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Summary

By making quantitative comparisons between theory and observations it is shown
that hydrostatic theories cannot account for the pressure changes which have occurred
in the Wairakei geothermal field. The pressures at three representative dates can,
however, be obtained on the theory that the hot water flows according to Dargy's
law under the influence of buoyancy forces resulting from the surrounding cold ground
water, allowance being made for the effect of the uncased parts of the bores in
increasing the vertical permeability of the hot region. According to this theory a
steady rate of drawoff from the bores will result after a period of the order of one
year in an almost steady pattern of pressure with depth, the greater the drawoff the
lower being the pressure at any depth. The ultimate source of most of the water
withdrawn is the cold ground water surrounding the hot region, which is heated by
the hot rock through which it flows and in so doing cools the outer parts of the
hot region. The steady reduction in width of the hot region caused by this lateral
inflow extends much deeper than the botom of the bores, and at the 1963 rate of
drawoff will lead to a reduction of 10% in the radius of the hot region over a
period of about 70 years. This contraction of the hot region will cause a slow fall in
pressure if the rate of drawoff is held constant.

INTRODUCTION

During the past decade, the rate of artificial drawoff of hot water from
the Wairakei field has shown an irregularly increasing trend (Fig. 1),
reflecting the increasing capacity of the installed power-generating plant
and the fluctuation in the load. Over the same period the pressure of the
hot water at various points, all at a depth of about 2,200 ft (670 m) below
the ground surface, has steadily fallen (Fig. 2). These pressures were all
measured in bores from which no surface discharge was being taken, and at
a sufficient depth to be below the water level (that is, there was no steam
present). By assuming a pressure gradient corresponding to the hydrostatic
pressure of water at the appropriate temperature, they were adjusted to
give the pressure at one particular depth, RL-900.

There have been no continuous measurements in any one bore, but the
fragmentary records fall naturally into certain groups indicated by the letters
4to p in Fig. 2. Group A consists of five bores all within 0-17 km of one
another and within the same distance of power-producing bores. Group €
consists of two bores about 1 km apart and each about 1-5 km south of the
production bores. D represents a single bore about 1km east of the produc-
tion area, and about 03 km from the Waikato River. Group B consists of
eight bores drilled during 1959 to the west of the production area, spread
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over a kite-shaped atea about 3-4km long by 3-0km wide, the mean
distance from the nearest production bores being about 2:6km.

Ir is obviously desirable to find some theory which will explain these
gbserved pressure changes, in order that the geothermal field may be
exploited to best advantage, and that an estimate can be made of its useful
life. It will be shown in this paper that the analysis of existing records
disproves certain hypotheses which come to mind, but that a satisfactory
theory can be developed, which can be refined as more data are obtained.

Crosep TANK HYPOTHESES

At depths more than a few hundred metres below ground level, where
there is no steam present, the Wairakei geothermal field consists of an
area in which the ground water is at a temperature of approximately 250°c,
surrounded by a boundary layer a few hundred metres wide in which the
temperature falls steadily to normal values. :

The first question that arises is whether there is any hydrological connec-
tion between the regions with hot and cold ground water: that is, is there
in impermeable wall around the hot region? Consider the hypothesis that
the hot region is surrounded on all sides and below by such an impermeable
barrier,

Since the water inside this barrier is to a first approximation all at the
same temperature, convection currents will be negligible and the pressure at
any point will be given by the theory of hydrostatics:

Pressure, p == ——[ p(2)g dz

Jo

Applying this formula to the temperature-versus-depth observations on bore
19 in 1953 (Banwell, 1957), assuming the presence of liquid water at all
depths, one obtains the value 801 p.s.i.g. for the pressure at depth 670 m.
Figure 2, however, records pressure measurements at this depth which are
more than 90 p.s.i. higher than this value,

When the calculated hydrostatic pressure at other depths is compared
with the minimum pressure required to keep water liquid at the temperature
observed at the same depth, the calculated pressure %or all depths between
150 m and 400 m is found to fall short of that required, the greatest deficit
being about 60 p.s.i.

This hypothesis must therefore be discarded since it cannot account for
pressures as high as those observed. Consider next what might be called the
“pressurised tank” hypothesis, in which we assume not only impermeable
sides and bottom to the tank but a very low permeability lid. In this case
some constant may be added to all pressures below this lid, so accounting
for the observed high pressures.

The difficulty with this hypothesis is how to explain the observed rate of
natural outflow of hot water and steam from the field, which is of the
order of 400 kg/sec, or 5 X 10° cm?®/sec of water at 250°C. Since we have
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postulated that there is no inflow, the outflow can come only from the
expansion of water (and rock) in association with a steady decrease in
pressure. Now estimate this rate of pressure drop.

If the volume of the tank is taken as 25 km3, corresponding to radius
and depth each about 2 km, and the porosity is given the rather high value
of 0-2, the volume of water is 5 kms. Taking the compressibility,

1 78V

V \ 8
of water at 250°C and 40 bar pressure as 70 X 10-% bar!, we have
; dp - 1 dv
Rate of pressure change = — = —— . — .

1 .
= (—5 X 10%)31:56 X 10®bar/yr =  —45 bar/yr
70(10-)5(10%) ~ —650 ps.ifyr

Thus even if the volume of the field were 10 times greater than assumed
here, and the effective compressibility of the water also 10 times greater, the
observed pressure excess over hydrostatic values would disappear in less than
20 years—much less than the known historical age of the field. This
hypothesis also is therefore untenable.

The conclusion to be drawn at this stage is that no hydrostatic theory is
satisfactory, whether the pressure at ground level is taken as atmospheric
or some higher value. The only alternative is that there must be an inlet
into the hot region somewhere, in which case there must be a potencial
gradient (that is, a pressure gradient additional to the hydrostatic one) which
drives the hot water through the region from the inlet to the natural outlets
of the ground surface. Before considering hydrodynamic models of the
Wairakei field, however, it is desirable to consider in general terms what
happens when hot and cold water are present together in one porous
medium,

BEHAVIOUR OF AN IsoLATED Hot REGION IN A GROUND WATER FIELD

To fix our ideas, consider a roughly spherical region about 4km in
diameter in which the temperature everywhere is 250°c, situated in a
saturated isotropic porous medivm at 20°c (Fig. 3). Thermal conduction
will immediately begin to reduce the steep temperature gradient at the
boundary. The time for the thickness of the boundary layer to reach about
209, of the radius is given by A

t = (0:005r%)/a
Taking the thermal diffusivity « as 0-003 cm?®/sec,

0005 (2 X 10%)2
t = sec o~ 67 X 101 sec ~ 2,000 years
0-003

(Carslaw & Jaeger, 1947)
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It takes eight times vlonger for the temperature at the centre to begin to fall.
Evidently the hot region will not diffuse away while we are considering what
else may befall it.

