign to it the temperature

, T(x) = Gh(z) Q)
where G is the regional thermal gradient and h{z) is the elevation of the topd~

graphic surface relative to the reference plane. (For simplicity, the topographi
surface is considered isothermal in this part of the discussion.) Because the

vertical gradient is treated as uniform in the topographie irregularities, the effects

of heat which escapes horizontally through the sloping surfaces are neglected. :
If the temperature disturbance is denoted by Ag, its gradient can be written

dz z0)* + 32]2
At the surface, z = 0, the gradient disturbance approaches [Jeffreys, 1938; TDT,
section 3] ' :
940

9z (x — xy)
If Go(z) and Qq(x) represent the vertical gradient and heat flow at (z),
then g(2) and ¢(x) represent these quantities normalized to the regional values
G and Q. If we assume positive heat flow in the direction of decreasing z

~2

l_a_A}? =g — & _ o) — 2 = Ag(z) = Ag(x) ®
G 9z |, Gy Qo

Go and @y, denoting unit gradient and flux, are introduced for dimensional con-
sistency. Throughout this paper ‘heat-flow anomaly’ will refer to the normalized

(dimensionless) quantity, Aq(x), which can be used Interchangeably with -

Ag(x), the normalized gradient anomaly. By ‘heat flow’ we shall always mean
the normalized vertical heat flux :

glx) = 1 + Aq(z)
Equation 4 can be written -

SRRy L [ |

Aglag) = el B P— dx (6)
Note that equations 3, 4, and 6 can still be considered exact if T is con-

sidered as that function which-properly represents the topographic relief at the

reference plane.

Applying the Jeffreys assumption (equation 2) yields an approximation for

W e ®

A whil

Ay an
ag and

Fo

g'(:

Equati
cotd. T
3 in Fi

is Hlust




i

roblem of the

on of Jefre

e

i topographie

s varies loeally
/

model at 5

surface is 2

perature

¥

(2)

1 of the topo-
¢ topographie
Because the
les, the effects
5 neglected.
can be written

3)

t flow ab (1),
eoional values

mg z,

) (5)

iensional con-
he normalized
ngeably with
always mean

©

if T is con-
relief at the

ximation for

seibe

TOPOGRAPHIC DISTURBANCE TO THERMAL GRADIENTS

g which we denote by Ag”.
h{x)

Ag'(wo) = % _/:j G = o) dx ™

g and ¢ = 1 4 Ag” will be referred to as the ‘Jeffreys approximation’ to

ag and g, respectively.
For a plane slope of height I and angle g, (7) yields

1 z T
¢ =1+ Ay = 1+ ;tan,@ In (m) 0 << 3 (8a)
-1 -1 B=7 (8)
T 2
Equations 8a and 8b apply for all z except the singular points = 0 and x = —H

cotB. The quantity ¢ and its approximation ¢ are compared for selected values of
g in Figure 2, and their difference

D=gqg~-1¢
is illustrated in Figure 7 and tabulated in Tables 1, 2, and 3.
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Fig. 7. Difference (D) between the exact solution and the Jefireys approximation to
the heat flow beyond the toe (solid lines) and behind the brink (dashed lines) of a
plane slope for various angles (8).
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Except for the case 8 = +490°, the Jeffreys approximation underestimates
the heat flow near the toe and brink (positive D) and at greater distances over-.
estimates it (negative D). ' E

From equations 8 we see that Ag’ is symmetrical about the midpoint of the
slope (x = —0.5H cotB), and singularities occur at the brink and toe. The exact
solution is asymmetrical; the negative infinite heat flow at the brink becomes
zero heat flow in the exact solution, and heat flows are below the regional value
over most of the slope. At the midpoint where Ag’ vanishes, the exact heat-flow
anomaly Agis given to a very good approximation by

Ag~ —08sin*8 =z = —0.5H cot B

It is clear from the figures and tables discussed that the difference D betiween
g and ¢ generally decreases in magnitude with decreasing slope angle 8 and
increasing distance from the slope.

This example shows the nature of the error in the Jeffreys approximation to
surface heat flow near sharp topographic irregularities of a special kind. If a
slight departure from the plane slope occurred near the measurement point, this =~
error might look quite different. The Jeffreys approximation for the modified
slope could be obtained, but an exact solution for it could not. Before the results
for the plane slope can be useful, it is necessary to determine how to apply them
to more general slopes, as there are no plane slopes on the earth’s surface. This
problem is considered in the sections that follow.-

(If a general slope is approximated by a series of plane slopes and the exact
contributions of each are added, it can be shown that the resulting approximation
is not consistently better than the Jeffreys approximation.)

4. HEAT FLUX ON A HORIZONTAL SURFACE BETWEEN TWO
PLANE SLOPES

It has been pointed oub that the plane slope is a highly idealized topographie
form but that more complicated exact models generally lose the advantage of the
two-parameter representation or of intuitive simplicity. To extend the results
to characterize more general configuration is worthwhile, and it can be done
with limited success for the heat flux on a horizontal surface between two plane
slopes. There are three cases. In the first (Figure 8a), the station lies on the
horizontal surface between two positive plane slopes, h.(x) and hy(z). We
shall call this the ‘plane valley.’ In the second case, the ‘plane ridge’ (Ficure 8b),
the station lies on the horizontal surface between two negative plane slopes. The
third case is the ‘plane bench’ (Figure 8¢) in which the station lies on the hori-
zontal surface between plane slopes of opposite sign.

