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Summary 

Investigation of the methods used to calculate the adiabatic temperature 
gradient in the fluid core of the Earth leads to the conclusion that none 
of them is valid. This is because they all, in effect, apply to the liquid core 
theory that is strictly applicable to solids only, without providing any 
justification for such a step. Thus claims based on such calculations that 
the core is stable against convection cannot be accepted. Simple dynami­
cal arguments are then used to obtain an estimate for the mean vertical 
component of the convective velocity, on the assumption that the core is 
undergoing large-scale convection. The figure obtained is 3 x 10-4 ill 5- 1, 

about twice previous estimates which were based on the westward drift 
of the geomagnetic secular variation. 

1. Introduction 

Heat may be lost from the core by radiation, conduction or convection. The net 
outward radiative flux is expected to be low, largely because of an anticipated low 
opacity and the comparatively low temperature gradient. The heat losses due to 
conduction and convection are difficult to estimate, in part because of the present 
uncertainty as to whether the core does in fact convect. The crucial quantities 
involved in this estimate are the melting point of the core material as a function of 
radius, and the adiabatic temperature gradient throughout the core. For convection 
to occur in a fluid such as the core, which is effectively inviscid (except in thin 
boundary layers), the adiabatic temperature gradient must be less than the melting 
temperature gradient-if this is not the case, the fluid will be stable against the 
convective instability. 

If we follow the usual assumption, that the boundary between the inner and 
outer cores represents a change from the solid to the liquid state of the core material, 
then at that boundary (1·2 x 106 m from the centre of the Earth), the melting point 
temperature and the actual temperature are equal. (If a change in composition 
Occurs across the boundary, these temperatures may not be equal, and the following 
arguments must be modified slightly.) The actual temperature throughout the outer 
core must then be at or above the melting temperature. If the adiabatic gradient is 
greater than the melting gradient, there can then be no convection in the fluid. 
There can also be no convection if the actual temperature is above the melting tern:' 
perature and the actual temperature gradient is less than the adiabatic gradient; 
convection is not then a more efficient process of heat transfer than conduction. 
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Convection is in fact a very efficient process for transporting heat, so that if a fluid 
system is convecting, the actual temperature will at all points in the fluid be very 
nearly the same as the adiabatic temperature. 

The precise thermal state of the core therefore clearly depends upon the relative 
positions of the actual, adiabatic and melting temperatures. Until recently, it Was 
generally assumed that the adiabatic curve lay above the melting curve, and that the. 
fluid convected, so that the actual temperature was very close to the adiabatic 
temperature. But Higgins &Kennedy (1971; see also Kennedy &Higgins 1973, where 
they essentially repeat the same arguments related to the adiabatic gradient) re-'-' 
estimated both the melting temperature for pure iron and the adiabatic temperature-­
throughout the core, and concluded that the latter lay below the former in most or,­
the outer core. That is, their estimate of the adiabatic temperature lay below their" 
estimate of the melting temperature, so that the core is, on their view, stable againsLi 
thermal convection. Their estimate of the melting temperature is for pure iron, not 
mixed with any lighter elements, and is open to criticism on several grounds. Birch 
(1972) has found rather different figures and concludes that with the presently avail­
able information, no estimate of the melting temperature of iron at core pressures 
can claim greater accuracy than ± 500 K. The effects of constituents other than iron 
are not well known, save only that they will certainly decrease the melting tempera­
ture. For the purposes of this paper, however, we will accept the melting temperatures 
of Higgins & Kennedy, and consider some of the consequences. 

2. The adiabatic temperature gradient in the core 
Thermodynamically, the adiabatic gradient is a well-defined concept, and it is 

obtained quite generally from one of Maxwell's thermodynamic relations (Pippard 
1957, p. 45). If T is the temperature, p the pressure, V the volume and S the entropy 
?f a system, then in an adiabatic process, the appropriate one of Maxwell's relations 
IS: 

lOT) '(;V) 
(op s = C~S p' 

On applying this to a self-gravitating fluid system 111 hydrostatic equilibrium, we 
find that: 

(~T) = or s 

IX 
--gT 

C ' p 

(1) 

where r is the radius, Cf. the coefficient of thermal expansion, g the acceleration due to 
gravity, and Cp the specific heat at constant pressure. This equation defines the 
adiabatic temperature gradient through the fluid. To apply this relation to the liquid 
outer core of the Earth, we mllst either know CI., Cp and g as functions of r throughout 
the outer core, and T at anyone point in the outer core or on one of its boundaries, 
or transform equation (1) into some other form involving other known properties 
of the core. Higgins & Kennedy use two methods, both of which fall into the second 
category. 

The more important method used by them lIses some equations obtained by 
Valle (1952). He starts from the form of equation (1), and in effect calculates the 
ratio Cf./Cp from an elementary theory of adiabatic processes in solids. Applying this 
theory to a liquid, and assuming that the only difference between the solid and the 
liquid is that the velocity of transverse waves v, is zero in the latter, he obtains the 
expression used by Higgins & Kennedy: 

Td (2) 

where Td is the adiabatic tempE 
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boundary (again assuming no change in composition at that boundary). Values of 
g = g(r) can be obtained from any standard Earth model-we wiII use the model 
HBI as given in Stacey (1969). 