If all the water were at rest the isobars would be as shown schematically
in Fig. 3. The density of water at 250°C being only 08 g/cm?, the isobars
in the hot region are spaced 25% further apart than in the cold, and the

ressure at A is greater than B which is at the same depth. The state of rest
is therefore unstable, being upset in the first place by inflow of cold water
below the hot region, One can see that a quasi-steady state will arise, shown
schematically in Fig. 4. Upflow in the hot region compresses the spacing
of the isobars there, while downflow in the surrounding cold water widens
the spacing, still leaving an outward pressure gradient above the hot region
and an inward gradient below. Water circulates in the direction ABCDA.

Fic, 4-—Isobars in the presence of

Fi16. 3—Hydrostatic isobars in and
vortex flow (schematic).

near an isolated hot region
(schematic).

This state is described as quasi-steady because the inflow of cold water
into the hot region at B, and the outflow of hot water at ¢ must disturb the
original boundaries of the hot region. One might expect at first sight that
the effect of this flow across a thermal boundary would be to cause a
degradation of the high temperature as cold water permeates hot rock, or
as hot water permeates cold rock, resulting in a steady broadening out of the
boundary layer at the top and the bottom of the hot region. Provided, how-
ever, that the thermal diffusivity is not too small in relation to the linear
dimensions of the pores in the porous medium and the flow rate of the
water, i.e., provided the Péclet number, length X velocity —- thermal dif-
fusivity, is not too large, the water and the rock in any locality will come
into thermal equilibrium with each other in a time short compared with the
time for the water to traverse the thermal boundary layer. In this case the
effect of an upward flow of water through the hot region is to displace the
hot region bodily upward without affecting its shape or boundary layer
thickness. In a study of the heat-pulse method of measuring sap flow in
conifers (Marshall, 1958), I verified experimentally that the same phe-
nomenon was occurring (on a much smaller scale). In that study I gave an

T

equation relating the velocity of the heat pulse to what I called the "sap
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flux”’, which is identical to the “filter velocity” or “‘macroscopic velocity” g
used in the expression for Darcy's law: '
g = —(kp/p) grad ¢ (1

£ is the permeability of the porous medium, p and y the density and viscosity
respectively of the water, and ¢ the potential of the water defined by:

¢ =g+ @ —pdlp . @ ,

where z is the height and p the pressure.
That equation is-
Heat-pulse velocity = (pc/p’c’)q

where ¢ is the specific heat of the water, and p’ and ¢ are respectively the
density and the specific heat of the saturated porous medium. Typical values
of p’¢’ for various types of rock lie between 0°52 and 055 c.g.s. units, which
will also be the value for saturated rock if the porosity, f, is small. The
velocity of a hot region in saturated ground may be nearly twice the filter
velocity measured in the cold region. In ground with high porosity the
multiplying factor decreases but is still greater than 1'0. The actual mean
velocity of the water is given by ¢/f, which is much greater than the filter
velocity if the porosity is small.-

This mechanism leads to some rather surprising results. Consider the
situation when the 4 km diameter hot region has risen a distance equal to its
diameter, whether due to the vortex induced by its own buoyancy or to some
other upward stream of ground water. This might take about 10% years.
The major part of the region is still at 250°c, although the width of the
boundary layer has increased somewhat, due to thermal diffusion. The rock
which was originally at 250°c is now cold, while other rock which was cold
is now 250°C. And if the porosity is 59 there will have been about 10
changes of water in the hot region during this period. The heat “pulse” has
an existence of its own apatt from the matter which contains the heat at any
time; the flowing ground water can transport this heat without degrading
;ts1 dtenrxperature. This process has important implications for the Wairakei

eld. “

When the Péclet number increases beyond the values for which water and -
rock at any point have the same temperature, the first effect is for the heat -

pulse in the water to be displaced slightly downstream from the heat pulse
in the rock; temperature changes in the water lag behind those in the
surrounding rock, the temperature difference being proportional to the rate
of flow. (The Péclet number considered here is based on the pore size, and
is therefore a “‘microscopic” Péclet number which must be distinguished -

from the “macroscopic” Péclet number considered by Wooding (1963)

which is based on the size of the whole hot region.)

As the hot region rises under the influence of its buoyancy-induced vortex
the question arises whether or not it will retain its original shape. Expressions -

for the rate of movement of a hot region of ellipsoidal shape can be derived
from the solutions for a fluid mass imbedded in another fluid in a porous
medium (Yih, 1965). The situation treated by Yih is not the same as that
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since in his case the two fluids are different and not inter-
convertible (e.g., oil and water) and he consequently uses the purely kine-
matic boundary condition that the normal components of the filter velocities
on each side of the interface must be the same. In our case fluid flows across
the boundary, being converted from one fluid into the other as it does so
(e.g., hot water becomes cold water). The boundary condition appropriate
to our case is that the normal component of the mass flow (density X filter
velocity) must be the same on each side of the interface. When Yih's deriva-
tion is repeated with this new boundary condition, the effect on his result
equations” (66) is that 1n the denominators (only) s must be replaced by

(p=/p)pa (Yih's notation).

For the particular case of a spheroidal
of length 24 vertical, and maximum radius 7,

considered here,

hot region with axis of revolution
the upward filter velocity when

the surrounding cold water is at rest is given by

k(p: — p1) & )

=
J15" -+ £
and subscript 2 to the cold, and

where subscript 1 refers to the hot region
Qg
2—

w0 an

where aq

o (@ NP 05 D)

catio r/a does the same, and in particulac

¢ goes from zero to infinity as the
3, 0-400, and

when r/a has the values of 0°5, 1, and 2, ¢ is respectively 016
0-892 :

It may be remarked in passing tha
the fluid mass with the (filter) veloc
the mass is equal to the filter velocity divided
numerical example will emphasise the difference v
ours. For a porous medium with 5% porosity in which pi6:/p’¢’ has the
value 2, a mass of some fluid other than water having the same density and
viscosity as water at 250°C will move at 20 times the filter velocity within

the mass, but if the part of the medium containing this fluid is heated to
250°C and the fluid itself replaced by water at 250°C, this hot region will
move at only twice the filter velocity of the hot water, and this filter velocity
is not the same as that in the previous fluid mass because of the difference

in boundary condition just discussed. The physical .reason for this contrast-
ing behaviour is that in the case of the two fluids the porous medium is
simply an unchanging framework within which the action occurs, whereas in
the case of the hot region the porous medium is involved in the tempera-
ture changes as well as the fluid, and the fluid has to transport the heat of

the medium as well as its own heat.
Returning now to the question of possible changes in the shape of the
hot region as it rises, one might surmise from the expectation that the

t Yih wrongly identifies the velocity of
ity in that mass. In fact the velocity of
by the porosity. A simple
between Yih's case and
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system will tend to dissipate its gravitational potential energy as rapidly as
possible, that the hot region will tend to become a tall, thin column, or

perhaps a number of such columns, this configuration giving the lowest -

value for ¢ and therefore the greatest value for ¢, (c/f Yih, p. 228).

