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Summary
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Investigation of the methods used to calculate the adiabatic temperature
gradient in the fluid core of the Earth leads to the conclusion that none
of them is valid. This is because they all, in effect, apply to the liquid core
theory that is strictly applicable to solids only, without providing any
justification for such a step. Thus claims based on such calculations that
the core is stable against convection cannot be accepted. Simple dynami-
cal arguments are then used to obtain an estimate for the mean vertical
component of the convective velocity, on the assumption that the core is
undergoing large-scale convection. The figure obtained is 3x 10™*ms™!,
about twice previous estimates which were based on the westward drift

of the geomagnetic secular variation.

1. Introduction

Heat may be lost from the core by radiation, conduction or convection. The net
outward radiative flux is expected to be low, largely because of an anticipated low
opacity and the comparatively low temperature gradient. The heat losses due to
conduction and convection are difficult to estimate, in part because of the present
uncertainty as to whether the core does in fact convect. The crucial quantities
involved in this estimate are the melting point of the core material as a function of
radius, and the adiabatic temperature gradient throughout the core. For convection
to occur in a fluid such as the core, which is effectively inviscid (except in thin
boundary layers), the adiabatic temperature gradient must be less than the melting
temperature gradient—if this is not the case, the fluid will be stable against the
convective instability. .

If we follow the usual assumption, that the boundary between the inner and
outer cores represents a change from the solid to the liquid state of the core material,
then at that boundary (1-2x 10% m from the centre of the Earth), the melting point
temperature and the actual temperature are equal. (If a change in composition
occurs across the boundary, these temperatures may not be equal, and the following
arguments must be modified slightly.) The actual temperature throughout the outer
Core must then be at or above the melting temperature. If the adiabatic gradient is
greater than the melting gradient, there can then be no convection in the fluid.
There can also be rio convection if the actual temperature is above the melting tem-
Perature and the actval temperature gradient is less than the adiabatic gradient;
convection is not then a more efficient process of heat transfer than conduction.

193 )

RV NSV R SV Wriariet 4 t




194

M. C, Frazer

Convection is in fact a very efficient process for transporting heat, so that it a fiuid-
system is convecting, the actual temperature will at all points in the fluid be very
nearly the same as the adiabatic temperature.

The precise thermal state of the core therefore clearly depends upon the relative
positions of the actual, adiabatic and melting temperatures. Until recently, it was:
generally assumed that the adiabatic curve lay above the melting curve, and that the-
fluid convected, so that the actual temperature was very close to the adiabatic:
temperature. But Higgins & Kennedy (1971; see also Kennedy & Higgins 1973, where -
they essentially repeat the same arguments related to the adiabatic gradient) re-=
estimated both the melting temperature for pure iron and the adiabatic temperature-
throughout the core, and concluded that the latter lay below the former in most of >
the outer core. That is, their estimate of the adiabatic temperature lay below theirs:
estimate of the melting temperature, so that the core is, on their view, stable against.
thermal convection. Their estimate of the melting temperature is for pure iron, not:
mixed with any lighter elements, and is open to criticism on several grounds. Birch"
(1972) has found rather different figures and concludes that with the presently avail-
able information, no estimate of the melting temperature of iron at core pressures -
can claim greater accuracy than 4+ 500 K. The effects of constituents other than iron
are not well known, save only that they will certainly decrease the melting tempera-
ture. For the purposes of this paper, however, we will accept the melting temperatures
of Higgins & Kennedy, and consider some of the consequences.

2. The adiabatic temperature gradient in the core

Thermodynamically, the adiabatic gradient is a well-defined concept, and it is
obtained quite generally from one of Maxwell’s thermodynamic relations (Pippard
1957, p. 45). If T is the temperature, p the pressure, V' the volume and S the entropy
of a system, then in an adiabatic process, the appropriate one of Maxwell's relations -
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On applying this to a self-gravitating fluid system in hydrostatic equilibrium, we

find that:
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where r is the radius, « the coeflicient of thermal expansion, g the acceleration due to
gravity, and C, the specific heat at constant pressure. This equation defines the
adiabatic temperature gradient through the fluid. To apply this relation to the liquid
outer core of the Earth, we must either know «, C, and g as functions of r throughout
the outer core, and T at any one point in the outer coré of on one of its boundaries,
or transform equation (1) into some other form involving other known properties
of the core. Higgins & Kennedy use two methods, both of which fall into the second
category.

