A Five-Component Magneto-telluric Method in Geothermal Exploration: the M.T..-5-E.X.

Louis Musé ${ }^{*}$

ABSTRACT
The present paper describes a new method designed both at recording and processing levell for a practical sosilution
of the overall problem of the Earth electromagnetism, in geophysics.
Up to now, the random character of the natural signals prevented the various electromagnetic components at a geviven place. Hence it is impossible numerically to solve the general
linear relations binding these components simply by using the processes of the standard harmonic analysis.
In order to overcome this difficulty the writer designed he natural signal based on a hypothesis according to which increasing with time.
increasing with time.
The writer, thus, was able to work out systematically a The writer, thus, was able to work out systematically a
magneto-telluric prospection method utilizing the five standard ectromagnetic components quantitatively, and in particular Vertical magnetic component.
The application of this method - named the M.T.-5.E.X to geothermal prospection in Italy in the region of Traval st. They will be described in a paper which will be edite ointly with the researchers of the International Institute for

Introduction

Electromagnetic methods in geothermal prospection re of considerable importance since the responses ob tained by means of these methods are determined by factors which are directly linked to the presence of geothermal zones.

As it is pretty well known, geothermal zones are those zones where the electrical conductivity becomes particularly high. Now, the electromagnetic phenomena in general are the most sensitive to the presence of such conductive media.

It is not surprising therefore that the magneto-tel luric method has already been tested in geothermal ex ploration.

Up to now, however, considerable difficulties wer encountered when having to obtain by means of this method information which could be employed in th exploration and the exploitation of geothermal fields.
*G.E.M.P.,Box 6853,Santa Rosa,CA 95406

A new magneto-telluric method is now proposed A new magneto-telluric method is now proposed
which involves a new process of data recording and which involves a new process of data recording and
analysis. It can be applied to objectives of complex geometry.

This method is called the Five-Component Magnetotelluric Method with Exponential Solutions (abbreviated to M.T.-5-E. X.) It renders possible a detailed pros pecting based on a very close network of recording station

Thus it should be possible to bring to light contrasts in resistivities whatever the depths may be and facilitate the detection and interpretation of areas which, within a field, have different significances from a geo thermal point of view

To put this to the test, the proposed method was applied in an area which is now, and will be in the fu ture, the subject of much research, having shown itself very promising from a productive point of view.

Basic principles

It is important to begin by reviewing the principles underlying magneto-telluric prospecting (M. T.)

Natural electric currents, called telluric currents, circulating in the ground are known to undergo continuous fluctuations. The earth's magnetic field is also known to react in the same manner.

Yet the fluctuations of the telluric currents and hose of the magnetic field are not independent of one another. Generally speaking, the variations occurring in the three components of the magnetic field and in the two horizontal components of the telluric field are linked in a relatively complicated manner, but which always remains quantitative, through the laws of electromagnetism.

As these relations depend on the electric conductivity of the underground, they make it possible to determine this conductiv. The aforsaid natural electro magnetic variation do not have the characteristic of
armonic variations, but are of great complexity. It may be postulated however that they result from the uperimposition of harmonic variations of different pe f the magnetic variations, and also that of the correponding telluric variations, are more or less continuous pectra whence it is possible to extract almost any period T by means of appropriate filtering. It is felt therefore that the geophysicist may be led to use Fourier transforms to analyse the natural electromagnetic vaiations.

But, in fact, these natural electromagnetic varia ions, as mentioned above, are random phenomena, and it will be shown in the following that any analysis-tool in magneto-telluric, when based on the hypothesis that natural electromagnetic variations are harmonic, is limited in practice to the case of the horizontal layered half space.

Characteristics and limitations of the harmonic

 analysis methodA brief review follows of the basic concepts use A brief review follows of the basic concepts used
in the traditional magneto-telluric method. This problem has been handled by several authors such as Cagniard (1953), Berdichewski (1968), Thiкonov (1950), RiкiAKE (1966). In this section the reader is referred to he publication by Cagniard

Homogeneous halt space

Let us assume a homogeneous half space in which rectangular coordinates x and y are on the flat round surface and the axis z is the downward positive vertical. Let us consider a schematic and ideal sheet of elluric current, which we shall suppose to be uniform, harmonic of period T, flowing in the electrically homo geneous medium of conductivity σ. If the harmonic sheet flows along x, the components of the Hertz vecto $\Pi(t)$ along y, z are nil. Furthermore, $\Pi(t)$ depend nly on z and on t.

$$
\Pi(t)=\Pi_{\mathrm{x}} \mathrm{e}^{-\mathrm{i} \omega t}
$$

where t is time.
And therefore the electric and magnetic fields are

$$
\begin{aligned}
& \mathrm{E}(t)=\mathrm{E}_{\mathrm{x}} \mathrm{e}^{-\mathrm{i} \omega t} \\
& \mathrm{H}(t)=\mathrm{H}_{\mathrm{y}} \mathrm{e}^{-\mathrm{i} \omega t}
\end{aligned}
$$

The factor $\mathrm{e}^{-\mathrm{i} \omega t}$ will be understood in the follow ing rather than expressed explicitly.