Equation (3) is easily verified for this extreme case, for the downward flow -

in the cold region, having a much larger cross-sectional area to flow through
than the slender hot column, has negligible velocity. Thus from equation (1),
0¢/9z = 0. By eliminating the pressure term p between the two forms of
equation (2) corresponding to hot and cold water, one obtains for the
relation between the two potentials at any depth,

, P11 = pape — (pr— p1)g®
Differentiating, p,(0¢1/92) = p2(0¢/02) — (p2 — p1)g
Hence since 9¢p,/9z = 0, 9¢5/02z = — [(p. — p1)/prlg 4)

Since there is no horizontal flow except near the end of the column the
values of the potential and therefore its gradient must be the same in both
the hot and the cold regions. Substituting (4) in (1),

kpy  O¢y kpy - pz— p1 £(p2 — p)g
=" — = — — ) = - (5)
Pa 0z Pa P M1

When an initially spherical hot region becomes tall and rod-like as it
rises, the effect of thermal conduction becomes increasingly important and
it will eventually dissipate by thermal diffusion.

Equation (3) indicates an interesting contrast between the behaviour of
a hot spot in an infinite cold region, and a cold spot in an infinite hot
region, Since the viscosity of water at 250°c is only one-tenth of its value at
20°C (p; = 0001 poise as opposed to u, == 0°01) the rate of rise of the
hot spot is quite sensitive to its shape, whereas the rate of fall of the cold
one is not. When r/z = 1 the value of ¢ is 0'4 so ¢, for the hot spot is

~only one-fifth of its maximum value. In contrast, for a cold spot with

r/a =1, ¢, is only 4%, less than its maximum.

It is interesting to consider the case of a small cold spot inside a hot
region which in turn is contained in an infinite cold region. If the hot
region is rising at the maximum rate, so that its filter velocity is given by
equation (5), then if the cold spot is tall and thin it will remain stationary.

For in this case ¢, is constant everywhere, and there is zero flow in the cold -

spot just as there is in the outer cold region. The cold spot, however, will
soon begin to warm up by thermal conduction and begin to rise. If on the
other hand r/# for the cold spot is significantly greater than zero, it will
rise but at a rate which is slow compared with the filter velocity in the hot

region. This is because most of the upwelling hot water bypasses the cold .

spot which is a high resistance region because of the high viscosity of the
cold water, The upward velocity of the cold water within the spot is conse-
quently much lower than that of the surrounding hot water. Thus a cold spot
must either remain stationery or rise slowly in a hot region which is rising

at the maximum rate. If, however, the hot water is rising at a rate more

than a few percent lower than the maximum a cold spot in it will fali.
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somewhat different from the case of an isolated hot region is that of 2
seady source of hot water. The steady-state upward filter velocity of the
hot water is determined by the potential gradient in the cold region and is
qot affected by the strength of the source. If this strength is. suddenly
iacreased, the increased pressure causes an outward, horizontal flow and the
reater magnitude of the source is accommodated by a greater area of the
hot column, the actual velocity being the same as before.

This discussion so far has assumed uniform permeability. If the upwelling
hot column encounters a horizontal layer of lower permeability the velocity
must decrease, by equation (1), and the area increase to proxflde for the
constant total flow. These changes cannot occur sudd_enly right at the
boundary, and consequently for some distance cither side of a boundary
petween layers of different permeability there is a departure from the
pattern of uniform potential gradient and parallel, upward flow.

A typical example is shown in Fig. 5 for the case of a hot cylindrical
column encountering a layer 200 m thick in which the permeability is only
1 quarter of its value elsewhere. When the continuity equation s combined
with Darcy's law, equation (1), one obtains Laplace’s equation, V3¢ =0,

~—HOT——COLD —~

++—HOT——COLD —
250°C - 20°C

Fic, S—Theoretical equipotentials for the steady Darcy flow of a column of water
at 250°c, where it encounters a layer with permeability only one quarter of that
of the rest of the aquifer. OY is the mid-plane of this layer; OZ the axis of the
column.

(If the horizontal unit of length were 500 m instead of 50 m, this would be
the distribution of potential for ground in which the horizontal permeability is
100 times greater than the vertical permeability.)




TR

ALTSEY Advnasy S

[}

“u

BT

R T B VRN

660 ' NEW ZEALAND JOURNAL OF SCIENCE [SEPT.

for the steady flow case (e.g., Fligge, 1962). The solution in Fig. 5 was
obtained by numerical analysis. Notice that the diameter of the column
begins to expand some 200 m below the boundary with the less permeable
layer. Although the surface of the hot column is everywhere in equilibrium

with the cold water at rest which surrounds it, the potential at the central
axis builds up to higher magnitudes which have the effect of adding a radial

outward component to the flow, increasing the diameter of the columa, and
at the same time increasing the vertical potential gradient through the' less

permeable layer. In this particular case the pressure on the axis rises up to -

21 p.s.i. above the pressure at the same depth in the cold region: In spite of
this outward pressure gradient the whole system is in equilibrium, and if it
is disturbed, for instance by withdrawing hot water from the high pressure
region, causing even quite a small drop in pressure there, the diameter of
the column must contract. That is, cold water will flow laterally into the

hot region even though there is an outward horizontal pressure gradient
there.

Some other solutions for particular cases indicate the general pattern:
with values as in the first example except that high and low permeability
layers 400 m thick alternate, the maximum pressure rise on the axis increases
slightly to 23 ps.i., and the nature of the solution shows that furthec
thickening of the layers will not affect this value. (The equipotentials have
become parallel and horizontal as at the bottom of Fig. 5.)