The surface heat flux will be considered at a point 2z, on the horizontal
surface—strip @ > x > b (Figure 8). The heat flow g(zy) cannot be obtained
by simply adding the heat-flow anomalies, Aq.(xo) and Ags(z,), of the inde-
pendent plane slopes because the presence of h, modifies the heat flow through
hy (and conversely) and the modification, in turn, further modifies the heat flow
through A, and so on. There is, however, a hypothetical temperature distribution
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Fig. 8. Coexisting plane slopes forming (4)
a plane valley, (B) a plane ridge, and (C) a
plane bench.

T(x) over the plane #z = 0 that will affect the heat flow at 2, in the same way as
the isothermal topographic surface h(z) = ho(z) + hy(zx). Although the plane
slopes are not superimposable in the geometric sense, the collective contributions
to the reference-plane temperature are. By considering upper and lower limits
to these contributions, we obtain the following inequalities (T'DT, section 5).
Case 1. The plane valley; k, (), hy(2) > 0.
Aqlwo) > Aga(wo) + Ags(wo) ' " (10a)
Aglze) < Agu(xo)[l + Agi(a) + Agu(D) Agu(a) + Agi(a) Agu(b) Agu(a) + ---]
+ Ag(x)[l + Aq.(b) + Agi(a) Aqu(D) + Aq.(D) Agu(a) Agu(b) + ---]1  (100)
Case 2. The plane ridge; h,(2), by (2) < 0.
Aq(wo) > Aga(we) + Agu(wo) (11a)
Ag(we) < -Aga(@o)[l + Ag(@)] + Ag(@a)[L + Agu(B)] (118)
Case 3. The plane bench; A, (x) > 0, hy(z) < 0.
Ag(mo) > Aqu(mo)[l + Aqu(@) + Aq.(D)Ag ()] + Aq(@)[l + Aq(d)]  (120)

Ag(wo) < Agu(wo) + Agu(r)[l + Agu(@)Aqu(b) + (Agu(8))*Agu(a)] (120)

As an example of the application of these relations, counsider the anomaly

Ag(ay) at the midpoint of a bench of width 2H bounded by 45° SIOPED of height
H. From Tables 1 and 2

Agu(zy) = Aq(d5°,r = 1)

Ag,(b) = Aq(45°,r = 2)

-+0.178
+0.108

I

I
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Aqb(xo) = Aq(45°, 8§ = 1) '—'0.24:9
Ag(a) = Aq(45°,s = 2) = —0.149

i

I

Aq(xy) < —0.067
hence
0.87 < g(zy) < 0.93

By comparison the Jeffreys approximation gives

q'(zo) = 1.00
As a second example, consider a ridge of width 9H bounded by 45° slopes -

of height H. The heat flow at a point o, 0.1H from point @ and 1.9H from point b, -

is found from (11) and Table 2 to be
0.23 < glze) < 0.34

For the same case the Jeffreys approximation yields
g'(xo) = 0.10

In summary, a lower limit to the heat-flow anomaly on the horizontal surface
between two plane slopes (ks and k;) of the same sign (cases 1 and 2) is pro-
vided by the sum of the independent exact solutions for each slope [Age(wo) +
Aqy (o) ]. The upper limit is provided by adding an overestimate of interaction
effects. If the horizontal surface lies between plane slopes of opposite sign (case
3), both the upper and lower limits contain interaction terms, but the sum of the
independent exact solutions forms the upper limit to terms of second order in the
interaction. In all three cases the bracketing interval (qupper — Grower) 1S TEpre-
sented by the first-order interaction terms with or without higher-order effects.

Qupper — Qlower = [AQa(xO)A(]b(a/) + Aqb(mo)Aqﬂ(b)[ “!" higher OTdCI' (13)
But '
[Aga(zo)] > |Ag.(D)]
[Age(za)] > [Aq(@)]
Hence
A(Z(-’Uo) ~ Aqa(xo) + AQb(xU) + [AQu(il’o) A(]b(xo)][l + 1] (14)

in all three cages if higher-order terms are neglected. These results are not
restricted to plane slopes; they apply to any topographic elements h, and ks for
which |Ag,] and |Ag,| decrease with distance from the toe and brink.

In all these cases the Jeffreys approximation gives surprisingly good results
over a wide variety of conditions. It can, however, contain considerable error

at points very near steep slopes.
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5. GEOMETRIC BRACKETING

Useful upper or lower limits to the superficial effects of fairly general features
can sometimes be determined quickly from the results for plane slopes selected
to overestimate or underestimate the effects.

Let h(z) be a general two-dimensional surface and k,(z) and A;(x) be two
other surfaces such that

381

h(z) > h(z) > h(2) Fo >a> —w (15)

The heat-flow anomalies on each swrface are denoted respectively by Ag,(z),
Ag(z), and Ag;(x). It can be shown (TDT, section 6) that at any point xp (not
a sharp corner) at which

hu(xo) = h(zo) (16a)

we have

Aqu(re) > Ag(xo)

and where

h(xo) = hi(z0) (17a)
then
Ag(zo) > Aqi(xo) - (17b)
1t follows that where
hu(mo) = h(we) = hu(zo) - (18a)
we have
Aqu (o) > Aq(xo) > Agi(zo) (185}

Equations 15 to 18 will be referred to as the theorem on geometric bracketing.
It is illustrated in Figure 9, where h(x) is represented by the horizontal lines
OL and U’P and the wavy line Lt,6:U’ joining them. The plane slope OUU’P
represents h, and the plane slope OLL’P represents k. Then (18) applies for all
points (o) on OL and U’P. One-sided limits are given at the points of tangency,
2o = &, (relations 16) and xp = ¢ (relations 17).