Referring to the quite long periods T generall used in M.T., Maxwell's equations are satisfied if

$\nabla^{2} \Pi_{x}+4 \pi \sigma \omega i \Pi_{x}=0$

(1)

In general, the electric field $\mathscr{E}(t)$ and magnetic field $\mathscr{H}(t)$ are expressed by:

$$
\mathscr{O}(t)=\operatorname{grad} \operatorname{div} \Pi(t)-\nabla^{2} \Pi(t)
$$

$$
\mathscr{H}(t)=4 \pi \sigma \text { curl } \Pi(t)
$$

and in the present case by

$$
\begin{array}{ll}
\mathrm{E}_{\mathrm{x}}=4 \pi \sigma \omega \mathrm{i} \Pi_{\mathrm{x}} & \mathrm{E}_{\mathrm{y}}=\mathrm{E}_{\mathrm{z}}=0 \\
\mathrm{H}_{\mathrm{y}}=4 \pi \sigma \frac{\partial \Pi_{\mathrm{x}}}{\partial z} & \mathrm{H}_{\mathrm{x}}=\mathrm{H}_{z}=0 \tag{3}
\end{array}
$$

As in this case E_{x} is proportional to Π_{x}, we can choose E_{x} as the Hertz vector, so that

$$
\begin{align*}
& \frac{\delta^{2} \mathrm{E}_{\mathrm{x}}}{\delta z^{2}}+4 \pi \sigma \omega \mathrm{i} \mathrm{E}_{x}=0 \\
& \mathrm{H}_{y}=-\frac{\mathrm{i}}{\omega} \frac{\delta \mathrm{E}_{x}}{\delta z} \tag{4}
\end{align*}
$$

Owing to (4), E_{x} and H_{y} must be in the form

$$
\mathrm{E}_{\mathrm{x}}=\mathrm{Ae}^{\mathrm{a} v \bar{\sigma} z}+\mathrm{Be}^{-\mathrm{a} V \bar{\sigma} z}
$$

$$
\left.\mathrm{H}_{\mathrm{y}}=\mathrm{e}^{\mathrm{i} \frac{\pi}{4}} \sqrt{2 \sigma \mathrm{~T}}\left[-\mathrm{Ae} \quad \mathrm{a} \sqrt{\bar{\sigma}} z+\mathrm{Be}^{-\mathrm{a} \sqrt{\sigma} z}\right]\right\}(5)
$$

A and B representing two arbitrary constants and a being defined as

$$
\mathrm{a}=2 \frac{\pi}{V^{\bar{T}}}(1-\mathrm{i})
$$

In the case of a half space the terms with positive exponents equal zero, so we have

$$
\begin{align*}
& \mathrm{E}_{\mathrm{x}}=\mathrm{Be}-\mathrm{a} \sqrt{\bar{\sigma}} z \\
& \mathrm{H}_{\mathrm{y}}=\mathrm{Be}^{\mathrm{i} \frac{\pi}{4}} \sqrt{ } \sqrt{2 \sigma \mathrm{~T}} \mathrm{e}^{-\mathrm{a} \sqrt{\bar{\sigma}} z} \tag{6}
\end{align*}
$$

At ground level $(z=0)$

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{x}}=\mathrm{B} \\
& \mathrm{H}_{y}=\mathrm{Be}^{\mathrm{i} \frac{\pi}{4}} \sqrt{2 \sigma \mathrm{~T}}
\end{aligned}
$$

The values of Θ obtained are generally very good. In any survey, a map of the long withal directions may be ies the computed lonsitudinal directions vary very little as a function of τ for any given station.

There is little dispersion of the values of ROALON. The numerical value of the longitudinal conductance mey be computed from ROALON for the station considered. idered.
Thus, it is possible to map the longitu
Numerical values listed in the ROATRA column may sometimes show a wider dispersion in the case of perfect cylinder geometry. This is due to the fact that, when having to deal with a perfectly cylindrical structure, telluric currents tend to flow along the main trends, for obvious reasons of symmetry.

Nevertheless, the numerical value of the transversal conductance for each station may be computed from ROATRA as well.

The numerical difference between the longitudinal conductance and the transversal conductance may be very large and particularly significant in geothermal exploration.

It should be noted that the apparent resistivities ROX and ROY may show large differences for any station.

The values of ROATRARE and of ROALORES may show some dispersion. They are used only to indicate, by their order of magnitude, whether or not there
is a case of cylindrical symmetry. Sometimes, the values
OAVERT are also somewhat dispersed.
Only their order of magnitude is used. Small nu merical values of ROAVERT indicate the proximity of a geological anomaly of some amplitude.

Conclusions

The M.T.-5-E.X. method applied to geothermal exploration defines quantitatively the directional characteristics of electromagnetic phenomena, and thus detects and locates abrupt anomalies in the subsurface. In a paper to be published in Geothermics, results will be shown of an M.T.-5-E.X. survey with 84 recording stations, over about $30 \mathrm{~km}^{2}$ in the region of Travale (Italy).

REFERENCES
Berdichevskir M. N. 1968 - Electrical prospecting with the magneto-te
Moscow.
CAGNiARD L. 1953 - Basic. theory of magneto-telluric method
of geophysical prospecting. Geophysics, 18,605 . Frank P. U., von MisEs R. - Die Differential und IntegralNK P. U., von MIsES R. - Die Differential und Integral
gleichungen der Mechanik und Physik. Vieweg u. Sohn gleichungen der Mechanik und Pe
2 Aufl., Bd. 1, 1930; Bd. 2, 1935.
Kato Ye., Kikuchi T. 1950 - Scientific Report, Tohoku Univ,
Ser. V, Geophysics, 2. Musé L. 1969 Première prospection magnétot-tllurique dans
le bassin sedimentarire saharien. Rev. Inst. Franc. Pétrole,
1097-1150, 1288-1308. 1e bassiso sedimentaire
$109-1150,1288-1308$.

Tiкhonov A. N. 1950 - Determination of the electrical cha acteristics of deep strata of the Earth crust. Dokl. Akad. acteristics or deep strat.

We should also remember a term which is used constantly, that is the «depth of penetration » p, at which the fields' amplitudes are restricted to the fraction $1 / \mathrm{e}$ of the ground level value. When using the practical units below

$$
p=\frac{1}{2 \pi} \sqrt{10 \varrho \mathrm{~T}}
$$

Layered halt space
The half space now has to be considered as being divided up into homogeneous layers by planes $z_{i}=$ $\sum_{i=1}^{\mathrm{j}=1} h_{i}$ (where $z=0$ is the ground level), h_{j} is the thickness of the j-th layer, while the thickness of the deepest layer is assumed to be ∞. By $\sigma(j=1,2, \ldots n)$ we denote the conductivity of the media forming the layer $\left(\sigma_{j}=\frac{1}{Q_{j}}\right)$.

