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Time-varying solutions of this model were obtained by computer after steady-state 
solutions were found inadequate. When the history of mass discharge from 1953 to 1968 
is used as input, the observed pressures can bc closely matched from 1961 to 1967, but 
the fit is not good at other dates. Three of the four parameters adjusted to achieve the 
best fit have values in the expected range hut the fourth, the compressional dili'usivity, 
is inconsistent with other physical rarameters ill the model. Possible reasons for this 
are two-phase effects and lateral inflow in the liquid-only region. 
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Earlier papers (Marshall 1966, 1970) showed that hydrostatic models are incompatible 
with measurements and observations at the Wairakei geothermal field and discussed steady­
state solutions of 2 simple hydrodynamic models. The present paper first completes the 
discussion of stcady-state solutions in the 1970 paper and then goes on to describe time­
varying solutions of one of these models. 

STEADY-STATE SOLUTIONS 

Using thc 'simplest cases first' approach (Marshall 1970), the two models both consider 
a fluid in a singlc phase with the properties of water at 250°c, which initially flows vcrtically 
upwards parallel to the axis in a circular cylindrical region in the porous ground. Fluid is 
removed from a distributed sink with a mean depth of 510 111. For comparatively weak sink 
strengths, the sink removes a portion of the upward flow while the remainder continues 
to flow out at thc ground surface, but for greater sink strengths this flow is reversed. The 
surface of the fluid is then assumed to draw down below the ground surface, and it was 
found that it would come to an eq uijibrium level for any given sink strength. In this case, 
the entire flow to the sink comcs 1'1'0111 below, the decreased pressure at the sink inducing 
greater than natural upflow. 

The boundary conditions at the cylindrical surface of the hot region distinguish the 2 
difTcrent models. In onc case this surface is assumed to be an impermeable wall down to 
some depth at which the pressure remains constant. In the other case, latcral inflow of 
water from the surrounding cold region is assumed to occur at a rate proportional to the 
fall in pressure at any depth. This cold water will heat up as it flows through thc thermal 
boundary, causing this boundary to move slowly inwards. 

In most impermeable wall solutions, the depth of'the wall required to make the model 
fit the field mcasurements is between I and 2 km. It is not suggested that there is in fact a 
constant pressure sourcc of hot water at slIch a shallow depth. This assumption was made 
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as the easiest way of handling the lower boundary condition in this simple model. It is 
mathematically equivalent to a variation of the lateral inflow model in which the horizontal 
permeability in thc cold region is zero down to the bottom of the wall and inl1nite below 
that. In the case actually described as the lateral inflow model this horizontal permeability 
is taken to be constant from the ground slIrface down to infinite depth. 

To usc steady-state solutions to model the actual discharge and pressure history at 
Wairakei it was assumed that steady-state conditions existcd in 1955 and 1961. The solution 
to the lateral inflow model was given by Marshall (1970). In the impcrmeable wall model, 
the permeability k in the cold region, and therefore also the parameter b in Marshall's 
(1970) equation 2 arc zero. Whereas the lower boundary condition in the lateral inflow 
model was that thc potential 1>3 = 0 at infinite depth, in the impermeable wall model this 
condition is that 1>3 = 0 at the bottom of the wall, Z = Zb. 

(The dependent variable used here is the fiuid potential 1> = gz + (p - Po)/ p. This is 
the sum of the gravity and pressure potentials. It may be thought of as the pressure with 
the effect of gravity removed. The particular potential <P3 is measured with respect to the 
cold water surrounding the geothermal field. The possibility of some downi1ow in this 
cold water is allowed for in this potential by including a parameter C, expected to be 
positive and small compared with g, the acceleration of gravity.) 