The results of this section can be applied to those of section 4 to establish
limits to the heat-flow anomaly at stations interior to many real valleys, ridges,
and benches or to section 2 to obtain limiting values to the anomaly near
simpler slopes.

Fig. 9. Geometric bracketing of a general
slope with two plane slopes.

(16b)

sk bt s 7
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The method of geometric bracketing can quickly lead o a determination °
whether specific.topographic features are significant in heat-flow studies. Fo
example, the effect of any positive feature is overestimated by that of a cliff of
the same height and distance from the station. Thus a positive feature whose=
height is less than 10% of its distance from the station cannot afiect the heat flow
there by more than 2.8% (Table 1); if its height is 5% of the distance, the limi
is 1.5%. The corresponding limits for negative features are 3.6% and 1.7%. (It
is surprising that the anomaly 10 slope heights from the toe of a 90° cliff, 2.8%
is not very different from the anomaly 10 slope heights from the toe of a. 52
slope, 2.1%, Table 1.) If features of the same sign occur at such distances on bot
sides of the station, their interaction would be negligible (relation 14), and th
limiting effects are obtained by adding the individual limits. If the features are
of opposite sign, the limiting effect is the one having the larger magnitude. Othe
examples can quickly be taken from Table 1. A positive slope whose height i
equal to its distance from the station cannot affect the heat flow by more than
10% if its maximum slope angle is 9°. A valley 1 km deep with a 10-km flood-
plane will not increase the heat flow at its center by more than 10% if the walls
are not steeper than 30°. (The interaction is negligible by (14}.) :

If holes are drilled to determine heat flow, it is desirable to select sites at
which the topographic anomaly is minimized. Thus site selection oiten involves
- making many calculations of the type just discussed. I have found it helpful to
take a copy of Figure 3 to the field for this purpose. o

Although the bracketing described is achieved with a two-dimensional model,
it can, of course, be applied to three-dimensional topographic forms.

6. EQUIVALENT SLOPES

The methods of the preceding section often give a useful upper or lower
limit to the topographic anomaly, but the condition that the bracketing slopes
be present everywhere above or below the real surface usually leads to bracket-
ing intervals that are rather large. A more refined method is therefore considered

in this section. ]
Returning to the discussion of section 3, we see that an exact expression -

analogous to the approximation (7) can be obtained from (6) if the Jeffreys
assumption (2) is replaced by

T(x) = Gh(z)[1 + e(@)]
where e is the unknown function that adjusts (2) to give the required value of
T at the reference plane.

1 k()1 + €] ]
Aglar) = = f T (19)
ey L[ e |
= AQ(w) + - f_ s (20)

1 ey B2 .
= Ag(zo) — AQ'(zo) = - ./;m -(—;Z':(_}—.EQ—);;(Z.’C (21)

It
the gra
ence pl
B, it 18
is post
the toe
lief, ge
any fi1
plane |
oceurs
forms

T
to sloy
joined
sectior
tion w
will b

C
irregu
portic

Aga(=

In th
terms

‘at To

and
in th
at a
equit
hosy t
slope
anot
dists
Thu
statl

o]
[
n
(44




ermination of
studies. For -
t of a cliff of
feature whose
the heat flow
nce, the limit
md 1.7%. (It
907 cliff, 2.8%,
e toe of a 5°
ances on hoth
n 14), and the
features are-
gnitude. Other
hose height is
by more than
a 10-km flood
% if the walls
)

select sites at
often involves
1 it helpful to

nsional model,

J.

per or lower
keting slopes
ls to bracket-
re considered

et expression
“the Jeffreys

S T—

wed value of

(19)

(20)

21

TOPOGRAPHIC DISTURBANCE TO THERMAL GRADIENTS 383

It is seen that e(z) can be viewed (for positive h(zx)) as the mean value of
the gradient disturbance at (x) between the topographic surface and the refer-
ence plane, or the mean value of the heat-flow disturbance there. (For negative
h, it is, of course, a fictitious quantity but no less useful as a concept.) Thus e
is positive where the topography concentrates the vertical flux, generally near
the toe of a slope. It is negative where the vertical flux iz attenuated by the re-
lief, generally near the brink of a slope. (Its value must be greater than —1 over
any finite interval if overhanging topography is excluded.) Thus a bump on a
plane slope generally contributes more to the reference plane temperature if it
occurs near the toe (positive e) than near the brink (negative e). This notion
forms the basis for the approximating schemes of this section.

To discuss rather general topographic features and still restrict consideration
to slope-like forms, we shall define a ‘slope form’ as two horizontal half planes
joined by a general (two-dimensional) surface whose highest point is the inter-
section with upper half plane (the brink) and whose lowest point is the intersee-
tion with the lower half plane (the toe). If no ambiguity will result, this figure
will be referred to simply as a ‘slope.’

Consider a slope form hq(r) as the sum of a plane slope h,(z) and the
irregular surface of finite width, hy. The anomaly at a point xp on the horizontal
portion is (19, 20)

_ 1 e hab(l + enb)
Aga(Te) = [_ o @ — ) dz 22)
1 e hr, a 1 = hrrb ab "~ Ca
= Agu(w) + Agy/(z) + ~ f,w (—7;_1—%)'§ dw+ f_,, H dx

In this way the anomaly due to a rather general surface ean be expressed in
terms of the anomaly due to a plane slope plus correction terms.