When one takes the two-dimensional case of a vertical wall of rising
hot water of the same minimum thickness as the minimum radius of the
previous cases (namely, 200 m), and also makes the low permeabilicy half
of the high (rather than a quarter) the same maximum pressure rise
23 p.s.i., is obtained. When the minimum thickaess is increased to 500 m
the maximum pressure rise increases to 34 p.s.i, in this two-dimensional
case,

FORMULATION OF A DIFFERENTIAL EQUATION

It was concluded in the section on closed tank hypotheses above that
pressure measurements at Wairakei indicate the existence of an inflow into
hot water region. What is more, the general similarity of the pressures in
virtually all bores at any one time (Fig. 2) indicates that the inlet to the
hypothetical tank consists of the whole bottom of the tank; in other words,
the region penetrated by the bores is the top end of a rising column of hot
ground water. Although there can therefore be no impermeable bottom to
the tank, the question is still open whether there might be an impermeable
wall round the sides down to the depth of the deepest bores. In the absence
of such a wall the observed fall in hot water pressures in recent years would
induce a lateral inflow from the surrounding cold ground water. If the
Péclet number of this inflow (based on pore size) were small enough, how-
ever, the incoming water would heat up to the prevailing high temperature
in the geothermal field as it passed through the boundary layer, so such
inflow would not necessarily cause any observable lowering of the temperature
at the bores. The long term effect of any lateral inflow would be a steady
decrease in the width of the field; and any bore in the thermal boundary

Fic. 6—The config
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-wver (1€, where there is a horizontal temperature gradient) would become
'f"adily cooler. It may be remarked that such a process would sweep up
fe heat stored in the peripheral rock of the field with 1009 efhciency.

e

ting a quantitative treatment of the flow through an actual

,,réﬁngti::zgr ﬁ%ld otclle immediately faces the difficulty that the permeabtxlgy
ay vary considerably from place to place in a manner that canno tte
mply determined from other physical measurements. This is in contrast to
jgegretical hydrostatic pressures deduced above which d.epenc} only on
.;mvity and water density, the latter being a known function o tlemperfx-
e which itself does not change unpredictably from place to place. n
éealing with porous flow one bas no option but to choose the simp cfst ;:ani; )
figuration of permeability which does not violate known facts, an vs; :kcl
one judges will not oversimplify to the extent of removing the cauge o . a?.
henomena one hopes to explain. For the purPose_of this hmat ema t1c
ireatment 1 postulate the configuration shown in Fig. 6. T egg l?re W(f)
regions in each of which the temperature is ur}tfogm, and .fihe ; ic nfsz.o
the boundary layer is neglected. The hot region is a solid of nzzqu ion
sbout the z-axis. In the surrounding cold region the permeability 2 is ur:ix-
form and isotropic. (The hypothesis of an impermeable wall correspon b;
o £ = 0.) In the hot region _tk}e }}onzontal Permeabxhty is taken to be
infinite and the vertical permeability in the undisturbed, natural state to be
uniform with depth and equal to by, o

My justification for the rather drastic assumption of infinite horizontal
permeability is the similarity of the curves A, B, and C in Fig. 2. This
assumption removes the possibility of explaining the slight differences
between these curves, but the aim of the present wotk is to account for
the features they have in common. N

‘he assumption of uniform initial vertical permeability is not as restrictive
as’Iithfni;Sht sgern because, as will be shown below, the effect of drilling the

z

i i ¥ iliti sed 1 athematical analysis. ks 15
Fic. 6—The configuration of permeabilities used in the mat

the original vertical permeability in the hot region, assumed constant. In gizngra.l.
when this vertical permesbility varies with depth, as after drilling the bores, it is
denoted by K.
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bores has been to increase the effective vertical Eermeability very consider-
ably, making any variations in the initial permeability of secondary import-
ance. 3
It is at shallow depths that the model in Fig. 6 most obviously differs

from reality. In the first place it does not allow for the observed fall in

assumption, however, of uniform temperature and vertical permeability -
would be mathematically duplicated if the actual permeability were such
that A;p/p remained constant with depth, and as just remarked the precise
variation of £, with depth is not of critical importance. '

More important is the assumption that the ground remains saturated
with hot water right up to the surface, whereas at depths less than 400 m
pressures ate in fact not great emough to prevent some water flashing off
as steam. Some implications of the resulting two-phase flow will be dis-
cussed below but for the present its effect is ignored.

In a region where permeability and viscosity are constant the equation
for fluid flow is (Fliigge, 1962, chap. 88)

£/ (ufB) Vb = 0p/ot

which has the same form as the heat conduction equation with the diffusivity
replaced by £/(ufB). With f = 02 and g = 70 X 10-° per bar as used
above, ;. = 10-* poise for water at 250°C, and & = 25 X 10-1! cm?, this
diffusivity equals ’

2:5(10-11)
Kk = cm?/sec == 1-8 X 103 cm?/sec = 0'015 km?/day
10-3(0-2)70(10-12)

If the pressure is suddenly changed at a point distant x from another point
where the pressure is held constant, the time taken for a uniform pressure
gradient, and therefore steady How, to be established between the two points

02 x?

is given approximately by ¢ = = 13 x* days, in the present case

K

(for x in km). Thus for x = 2km, ¢ is less than two months. As will be
shown below, the value taken for £ is of the right order for the vertical
permeability in the hot region. In the cold region y is 10 times greater, but
so also is the permeability derived below using steady-state theory. The
assumption of steady-state conditions now made in obtaining the differential
equation seems therefore not unreasonable in retrospect. For even in the cold
region it should not take more than a few months to establish steady flow
conditions over a region within a few kilometres of some point of disturh-
ance to a previous steady state, and we are dealing here with pressure changes
cccurring over a period of somé years. '

Let » and w be the filter velocities in the r and z directions respectively,
and subscript 1 refer to the hot region, and subscript 2 to the cold.
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\e continuity condition requires that:

Tt
Wy "}" ZTTRSR Pzwz - TT(R + 8R)2P1(lul + 810'1) - 277R8zp2‘112 = 0

fRJI”
shere R(z) is the radius of the boundary between the hot and cold
regions. This reduces to:

2pos + 2(dR/d2) (pr — pw2) + Rpy (dw,/02) =0 (6)

meability in the hot region ¢, there

must be a function of 2 only and w; also is therefore constant for a given
f z. The v, and w, in equation (6) refer to their values at the
tion (1940), that ¢;)x is the value of ¢

Because of the infinite horizontal per

value ©
poundary, R. Using Hubbert's nota

of the jth fluid in the region occupied by the th fluid,

we have v, = ———|—" \
Pz or /= |
kps [ [ 04 dR / 042 1 |

and w, = — {(—-)—— { (7
pz | 0z 2 or ) |
. k:mpx aqﬁl ‘
together with w; = ———— |
™M 0z /1 )i

Before equations (6) and (7) can be used to obtain a differential
equation relating the potential to z, some expression must be found for
(2¢./3r),, the radial “gradient of . on the cold side of the boundary.
This can be done by assuming that at some outer radius r, the cold water
is unaffected by disturbances in the hot region. If the cold water at
;= r, is at rest, the potential . there is zero.

