GL03600

GEOTMYSMCAL LABORATORY
Proxmenes ard Garnets as Ceoniermombters and Barometers
13.J. Hensen

Most experimental work on pyroxenes and garnets has been concentrated on the study of simple three- or four-component systems, modeling natural rock compositions. Although the data obtained on these simple systems can be usefully applied to natural occurrences, more information is needed on the influence of additional components in order to construt detailed and acerate petregenetio grids. The present study, using natural starting material, bes been undertaken to obtain data on (1) the orthopyroxeneclinopyrosene two -phase region, (2) the solubility of $\mathrm{Al}_{2} \mathrm{O}_{3}$ in enstatite, (8) the partition of Mg and Fe^{2-} among gamed and pyroxenes, and (4) the solves between Ca-rich and Ca-poor (pgeonitic) clinopyroxene.

Experimental Method

In view of the inherent uncertainties associated with synthesis experiments in these systems, the present experiments were carried out on natural minerals that were reequilibrated at high temperatures in experiments of long duration. This method also has the advantage that grain size can be controlled such that the sample is easily amenable to electron microprobe analysis. Because requilibration experiments require extended rm times (egg., $2-3$ weeks at $1100^{\circ} \mathrm{C}$; run times given in Fig. 64), limiting the number of runs that can be carried out, a large sample holder simultaneously containing six samples was used in the experiments in order to improve effciency. The six-sample assembly can be used in a $3 / 4$-meh, solid-media, highpressure vessel up to a pressure of 30 lobar.

The sample holder consists of two graphite disks with thee cylindrical holes (diameter 0.0625 neh; depth, 0.125

29%
inch) drilled in each disk. The holes are closed by fitting lids. The disks are 0.250 inch in diameter and 0.156 inch thick. The thermocouple is separated from the wraphite by a thin wall of AbiMag, \& nonconducting, high-temperature ceramic. The measured tenperature gradient across the sample is less than $15^{\circ} \mathrm{C}$ (at $1.500^{\circ} \mathrm{C}$).

Experiments with two thermocouples (Pt/Pt $10 \% \mathrm{Rh}$ and W3\%Re/W25\%Re) have been conducted at temperatures of $1100^{\circ}, 200^{\circ}, 1800^{\circ}$, and $1400^{\circ} \mathrm{C}$ (13.5 khan), Only at 1300° and $1400^{\circ} \mathrm{C}$ was a relative drift between the two thermocouples observed. The remise downward drift in temperature of approximately $2.5^{\circ} \mathrm{C} /$ hon, as read by the $\mathrm{Pt} / \mathrm{Pt} 10 \% \mathrm{Rh}$ thermocouple, is believed to be due to contamination of the couple (cf. Mao and Bell, Year Book 70, p. 284). In the runs shove $1200^{\circ} \mathrm{C}$, where dit occurred the power input was adjusted to maintain constant temperature, as read by the tungsten-shenium couple. The experiments were carved out by the piston-in technique, and the results inclaude a fiction correction of -10% (cf. Johannes et al., 1971).

Starting Materials

Five pairs of homogeneous natural pyroxenes and the Salt Lake, Hawaii, spinel lherzolite (Kushiro et al., 1972) were used as starting materials for the experiments. The pyroxene pairs are Fe-rich, nona luminous pyroxenes (nos. 207, 264, 277, and 278) described by Butler (1969, Table 4) and a homogenconus aluminous orthoproxene ($6.6 \mathrm{wt} \%$ $\mathrm{Al}_{2} \mathrm{O}_{3}$) and aluminous clinopyrovene (5.3 wt $\% \mathrm{Al}_{2} \mathrm{O}_{3}$) from the Delegate breccia pipe, Australia. The position of the pairs in the pyroxene quadrilateral is shown in Fig. 64A. Originally the minerals were ground under acetone to an average grain size of $20 \mu \mathrm{~mm}$. After it was found that, diffusion rates were a major problem, a finer grain size of $5-10$, mm was used. At $100^{\circ} \mathrm{C}$ a small amount (approxi-
mately 5 wt \%) of oxalic acid was added to promote reaction.