As we must assure the continuity of the electric and the magnetic fields at the different interfaces, we obtain recurrent relations yielding the values E_{x} and H_{y} at ground level

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{x}}=\mathrm{Me} \mathrm{e}^{-\mathrm{i} \varphi} \\
& \mathrm{H}_{y}=\sqrt{2 \sigma \mathrm{~T}} \mathrm{Ne} \mathrm{e}^{\mathrm{i}\left(\frac{\pi}{4}-\psi\right)}
\end{aligned}
$$

where M, N values and angles φ, ψ are suitably evaluated.
Note that the phase shift of H_{y} with respect to E_{x} is $\left(\frac{\pi}{4}+\varphi-\psi\right)$.

The well-known relation is obtained for the apparent resistivity

$$
\begin{equation*}
\varrho_{\mathrm{a}}=\varrho_{1}\left[\frac{\mathrm{M}}{\mathrm{~N}}\right]^{2} \tag{8}
\end{equation*}
$$

However, we can agree that the modulus of the ratio $\frac{\mathrm{E}_{\mathrm{x}}}{\mathrm{H}_{\mathrm{y}}}$ is equal to $\frac{1}{\sqrt{2 \sigma_{\mathrm{y}} \mathrm{T}}}$ in which σ_{a} would be ${ }_{\text {the }}^{\mathrm{H}_{\mathrm{y}}}$ would give the same modulus of the ratio between fields whose value has been observed experimentally. The quantity $\sigma_{a}=\frac{1}{\varrho a}$ is, by definition, the apparent conductivity, and

$$
\begin{equation*}
\varrho_{a}=0.2 \mathrm{~T}\left|\frac{\mathrm{E}_{\mathrm{x}}}{\mathrm{H}_{\mathrm{y}}}\right|^{2} \tag{9}
\end{equation*}
$$

The pratical units are as follows
$\rho=\frac{1}{\sigma}$ is expressed in ohm $\cdot \operatorname{meter}(\Omega \mathrm{m})$;
T , is expressed in seconds (s);

E_{x}, is espressed in millivelt/kilometer ($\mathrm{mV} / \mathrm{km}$);

H_{y}, is expressed in gamma (γ).

In other words, after having carried out an M. T recording in a region characterized by a tabular resistivity - depth distribution, and after having proceeded with a harmonic analysis of the electric- and magneto telluric signals, the modulus of the ratio $\frac{\mathrm{E}_{\mathrm{x}}}{\mathrm{H}_{\mathrm{y}}}$ and the phase shift with respect to T can be obtained. This is achieved by analogical or mathematical filtering or directly by by analogical or m

In transforms
In theory, the knowledge of the modulus of the ratio $\frac{\mathrm{E}_{x}}{\mathrm{H}_{y}}$ for a given period T is sufficient to obtain the value of the corresponding phase shift. Unfortunately, as experience shows, the precision offered by any harmonic analysis for obtaining moduli of the ratio $\frac{\mathrm{E}_{x}}{\mathrm{H}_{\mathrm{y}}}$ is quite insufficient to calculate the aforesaid phas shift with the required accuracy. For the same reason, it is all the more difficult to measure reliable and re petitive phase shifts from the M. T. recordings. As mentioned earlier, this is due to the random characte of these phenomena. In application, we can only obtain experimentally the modulus of ratio $\frac{\mathrm{E}_{x}}{\mathrm{H}_{\mathrm{y}}}$ with an unsat isfactory accuracy, particularly when noise affects re cordings.

General case

In the general case, if we accept that M. T. signals in the subsurface come from plane waves whatever the structure and resistivities in the subsurface may be, then all magnetic ald eor ins with . stant coefficients (independent of t but function of T). At ground level we assume

$\mathrm{E}_{2}=0$

Then, the following relations may be written,

$$
\begin{align*}
& \mathrm{H}_{\mathrm{x}}=a \mathrm{E}_{\mathrm{x}}+b \mathrm{E}_{\mathrm{y}} \\
& \mathrm{H}_{\mathrm{y}}=c \mathrm{E}_{\mathrm{x}}+d \mathrm{E}_{\mathrm{y}} \tag{10}\\
& \mathrm{H}_{\mathrm{z}}=g \mathrm{E}_{\mathrm{x}}+h \mathrm{E}_{\mathrm{y}}
\end{align*}
$$

where the components are complex espressions, and so are the six constants a, b, c, d, g, h. To know these constants, the phase shift between the differen components of the electic andic sufficient as in the case of the horizontal layer. The dispersion of the phase shift values obtained after any
analysis prevents practical use of the phase differenees It becomes the type（10）and consequently it is impossible to use the vertical manetic component quantitavely．

＇Theoretical concept of M．T．－5－E．X．

When it is understood that in practice it is impos－ sible to measure the phase differences between the va－ rious electromagnetic natural components，it is then necessary to find another method without using these phase differences．
To this end，a solution to Maxwell＇s equations in the form of real exponentials will be considered．

To solve（2）it is enough to introduce solutions of the type

$$
\Pi(t)=\Pi \mathrm{e}^{\frac{t}{\tau}}, \mathrm{H}(t)=\mathrm{He} \mathrm{e}^{\frac{t}{\tau}}, \mathrm{E}(t)=\mathrm{Ee}^{\frac{t}{\tau}}
$$

in which τ is real and positive．The time constant τ in this method is comparable to the period T in harmonic analysis．

It should be noted that the solutions under expo－ nential form are not justified as a true representation of he natural electromagnetic variations，but are a mathe－ matical tool，which avoids the difficulty of obtaining the phase difference

Homogeneous half space

In this section，information will be given on the onsequences related to apparent resistivity and depth of penetration for the homogeneous half space，accord ing to the assumed hypotheses．