If we choose a plane slope ke which yields the same Jeffreys approximation
at 24 as the given slope hys, then

+°°]1_
lf Lap le—AQ(,:O

and the second term of (22) vanishes. The choice also ensures canceling effects
in the third and fourth terms. Such slopes, yielding the same Jeffreys approximation
at a point z,, will be referred to as ‘equivalent at x,.” It is clear that any two slopes
equivalent to a third slope at 2, are equivalent to each other there. For any slope
fi.s there i1s a family of plane slopes equivalent to it at any point 2, not on the
slopes. This can be seen by notmg that, given h, equivalent to A,, (Figure 10),
another slope, &,*, equivalent to &, can be drawn by increasing the slope angle and
distance from the station simultaneously in such a way as to keep A, constant.
Thus, the flatter the equivalent plane slope, the closer it extends toward the
station. The ‘equivalent cliff’ is the member of the family farthest from the station.
In general it is found that flatter members of the family yield algebraically larger
anomalies, Ag,, irrespective of the sign of the slope. Thus for any slope £,; it is
possible to bracket the exact effect at a, by finding flatter and steeper plane slopes
equivalent there (TDT), section 7).
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For example, the plane slope #. is flatter than the slope k., (Figure 10) in the-
sense that they 'cross at only one point, so that fis is composed of one negative-
region (h,,) near the toe and one positive region (hs,) near the brink. Because
&, is greater near the toe, the third term in (22) takes the sign of Fis,. The third
term generally dominates the fourth (T'DT, section 6), and hence .

Aga(zo) < AG.(20) ‘
Similarly the steeper equivalent slope he* yields a lower limit to Agu, because it
makes the third term in (22) positive. Generally :

Ag*(xe) < Agqlxo) < Ag(wo)
where the asterisk denotes quantities associated with a steeper equivalent plan
slope and the circumflex denotes a flatter one. If the given feature is a slope:
form, such bracketing plane slopes can always be found for points, Zo, beyond.
the toe or behind the brink. The inequality (23) can be violated for very special
shapes, hu, that are generally unimportant in physical applications. Also, for

 points very close to the brink where the heat flow is close to zero, higher-order
effects can invalidate (23). These departures are small, and they can generally
be checked by geometric bracketing (see example, this section).
Bracketing with equivalent plane slopes can usually be accomplished quickly
with the following steps:
(1) Determine Ag’ for the given slope. This can often be done by breaking
it into component plane slopes and adding the contributions determined from

Figure 11,

(2) Select a steeper equivalent plane slope (
family represented by the appropriate ordinate line,
bracketing interval is achieved by selecting the permis
station and k* closest to it. '

(3) Determine Ag and Ag* from Figure 4 or 5.
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Because the slopes represented by the three parts of (23) are equivalent, each
15 associated with the same Jeffreys approximation, A¢’. Subtracting this from (23)
vields

D*(B*, A¢") < D < D(B, Ag") 29

The discrepancy (D) in the Jeffreys approximation is shown as a function of the
Jeffreys approximation (Ag’) for plane slopes of various slope angles (solid lines) or
distances from the station (dashed lines) in Figures 12 and 13. This representation
provides additional insight and short cuts for estimating anomalies. Vertical co-
ovdinate lines represent families of equivalent slopes A¢’(8, ») = constant (Figure
12) or A¢’(B, s) = constant (Figure 13). The'members of the family can be identi-
fied by the curves of constant 8 and r (or s). Given any positive slope for which
A¢’ = 0.6, and which can be bracketed (in the sense of Figure 10) by plane slopes
with f = 45° and g* = 60°, it is seen from Figure 12 that D lies between —0.11
and —0.18 and hence 142 < ¢ < 1.49.

Most natural slopes decrease in inclination near the toe and brink, making it
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Ag’
Fig. 12. Error in the Jeffreys approXimation (D) as a function of the Jeffreys approximation
(Aq’) for constant positive slope angle, g (solid curves), or constant distance from the toe,
r (dashed curves).

possible to draw A through the toe for positive slopes and through the brink for
negative slopes. (Such slopes are referred to as ‘concave at the toe’ or ‘convex at
the brink,” TDT, section 6.) The station is the same distance (r or s) from such
slopes a5 it is from A. Thus, from Figure 12, any positive slope, econcave at the toe,
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whose height does not exceed 20 times its distance to the station (r = 0.05) and
whose maximum inclination does not exceed 30°, can be represented by the Jeffreys
approximation with errors not exceeding 3%. (Such slopes can be bracketed by
equivalent plane slopes which lie in the region between curves r = 0.05 and 8 =
30°.) Other conditions for validity or failure of the Jeffreys approximation can
readily be obtained from Figures 12 and 13. From Figure 13 it is seen that negative
slopes, convex at the brink, can be approximated by the Jeffreys method to within
30 if their height does not exceed about 3 times their distance from the station
and the maximum slope angle does not exceed about 45°, Almost any slope, positive

ig. 13. FError in the Jeffreys approximation (D) as a function of the Jefireys approximation
(Aq’) for constant negative slope angle, 8 (solid curves), or constant distance frotn the brink,
s (dashed curves).
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or negative, irrespective of slope at the toe or brink, can be represented by the

and §* < 60°.
In general it is seen (Figure 13) that for negative slopes the Jefireys ap-

tively infinite at the brink where the actual heat flow approaches zero.

tion might apply to the independent effects of slopes on either side of a station,
it does not apply in general when the two co-exist. Their interaction must be
considered, as it must for any other slopes. (2) Small Ag” is not a sufficient con-
dition for validity of the Jeffreys approximation unless co-existing slopes are

well at a station by selecting an equivalent slope to approximate (not bracket)

caleulation of effects of hypothetical topography (as in the case of unseen relief
on the ocean bottom, section 8), they can be viewed as representing a variety of

much more general equivalent forms. .
As a numerical example of bracketing with equivalent plane slopes, consider
the anomaly one-tenth of a hill height behind the slope illustrated in Figure 14.