The steady-state solution to the impermeable wall model is: 

'P3 = {(g - C)zo - F(zo)} --- + F(Zb) __ 0 + F(z) (z - Zb) (z - Z ) 

Zo - Zb Zo - Zb 

where 

where 

Qoa(lI erf II + I exp (-112») 
F(z)=- -V2 Vrr 

Z-Z 
11=--

ayl2 

Fig. 1 shows solutions for the 2 models in which 2 parameters have been chosen in each 
model to make the pressures in 1955 and 1961 equal the observed values at the contemporary 
rate of mass discharge. It will be noticed that f~r discharge rates less than 2.2 tonne/sec, 
a value exceeded for only 2 years in the history of the field (Fig. 4), there is little difference 
between the pressures given by the 2 models. Both models have been used in the expectation 
that at some stage comparison with observation would decisively favour one or the other. 
It is evident that no choice could be made at this point. 

It is also evident that these solutions do not fit the history of the field. It is clear that 
steady-state conditions did not exist in 1963, but by 1968 conditions might possibly have 
been approaching equilibrium. Yet the steady-state pressure at the 1968 discharge rate is 
at least 5.5 bar* (80 lb in - 2) higher than the observed pressure (Figs I and 4). 

Two possible reasons for this discrepancy were now investigated. The first. is that the 
assumption of steady-state conditions in 1955 anc! 1961 is invalid. This question is the 
subject of the rest of this paper. The other possibility concerns two-phase effects, which have 
been ignored up to now. As the pressure falls, the fraction of steam at shallower depths 
will rise, causing the effective permeability to fall. While outflow persists this should lift 
the pressures compared with a single-phase model, but depress the pressures after draw­
down begins. This will be discussed in detail in Part 2. 

* Throughout this paper conversions to Ib in- 2 are given because values actually used were in Ib in- 2 

gauge, e.g. the pressure in 1961 was kept as close as possible to 750 Ib in - 2 gauge, not the equivalent in bars. 
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FIG. l--Steady-state solutions for the lateral inflow model (full lines) and the impermeable wall model 
(dashed lines) which give the observed pressures at two points (squares). Parameters for the lateral 
inflow model are C = 39.26 em S-2 and k 4.778 X 10- 10 em2, and for impermeable wall model, 
C = 43.25 em s-2 and Zb = -D.9923 km. 

TIME-VARYING SOLUTIONS 

To avoid assumptions about steady-state conditions, it is necessary to obtain and solve 
the differential equation for the model that contains time as a variable. Because of the 
similarity of the equilibrium pressure curves in Fig. 1, and because of the additional 
computation involved in introducing the time variable and two-phase efrects, it was decided 
to concentrate on the impermeable wall model at this stage. 

Substituting Darcy's law in the form q = - pk grad rp into the continuity equation one 

obtains: p, 

-f ~ p = div(pq) = div (- p
2

k grad rf;). of p, 

Keeping to veolor notation and using the identity: 

div (S.V) = (grad S).V + S div V 

where S is a scalar and V a vector, gives 

ap (p2k ) p2k 
fat =~ grad -;- . grad", + -;- div (grad rp) 

(l) 
(

p2k ) p2k 
= grad - . grad 4, + -. \7 2 C/, 

/L fl 

The time derivat ive of density must now be changed into terms of potential. From the 
definition of compressibility P, we have elf> .~. PuP df> and from the definition of potential 
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1 I J. TI rO P 2R/,(J,P S I, • • • E . I cp = pl '/,' lUS, at "'"-= P tJ. at' liL)stltutll1g ll1'quatlOn : 

, , It ( p2k) liff3 a,p 
V2,p + - grad - . grad 'P = --.-

p~ ~ ,k ~ 

(2) 

This brief derivation is essentially a formal manipulation of symbols. De Wiest (1969) 
examines the derivation of a closely similar equation in considerable detail. (As Philip 
(1970) remarks, flow in porous media is a much fragmented field with subtly different 
forms and terminology.) De Wiest refers to a dispute over the derivation, but himself 
neglects certain quadratic terms without comment. 

If the derivation above is rcpeated using De Wiest's version of Darcy's law: 

k 
q = - - (pg grad z + gradp) one obtains: 

I'-

_ div(pq) = ~ [g grad(p2).grad z + gradp.grad p + PV 2p] 

=~[g(2p)P,8 gradp.grad z + p,8 gradp.gradp + PV?P]. 