Results

The results of the experiments are shown diagrammatically in Fig. 64 A-F. Each point on these diagrams represents one (or in some cases more than one) spot analysis carried out with the electron microprobe analyzer (Finger and Hadidiacos, Ygar Book 7i, p. 598). Only analyses with structural formulae within 2% of the ideal values are shom. No analyses have been exchuded on other oriteria; the diagrems show all data points obtained. The points from the alumina-bearing compositions have been projected through $\mathrm{Al}_{2} \mathrm{O}_{3}$.

Considerable compositional inhomogeneity is found in most runs (Fig. 64) and overall equilibrium was not reached in the experiments. It is common to find
unreacted material in the cores of grains of more than $15 \mu \mathrm{~m}$. This lack of overall equilibrium is discouraging, but as the initial compositions of the minerals are known, the direction of reaction can be clearly established. The compositional range shown for each mineral must lie within its stability field. Those compositions farthest iemoved from the original composition are believed to be approaching equilibrium most closely. The averages of three to eight analyses (per rum) of each mineral selected on this basis show low standard deviations (Table 12).

The alumina content of enstatite in equilibrium with pyrope has been studied experimentally by Boyd and England (Year Book 63, p. 157) and more recently by I. D. MacGregor (in preparation). Data on natural ultramafic compositions have been reported by MacGragor and Ringwood (Year Book 63, p. 101) and Green and Ringwood (1970).

TABLE 12. Analytical Results: Average Values with Standard Deviations

$T,{ }^{\circ} \mathrm{C}$	P, kbar	$\begin{gathered} \mathrm{Mg} /(\mathrm{Mg}+ \\ \left.\mathrm{Fe}^{2+}\right), \\ \text { mole } \% \end{gathered}$	$\begin{gathered} \mathrm{Ca} /(\mathrm{Ca}+ \\ \mathrm{Mg}), \\ \text { mole } \% \end{gathered}$	$\mathrm{Al}_{2} \mathrm{O}_{3} \mathrm{wt} \%$	$P_{\text {obs, }}$, kbar	$P_{\text {calc }}$, kbar
Orthopyroxene Analyses						
1110	$22.5 \mathrm{D}^{*}$	$0.80(0.00) \dagger$	0.034 (0.00)	3.0 (0.23)	-8.5	-10.8
1110	40.5 D	0.83 (0.00)	$0.024(0.00)$	$1.3(0.25)$	$\cdots \sim 10.0$	-12.4
1410	27.0 S	0.86 (0.00)	0.047 (0.00)	5.9 (0.24)	--9.0	-6.5
1410	40.5 S	0.89	0.034	3.1		
Clinopyroxene Analyses						
1110	22.5	0.82 (0.00)	$0.45 \quad(0.00)$	3.6 (0.11)		
1110	40.5	0.84 (0.01)	$0.44{ }^{(0.01)}{ }^{-}$	- 3.0 (0.71)		
1410	27.0	0.85 (0.00)	0.26 (0.01)	6.5 (0.23)		
1410	40.5	0.88	0.30	$5.8(?)$		
Garnet Analyses						
					Gross, mole \%	
1110	22.5	0.67 (0.01)	$0.23 \quad(0.01)$		16.6	
1110	40.5	0.68 (0.01)	0.21 (0.01)		15.2	
1410	27.0	0.80 (0.01)	0.71 (0.02)		14.4	
1410	40.5	0.85	0.08			
K_{D} Values (using average compositions) K				$K_{p}(\mathrm{Ga}-\mathrm{Cpx})$	$K_{D}\left(\mathrm{Cpx}-\mathrm{O}_{\mathrm{px}}\right)$	
1110	22.5			0.43	1.13	
1110	40.5			0.41	1.11	
1410	27			0.71	0.88	
1410	40.5			0.65	0.87	

* Starting material: 1), Dettex (Fig. 64B); S, Salf Lake Cater, Hawaii, spinel therolite.
$\{$ Standard heviations in parentheses.

The alumina content of orthopyroxene, in equilibrium with garnet and clinopyroxene, obtained in the present experiments is considerably lower than that reported by MacGirgor for the same pressure and temperature (Table 12). Recently S. Banno and B. J. Wood (in preparation) have used a thermochemical calculation to evaluate the effect of Ca and Fe^{2+} substitution in garnet and orthopyroxene on the pyrope-enstatite equilibrium. The exlculated preseure difference by the method of Bamno and Wood is in ressonable agrement with the observed pressure shift (diference between the present data and the data by MacGregor, in preparation, Table 12).