Step 1. From Table 2 or Figure 11
Ag.’(s = 0.1) = Ag’(90°,s = 0.2) + Aq’(45°,s = 0.2) = —2.16

Step 2. 'To obtain the smallest bracketing interval, h* is picked through
the brink and / through the toe with the aid of Figure 11.

g* = 84°, s* == 0.1
g =60°, §=0.600 — cot 60° = 0.023
Step 8. TFigure 5 and (23) yield

0.11 < qu(s == 0.1) < 0.13 25)
By contrast, the Jeffreys approximation yielded (step 1)
QGb’ = ""1.16

and the sum of exact solutions for slope components (Figure 5 or Table 2)

g 2 1+ Ag(90°, s = 0.2) + Ag(45°, s = 0.2) = —0.36

section 6.

Jeffreys approximation within a few per cent as long as Ag” does not exceed 0.15

proximation is poor when A¢’ is large because the approximation becomes nega- - i

Three points should be emphasized: (1) Although the Jefireys approxima- -

of the same sign. (3) Effects of a given monocline-like slope can be represented

there. (See example of next section.) Conversely, if plane slopes are used for

Fig. 14. Iilustration of numerical example,
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The second two results are, of course, physically impossible, as g, cannot be
a negative quantity. A ‘

In this example xp was very close to the brink, where; as we have seen, the
Jeft side of the inequality (23) might not be rigorously correct. If we had chosen
8% = 90° instead of 84°, the same lower limit (to two significant figures in
equation 25) would have resulted. If, however, there is concern about the lower
limit given by (23) in cases like this, we can resort to simple geometric bracket-
ing which yields :

g(90°, s = 0.1) < qus = 0.1)

and, from Figure 5 or Table 2,

0.08 < g,(s = 0.1)
This demonstrates that the lower limit of 0.11 in (25) cannot be much in error.

7. STATIONS ON GENTLY SLOPING SURFACES

Many of the results of the preceding sections apply only to stations lying on
geometrically horizontal surfaces, although these stations may be very close to
steep and irregular slopes. The earth’s surface cannot be considered geometrically
horizontal over extended areas, but much of it is inclined at angles of less than a
degree or two. Although slope angles may change very rapidly near the toe and
brink of topographic scarps, the distant transition to horizontdlness is generally
eradual. Many heat-flow stations requiring topographic correction will lie on
sently sloping surfaces adjacent to bold features. It is necessary to consider how
to apply the foregoing results to stations on such surfaces.

It can be shown (T'DT, section 8) that if the topography is gently sloping in
the vicinity of a station (x = 0) ard smooth in the sense that the surface and
the heat flow through it can be represented by a few terms of Maclaurin’s series,
then the topographic anomaly can be computed by flattening the slope in the
vicinity of the station, as illustrated in Figure 15. The true slope A, is replaced
by the slope hq, which is flattened over the interval |z| < /2 and adjusted up-
ward or downward to eliminate discontinuities x = = [/2,

If y(z) denotes the slope of the tangent to kg, (x) measured clockwise from
negative = and '

Ay = y(l/2) — v(—1/2)

_ 9a(U/2) — qu(—1/2)
- ’an(o)

then the error due to flattening can be expressed as

A

l%—;—o)—q-—@ r ;rl- [tan Ay + 22 tan v(0)] (26)

The result accounts for the reaction of close-in topography to higher-order effects
of distant topography but neglects the much smaller higher-order effects of
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Fig. 15. The general slope, ka, represented as the sum of the flattened
slope ks and the increment hs.

close-in topography acting through distant topography. It is seen that the ab-
solute error |ga(0) — ¢4(0)] is independent of the heat flow if the curvature is
negligible and independent of the slope if the lateral change of heat flow is
negligible.

If the change in slope (Ay) over the flattened interval is less than 2°, the
curvature term will not contribute more than 1% to the error; if it is less than 5°,
the contribution will be less than about 2%4%. In general, A, the relative change
in heat flow across the flattened interval, will not be known, but inspection of the
slope will normally permit an estimate of its order of magnitude. If A is 50%, 2
rather extreme case, the second term will contribute about 1% to the error 1f the
slope at the station is 2°. If A is 20%, a 5° slope will confribute 1%.

Equation 26 probably should not be used for Ay and yo much larger than 5°
or 6° because of the condition, 2/, (*1/2) |I*<1, required in the approximation.
When A is large, gu () is hkely to have considerable curvature in |z} <l/2; and
this can be tolerated in (26) if Ay is very small. If not, it is probably best to
restrict the application to cases in which A does not exceed 25% or so. This will
include most cases of interest.