It is the middle term on the right which De Wiest neglects, but since, as he rcmarks earlier, 
the hydrostatic pressure is usually dominant in ground-watcr flow, grad p ~ - pg grad z 
and the second term will cancel out half of the first term, removing the controversial factor 2. 

In the present work I have followed the usual practice in thermal cOllvection studies 
and neglected all changes in density apart from those caused by temperature difl'erences. 
Since these differences are not explicit in the impermeable wall model, the flow considered 
being entirely in the hot region, this is equivalent to taking p constant (as has already been 
done in deriving Equation 2 from Equation 1). Since the viscosity {t is also constant in the 
hot region, Equation 2 becomes: 

1 fLff3 a,p 
V2,p + k grad k.grad ,p = kat 

(3) 

This is the equation used in Part 2, but here in Part 1 the permeability is considered 
constant and the second term vanishes. The equahon then becomes identical with the 
heat-conduction equation, with the quantity k/i~r,8 playing the part of the thermal diffusivity. 
Muskat (1946) was evidently the first to write down the differential equation for a compres­
sible liquid. He assigned to the quantity k/liff3 the symbol K, often used for thermal 
diffusivity, but did not name it. It seems reasonable to call it the "compressional 
difIusivity". . 

To visualise what a satisfactory solution must do, it is useful to refer to the diagram of 
hot water potential versus depth (Fig. 2). It is assumed at present that the permeability is 
uniform, and the undisturbed condition is therefore represented by a straight line. The 
significance of the parameter C is that if C is zero this initial straight line coincides with 
the cold hydrostatic potentiaL If C is positive the initial hot water potential lies below the 
cold hydrostatic line, and if C is negative, above. 

To reproduce the observed pressures, the potential at the reference depth 670 m must 
have prescribed values at particular times. The values at the end of 5 particular years are 
shown in Fig. 2. The sink centred at 510 m is handled as in Marshall (1970) with changes 
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appropriate to numerical methods of solution rather than analytical-the Gaussian distri­
bution is replaced by a histogram with constant values within each depth step. At each 
time step the magnitude of each local sink value is given a value corresponding to the 
mean rate of mass discharge during that time interval. 

The Crank-Nicolson method is used to solve the partial differential equation (Carnahan 
ef al. 1969). In this method the difference version of the time derivative is obtained from 
the mean of the space derivatives at each end of the time step. Given the distribution of 
potential with depth at any time, this requires the solution of an ordinary differential 
equation with a boundary condition at each end of the space (depth) range to get the poten­
tial at the next time step. Once the gradient of the potential at z = 0 becomes negative, 
drawdown begins and the upper boundary moves down the line of zero pressure, p = 0 
(Fig. 2). The rate of downflow during a time step is taken as the mean of the rates at each 
end of the step, the resulting rate of drawdown of the liquid surface depending inversely 
on the porosity, f. The magnitude of the drawdown at each step is found by iteration. 
Further details of the numerical methods and a discussion of accuracy are given in 
Appendix 1. 

RESULTS 

Although many laboratory measurements of the porosity of core samples have been 
made, the mean porosity which determines the rate of drawdown in this model must be 
regarded as an unknown parameter. For the fir~t solutions the rather low value of 0.02 
was deliberately chosen to give rapid drawdown. In the impermeable wall case in Fig. I 
the permeability kJO ~ 2.9 X 10- 11 cm! which, to[;elher with II = 0.001 poise (10-.1 

N s m- 2) and f3 c, 70 X 10- 6 per bar (Marshall 1(66) gives the difTusivity K:' 2 X 10~ 
em! S-I • 
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For this value of difTusivity the time required to establish a uniform pressure gradient 
betwecn (\\,0 points I km apart is about I day, a time which \\,:15 confirmed by trials of the 
numerical subroutines using a Wang 370 programmable calculator. Since the observed 
pressure response to variations in discharge rate during 1956-58 indicated that it took about 
I month to produce a rcsponse comparable to that occurring after g hours in thcse trials, 
the first run of the full program on thc computer (an IBM I J 30) uscd a valuc for dilTusivity 
reduced by a factor of 90, namely about 219 cm 2 5- 1. In this run the pressures were still 
much too sensitive to variations in discharge rate, rising for instance during 1960 by 3.4 
bar (50 Ib in- 2

) and responding to the parlial shutdown in 1968 by rising more than 4.8 bar 
(70 lb in- 2). 1t was decidecl therefore thal the compressional dilTusivity must be regardcd 
as a parameter in its own right. Possible reasons for the low values required will be con­
sidered in the discussion below. 