The relations previously computed on the basis of harmonic hypothesis，will now be recomputed with the exponential solutions．All the other features of the telluric current sheet remain．The equation（1）become

$$
\begin{equation*}
\nabla^{2}\left[\Gamma^{x}-\frac{4 \pi \sigma}{\tau} \Pi_{x}=0\right. \tag{11}
\end{equation*}
$$

and

$$
\begin{align*}
\mathrm{H}_{\mathrm{y}}=4 \pi \sigma \frac{\partial \Pi_{\mathrm{x}}}{\partial z} & \mathrm{H}_{\mathrm{x}}=\mathrm{H}_{z}=0 \\
\mathrm{E}_{\mathrm{x}}=-\frac{4 \pi \sigma}{\tau} \Pi_{\mathrm{x}} & \mathrm{E}_{\mathrm{y}}=\mathrm{E}_{\mathrm{z}}=0 \tag{12}
\end{align*}
$$

Owing to our exponential solution scheme we obtain

$$
\mathrm{E}_{\mathrm{x}}=\mathrm{Ae}^{\mathrm{a} \sqrt{\sigma} z}+\mathrm{Be}^{-\mathrm{a} \sqrt{\sigma} z}
$$

$\mathrm{H}_{y}=2 \sqrt{\overline{\pi \sigma \tau}}\left[-\mathrm{Ae}^{\mathrm{a} \sqrt{\sigma} z}+\mathrm{Be}^{-\mathrm{a} v \bar{\sigma} z}\right]$

$$
a=2 \sqrt{\frac{\pi}{\tau}}
$$

The term with an increasing exponential has no physical meaning in the case of a medium with infinite thickness．Therefore，dropping the B constant，one has

$$
\mathrm{E}_{\mathrm{x}}=\mathrm{e}^{-2 \sqrt{\frac{\pi \sigma}{\tau}} z}
$$

and

$$
\mathrm{H}_{\mathrm{y}}=2 \sqrt{\pi \pi \tau} \mathrm{e}^{-2 \sqrt{\frac{\pi \bar{\tau}}{\tau}} z}
$$

We find the resistivity in practical units

$$
\varrho=0.4 \pi r\left|\frac{\mathrm{E}_{x}}{\mathrm{H}_{y}}\right|^{2}
$$

while for the depth of penetration p one has

$$
p=\frac{1}{2 \sqrt{\pi}} 1 \overline{10 \varrho \tau}
$$

Layered halt space
In the case of several horizontal layers，each having a different conductivity，the apparent resistivity is introduced exactly the same as in the harmonic case， with a recurrent expression for each interface．These ex－ the computations are half as long as in the harmonic the comp collowing expression for apparent resistivity case．The
is obtained

$$
\varrho_{\mathrm{a}}=0.4 \pi \tau\left[\frac{\mathrm{E}_{\mathrm{x}}}{\mathrm{H}_{\mathrm{y}}}\right]^{2}
$$

General case
In the general case and when the source is consid－ ered at the infinite，whatever the structure of the under－ ground may be，the five electromagnetic components at ground level are related by constant parameters at ground level are related by constant parameters τ ．The same expressions are obtained（10）as in the harmonic hypothesis，but $\mathrm{E}_{\mathrm{x}}, \mathrm{E}_{\mathrm{y}}, \mathrm{H}_{\mathrm{x}}, \mathrm{H}_{\mathrm{y}}, \mathrm{H}_{z}$ ，and a, b, c ， d, g, h ，are now real expressions．One is then able to compute the apparent resistivity in any direction after a rotation of the axis．In other words，it is possible to consider the case of cylindrical or near－cylindrical struc－ tures by using simple computation．

Let us assume that the coordinate system used is defined by our pick－up devices on the ground：that is， we are recording the several electric and magnetic components along the axes $\mathrm{OX}, \mathrm{OY}, \mathrm{OZ}$ ．Let Θ be the angle at the surface between the parallel OX＇to the

$\begin{aligned} & \text { U } \\ & \text { 荮 } \end{aligned}$	㞱	$\begin{aligned} & \text { 岑 } \\ & \text { 䓢 } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \frac{4}{\mathbb{N}} \end{aligned}$	$\stackrel{\text { 亗 }}{\mathbf{Z}}$		$\begin{aligned} & \text { 惫 } \\ & \text { 穹 } \end{aligned}$	$\begin{aligned} & \text { 出 } \\ & \stackrel{0}{6} \end{aligned}$						$\begin{aligned} & \text { rex } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { ro } \\ & \text { an } \end{aligned}$
228.	6041.	11111	8.000	－1	0	56.9	0.	453.1	489.5	107918.3	37573.7	1976.2	710.9	315.3
228.	6041.	11111	7.071	－1	0	56.4	0.	382.4	405.4	52967.3	38051.5	1710.4	569.3	284.0
228.	6041.	11111	6.000	－1	0	55.4	0.	299.1	314.7	56171.6	36962.5	1367.7	432.6	246.7
250.	6411.	11111	5.000	1	1	56.7	1.	277.0	284.6	88086.7	53106.4	1126.4	356.9	220.6
249.	6401.	11111	4.000	9	6	56.7	1.	204.9	211.3	31009.2	11293.0	820.0	249.2	175.7
249.	6401.	11111	3.162	35	23	54.8	1.	160.0	164.7	16801.3	20508.0	689.0	183.9	143.8
250.	6691.	11111	2.646	36	23	57.7	1.	143.9	152.4	8802.7	52317.4	500.6	204.5	122.9
231.	6681.	11111	2.000	89	46	55.6	1.	125.6	131.1	11894.9	6034.3	460.1	185.8	119.1

Provided that enough functions of the type $U(t)$ have been computed，it becomes possible at the outlet， after some calculations，to obtain a function $\Omega(t)$ for component from a linear K－order combination