1t is seen that, after the flattening procedure is applied, most stations will
lie on the horizontal surface between two co-existing slopes (the valley, ridge,
or bench, section 5), one of which can often be neglected.

As a combined example-of the flattening procedure, approximating with
equivalent slopes, and the results of section 4, we consider the surface heat flow
in the vicinity of the brink (z, = +0.55) of a ‘monocline’ of the type considered
by Jaeger and Sass [1963, equation 11 with « = 1. 01] as illustrated in Figure 16.

The monocline is flattened from z = 0.50 to z = 0.60 (ie., I = 0.10). The
slope to the left of the flattened interval is denoted A, and to the right by hs.
In this interval Ay = —3.1°, y(20) —3.4°, and A is large, as this is the region in
which ¢ (z) has its largest gradients. (Ifm actual value is about 25%.) The con-
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Fig. 16. Tlustration of numerical example, section 7.

tribution of the slope term to the flattening error (equation 26) is -+0.01g(w,),
and the curvature term contributes —0.015¢ (o). As we shall see, g(xo) = 0.5,
and hence the flattening error amounts to only a few tenths of 1% of the regional
heat flow and can be neglected. The results for this case follow. '

Exact solution:

Aglzy) = —0.58 @7q)
Jeffreys approximation:

Ag'(x) = —0.675 @7

Agqy’ = —0.69 (27¢)

Aq, = +0.015 @7d)

From the discussion of the previous section

Ags Ag) = 0.015

The portion of the slope h, near the station has an average slope of about 45°,
and hence an approximating equivalent slope &, is selected with an angle g =

45°. From Figure 13
Ags & Agy = Agy’ + D(B = 45°, A¢’ = —0.69) = —0.69 + 0.11 = —0.58

Substituting these values in (14) yields
Ag = 0.015 — 0.58 + (0.015)(0.58)[1 == 1]
~ —0.567 £ 0.01 ’
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This is to be compared with the exact result of —0.58 and contrasted with the
Jeffreys approximation of —0.675. To obtain the above result it was not even =
necessary to determine the coordinate 5 of z. However, it can readily be obtained
from Figure 11, permitting % to be drawn on the cross section to verify the fit.
From Figure 13 it is seen that near the brink the results are rather insensitive to

the choice of §; taking 30° or 60° would have raised or lowered the result by only
0.03. (Actually 60° is a 8* which must give a lower limit to Ag, by (23). ) Itis clear- e
from Figure 16 that 8§ = 45° is the more reasonable choice. uin

8. VARIATION OF THE TOPOGRAPHIC ANOMALY WITH DEPTH

General relations. To this point the discussion has been concerned only with
the flux of heat across the surface, i.e., with the limiting value of the thermal. .
gradient at zero depth (¢ = 0). Even in oceanic measurements of geothermal
flux, however, temperature gradients are determined from observations to finite A
depths (1 to 10 meters). It is necessary to determine the conditions under which
topographic anomalies computed for the surface can be applied to gradients -
determined beneath it without appreciable error, i.e., conditions under which the
gradient anomaly may be treated as superficial.

To investigate depth variations of heat ﬂow analytically, we rewrite (3) in
the form of (19).

pgnd =1 [ ~———~—————h(?x“_“';3§'”” 800 da (28)
where
x = |z — mfe™
) =1 —x"/1 +x7) (29

Equation 28 is an exact expression for the effect of any two-dimensional
topOfrraphic surface, k(x), on the vertical gradient at the point (2, z). Although
e(z) is unknown, its physical interpretation is clear; it is the mean anomaloua
gradient in the relief at =.

Inspection of the form of the function & (Figure 17) and equation 28 points
up a fundamental problem of attempting regionally meaningful measurements
of thermal gradient at or near the surface. The function & greatly diminishes
~ effects of topographic features whose horizontal distance from the station (z — Zo)

is not large relative to the depth of observation, i.e., relief for which x is not
large. Tt is just these features that can have a very great effect on the gradient
at the surface because of the inverse square growth of the fraction in the in-
tegrand of (28). As z approaches the surface, ® approaches unity for all «, and
very small features very close to the station can have very large effects on the

gradients.
The following results can be obtained from equation 28 (7'DT, section 9):

1. All topography of one sign: General [h(z) > 0 or h(z) < 0, 0 > & >
~ e ]. In this case

“|Ag(m,, 0] > |aglz,, ] 2> 0 (30)
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which can be stated as a theorem: If the topographic relief 1s of one sign at thé
station (x,) the heat-flow anomaly caused by this relief at (z,, z) attains its
greatest magnitude at the surface z = 0.

The theorem applies to the Jeffreys approximation as well as to the exact
result. However, it does not apply in general to the discrepancy [D{xo,2)] be-
tween the two. Hence it is quite possible for the error in the Jeffreys approxima-
tion to be greater at depth than at the surface. It can be shown that the theorem
applies also to the transient case if the change of h(z) with time is of the same

sign as h (or is zero).

I1. Relief 1s of one sign and lies farther from the station than the depth of
measurement. [h(z) = 0, lv — 2ol < z; h(x) > 0o0r h(z) <0, jr — z] > 2]. If

the closest point of the relief to the station is at z; and

xi=lt — /e >1
then

Aq(, 2)
AQ(-"UO, 0) > (p(x‘)

ég(x(h Z) A

where 8q {xy, 2) vepresents the heat flow computed from two temperature measure-
ments, one at the surface and the other at depth 2z, and

¥(x) = 2x tan—‘%( — 1

It is shown with ® (z) (equation 29) in Figure 17.
II1. If relief is of one sign and is distributed throughout the region
lt — a9 < 2z, then Ag(zo, 2) is generally an order of magnitude less than

Aq (Cl?o, 0) .