In the steady state the potential like the pressure satisfies Laplace’s
equation. Solution of this equation with the boundary conditions:

($u(r2) ) = Qatr =
and (¢.(r,2) )z = (¢2(2) Jratr = R
gives (3gu/ar)e = ($o)1/ R In R/72)

Equations (6), (7) and (8), together wit

pps = e — (p2 ™ P
quation (2) ), lead to the differential equation

C))

h the equation relating ¢, and é»:

(which follows from e

(12(1{)2 ~ 2 dR 'éPQ,U«l d(j)2

{1 —

z 'ésopllJ»z dz
2 2dR fp:— m

R d
j dR - 1 /épzp,l
1+ — . ¢ =
L dz 'J ,é;wpl‘u,g R?In I‘e/R R dz pz

dz?
- g O
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The partial differentials have become total differentials since ¢,, which is

actually (¢,); the potential which cold water would have in the hot region,

is a function of z only.

For any particular choice of permeabilities, temperatures and boundary
shape between the two regions, equation (9) can be solved to give the
potential and therefore the pressure at any depth. The potential can be used
to find the lateral outflow v, from equation (7), and therefore the new
position of the boundary at some later instant.

THE IMPERMEABLE WALL HYPOTHESIS

In using equation (9) to search for values of the permeability which
would correctly predict observed pressure changes, I have chosen initially
three observed measurements by which to test possible theories. These are:

(i) The rate of mass discharge (steam and water) for the whole
Wairakei geothermal field in its natural state. Fisher (1964
estimates this as 440 kg/sec. ‘

(ii) The pressure at reduced level—900 ft in 1955 (Fig. 2). Most of
the measurements lie between 890 p.s.i.g. and 900 p.s.i.g.

(iii) The pressure at the same depth in December 1961. The shape of
the graph of total discharge (Fig. 1) during 1960 and 1961 would
lead one to expect that if the time constant of the field were of the
order of a few months or less, the pressure should be approaching
an equilibrium value at this date. Figure 2 shows that for the bore
groups A, B, and c this is indeed the case, the pressures lying
between 750 and 760 p.s.i.g.

At this stage it is necessary to consider whether the drilling programme
"has caused any significant increase in the vertical permeability in the hot
region. Banwell (1957) tabulates the bore data up to 1955. The lowest few
hundred metres of most bores are uncased, so even when a bore is shut off
at the surface this uncased length might be expected to serve as an important
bypass for the upwelling hot water in the vicinity, which would flow into
the bore near the bottom and return to the porous ground below the
casing.

At the potential gradients involved the flow in the bores will be turbulent
(Reynolds number =~ 10%) and given by:

Ap = fU/d) (pa®/2) (eg., Giedt, 1957)

where f is now the friction factor, 4 the diameter of the bore, and #,, the
mean velocity in it. Putting

Ap/l = grad p = p, grad ¢,
and %Wdzﬂm - TTRz’wm

gives wy, = (4° grad ¢,/8fR*)} = equivalent filter velocity of the
bore. (10)

vy
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Since the flow in the bores is turbulent whereas the flow in the porous
ground is Jaminar, the ratio of the two types of flow will vary with the
;iotential gradient; as an arbitrary basis for comparison the gradient given
by equation (4), corresponding to cold water at rest, was chosen. To
serive at a value for the natural upward filter velocity from the total mass
discharge, an estimate for the area of the hot column (ie., the whole geo-
thermal field) is required. From a map showing hot and cold bores I have
chosen a circle of radius 2 km as being of the right order and used it through-
out these calculations. If we choose Ay, = (2°5 X 107*)cm?, then equation
(5) with the values p, = 08 g/and, yy = 10 poise for water at 250°C
and py = 10 g/cm?, p. = 107 poise for water at 20°c, leads to
w,, = natural upward filter velocity = 049 X 10-% cm/sec. Multiplication
by the area of the field and the density p, gives for the total mass dis-
charge, 493 kg/sec, which considering the approximate nature of the estt-
mate of the area is near enough to the mass discharge estimated from
observations in the field. ‘

In equation (10) I have chosen f = 01 for the friction factor, which
according to Rouse and Howe (1953) occurs when the depth of irregu-
larities in the wall surface is about 10% of the bore diameter, This is
almest certainly an overestimate of the friction factor for a bore with 2
slotted liner. In addition, in such bores I have taken the diameter & as that
of the liner, neglecting any flow in the slot between the liner and the drilled
hole. For these two reasons Fig. 7 is a conservative estimate of the increase
in effective vertical permeability caused by the drilling programme.

The hypothesis that there is an impermeable wall between the hot and
the cold regions is equivalent, from the point of view of the hot region, to
the hypothesis that &, the permeability of the cold region, is zero. If 1n
addition we assume that the radius R is constant with depth, equation (9)
reduces to d?¢,/dz? = O, or d2¢,/dz? = 0. (This, of course, could be
obtained directly from the continuity equation and the postulated constancy

. 500} fo
x H }
z R + ‘,
w :
2 | PARABOLIC HYPERBOLIC
wi APPROXIMATION, i APPROXIMATION
& FOR 1961 §_ FOR 1961
N\
Z
0 I'.u»:_
0 1000

500
DEPTH IN METRES

Fig. 7—The calculated increase in effective vertical permeability of the hot region
due to the uncased parts of the bores.
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of the vertical permeability in the hot region.) In the calculations I have
approximated the effect of the bores in 1955 to three zones with a constant

increase in permeability, thus:

TABLE 1—Depth Zones for 1955

z (metres) 0 to —130 130 to —430 —430 to —590 —590 to —965
F ) - 0 0-48 0-94 0-32

¢ Is the equivalent increase of permeability due to the bores when the undis-
turbed permeability 4,, is taken as 25 X 107 cm?, and d¢,/dz =
~ [ (pz — p)/pilg = —245 cm/secz, (For one particular solution I took
e as rising linearly from 0 at z = 0 to 048 at z = —260 m, the values at
greater depths being as before. This much closer fit to Fig. 7 made a
difference of only 15 p.s.i. to the pressure at RL — 900 (z = —670 m),

indicating that the above lumping of the effect of the bores is not a very
drastic approximation.)