We can then write

$$
\Omega(t)=0 \text { for } t \leq \mathrm{t}_{0_{1}+\mathrm{K}-}
$$

the numerical value of K being chosen so that the three conditions（16）be satisfied．

For each component，the required Maxwell＇s ex ponential solution is represented by an expression of the type

$$
\mathrm{e}^{\frac{t}{\tau}} \int_{0}^{\infty} \mathrm{e}^{-\frac{t}{\tau}} \Omega(t) \mathrm{d} t
$$

The following in practice may substitute the ex pression of the preceding type

$$
\mathrm{e}^{\frac{t}{\tau}} \int_{0}^{\mathrm{t}=5 \tau} \mathrm{e}^{-\frac{t}{\tau}} \Omega(t) \mathrm{d} t
$$

After having constructed enough sets of five solu tions of this type it becomes possible to operate sev eral statistical calculations．Threefore，we obtain the longitudinal direction defined by the angle value « Θ （13）and，after rotation of the axis，the various ap parent resistivities versus the time constant τ which are expressed under the form of the two example given by soundings 83 and 62．No more details ar to be given of the process outlined．Particularly it presents a few practical problems which concern only the specialist and that would exceedingly overload the present text．

Presentation of results

The process described above requires a large mem ory capacity computer in order to handle five－com－ ponent recordings．For instance，the data above were processed on a CDC－ 7600 computer．

The best way to discuss the type of results obtained is to examine a print－out from the computer after proces－ sing with a programme using the exponential solutions

The two examples mentioned above are from recordings made respectively at two stations in the area of Travale（Italy）．The duration of each recording was of Travale（Italy）．The duration of each recording was
1 h 30 m and the sampling rate was 2 scans $/ \mathrm{sec}$ ．The results are shown on a fourteen column chart which will be described summarily．

The fourth column «RATO» shows the values of the square root of τ arranged in decreasing order from the first row，and in function of which are explicited all the other computed values．

The column «THETA» indicates the values of the angle Θ between the longitudinal direction and the OX axis in the coordinate system described above．

The column «SIGTH» shows the sign of THETA， with respect to the OX axis：«1» indicates a positive value；«一 » indicates a negative value；«0 » indi－ eates indetermination of sign．The values of Θ and their sign are computed independently of one another．The column «NTH» indicates a possible weighting con－ erning the computed sign．

The columns «ROALON，ROATRA，ROALO－ RES，ROATRARE，ROAVERT » give respectively ap－ parent longitudinal resistivities，apparent transversal re－ sistivities，apparent residual longitudinal resistivities，ap－ parent residual transversal resistivities，and apparent vertical resistivities，which are defined on page 5 ．

The columns ROX，ROY，indicate the apparent re－ sistivities which would have been obtained along the OX and OY axes respectively，had only one telluric component and one magnetic component been used for tape，and that the time constant τ considered is large enough with respect to the time spacing defined by the sampling rate．

On the records six arbitrary instants $t_{0}, t_{1}, t_{2}, t_{3}$ ， t_{4}, t_{5} ，are selected：in practice it may be advantageous to tie up the order of magnitude of the time intervals determined by the instant t_{i} ，to the considered τ ．On each component of the record，each instant t_{i} cor－ responds to a sample labelled with an index n_{i} ．Five arbitrary constants are then determined $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}$ ， ing type is verified．

$$
\begin{align*}
X\left(t_{0}\right)+a_{4} X\left(t_{1}\right) & +a_{2} X\left(t_{2}\right)+a_{3} X\left(t_{3}\right)+a_{4} X\left(t_{4}\right) \\
& +a_{5} X\left(t_{5}\right)=0 \tag{17}
\end{align*}
$$

By writing this relation for each component，we define a linear system of five equations．So the numerical value of the five constants mentioned above are cal－ culated．

For each considered component one constructs a function of the type $U(t)$ by taking instant t_{0} as the initial time，that is

$$
\begin{aligned}
& U(\mathrm{t})=X(t)+a_{1} X\left(t+t_{1}\right)+a_{2} X\left(t+t_{2}\right) \\
& +a_{3} X\left(t+t_{3}\right)+a_{4} X\left(t+t_{4}\right)+a_{5} X\left(t+t_{5}\right)
\end{aligned}
$$

the function $U(t)=0$ for $t \leq t_{0}$
Let us assume now that we have constructed six unctions of the type（18）for each component．Every origin instant that we shall call respectively
$t_{0_{1}}, \quad t_{e_{2}}, \quad t_{0_{3}}, \quad t_{0_{4}}, \quad t_{0_{5}}, \quad t_{0_{6}}$
corresponding respectively to the samples expressed
above

$$
\begin{array}{llllllll}
n_{1} & n_{2} & n_{3} & n_{4} & n_{5} & n_{6}
\end{array}
$$

and are expressed by taking instant $t_{0_{1}}$ as initial time

$$
U_{1}(t), U_{2}\left(t+t_{\mathrm{c}_{2}}\right), U_{3}\left(t+t_{0_{3}}\right), U_{4}\left(t+t_{0_{4}}\right), \quad U_{5}\left(t+t_{0_{5}}\right),
$$

$$
U_{6}\left(t+t_{0_{3}}\right)
$$

Let us now consider the instant set defined on each component by the samples with the indexes

$$
\begin{array}{llllll}
n_{1+1} & n_{2+:} & n_{i+1} & n_{4+1} & n_{5+1} & n_{6+1}
\end{array}
$$

corresponding to instants that are respectively expres－ sed by

$$
t_{0_{1+1}}, \quad t_{0_{2+1}}, \quad t_{0_{3+1}}, \quad t_{0_{4+1}}, \quad t_{0_{5+1}}, \quad t_{0_{6+1}} .
$$