The position now was that 4 parameters were available, which were to be varied to obtain 
the best fit between the observed and computed pressures when the history of the mass 
discharge was used as input to the model. Two of these parameters were present in the 
steacly·-statc solutions, the depth of the impermeable wall -ZIJ, and the parameter C which 
cletermines the potential there. The other 2 parameters, the porosity and the diffusivity, 
determine the rate of response of the system to changes in discharge rate. 

As before, attention was concentrated on certain key dates, but now without any assump­
tion of steady-state conditions. The date 1955 was retained at the beginning of the 16-year 
history from 1953-68 as it heralded the first definite change in pressure, while the 9th or 
10th month in 1967 was chosen to mark the latter end of the period to avoid the effect of 
the 1968 shutdown experiment. (Apart from J 967 all dates refer to the end of the year.) 
Jt was soon found that the 1955 pressure, P55, depended most on the parameter C, and that 
C had little eiTeet on later pressures. C determines the gradient of the initial potential 
(Fig. 2) and the potential does not change mlleh by 1955. 

At the same time it was found that the deeper the wall depth, -Zb, the lower became the 
pressure P67. Again this is what one would expect from Fig. 2. When a more powerful 
computer became available (a Burroughs 6700) the program was extended to include 
iteration of C and Zj) until both P55 and P67 came within 0.034 bar (0.5 Ib in- 2) of the 
desired values, 890.5 and 590.5 Ib in- 2 gauge (61. 37 and 40.70 bar) respectively. Once 
experience had revealed the approximate values of the differentials 8P55/8C, etc. only 
about 6 iterations were needed. 

Attention was then focused on 1961 which was a key date in Marshall (1970) and also 
is half-way between 1955 and 1967. With porosity fixed at 0.02 and the diffusivity varied 
between 20 and 50 em2 S-l it was found that P6! showed little change and was always 
more than 0.6 bar (9Ib/in 2) higher than the desired value of 750 Ib in- 2 gauge (51.69 bar). 
The general appearance of the computed pressure curve indicated that the difTusivity must 
be within this range; for values greater than 50 em 2 S-l it reflects too much of the fluctua­
tions in the mass discharge curve-during 1960-61, for instance, the pressure actually rises. 
When K = 20 em 2 S-I on the other hand, the pressure curve. seems oversmooth. 

Porosities of 0.05 and 0.15 were tried next, for which it was found possible to get pressure 
curves with P61 = 750. Eventually it was possible to plot the locus of such solutions on a 
graph of porosity versus compressional diiTusivity (Fig. 3). With 4 adjustable parameters 
available it is in principle possible to make the theoretical pressures fit the measured ones 
at 4 points. Since all the solutions were a closer match to the observed pressures during 
the later years, 1964 was chosen as the fourth key elate. Fig. 3 also shows the locus of 
solutions which give the observed pressure, P64 ....• 628 Ib in - 2 gauge (43.28 bar). 
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In the range of porosities up to 0.25 in which the two curves are nearly parallel, neither 
pressure deviates more than O. I bar (1. 5 lb in - 2) from its desired value when the other is 
correct. At porosity 0.05 the discrepancy is 0.14 bar (2 lb in- 2), but for lower porosities it 
increases quite rapidly. At the limit that stops the curves between I = 0.25 and 0.30 the 
dependence of 1967 pressure with depth, 8P67/8zb , becomes zero and beyond this P67 
cannot be brought as low as 590 lb in - 2 gauge. 