The 1961 permeabilities were approximated by a hyperbola in 0 > z >
—450 m, a constant in —450 m, >z > —610m, and a hyperbola again
in —610m > z > about —1100 m. When £, has the form by =
[ekyo/(2+B) ], where « and f are known constants obtained by fitting
hyperbolas to the appropriate parts of Fig. 7, the continuity equation gives:

Const. = £,(d¢,/dz) = [akso/(z + B)] [d¢,/dz}
By integration, ¢, = ¢, (322 + Bz) + ¢,

Thus when the permeability in a given zone is represented by a constant
or a hyperbola the potential integrates to a simple function of z.The boundary

conditions between zones are that ¢1, and £,(d¢,/dz) be continuous across
the boundary.

Converted into the units of Fig. 1 the natural discharge of the field,
493 kg/sec, becomes 2-358 million Kb per month. From Fig. 1 the dis-
charge from the bores for 18 months prior to mid-1955 is seen to be close
to 05 of the natural discharge, Similarly at the end of 1961 the average

artificial draw-off for the previous two years at about 8-3 millions Klb/mth
is 2'9 times the natural discharge.

To estimate the mean depth and vertical distribution of the “sink”
through which artificial draw-off is removed from the hot region, 1 used a
table listing the mass flow from each bore at the test measurement nearest
to but not later than December 1961, together with the number of months

the bore was discharging during 1961. By weighting this data in different
ways the following results are obtained :

TABLE 2—Sink Data

Weighting A B c
Mean sink depth (m) 523 507 505
Mean uncased length (m) 229 196 - 239

At Weighted accerding to the mass discharge at the time of test.

B: Weighted according to this mass discharge multiplied by the number of months
discharging during 1961,

c: Equal weighting.

.NEW ZEALAND JOURNAL OF SCIENCE [SePT,
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The mean sink deptti is calculated on the assumption that the draw-off
from cach bore is uniformly distributed along its uncased (or slot-cased)
ingth. Clearly the mean sink depth and length are continuously changing,
wat the general similarity of these three estimates encourages one to use
them as typical. Before' obtaining this data 1 made a number of calculations
wssuming the sink was uniformly distributed between —450 m and —610m
(mean depth = 530 m; mean length 160 m). On repeating some of these
with the upper limit of the sink raised to —400 m (mean depth 505 m;
mean length 210 m), the pressure at -—670 m, (RL — 900} changed by only
2 ps.d, indicating a fortunate insensitivity to the precise position of the
sink.

The effect of such a distributed sink is obtained by repeating the develop-
ment of equation (9) assuming @ cm?® of hot water are removed each second
from a horizontal layer of the hot column lcm thick. The differential
equation is changed only by the addition to the right-hand side of a term:
(pi/%ape) - (Q/wR?). With the present impermeable wall hypothesis, this
again integrates simply to a function with two integration constants. With
two boundary conditions between adjacent zones and one condition at each
end of the whole series there are as many equations as unknown integration
constants. When written in matrix form it is easy to arrange that there is
no non-zero element more than one place above the leading diagonal. The
solution is obtained without excessive labour by first reducing the matrix
to a lower triangle by eliminating the unwanted elements in turn

At the ground surface z = 0 the boundary conditions is &, == 0. At the
bottom of the impermeable wall (z = z;) we assume the hot region is fed
from a reservoir at constant potential. Since on the present hypothesis we
are postulating no connections between the hot and the cold regions we can
have no preconceived ideas about the value of this reservoir potential, &y,
Choice of a particular value determines dg,/dz, which together with the
natural discharge rate determines &y, The upward filter velocity in the
presence of the bores is given by:

'ésoPL dS”l 25 X 10 - dq—b’:ﬂ
245

[ w, = —_— e - (.11‘)
i I dz éf“,‘ dz

To keep the set of simultaneous equations linear, the method adopted
was to solve them first using the values of ¢ for &5, = 2'5 X 107* cm?, and
then use the mean value of | (d¢,/dz) | for each zone of depth from this
solution to get corrected values for ¢ from equation (11). On repeating the
solution with the corrected ¢ the pressure at —670 m usually changed by
only a few p.s.i.

A number of solutions were carried out taking the 1961 sink strength as
30 times the natural discharge rather than the more accurate value of 2-9.
Some of these which illustrate the general pattern are shown in Fig. 8.

With the initial potential gradient chosen as (d¢,/dz) = —245 cm/sec?, and
various depths —z;, chosen for the reservoir always keeping its potential,
b = —245z;, the depth —z;, has to be reduced to as little as 1-34 km

to bring the pressure at z = —670m (i.e,, RL — 900) up to the observed
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value for this depth, 758 p.s.i.g. (For z, = —2km, the pressure is 700
p-s.i.g., and for z; = — o, it is 628 p.s.i.g.)

For an initial potential gradient of (dg¢,/dz) = —175 cm/sec? corre-
sponding to 43, = 3'5 X 10" cm?, the pressure at —670m when
%y = —oo is 689 p.s.ig, rising to 757 p.s.i.g. when z, = —1-34 km. With
k5o = 309 X 1011 cm?, and z;, = —1-34 km the pressure is 755 p.s.i.g.

All these solutions were carried through at a time when I was erroneously
taking the 1955 sink strength as zero instead of 0'5. For zero 1955 sink
strength the pressure at —670m in 1955 rises from 882 p.s.ig. when
k3o = 3'5 X 10" am? to 928 p.s.i.g. when 4y, = 2°5 X 1071 ¢cm?. But now
using the correct sink strengths for 1955 and 1961, respectively 0-5 and
2+9 times the natural discharge, and choosing £,, = 25 X 10-*' cm? and
2, = —1+40 km one obtains 896 p.s.i.g. for the 1955 pressure and 755 p.s.i.g.
for 1961, '

50
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F16. 8—Typical solutions for the impermeable wall hypothesis.

=10t

Thus this choice of £,, and z, allows the impermeable wall hypothesis
to be fitted to the three field measurements listed at the beginning of this
section. In effect the depth of the reservoir is determined by the 1961
pressure requirement and the permeability by the 1955 pressure.