The five constants $\alpha, \beta, \gamma, \delta, \eta$ are now introduced in order to satisfy the following condition for each component

$$
\begin{aligned}
U_{1}\left(t_{0_{1+1}}\right) & +\alpha U_{2}\left(t_{0_{2+1}}\right)+\beta U_{3}\left(t_{0_{3+1}}\right)+\gamma U_{4}\left(t_{0_{4+1}}\right) \\
& +\delta U_{5}\left(t_{v_{5+1}}\right)+\eta U_{6}\left(t_{0_{6+1}}\right)=0
\end{aligned}
$$

Now，by taking instant t_{0} ，as the initial time，we construct a function of the following type for each component

$$
\Psi(t)=U_{1}(t)+\alpha U_{2}\left(t+t_{0_{2}}\right)+\beta U_{3}\left(t+t_{0_{3}}\right)
$$

$$
+\gamma U_{4}\left(t+t_{0_{4}}\right)+\delta U_{5}\left(t+t_{0_{5}}\right)+\eta U_{6}\left(t+t_{0_{6}}\right)
$$

Functions of type（19）equal zero for $t \leq t_{0_{1+1}}$ ．We shall call them «linear second order combination»．

SOUNDING 83 －C．N．R．－TRAVALE－ITALY－3．7．1973

$\begin{aligned} & \text { U } \\ & \text { 艺 } \end{aligned}$	师	$\begin{aligned} & \text { 岑 } \\ & \text { 总 } \end{aligned}$	$\stackrel{\circ}{\mathrm{E}}$		$\frac{\pi}{z}$		$\begin{aligned} & \text { 䔍 } \\ & \stackrel{y}{6} \end{aligned}$	$\begin{aligned} & \text { Z } \\ & \text { O } \\ & \text { B } \\ & \text { © } \end{aligned}$					ex	$\stackrel{\rightharpoonup}{c}$
116.	6370.	11111	8.000	－1	0	32.7	0.	105.7	156.4	10505.7	1421.1	329.9	57.8	282.6
116.	6370.	11111	7.071	－1	0	33.6	0.	90.4	135.1	18703.2	1341.5	296.5	48.6	247
116.	6370.	11111	6.000	0	0	33.4	0.	73.7	108.4	8448.4	1276.7	238.1	39.2	197.9
238.	9550.	11111	5.000	0	0	34.6	0.	65.6	95.9	3931.5	3463.6	281.0	38.5	181.7
238.	9550.	11111	4.000	11	9	33.9	-1.	51.6	67.6	2645.3	1277.3	181.1	29.0	126.6
235.	9550.	11111	3.162	28	16	34.5	－1．	40.8	48.9	2320.5	2585.8	157.8	22.1	92.0
250.	9820.	11111	2.646	41	21	32.7	－1．	38.2	49.5	1192.3	2263.4	109.0	20.7	87.2

cylindrical or near－cylindrical structure axis and the OX axis（Figure 1）．

After rotation Θ ，we can write

$$
E_{x}=E_{x^{\prime}} \cos \Theta-E_{y^{\prime}} \sin \Theta
$$

$$
E_{y}=E_{x^{\prime}} \sin \Theta+E_{y^{\prime}}, \cos \Theta
$$

Fig． 1
and，by remembering（10），we obtain H_{z}
$\mathrm{H}_{z}=\mathrm{E}_{\mathrm{x}^{\prime}}[g \cos \Theta+h \sin \Theta]+\mathrm{E}_{\mathrm{y}^{\prime}}[h \cos \Theta-g \sin \Theta]$
If the telluric sheet is parallel to the axis of the cylinder， H_{z} generally does not equal zero（except for symmetrical cases which do not happen in nature）but the contribution of $\mathrm{E}_{\mathrm{y}}{ }^{\prime}$ equals zero．Consequently we obtain

$$
g \sin \Theta=h \cos \Theta
$$

In other words，the direction of axis OX^{\prime} is given by

$$
\begin{equation*}
\tan \otimes=\frac{h}{g} \tag{13}
\end{equation*}
$$

Knowing Θ ，as mentioned above，it is easy to com－ pute the various following apparent resistivities after rotation of the axis．The direction given by Θ will be called «longitudinal direction» or in more geological erms « main trend »．

Other results may then be obtained
apparent longitudinal resistivity（along the axis OX^{\prime} ） $=0.4 \pi \tau\left[\frac{\mathrm{E}_{x^{\prime}}}{\mathrm{H}_{y^{\prime}}}\right]^{2}=0.4 \pi \tau\left[\frac{g^{2}+h^{2}}{c g^{2}-b h^{2}+(d-a) g h}\right]^{2}$ apparent transversal resistivity（along the axis OY^{\prime} ）
$=0.4 \pi \tau\left[\frac{\mathrm{E}_{y^{\prime}}}{\mathrm{H}_{\mathrm{x}^{\prime}}}\right]^{2}=0.4 \pi \tau\left[\frac{g^{2}+h^{2}}{b g^{2}-c h^{2}+(d-a) g h}\right]$
apparent longitudinal residual resistivity

$$
=0.4 \pi \tau\left[\frac{\mathrm{E}_{\mathrm{x}^{\prime}}}{\mathrm{H}_{x^{\prime}}}\right]^{2}=0.4 \pi \tau\left[\frac{g^{2}+h^{2}}{a g^{2}+d h^{2}+(b+c) g h}\right]
$$

> apparent transversal residual resistivity

$$
=0.4 \pi \tau\left[\frac{\mathrm{E}_{y^{\prime}}}{\mathrm{H}_{y^{\prime}}}\right]^{2}=0.4 \pi \tau\left[\frac{g^{2}+h^{2}}{a g^{2}+d h^{2}-(b+c) g h}\right]^{2}
$$

apparent vertical resistivity

$$
=0.4 \pi \tau\left[\frac{\mathrm{E}_{\mathrm{x}}}{\mathrm{H}_{2}}\right]^{2}=\frac{0.4 \pi \tau}{g^{2}+h^{u}}
$$