The influence of chromium is expected to be in the same direction as that of Ca and Fe^{2+}; that is, the stability field of garnet is extended, and the stability of aluminous enstatite is restricted. The data of Akella and Boyd (this Report, Table 10) on synthesis experiments at $1100^{\circ} \mathrm{C}$ in TH^{T}-rich compositions show Al contents in the orthopyroxene comparable to those obtained here.

The alumina content of clinopyroxene is higher than that of the coexisting orthopyroxene (Table 12). The clinopyroxcnes, however, contain about 1 wt $\% \mathrm{Na}_{2} \mathrm{O}$, and when the $\mathrm{Al}_{2} \mathrm{O}_{3}$ content is subtracted as jadeite component the elinopyroxene contains slightly less $\mathrm{Al}_{2} \mathrm{O}_{3}$ than the orthopyroxene.

The Orthopyrovene-Clinopyroxene Tuo-Phase Region

In the Mg-rich portion of the twopyroxene field in the temperature range $1100^{\circ}-1200^{\circ} \mathrm{C}$ and down to $\mathrm{Mg} /(\mathrm{Mg}+$ $\left.\mathrm{Fe}^{2+}\right)=0.80$, the clinopyroxene solvus [Cpx (Opx)] projects towards the Fs corner of the pyroxene quadrilateral. The use of $\mathrm{Ca} /(\mathrm{Ca}+\mathrm{Mg})$ in applying the Di(En) solvus (Boyd and Schairer, 1964; Davis and Boyd, 1966) to determine temperature for Fe-bearing compositions is in order under these condi-
tions because the Fe -bearing pyroxene composition is projected from Fs onto the Di-En join.

At $1400^{\circ} \mathrm{C}$ and 13.5 kbar the solvus under discussion is absent for compositions with $\mathrm{Mg} /\left(\mathrm{Mg}+\mathrm{Fe}^{2+}\right) \leq 0.90$ because of the appearance of pigeonite (Fig. 64F). The topology of the phase diagram indicates that even minor amounts of Fe cause errors in temperatures estimated from the $\mathrm{Di}(\mathrm{En})$ solvus. At $1400^{\circ} \mathrm{C}$ and 27 kbar the temperature of a pyroxene pair with $\mathrm{Mg} /(\mathrm{Mg}+$ $\left.F e^{2+}\right)=0.85$ would still be overestimated by $50^{\circ} \mathrm{C}$ or more. At 45 kbar only one measurement could be made, and the value obtained suggests that as the Capoor clinopyroxene (pigeonite) field contracts with increasing pressure (sce later section of this Report), the $\operatorname{Cpx}(O p x)$ solvus boundary rotates, projecting more and more in the direction of the Fs corner of the quadrilateral.

The behavior of the $\mathrm{Opx}(\mathrm{Cpx})$ solvus with varying pressure, temperature, and $\mathrm{Fe} / \mathrm{Mg}$ ratio is complicated. As shown in Fig. 65 the $\mathrm{Ca} /(\mathrm{Ca}+\mathrm{Mg})$ of orthopyroxene increases with temperature and decreases with pressure. The pyroxenes with low Ca contents at high pressure, however, contain the highest $\mathrm{Mg} /(\mathrm{Mg}+$ Fe), suggesting the possibility of control by this chemical variable.

Comparison with the empirical curve of Boyd and Nixon (this Report, Fig. 6) and the experimental data of Boyd (1970) on the system En-Di-Py and Akella and Boyd (this Report) indicates that the effects on Ca in orthopyroxene of pressure and $\mathrm{Mg} /\left(\mathrm{Mg}+\mathrm{Fe}^{2 \cdot}\right)$, on the one hand, and temperature, on the other, are of the same order of magnitude and of opposite sign.

The Distribution of Fe and Mg between Garnet and Pyrovenes

The experimentally determined K_{p} values for gamet-elinopyroxene and clinopyroxene-orthopyroxene pairs are

Fig. 65. Variation of $\mathrm{Ca} /(\mathrm{Ca}+\mathrm{Mg})$ ratio in orthopyroxene in equilibrium with clinopyrosene as a function of temperature and pressure. Empirical curve for ultramafic nodules (Boyd and Nixou, this Report) is shown for comparison. Figures in parentheses indicate number of analyses; figures in brackets indicate the $\mathrm{Mg} /\left(\mathrm{Mg}+\mathrm{Fe}^{2+}\right)$ ratio of the orthopyroxene.
given in Table 12. The data show a clear-cut influence of temperature on the partition coefficients for exchange equilibria between Ga-Cpx and Cpx-Opx.