At the point of intersection of the curves for P61 and PM the computed pressures have 
the desired values at the 4 key dates. The history of the pressures in this case is shown in 
Fig. 4. There is actually littlc difference between the computed pressure curves for any 
points that lie between the curves for P61 and P64 in Fig. 3 for porosities greater than 0.05. 
The best-fitting pressure curve for any porosity between 0.05 and 0.30 does not deviate 
from the one shown in Fig. 4 by more than O. 14 bar (2 Ib in - 2). In particular the 1958 
pressure always lies bctween 839 and 840 Ib in - 2 gauge (57.8 and 57.9 bar). 

The value of the parameter C for these best-fitting curves increases from 31 to 35 cm S-2 

as the porosity increases from 0.05, and at the same time the depth of the "source" or 
bottom of the impermeable wall increases from l. 37 km to 2.7 km. Drawdown invariably 
begins in the last quarter of 1959, reaching a maximum of 200 m for 0.05 porosity. The 
maximum drawdown is only 53 m when the porosity is 0.30. 

DISCUSSION . 

It may be remarked immediately that the divergence of the values of the parameters C 
and ::'b just given for the time-varying solutions from those in Fig. I for the steady-state 
solution, confirms that the earlier assllmption of steadY-Slate conditions in 1955 and 1%1 
Was lIot correct. Even in tlw casc of 5';;, porosity when the depth-.::'IJ is least dil1crcnt from 
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Fig. I, the steady-state pressure corresponding to the 1961 rate of mass discharge is on Iy 
38.3 bar (5561b in- 2 gauge), ncarly 13.X b;lr (200 Ib ile') lower than the pressure of 51.7 
bar (750 Ib in- z gauge) both observed and litted by the time-varying solutions. 

An asseSSlllent of the success of this single-phase drawdown model lllust depend on the 
degree of match between observed and computed pressures, alld on the reasonableness of 
the parameter values needed to get the best match. On the lirst point, Fig. 4 shows that the 
model fits the observed pressures well between 1961 and 1967. From 1957-59, however. 
the computcd pressures arc 1.7-2 bar (25-30 Ib in-~) too low. In fact during 1953 to 1958 
the computed pressure falls by 5.5 bar (80 Ib in- Z), whereas the observed pressure fell only 
about 1.4 bar (20 Ib in- Z). (Although only a few pressure measurements were made before 
1955, they showed no significant pressure change during this period (R. S. Bolton, personal 
comm.).) As mentioned earlier, qualitative reasoning indicates that two-phase efTects 
should increase the steepness with which the pressure falls when upflow is replaced by 
drawdown in 1959, giving a bettcr fit. This will be considered in Part 2. 

The response to the partial shutdown in 1968 is a'pressure recovery of 1. 38 bar (20 Ib in - 2) 
when the porosity is 0.05, falling to 1.24 bar (18 Ib in- Z) at higher porosities. The locus of 
solutions giving 18 lb in- z recovery is shown in Fig. 3. To reduce this recovery to 0.8 bar 
(l21b in- Z) as observed, the difIusivity K has to be reduced to between 22 and 25 cm 2s-1, 
which makes the pressures in 1961 and 1964 between 10 and 20 I b in - 2 too high. This 
response to the 1968 shutdown is an aspect in which the model is only partly successful. 

Reviewing the values of the parameters, we find that 3 of the 4 are in the expected range. 
The parameter C at 31 to 35 cm s - 2 is positive, corresponding to downflow in the cold 
region, and smaller than for the steady-state solution (Fig. 1). Both the depth of the im­
permeable wall (1. 37 to 2.7 km) and the porosity (5 to 30%) have reasonable values. 

The expected values of the compressional diffusivity, however, obtained by substituting 
in k 30/rif[3 the values of k 30 and f for particular solutions and the values fL = 0.00 I poise 
(10- 4 N s m- 2) and [3 = 70 X 10- 6 bar -1 used previously, make the difIusivity 7600 
cm 2 s -1 for porosity f = 0.05 and 1290 cm 2 s -1 for f = 0.30. However, the actual solutions 
had diffusivity K of30 and 26 cm2 S-1 respectively, smaller by factors of250 and 50 (Fig. 3). 