Thus，the use of the quantitative variations of the vertical magnetic component is very important since it enables to determine the longitudinal direction ${ }^{(}$and all the set of resistivities shown above．The physical meaning of these quantities and their application in geothermal prospection will be shown later on．How ver， t shalue of H_{2} a direction will ways be found whether the considered case is cylindrical or not．The criteria for the cylindrical case are given by the «ap parent residual longitudinal resistivity» or by the «ap－ parent residual transversal resistivity»，which in this case must be infinite or at least very large．

Some applied aspects of M．TT．－5－E．X．

As mentioned above，natural electromagnetic varia tions are no more harmonic than exponential．In either case，it is necessary to construct solutions correspond ing to the type of analysis chosen．The following wil show what the various conditions are，under which the exponential type solution may be used，and how expo－ nential type solutions solving Maxwell＇s equations ma be easily determined from field recordings．

Exponential type solution to Maxwell＇s equations，con－ structed from the output signal of a magnetic sensor

Some words will be given to an illustration of a number of topics related to the magnetic sensor．Such a sensor consists of an air or magnetic cored coil with a convenient number of turns．

This winding may be represented by the simple circuit of Figure 2，regardless of its shape or its com－ plexity．One emphasises that the capacity C is either the distributed capacity of the coil，or the distributed capac－ ity plus an external capacity added in order to create resonance effects favourable to an increased sensitivity in certain regions of the spectrum．

Let this circuit（Figure 3）be placed at the input of an amplifier and recorder．The input impedance
of the amplifier being ς, this may be assumed to be a pure resistance to simplify the discussion. If the in abbreviation $\mathrm{H}(\mathrm{t})$, the current i flowing through ξ is given by
$\mathrm{L} \xi \mathrm{C} \frac{\mathrm{d}^{2} i}{\mathrm{~d} t^{2}}+(\xi \mathrm{RC}+\mathrm{L}) \frac{\mathrm{d} i}{\mathrm{~d} t}+(\mathrm{R}+\xi) i=-\chi \frac{\partial \mathrm{H} t}{\partial t}$
(14)
with

$$
\chi=\mu_{\mathrm{a}} \mathrm{NS}
$$

$\mu_{\mathrm{a}}=$ apparent permeability of the core;
$\mathrm{N}=$ number of turns of the coil;
$\mathrm{S}=$ surface of the mean turn of the coil.

Fig. 2
FIg. 3

This relationship, which involves a second order differential equation, only concerns the spectrum of usual magnetic variations utilized in geothermal prospection and characterized by slow variations. Under this restriction, the output tension of the amplifier is defined as:

$$
U=\xi i
$$

the constant K of amplification being understood.
Instant t being taken as time origin until which equals zero, we write

$$
\xi \perp \subset \xi i
$$

$\xi \mathrm{I}$ is the Laplace transform of the tension ξi, function of time t. Now, I is expressed by

$$
\begin{aligned}
& \mathrm{I}=\left[\frac{\left.i_{(\mathrm{t}=0)}\left[\frac{\mathrm{L} \mathrm{\xi} \mathrm{C}}{\tau}+i \xi \mathrm{RC}+\mathrm{L}\right)\right]+\mathrm{L} \mathrm{\xi} \mathrm{C}}{\Xi}\right. \\
& \left.-\frac{\chi}{\Xi} \int_{0}^{\infty} \mathrm{e}^{-\frac{t}{\tau}} \frac{\partial \mathrm{H} t}{\partial t} \mathrm{~d} t\right]
\end{aligned}
$$

by taking

$$
\Xi=\frac{L_{\xi} C}{\tau^{2}}+\frac{(\xi \mathrm{RC}+\mathrm{L})}{\tau}+\left(\mathrm{R}+\xi^{\prime}\right)
$$

It is obvious that when

$$
i_{(\mathrm{t}=0)}=0 \text { and } \quad \frac{\mathrm{d} i}{\mathrm{~d} t}(\mathrm{t}=0)=0
$$

one has

$$
\mathrm{I}=-\frac{\chi}{\Xi} \int_{0}^{\infty} \mathrm{e}^{--\frac{t}{\tau}} \frac{\partial \mathrm{H}(t)}{\partial t} \mathrm{~d} t
$$

Now, we go back to Maxwell's equations to find out
the conditions under which expression Ie ${ }^{\bar{\tau}}$ is a Maxwell's solution. Being any electromagnetic magnitude, X should verify the equation

$$
\begin{equation*}
\nabla^{2} X-\frac{4 \pi}{\varrho} \frac{\partial X}{\partial t}=0 \tag{15}
\end{equation*}
$$

being understood that $\mathrm{X}=(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t})$.
Let's consider the expression

$$
\mathrm{Y}=\mathrm{e}^{\frac{t}{\tau}} \int_{0}^{\infty} \mathrm{e}^{-\frac{t}{\tau}} \frac{\partial \mathrm{X}}{\partial t} \mathrm{~d} t
$$

The requirements for Y to be a solution of (15) are now considered from

$$
\mathrm{Y}=\mathrm{e}^{\frac{t}{\tau}}\left[\frac{1}{\tau} \int_{0}^{\infty} \mathrm{e}^{-\frac{t}{\tau}} \mathrm{Xd} t-\mathrm{X}_{(\mathrm{t}=0)}\right]
$$

Thus

$$
\nabla^{2} \mathrm{Y}=\mathrm{e}^{\frac{t}{\tau}}\left[\frac{1}{\tau} \int_{0}^{\infty} \mathrm{e}^{-\frac{t}{\tau}} \nabla^{2} \mathrm{X} \mathrm{~d} t-\nabla \mathrm{X}_{(\mathrm{t}=0)}\right]
$$

On the other hand

$$
\frac{\partial \mathrm{Y}}{\partial t}=\frac{\mathrm{e}^{t} \tau}{\tau} \int_{0}^{\infty} \mathrm{e}^{-\frac{t}{\tau}} \frac{\partial \mathrm{X}}{\partial t} \mathrm{~d} t
$$