Before this hypothesis can be accepted as satisfactory, however, it must
be tested against further field observations. Consider first the pressures in
December 1963. From Fig. 1 the average discharge from the bores during
the 10 months before this date was about 13+7 million klb/month, or 4:8
times the natural discharge. With a sink of this strength and the permea-
bilities as in 1963 one obtains a pressure at z = —G670m of 675 S.4.g.
Figure 2 shows, however, that the pressures in fact fell to about 650 to
660 p.s.i.g—not perfect agreement. This, together with the rather unlikely

~
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model of a zero-impedance source only 130 m
est bore to date make it desirable to examine

that the permeability in the cold regicix

cedictions by this theoretical
below the bottom of the deep
the lateral inflow hypothesis, ie.,
is not equal to zero.

The LATERAL INFLOW HyYPOTHESIS

the bores on the vertical permeability can be incorporated

in equation (9) by replacing the constant &s, in the third equation (7) by
b,(z), & function of z. On repeating the derivation of equation (9) with
this modification, one finds the differential equation unchanged apart from
the addition to t

he left-hand side of the term:
1 déy [ dée pe—p1\ |

— — g

k, dz dz p2 j i
(It is easily verified that when £ = 0 and k, (z) is a hyperbola, this modified
Jifferential equation leads to the same solution obtained more directly in
the previous section.) Assu before that the radius
of the hot region R is consta km), the differential

equation is nOw:

The effect of

ming for simplicity as
at with depth (and = 2

&s N 1 dé, dés kpzpa 26
B B dz Az Rapipe " R*largR
1 dé, p2 " P1 P Q
—- R (12)
;ég dz p2 .é:;pg —.':R'3
sumed to hold down to large depths (mathematically,

This equation is as
to infinite depth); the undetermined parameter 2, 1S replaced in this

hypothesis by the permeability of the cold region £, as a parameter which
can be chosen to make the hypothesis fit the three field measurements listed
earlier. The outer radius 7, has also yet to be given 2 numerical value, but
since & and r, occur only in the third term and in the form £/ln r./R they
are not independent and changes in their values have no effect provided the

nged. In fact I chose re = 3 km because

value for this quotient remains uncha
the cold bores 32 and 33 about 1 km away from the production bores have
not been affected by the pressure changes in the hot bores.

In the impermeable wall hypothesis the reservoir potential iz which
determined the undisturbed vertical permeability ks, was also an undeter-
mined parmeter. We achieve a similar freedom with the present hypothesis
it we allow for the possibility of 2 general downflow of cold water in the
cold region such as might be induced if the upwelling hot water were heated

ground water rather than juvenile water.
Mathematically the effect of this downflow 1s that at r = 7, ($2)2 = Cz
(C = constant) instead of zero. Equation (8) then becomes :

(3ge/0r)2 = [(g2)r — G2V [R ln R/re}

Pt
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The only effect of this on the differential equation (12) is that ¢ in the
third term must be replaced by (¢, — Cz). If one then makes the substitu-
tion ¢, = ¢s + Cz, a differential equation in ¢, is obtained which is iden-
tical in form with equation (12).

As before the variation of £, was handled by dividing the depths into
four zones. This time the sink was assumed to be uniformly distributed
between —400 m and —610 m, as being a slightly better approximation to
reality than the previous zone —450m to —610'm. In this zone the per-
meability was taken as £, = ab;, = constant, leaving equation (12) as:

(d2¢,/dz?) — bipy = (,U-l/’ézpz) - (Q/=R?) (14)
where 5,2 = 2/ = [#pops/abaopip=112/ (R In 7,/R) ]

The solution of equation (14) is:
G2 = 0pe¥® A et — 1/b6,2 (Hl/’ésm) (Q/T‘ %)

In the lowest zone, below the bores, the differential equation is like

equation (14) except that Q = 0 and @ = 1. Since at z = — o, we want
¢2 = 0 the solution is simply: ¢, = c.e?=,

In each of the zones 0 > z > —400m and —610m > z > about
—1,100m, Q = 0 and a fairly simple analytical solution can be obtained
if the permeability £, has the form:

by = aky (2 + B)2 (15)

In this case equation (12) is reducible to homogeneous linear form, giving
the solution :

¢ = 61(z+ B2+ 5(z + B)P
+ [(p — p)/pH2g(z + B) /(2 — b*/a)]

where D, and D, are the roots of the auxiliary equatien
Dz + D — b:z/a = 0
namely, D, and D, = —% =+ i+ ?/q

While the parabolic approximation to £, equation (15), is not as close
as the hyperbolic approximation (used in the previous hypothesis) in the
zone —610m > z > about —1,100m, it is a slightly better approximaion
in the shallowest zone. (See Fig. 7.)

The search for the pair of values for 4,, and £ which would best reproduce
the 1955 and 1961 pressures proceeded much as for the previous hypothesis,
trial solutions gradually displaying how the pressures vary with changing
permeabilities. The best result after four solutions at each date was
kyo = 25 X 10 cm?, and £ = 23 X 10-1° cm?, These permeabilities
make the pressure at z = —670m in 1955, 892 p.sig. and the 1961
pressure 764 p.s.i.g. The indications are that a better fit might be obtained
with &5, = 25 X 107" cm? and & = 2:0 X 10-1° cm?; these should give
pressures of about 890 p.s.i.g. and 757 p.s.i.g. respectively.

As before I next checked to see how closely this lateral inflow model
would predict the pessure in 1963. With 4 =2'3 X 10- cm?® the 1963

sty Y
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nressure came to 665 p.s.i.g. and with & = 2:0 X 10-1 ¢m? it came to
ps.i.g. giving quite satisfactory agreement with Fig. 2.

o830

DiscussioN

In both the impermeable wall and lateral inflow hypotheses the original
vertical permeability in the hot region, Ay, was left as a parameter to be
determined by fitting the calculations to the field observations. It is signifi-
ant that in each case &y, came out as 2'5 X 10-11 cm?, the value which in
the lateral inflow hypothesis corresponds to the cold water at r = r, being
a rest, and which in the impermeable wall hypothesis corresponds to the

otential at the bottom of the wall z = z, being that of cold water at rest.
ln fact the constant potential reservoir postulated at z, in this latter
hypothesis  could mathematically be a continuation of the hot column
surrounded now by a cold region with infinite permeability. For on putting
} = w in equation (9) one obtains the solution ¢, = 0.