Since the viscosity fL is a function of temperature which is known, and the permeability 
k30 and the porosity are already determined, the explanation of this discrepancy must be 
sought in terms of the compressibility, [3. When the compressibility of the porous medium 
itself is taken into account when deriving the differential equation, as well as the liquid 
compressIbility, it is found that the 2 compressibilities must simply be added, with appro­
priate geometrical weighting factors (De Wiest 19(9). This, however, does not seem likely 
to add a factor of more than 2 or 4. On the other hand, if an (insoluble) gas is present in 
the pores with the liquid, Verruijt (1969) finds that [3 must be replaced by [3' = [3 + 
(l - Sr)/P, where Sr is the degree of saturation of the pore space with liquid and p is the 
pressure. Takingp = 40 bar, the saturated vapour pressure of water at 250°c, and Sl' = 0.3 
makes [3' = 250[3 and J( therefore 250 times smaller. Although the situation ill two-phase 
flow is more complicated than this, it docs seem likely that the presence of steam may be 
sufficient to explain the discrepancy of /( values at shallow depths. 

At deeper levels, where the greater pressure allows only the liquid phase to exist, some 
other explanation must bc found. 1t was surmised at this stage that the lateral inflow 
hypothesis might provide an answer. The resistance to fluid flow in the side passages should 
act like the side chambers in an acoustic filter such as a motor car mufller or like a low-pass 
resistance-capacitance filter in an electrical network. It will be shown in Part 3 that lateral 
inflow can indeed provide the increased damping required. 
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It is of interest to consider the implications for long-term power production of this 
single-phase drawdown model. When the values for the p~rameters C and Zb for the best­
fitting pressure curves are inserted in the steady-state solution, one finds that for greater 
porosities and in latcr years the situation is increasingly far from equilibrium until the 
drawdown exceeds about 380 m, when the solutions become meaningless because the water 
level is encroaching into the sink region (Fig. 2). The sink strength that would keep the 
water Icvel steady at -380 m was therefore calculated. It was found that this sink strength 
ranged from 1.619 tonne/sec for 5% porosity down to 0.923 tonne/sec for 30% porosity, 
the respective pressures being 32.3 and 28.1 bar (469 and 408 Ib in- 2 gauge). 

This range of steady-state sink strengths results from the influence of the porosity on 
the relative proportions in the total mass discharged of the removal of water in place 011 

the one hand and induced upward flow from greater depths on the other. The total mass 
diseharged during the period shown in Fig. 4 was 645 X lOG tonne. The field being assumed 
circular with a radius of 2 km, and the density of the hot water 0.8 g cm - 3, tlllS mass 
represents a depth of 64.13 m. With 5% porosity the drawdown in 1968 at 200 111 corresponds 
to 10 m of water, or 15.6% of the total. With 30% porosity, however, although the 1968 
drawdown is only 53 111 the water that is "mined" out represents 24.8% of the total. 
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FIG. 4-Thc best-fitting computed pressure history (dashed curve) comparcd with the mcasured pressures 
and mass discharge rat(~s (Bolton 1970). 

It must be emphasised that this analysis applies only to the model. The extent to which 
it can be transferred to thc actual' lleld at Wairakei can be judged by the degree of match 
between thc theoretical and observed pressures in Fig. 4, which is not good in the carly 
ycars. It appears that a reliable prediction of the future of the llcld depends in part on 
getting deeper insight into the relative importance of the mining of water in place and the 
indueing or greater Ilow from beyond the immediate vicinity of thc bores. 