If one brings $\nabla^{2} Y$ and $\frac{\partial Y}{\partial t}$ into (15), the latter becomes

$$
\begin{aligned}
& \mathrm{e}^{\frac{t}{\tau}}\left[\frac{1}{\tau} \int_{0}^{\infty} \mathrm{e}^{-\frac{t}{\tau}} \nabla^{2} \mathrm{X} \mathrm{~d} t-\nabla^{2} \mathrm{X}_{(\mathrm{t}=0)}\right. \\
& \left.-\frac{4 \pi}{\varrho} \frac{1}{\tau} \int_{0}^{\infty} \mathrm{e}^{-\frac{t}{\tau}} \frac{\partial \mathrm{X}}{\partial t} \mathrm{~d} t\right]=0
\end{aligned}
$$

or briefly
$\mathrm{e}^{\frac{t}{\tau}}\left[\left.\frac{1}{\tau} \int_{0}^{\infty} \mathrm{e}^{-\frac{t}{\tau}}\left(\nabla^{2} \mathrm{X}-\frac{4 \pi}{\varrho} \frac{\partial \mathrm{X}}{\partial t}\right) \mathrm{d} t-\nabla^{2} \mathrm{X}_{(\mathrm{t}=0)} \right\rvert\,=0\right.$
The term $\nabla^{2} \mathrm{X}-\frac{4 \pi}{\varrho} \frac{\partial \mathrm{X}}{\partial t}$ which is present under
the integral symbol, equals zero by definition, since X is an electromagnetic magnitude. In this particular case it becomes necessary that

$$
\nabla^{2} X_{(t=0)}=0
$$

or otherwise, since (15) must be verified, that

$$
\frac{\partial X}{\partial t_{(t-0)}}=0
$$

In other words, the expression ξ Ie ${ }^{\frac{t}{\tau}}$ will be a Maxwell's solution, provided that $\frac{\partial \mathrm{X}}{\partial t}(\mathrm{t}=0)$ is equal to zero.

Besides, equation (14) gives the relation

$$
\begin{aligned}
& (\mathrm{R}+\xi) i_{(\mathrm{t}=0)}+\frac{\mathrm{d} i}{\mathrm{~d} t}{ }_{(\mathrm{t}=0)}(\xi \mathrm{RC}+\mathrm{L})+\mathrm{L} \xi \mathrm{C} \frac{\mathrm{~d}^{2} i}{\mathrm{~d} t^{2}}(\mathrm{t}=0) \\
& =-x \frac{\partial \mathrm{H}(t)}{\partial t}{ }_{(\mathrm{t}=0)}
\end{aligned}
$$

Otherwise, if to the two conditions already expressed above
one adds

$$
\left.\begin{array}{cc}
i_{(\mathrm{t}=0)}=0 & \frac{\mathrm{~d} i}{\mathrm{~d} t}(\mathrm{t}=0) \\
& =0 \\
\frac{\mathrm{~d}^{2} i}{\mathrm{~d} t^{2}} \\
(\mathrm{t}=0)
\end{array}\right\}^{(16)}
$$

all the requested conditions are met and $\mathrm{I} \mathrm{e}^{\frac{t}{\tau}}$ actually is a solution of Maxwell's equation (15) since then $\frac{\partial \mathrm{H}(t)}{\partial t(\mathrm{t}=0)}$ equals zero according to the condition $\frac{\partial \mathrm{X}}{\partial t_{(} \mathrm{t}}$

Construction of exponential type solutions from actual recordings

It is always possible to find a characteristic time as defined by the three conditions (16) in a recording from a single magnetic sensor ang any axis. However, there is some difficulty in finding these three conditions satisfied simultaneously on the recordings from the three magnetic sensors energized by $H_{(}(t), H_{y}(t) H_{2}(t)$ respectively. Besides, the telluric recordings [$E_{x}(t)$, and respectively. Besides, the telluric recordings $\left[\mathrm{E}_{x}(\mathrm{t})\right.$, and
$\left.\mathrm{E}_{\mathrm{y}}(\mathrm{t})\right]$ yielded by traditional telluric lines are a priori not justified in satisfying the conditions (16). Then, various adaptations of the recording device have to be made before exponential type solutions, as described above, may be constructed.

Adaptation of the recording device

Some adaptations of the recording device are briefly described in the following paragraph

Let us assume that the three magnetic recording channels are of the above defined type and characterized by the response (14). By introducing a «distortion generator» into each telluric recording channel we obtain, between the output terminals of each aforesaid telluric recording channel, an output signal of the ξi type.
ξ is input impedance of the amplifiers used in the elluric recording chains, and current i is linked to the by the following eonpinent, for instance $\mathrm{E}_{\mathrm{x}}($ ($)$, aqual to 10^{-2} in the wed qual to 10^{-2} in the used spectrum
$\mathrm{L} \xi \mathrm{C} \frac{\mathrm{d}^{2} i}{\mathrm{~d} t^{2}}+(\xi \mathrm{RC}+\mathrm{L}) \frac{\mathrm{d} i}{\mathrm{~d} t}+(\mathrm{R}+\xi) i=-K \frac{\partial \mathrm{E}_{\mathrm{x}}(t)}{\partial t}$
with L, C, and R having the same value as those of physical components of the magnetic recorders. The five-component recordings then have to be processed all incoming from recording channels characterized by identical transfer functions, and identical transient responses to the energizing signals. The recording device so designed otherwise offers many practical advantages,
and in particular eliminates all troubles of electrods-polarization on the telluric lines. It has been subject to various patents pending in several countries.

Now let's examine how it is possible, from records made by devices designed as described above, to elaborte exponential solutions in accordance with the conditions (16). Among other possible methods, experience proved that the simplest procedure is that which we shall call «the linear combination method», which the next paragraph will deal with.

Linear combination method

Assumption is made that the five-electromagnetic components are recorded according to the device de