1.0

g
. ]
0.8
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/ /
/
//

0.6

€3))
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IV. Tt can also be shown that (a) if the relief is of both signs and lies in-
the region | — wo| > 2, then |Ag(x, 2)| is less than the magnitude of the contri- -
bution of the positive or negative portion considered individually, whichever is
larger, and (b) if the relief is of both signs and distribution is unrestricted,
|Ag (2o, 2)| is less than the sum of the magnitudes of the contribution of the posi-
tive and negative portions considered individually.

Discussion. From Figure 17 it is seen that

®(x) > 089, x>5 : (39
T(x) > 086, x>2 - (33) :
y Hence, by Ila and IIb and IVa, for most purposes the gradient anomaly at.
depth z can be considered superficial if the closest significant relief is at a hori<
zontal distance greater than 5z; the mean gradient anomaly to depth z is super-
ficial if the closest relief is at a distance greater than 2z. (The latter case applies
to suboceanic gradients based on a temperature measurement in the bottom
water and one measurement in the sediment or to continental gradients deter-
mined from mean annual air temperature and bottom-hole temperature.) Inas-
much as the discrepancies referred to in II are relative ones, the height of the
topography does not enter. _

To put these results in perspective it i3 worth considering four cases: =5

(1) The gradient measurement is superficial and the height of the relief is
greater than its distance from the station. In this case the present theorv applies, -
but the Jeffreys approximation is uncertain.

(2) The measurement is superficial and the height does not exceed the dis-
tance from the station. Here the Jeffreys approximation generally applies, but
the present, method may still be used for convenience.

(3) The gradient measurement is not superficial but the height does not
exceed the distance to the station. The present theory does not apply (except
for limits imposed by I and III), but the Jeffreys approximation generally does.

(4) The measurement is not superficial and the height is larger than the
distance to the station. This represents a irouble spot for the Jeffreys approxi-
mation not covered by the present theory (except for limits imposed by I and
I11).

Although the present methods can be convenient for rapid estimates in cases 1
and 2, it is only in case 1 that they provide information not obtainable from the
Jeffreys approximation. Where continental measurements can be considered
superficial, the application often falls under case 2 because the measurement
depth is commonly of the same order as the relief. :

Thus steady-state topographic corrections throughout a 300-meter borehole
can be computed from solutions that are valid at the surface if the (two-dimen-
sional) topographic relief is more than a kilometer or two from the station.
Under such circumstances the Jeffreys approximation and the exact solution
would give comparable results (case 2) unless the relief was very great (case 1).
The topographic anomaly in the upper 30 meters of the hole could, of course,

be considered superficial for relief extending to within 100-200 meters. For
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relief of one sign at any distance, the surface correction will provide an upper
limit.

Several problems assoeciated with oceanic observations fall under case 1 be-
cause of the small depth of measurement.

Ocean-bottom heat-flow measuréments. It is well known that oceanic heat-
flow values often show considerable variation and that in most areas the spaeing
of the measurements is inadequate for a determination of the lateral scale over
which these variations occur. Without such information it is difficult to determine
the cause of the variation.

Inasmuch as relief is unknown in detail near an oceanic heat-flow station
(with uncertainties of the order of meters to hundreds of meters, TDT, section
9), many workers have considered the effects of undetected relief as a possible
source of these variations [e.g., Bullard et al, 1956; Langseth et al., 1966;
Lachenbruch and Marshall, 1966; Birch, 1967].

The problem can be investigated by considering the theoretical effects of
credible two-dimensional models of undetected relief. (The two-dimensional
case is intermediate between the various three-dimensional possibilities; in the
worst case, three-dimensional topography could produce anomalies that might
exceed the corresponding two-dimensional ones by a factor of about 114) An
upper limit to the scale of these models is imposed by the uncertainty 8k in the
determination of local elevation difference on the ocean floor. A lower limit to
their scale is imposed by the length of the probe A and the presence or absence
of curvature in the temperature profile.

Suppose a temperature probe penetrates the ocean bottor at point z, (Figure
18) to depth A and that local elevation differences are uncertain by = 6h. According
to III, if unseen relief is distributed within a distance 2\ of the station, it will
generally produce a change in gradient over the length of the probe of the same
order of magnitude as the mean gradient anomaly measured at the station. If such
effects are large, they are easily identified with probes containing three or more
sensors; if they are not large, they are unimportant. Relief beyond 2\ can produce

Fig. 18. Possible undetected relief (£8h) that would produce a superficial
gradient disturbance to depth N = 0.16h (solid lines) and A = &h (med-
ium dashed lines).
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anomalies in the mean gradient that are large relative to the curvature detectable
with a few temperature sensors. Such unseen relief can have a height of ==k, ang
the worst case oceurs when it is of the same sign on both sides of the station. What-
ever the forms of these unseen slopes, they can be replaced by equivalent plane -
slopes of angle § at distance 2\. The resulting anomaly (67) can be cons1dered
superficial (35) and expressed approximately as

8q =~ 2 Ag(B, 2N/ oh) (36)