The values of a and Cp in the core are not, in fact, well known. Values that ha\e 
been used or quoted by various authors range from 3·6 x 10- 6 K -1 to 10 X 10- 6 K-l 
for a, and from 4·61 x 102 J kg- 1 K- 1 to 7·54x 102 J kg- 1 K- 1 for Cpo The range 
of values of the ratio a/Cp is thus: 

a 
0·48 x 10- 8 ~ - ~ 2·2 X 10- 8

• 
Cp 

The most likely values of a and Cp are probably those estimated by Bullard (1950), 
with the modification of halving his correction of Cu to get Cpo This is required to 
allow for his use of a central temperature of 10 000 K, rather than of about one-half;" 
that as is now believed. We then have: . 

so that 

a=4·5xlO- 6 K- 1 

C p = 7'12 X 102 J kg - 1 K - 1, 

~ = 0·63 X 10- 8• 
Cp 

With these figures and the above assumption about the temperature at the innerJ 
outer core boundary, we can now integrate equation (1) (using Earth model HBl) 
to obtain the adiabatic temperature through the core, and compare this distribution 
with the melting curve of Higgins & Kennedy. When this is done for a variety of 
values of a/Cp , we find that if the adiabatic temperature is greater/less than the 
melting temperature at the outer boundary, then it will also be greater/less than the 
melting temperature throughout most of the outer core, unless the two temperatures 
are very similar at the outer boundary. The relative values of the two temperatures 
at the outer boundary can thus be used as a rough measure of wl1ether the adiabatic 
temperature is higher or lower than the melting temperature throughout most of the 
outer core, for the particular value of a/Cp chosen. The melting curve of Higgins & 
Kennedy gives a melting point of 4020 K at the outer boundary, and it is with this 
that the adiabatic temperature must be compared. 

Table 1 gives these adiabatic temperatures for the minimum, maximum, and 
most probable values of the ratio a/Cp as given by the above figures, and for the value 
of this ratio that gives an adiabatic temperature equal to the melting temperature 
on the boundary. For values of a/Cp < 0'70x 10-8 kgr 1

, the adiabat through all 
or most of the outer core lies above the Higgins & Kennedy melting curve, allowing 
the possibility of convection, and for values greater than that, the adiabat lies in the 
solid phase so that convection is not then possible. These are of course mean values 
of a and Cp, as no radial dependence has been included. 

Table 1 

:x 
0·48x1O- 8 0'63xlO- 8 0'70xlO- 8 

Cp 

2·2x 10- 8 

4170 4070 4020 3110 

Adiabatic temperatures at the outer boundary of the outer core for various values of the ratio 
a/Cpo Compare these temperatures with Higgins & Kennedy's estimate of the melting temperature 
at that point of 4020 K. 
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By then taking IC = 60 W m -1 K -1 we allow a small contribution from 
term as well. 

From the results of Higgins & Kennedy, we estimate the mean gradient of the, 
melting temperature as:' 

so that: 
l
OTI = 0'2xIO- 3 Km- 1, or m 

qll = IO·6x IO- 3 Wm- 2• 

As the radius of the outer core is 3·49 x 106 m, and the gradient of the melting-, 
temperature at the outer boundary of the outer core is 0'3xlO-3 Km-t, the:: 
maximum possible conductive heat loss from the core to the mantle is 

hll = 2·7 X 1012 W. 

(Stacey (1969) obtains a value of 1·4 x 1011 W, largely because of the high vaIue-: 
of -r he uses; Verhoogen (1961) obtains 1'3 x 1012 and 3 x 1012 W, using the Strong,'~, 
and Simon values of the melting points of iron respectively.) ,,-

If the estimate of Higgins & Kennedy of the adiabatic gradient in the core 5hould~' 
be correct, then this estimate of hn would be close to the actual heat loss from the' 
core, as there would be no convection and all of the heat loss would be by conduction 
at the melting temperature. If the adiabat lies above the melting-curve, the maximum 
possible conductive heat loss wi11 be less than !tn because the adiabatic temperature 
gradient will be less than the figure used here. And lastly, if the adiabat lies above 
the melting curve and the actual temperature is the same as the adiabatic temperature, 
with the fluid convecting, the amount of heat lost by convection will be no less than 
that lost by conduction without convection (at the same temperature gradient). 

4. The velocity of convection in the core 

The above figure for the heat flux in the core can be used to provide an estimate 
of the mean convective velocity that would result in a convecting core. For if the 
actual temperature gradient is 10T/orlc and the adiabatic temperature gradient is 
10T/or/d' we let bT be the excess in temperature over the actual temperature gained 
by a fluid element in rising acliabatically through a distance br. Then: 

bT = (lOTI -1 01'.1) br or d or c 

LlT 
== --br, 

Llr (4) 

where we define Ll T / Llr as the excess of the adiabatic temperature gradient over the 
actual temperature gradient. For br > 0, Ll T / Llr must be negative for convection to 
occur. 

If the fluid is in fact convecting, then the convective heat flux per square metre 
per second is qv, where 

(5) 

in which Dr is the vertical, or radial, component of the convective velocity. The same 
equation describes the heat flux produced by fluid moving down into the sphere, 
as then both Dr and br change sign. Thus if Dr and 61' stand for the average vertical 

'lln\'ective velocity and the : 
") gives the average energy 
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.1 Jistance ~r exceeds that oj 

,h'I"h by equation (4), is: 
\\ L \,. , 
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I 
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