Comparison with the experimental data of Akella and Boyd (this Report, Tables 10 and 11) at $100^{\circ} \mathrm{C}$ indicates that K_{D} is approximately constant for garnet (with Cpx) with a $\mathrm{Mg} /(\mathrm{Mg}+$ Fe^{2+}) of 0.70 to 0.40 .

The effect of pressure on K_{D} (garnetclinopyroxene) has been variously estimated at about 3% per kbar (Evans, 1965) to about 1% per kbar at $1100^{\circ} \mathrm{C}$ (Banno, 1970). The observed decrease in $K_{i z}$ at $1100^{\circ} \mathrm{C}$ from 0.43 at 22.5 kbar to 0.41 at 40.5 kbar is insignificant and suggests that the pressure eflect on K_{D} may be much smaller than theoretically predicted.
The values obtained here have a special interest because of the possible comparison with the large amount of data on garnet themolites and related garnet-
clinopyroxene-orthopyroxene bearing nodules from kimberlites collected by Boyd and Nixon (this Report). Figure 66 shows the K_{D} values of garnet-clinopyroxene pairs plotted against temperature, estinated from the $\mathrm{Di}(\mathrm{En})$ solvus (Boyd and Nixon, this Report). The diagram shows a correlation of K_{D} with estimated temperature and with several exceptions (7 out of 28) the points lie on a straight line between 950° and $1420^{\circ} \mathrm{C}$. The points obtained in this study plot close to or on the line, as do the data of Akella and Boyd (this Report). It is concluded, therefore, that the K_{n} (gar-net-clinopyroxene) is a potentially useful geothermometer and that the curve in Fig. 66 can be used as a first approximation for high-temperature, high-pressure ultrabasic rocks.
The grossular content of garnet in the three-phase assemblage varies with (estimated) temperature (Fig. 66). The decrease of grossular ${ }_{\mathrm{ss}}$ in the garnet must.

Fig. 66. Variation of $K_{D}(\mathrm{Ga} \cdot \mathrm{Cpx}), K_{D}(\mathrm{Cpx}-\mathrm{Opx})$, and grossular content of garnet in ultramafic nodules from kimberlites as a function of temperature (derived from Di(En) solvus; Boyd and Nixon, this Report). Experimentally determined values are shown for comparison. Also shown are the data of Boyd (1970) for the system $\mathrm{MgSiO}_{3}-\mathrm{CaSiO}_{3}-\mathrm{Al}_{2} \mathrm{O}_{3}$. The pressures of the experimental runs are given in parentheses.
be attributed mainly to an increase in temperature, with increasing pressure as a secondary factor. The influence of the $\mathrm{Mg} /$ Fe ratio can probably be disregarded here in view of the small compositional range of the garnets. However, a possible effect of the $\mathrm{Mg} / \mathrm{Fe}$ on the grossular content of the garnet camot be discounted. Note that the data of Boyd (1970) on the system $\mathrm{MgSiO}_{2}-\mathrm{CaSiO}_{3}-$ $\mathrm{Al}_{2} \mathrm{O}_{3}$ at $1200^{\circ} \mathrm{C}$ fall on the curve in Fig. 66. The grossular contents of the garnets in the present experiments compare reasomably well with those from natural specimens formed under similar physical
conditions (Fig. 66). The data of Kushiro, Syono, and Akimoto (1967) for the Fe-free system are apparently inconsistent with the temperature effect observed here.
The distribution of Mg and Fe^{2+} between clinopyrosene and orthopyroxene shows a nonlinear correlation with estimated temperature (Fig. 66). At low temperatures ($1100^{\circ} \mathrm{C}$ and below) Mg favors clinopyroxene over orthopyroxene, but at high temperature this relationship is reversed. This unusual behavior, exemplified by the data of Boyd and Nixon (this Report), has been repro-
duced experimentally (Table 12, Fig. 66). The inflection point lies close to $1100^{\circ} \mathrm{C}$. Above $1100^{\circ} \mathrm{C}$ the value of K_{p} departs increasingly from unity, and a near linear correlation with estimated temperature is evident. The experimental values are very close to those from natural specimens at $1410^{\circ} \mathrm{C}$ but plot slightly off the empirical curve at $1100^{\circ} \mathrm{C}$, possibly suggesting that reequilibration of the pyroxenes was not complete.