The fraction represents r or s, depending on whether the relief is positive or nega-
tive. If it is very small, interaction should be considered (equations 10 or 11). .
Because so little is known of small-scale sea-bottom topography, the choice
of values for the height 62 and mean slope 5 of unseen local slopes is an open question
at present. Recent observations with deeply towed sounders have revealed relief
on the order of 100 meters, with slopes as great as 30° [Loughridge, 1966; Birch,
1967] or even 45° to 90° [Spiess et al., 1967]. Taking § = 30° and assuming the
uncertainty 6% is 10 times the probe penetration (A), we find from (36) (modified
by equations 10 and 11) that positive anomalies up to 90%, and negative ones up
to 709 could occur with relatively little curvature (Figure 18). If A is 2 meters,
this amounts to 20 meters of unseen relief. If the relief were 50 meters, the same
anomalies could be caused by slopes beyond 5%, and, by (34), no measurable

curvature would occur.
Increasing the probe length by a factor of 10 (from A = 0.18% to X = Sh,

Figure 18) decreases the limits of error (8¢) to +20% and —25% plus a sub-
stantial fraction of the measured change in gradient with depth. In these ex-
amples the relief indicated by first arrivals on a conventional echo sounder
would be of the order of 1 meter or less (7'DT, section 9).

From (36) and Tables 1 and 2 it is seen that the probe length should be
2 or 3 times the elevation uncertainty, and the curvature should be negligible
to reduce the topographic uncertainty to about ®=10%. As these conditions are
rarely fulfilled, the best assurance against undetected topographic anomalies is
the agreement of closely spaced measurements [Reitzel, 1963; Laster, 1963; Lee
and Uyeda, 1965; Lachenbruch and Marshall, 1966].

The lower limit of heat flow is approximately zero, and its upper limit is
unrestricted. Hence we tend to view the frequency of occurrence of large heat-
flow anomalies in the log-normal sense [Gurdler, 1966]; a very low heat flow of
one-fourth the regional average is an occurrence roughly comparable to a very
high heat flow of 4 times the average, though the actual anomalies are —75%
and +300%, respectively. In this sense, very low heat flows are much more
easily explained by unseen relief than are very high ones, as the comparable
high ones generally require elevation differences one or two orders of magnitude
greater (Tables 1 and 2 and Figures 4 and 5). This observation is consistent
with the recent discussion by Birch [1967].

9. TIME DEPENDENCE AND OTHER EFFECTS

Time dependence. Birch [1950] has shown that the finite times elasped {
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geothermal terrain correction. The present discussion concerns corrections to
superficial gradient measurements, primarily a problem of accounting for close-in
topography with short time constants. However, an approximate theory of the
transient effect has been considered (TDT, section 10) to place the foregoing
discussion in a time context.

Selected results are presented in Table 4 for unconsolidated sediments
(thermal diffusivity « = 0.0025 em? sec?) and ‘rock’ (« = 0.0125 cm? see ). For
topographic features whose height and distance are small relative to the sediment
thickness, the value for sediment is probably more realistic. Larger, more distant
features are probably represented better by the column headed ‘rock.’ In the
table a feature should be considered as represented by its equivalent eliff.

From the second line we see that an open pit or mine dump made in this cen-
tury would not affect the surface heat flow in a borehole only 100 meters away.
By (30) the result applies to gradients throughout the borehole. More or less
uniform relief approaching to within a kilometer or two of the station ean be
deseribed by the equilibrium theory if the topography has not changed much
since early Pliocene time and the sediments are thick—or early Pleistocene time
if the sediments are thin. The latter case might apply, for example, to the walls
of an oceanic trench for stations on the floor. A substantial fraction of the effect
of slopes forming 10 m.y. ago would be felt at stations 5 or 10 km away. It is
seen from the last column of Table 4 that effects of such slopes would generally
be small

Iinite lapse rate. For convenience it has been assumed that the topographic
surface is isothermal. If the temperature of the surface decreases linearly with
elevation with gradient G, the topographic anomaly would be given by

G — G")/G] Aq 61
For terrain above sea level, approximations to G’ are found to range from about
3 to 9°C/km. This is often 10 to 50% of @, and the topographic correction is
substantially reduced. At abyssal depths in the ocesn we normally have G'/G
=~ 10™, as G’ is of the order of the adiabatic gradient in sea water, and the as-
sumption that the surface is isothermal is realistic.

A buried bedrock slope. Equation 37 suggests an additional application of
the results presented in section 2. Suppose a bedrock surface dips under sedimen-
tary material of conductivity K; and there is no topographic expression at the
surface, as illustrated in Figure 19. If the conductivity of the rock is K, the
gradient G5 in the sediments at points distant from the slope is

= (K/K)¢
As an approximation we assume that the gradient G, obtains throughout the
sediment above the bedrock surface. Replacing 7 by Gy in (37) yields

Agy(wo, B) = [ — (K/K)] Ag(o, B) ’ (39)

where Aqy is the heat-flow anomaly caused by the buried bedrock topography
at points on the surface behind the brink (4B, Figure 19) and at the buried

interface (BCD, Figure 18).
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If the conduetivity of the bedrock is approximately twice that of the sedi-
ment (a common situation), the lower curves in Figure 3 give the negative of
the anomaly along AB (Figure 19), and the upper curves of Figure 3 give the
negative of the anomaly along the interface CD (Figure 19).

The mode] describes a common situation in the Basin and Range province
of the western United States, where bedrock pediment surfaces are downfaulted
on the basin side and the depression is subsequently filled with alluvium. The
results are useful in the interpretation of geothermal data from boreholes in

such areas.
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