The more important method used by them uses some equations obtained by
Valle (1952). He starts from the form of equation (1), and in effect calculates the
ratio o/C, from an elementary theory of adiabatic processes in solids. Applying this
theory to a liquid, and assuming that the only difference between the solid and the
liquid is that the velocity of transverse waves v, is zero in the latter, he obtains the
expression used by Higgins & Kennedy:
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boundary (again assuming no change in composition at that boundary). Values of
g = g(r) can be obtained from any standard Earth model—we will use the modej
HBI as given in Stacey (1969). :

The values of « and C,, in the core are not, in fact, well known. Values that have
been used or quoted by various authors range from 3:6x107¢K~! to 10x 107Kt
for o, and from 4-61 x 10> Jkg™* K ™! to 7-54x 10> Jkg™* K ™! for C,. The range
of values of the ratio «/C,, is thus: e

048x 1078 < > < 2:2x 1075,
CP

The most likely values of « and C, are probably those estimated by Bullard (1930),
with the modification of halving his correction of C, to get C,. This is required to
allow for his use of a central temperature of 10 000 K, rather than of about one-half:
that as is now believed. We then have:

a=45x10"°K™?

C,=T712x% 102Jkg ' K1,
50 that

o
— = 063x1078,
c 063x1

14

With these figures and the above assumption about the temperature at the inner/
outer core boundary, we can now integrate equation (1) (using Earth model HBI)
to obtain the adiabatic temperature through the core, and compare this distribution
with the melting curve of Higgins & Kennedy. When this is done for a variety of
values of a/C,, we find that if the adiabatic temperature is greater/less than the
melting temperature at the outer boundary, then it will also be greater/less than the
melting temperature throughout most of the outer core, unless the two tempzratures
are very similar at the outer boundary. The relative values of the two temperatures
at the outer boundary can thus be used as a rough measure of whether the adiabatic
temperature is higher or lower than the melting temperature throughout most of the .
outer core, for the particular value of «/C, chosen. The melting curve of Higgins &
Kennedy gives a melting point of 4020 K at the outer boundary, and it is with this
that the adiabatic temperature must be compared.

Table 1 gives these adiabatic temperatures for the minimum, maximum, and
most probable values of the ratio «/C, as given by the above figures, and for the value
of this ratio that gives an adiabatic temperature equal to the melting temperature
on the boundary. For values of «/C, < 0-70x 10™® kg J™*, the adiabat through all
or most of the outer core lies above the Higgins & Kennedy melting curve, allowing
the possibility of convection, and for values greater than that, the adiabat lies in the
solid phase so that convection is not then possible. These are of course mean values
of « and C,, as no radial dependence has been included.

Table 1

—2—0‘48x10"8 0-63%10~%  0-70x10-%  2-2x10-%

4

T, 4170 4070 4020 3110

Adiabatic temperatures at the outer boundary of the outer core for various values of the ratio
«/C,. Compare these temperatures with Higgins & Kennedy’s estimate of the melting temperature
at that point of 4020 K.
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By then taking k = 60 Wm™' K™! we allow a small contribution from the ionic..
term as well. :

From the results of Higgins & Kennedy, we estimate the mean gradient of t}
melting temperature as:

|t
or

=02x1073Km™1,

so that:
q,=10:6x10"3Wm™2,

As the radius of the outer core is 3-49 x 10° m, and the gradient of the melﬁngt3Ar\
temperature at the outer boundary of the outer core is 0-3x1073Km™, the
maximum possible conductive heat loss from the core to the mantle is

by = 27x 1012 W.

(Stacey (1969) obtains a value of 1-4x 10! W, largely because of the high valu
of 7 he uses; Verhoogen (1961) obtains 1-3x 1012 and 3x 1012 W, using the Stron
and Simon values of the melting points of iron respectively.) ;

If the estimate of Higgins & Kennedy of the adiabatic gradient in the core should .
be correct, then this estimate of 4, would be close to the actual heat loss from the- .
core, as there would be no convection and all of the heat loss would be by conduction
at the melting temperature. If the adiabat lies above the melting-curve, the maximum
possible conductive heat loss will be less than h, because the adiabatic temperature
gradient will be less than the figure used here. And lastly, if the adiabat lies above
the melting curve and the actual temperature is the same as the adiabatic temperature,
with the fluid convecting, the amount of heat lost by convection will be no less than
that lost by conduction without convection (at the same temperature gradient).

4. The velocity of convection in the core

The above figure for the heat flux in the core can be used to provide an estimate
of the mean convective velocity that would result in a convecting core. For if the
actual temperature gradient is |07 /dr|. and the adiabatic temperature gradient is
0T [Or),, we let 8T be the excess in temperature over the actual temperature gained
by a fluid element in rising adiabatically through a distance r. Then:

arT oT
5T=(E)Ta— 6rac)6.r
AT
= 4
Ar or, )

where we define AT/Ar as the excess of the adiabatic temperature gradient over the
actual temperature gradient. For ér > 0, AT/Ar must be negative for convection to
occur. '

If the fluid is in fact convecting, then the convective heat flux per square metre
per second is ¢q,, where

AT
g, = pv, C,——r, &)

Ar

in which v, is the vertical, or radial, component of the convective velocity. The same
equation describes the heat flux produced by fluid moving down into the sphere,
as then both v, and 6r change sign. Thus if v, and &r stand for the average vertical
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