Extrapolation of the K_{D} (Ga-Cpx) curve to lower temperature is not possible at present. Theoretically the curves of K_{D} versus temperature should not produce siraight lines even when mixing in the phases is ideal (in the ideal case lin K versus $1 / T$ should be linear). The value of $K_{b}(\mathrm{Ga}-\mathrm{Cpx})$ for eclogite from highgrade metamorphic terranes ranges from 0.1 to 0.2 (Banno, 1970). Because these eclogites probably formed in a temperature range of $550^{\circ}-800^{\circ} \mathrm{C}$, considerable curvature of the K_{D} line in Fig. 66 must occur below $900^{\circ} \mathrm{C}$.

The Stability Field of Ca-Poor Clinopyroxene

The results of the experiments relevant to the stability of Ca-poor clinopyroxene* are shown diagrammatically in Fig. $64 \mathrm{~A}-\mathrm{F}$. The results illustrate the expansion of the Ca -poor clinopyroxene stability field with increasing temperature and its contraction with increasing pressure.

The wollastonite content of Ca-poor clinopyroxene in the experiments shows a wide spread, and the data do not indicate the first composition to become stable relative to orthopyroxene + clinopyrox-

[^0]ene with increasing temperature. Comparing the results at 15 kbar of Smith (1972), Grover, Lindsley, and Turnock (1973), and Kushiro and Yoder (Year Book 68, p. 228), it appears that the apex of the pigeonite ficld decreases in Wo content from about $W_{O_{15}}$ (mole \%), in the range $\mathrm{En}_{16} \mathrm{~F}_{585}$ to $\mathrm{En}_{40} \mathrm{Fs}_{60}$, to Wo_{8} on the diopside-enstatite join. Natural pigeonites from volcanic rocks, probably formed at very low pressure, typically contain $W o_{10}$, whereas the Wo content of pigeonite on the Di-En join at atmosphoric pressure is between 4 and 5 mole $\%$ (Kushiro, 1972c). The foregoing observations suggest that the wollastonite content of the pyroxene forming the apex of the Ca-poor clinopyroxene field, i.e., the Ca-poor clinopyroxene in the three-phase assemblage two clinopyroxenes + orthopyroxene (Fig. 64), is displaced toward lower Ca content with increasing Mg content (and temperature) and toward higher Ca content with increasing pressure. The latter effect may explain the phase relations at $1100^{\circ} \mathrm{C}$ and 22.5 kbar . The topology of the diagram suggests that at 22.5 kbar the composition of the Ca-poor clinopyroxene in the three-phase assemblage may have moved to Wo_{22}. The data of Brown (Year Book 66, Fig. 10) indicate that the composition $\mathrm{Wo}_{7.6} \mathrm{En}_{40.7} \mathrm{Fs}_{51.7}$ is not stable at $1100^{\circ} \mathrm{C}$ and 22.5 kbar. This result is consistent with the phase boundaries of Fig. 64B. To obtain the dashed hypothetical phase boundaries in Fig. $64 \mathrm{~A}-\mathrm{F}$, the data of Ross, Huebner, and Dowty (1973) have been extrapolated to higher pressures using the slope of the orthopyroxene-to-clinopyroxene inversion curve of Brown (Year Book 66, Tig. 10). This slope is almost identical with that obtained by Kushiro and Yoder for the lower stability of Ca-poor clinopyroxene on the Di-En join (Year Book $68, \mathrm{Fig} .18)$. The extrapolated results are shown to be consistent with the present data and provide a self-consistent set of phase diagrams.

[^0]: * At room temperature most natumal Capoor clinopyroxenes have $P 2 / 4$ symmetry (jugeonite). Recent workers (Prewitt, Brown, and Papike, 1971) have shown that these same proxenes have o2/c symmetry at high lemperature. Theretore it is not deemed necessary to distinguish betwem structum types in disenssing elinopyroxene phase equilibria at high temperatures.