To sum up, these time-varying solutions of the single-phase drawdown model are en­
cOlII'aging in that a considl'l'able part or t.he pressure history of the Wairakci field can be 
closely matched. At t hc same timc the small values or the compressional diffllsivity required 
for this match are inconsisknt with the model and point to the possibility or signilicant 
two-phase effects and lateral intlow. 
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APPENDIX I 

NlllI/crica/lllethods 
Three ditTerent methods were used in obtaining the results ill this paper. because of 

changing computer facilities and program requirements. The first method lIsed fourth-order 
Rllnge-Klltta integration formulae in conjunction with a "shooting" method to solve 
the ordinary difTerential equation at each time step. In this the potential gradient at the 
upper boundary is iterated until the value is found that gives the correct potential at the 
lower boundary. This method which was developed on the Wang 370 calculator has the 
advantage of allowing a comparatively large depth step and generally requiring rather small 
storage. It was found in the Wang trials that a step length of 50 m gave 4-figure accuracy 
(i.e. less than I Ib in - 2 pressure). It also has the advantage of giving the potential gradient 
explicitly at each depth node. This gradient is required to obtain the additional drawdown 
at each time step, and numerical differentiation is notoriously inaccurate. The gradient at 
the water level is obtained by interpolation using the gradients at the top 4 nodes, the 
water level itself being obtained by iteration. 

Translated into Fortran this program was run using the 16 year discharge history on an 
IBM 1130 computer, and the general outline of Fig. 3 was obtained. 

To solve the nonlinear differential equation in Part 2 required yet another level of itera­
tion, and since these are time-consuming on the computer the shooting method was replaced 
by the line inversion method (Wachspress 1960) used in Marshall (1970). This method 
retains the advantage of giving an explicit value for the potential gradient at each step. 
In what was felt to be an improvement, 2 depth steps at the upper boundary were adjusted 
to make the upper boundary of the line inversion coincide with the water level at each time 
step. This did not actually remove the need to interpolate since the function values at the 
new nodes had to be obtained by interpolation. 

From previous experience a depth step of 20 m was considered adequate for the accuracy 
of the line inversion, yet in the test case using 2 % porosity the 1967 pressures given by the 
2 methods differed by 1. 0 bar (14 lb in- 2). A number of factors made it clear that the 
discrepancy resided in the calculation of the drawdown, and since this second method uses 
a shorter step length it was judged more accurate, and work was continued with it. 

With the recent acquisition of a PDP 11/40 minicomputer, however, which can be used 
"hands on" to make many quick program changes and short runs, the relative accuracy 
of the two methods has been made clear. When the step length in the second method was 
halved to 10 m the discrepancy was reduced from 1.0 to 0.3 bar (14 to 4 lb in- 2). The 
second (line inversion) program was then rewritten with the original method of interpolating 
for drawdown. In the test case this differed by only 0.06 bar (0.8Ib in- Z) from the solution 
using the shooting method, and reducing the step length to 10 m made only 0.023 bar 
(0.34 lb in- 2) difTerellce. Evidently the successive interpolations involved in changing the 
step lengths at the upper boundary at each time step degraded the accuracy more rapidly 
than one would expect. 

The discharge history supplied by the Ministry of Works is given in monthly averages, 
and the first computations used a time step of one month. When the compressional diffusivity 
was reduced to about 50 emz sec- 1 the smoothness of the pressure curve indicated that a 
time step of 3 months would be quite adequate, reducing the computing time by two-thirds. 
At the conclusion of the work this judgmcnt has been checked by repeating a few runs 
with a time step of one month. With 25'% porosity the difTerence in pressures f1uctuated 
with a general rising trend up to O.l bar (1.4 Ib in - 2) difference in 1967. With 5% porosity 
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the pattern of lluctuations was similar but slightly smaller in amplitude. At the point of 
intersecfion of the curves for P61 and P64 in Fig. 3, C had to be increased by 0.23 cm 5- 2 

and the wall deepened by 0.013 km to make P55 and P67 fil again. This left P61 0.034 
bar (0. 51b ill- 2) higher and PM 0.0]4 bar (0.2 lb in- 2) hig,her. The general effect of reducing 
the time step from 3 months to one month is to shift the P61 curve in Fig. 3 to slightly 
higher diffusivity values at the lower porosities with a similar but smaller effect for the P64 
curve. The point of intersection shifts 1'1'0111 (/(,f) = (28.0 cm 2 s-l, 0.07) to (27.6 cm 2 s-I, 
0.08). The nature of the diagram is not changed, nor are the conclusions discussed in this 
paper. 
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