\With this in mind it can be seen that the two results form part of a
attern. As shown above, if there were an inpermeable wall extending to
great depths, the pressure would have to fall well below observed values
in order to supply the 1961 rate of discharge. The amount of pressure
drop can be relieved either by replacing the wall below a depth of 1,400 m
by unimpeded inflow, or by having some inflow at all depths of an amount
determined by £ = 2 X 10-° cm?, It is almost certain that numerous other
distributions of the permeability £ with depth (and azimuth) could be
found to fit the 1955 and 1961 pressures, and those in 1903. The value
} = 2 X 10-1° cm? is just an average value. :

The acceptability of the impermeable wall hypothesis is reduced by con-
sidering the effect of allowing for two-phase tlow at shallow depths. At
high Reynolds numbers the pressure gradient required for two-phase flow
at the pressures involved here is of the order of 10 to a hundred times the
pressure gradient for liquid flow (Owens, 1962). If this also holds true for
Darcy flow, then the original vertical permeability at shallow depths in the
hot region must have been 10 to a hundred times greater than assumed
above, in order to transmit the natural outflow without a gross increase in
the area of the hot column. In this case the relative effect of the bores on
the vertical permeability at these depths must be reduced by the same factor.
An indication of the effect of two-phase flow should therefore be given by

ignoring the effect of the bores in the zone 0 > z > —400 m.

If as before the depth of the impermeable wall is determined mainly by
the 1961 pressure, a quick estimate of z, in this case can be obtained by
finding the value which gives the required pressure in 1961 without bother-
ing about the fit in 1955. The result is that z, must be raised from —1-40 km
to —1-29 km, only 20 m below the bottom of bore number 223.

In contrast to this the lateral inflow hypothesis is not shaken by this
allowance for two-phase flow, since the parameter % is not bordering on an
unacceptable value. In any case a pressure measurement at the bottom of the
deepest bores would decide between the hypotheses because it is there that
the( predicted pressures differ most (by over 100 psi.atz = -—-1,200 m in
1963).
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By giving a measure of the vertical gradient in the cold region at r = r,
these calculations give an indication of the extent to which the hot water
may be recirculating cold ground water. My calculations above indicate
that the constant C in equation (13) is not greater than about 5. From this
it is easily verified that if the permeability of the cold region is isotropic,
the area over which uniform downflow must occur to supply the natural
rate of outflow from the hot region is greater than 40 times the area of the

hot column. If the cold ground like the hot has greater horizontal than

vertical premeability this area must be even greater.

For C < 5, if the cold region has isotropic permeability the downward -

filter velocity there is not greater than 10~ cm/sec. It is interesting that
Wooding (1963) suggests that a downflow of this order could be induced
by entrainment of cold water into the rising hot water column. Since my
work gives an estimate of the ratio of the permeabilities of the hot and the
cold regions, it can be used to estimate the depth of Wooding’s “virtual
source”. The models differ in that Wooding took the permeability as iso-
tropic but temperature dependent, but if my ratio £/4,, of cold horizontal

- permeability to undisturbed hot vertical permeability is equivalent to his

permeability ratio £,/£, (an assumption that needs investigation), Wooding’s
Table 3 shows that the depth to the virtual source is about 9 km.

One of the points of greatest interest in the lateral inflow hypothesis is =

the actual rate of inflow and the consequent rate of contraction of the hot
column. From equations (7a) and (8) the inward filter velocity —v, in 1963
at the depth of 670 m is 5°0 X 10-"cm/sec when & = 2:0 X 107 ¢m?.
For £ = 2-3 X 10-1° cm? the velocity is about 109 higher. The velocity is
near the peak of a broad maximum at this depth, the value at z = —1,038 m
being only 79 lower, but 22 % lower at z = —400 m. It may be noted
that this rate of inflow is about 40 times greater than that due to entrain-
ment obtained by Wooding.

As mentioned earlier the boundary between the hot and the cold regions
moves at nearly twice the filter velocity in the cold region, i.e., at about
10-* cm/sec or 30 m/year. The contraction of a radius of 2km at this
average rate should not cause great concern to power-production authorities.

It is of interest to consider where the water removed from the ground
through the bores comes from. On the impermeable wall hypothesis it can
come only downward from the ground surface and upward from the
reservoir at the bottom of the wall. The solution for 1963 conditions shows
36% of the total drawoff as coming down from the surface, This corresponds
to a downflow of nearly twice the natural rate of outflow before drilling
began, and does not agree with the observed fact that while the outflow of
hot water and steam at the ground surface has been reduced it still has 2
positive value,

On the lateral inflow hypothesis the source of the water can only be down-
flow from the surface and lateral inflow from the cold region. This lateral
inflow extends to much greater depths than the deepest bores, but ultimately
the reduction in potential in the hot column caused by the drawoff through
the bores falls to zero, leaving the rate of upflow at great depth unchanged
at its natural value. The amount of inflow between two levels is given by
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the ditference between the vertical flows at the two levels, excerr in che
drawoff zone where the sink strength must be taken into acccunt. In 1%53
5¢7 of the total drawoff came from lateral inflow between the sucTace @nd
the depth of 400 m, a further 5% between 400 m 2cd 610 m, and 1Z%
petween 610 m and 1,038 m. The upflow at 1,038 m depth 2ccounted Zor
43¢, of the drawoff, this representing the lateral inflow at all deptizs grexzer
than 1,038 m. The remaining 35% comes from downtiow at the scorface. as
in the impermeable wall hypothesis.

It is not surprising that both theories show their greatest divergemce
from observed facts near the ground surface, since the occurrence of two-
phase flow and the fall in temperature of the hot region at shallew depths
were ignored in each case. The success of the theory, however, in zzcounting
for the observed pressure changes at depth encourages the hope thzt shallow
depth phenomena might also be predicted cosrectly if the theory were
modified by including these two neglected aspects, and also allewing for
possible variations in the permeabilities and radius of the fieid wizh depth.

It may be remarked that the author considers the main contribution of
this paper to be the demonstration that some of the gross pressurs chacmges
with varying rates of drawoff at Wairakei can be reproduced by an zdmite=dly
oversimplified model in which some of the physical constants are dedmced
fairly directly from field observations, while others are inferred by making
the model fit a portion only of the pressure-drawoff measurements. Such
constants as the area of the hot column were chosen simply as being of
approximately the right magnitude, and in fact the next stazz in this
investigation is to programme these calculations for the electronic computer
and discover how sensitive the predicted pressures are to variations in such
parameters as the area of the hot column. Thereafter the search must rcon-
tinue for a model which, while still successfully accounting far pressure-
changes, does not make the incorrect prediction of a considerable downdow
of hot water from the surface.
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