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Thermal Problems the Siting of Reinjection VVelis 
G. BODvARssON ':' 

ABSTRACT 

This paper presents a theoretical discussion of the then11al 
problems involved in the disposal of riash water from gco
thermal power plants by reinjection. The basic equations for 
the subsurface temperature field in the reinjection zone are 
derived both for rocks with intcrgranular and fracture flow. 
The extent of the thermal contamination by the reinjected 
wmer is discussed. In the case of a continuous muss flow of 
flash water of 1000 kg/sec for a period of 25 years, the contam
ination may reach out to as much as 5 kilometers or more 
from the point of re-entry. depending on the type of rock 
involved. 

In trod uction 

The generation of power from fluid phase geother
mal reservoirs is associated with a considerable flow 
of flash water which has to be disposed of in some way. 
For single or double flash power cycles and base tem
peratures in the range 200 "e to 300 "e, the ma~s flow 
of flash water is 5 to 20 kg/sec per MW of power. A 
100 MW power plant would thus have to dispose of 
500 to 2000 kg/sec of water at 100 "e to 200 "e de
pending on the flash temperatures and type of power 
cycle employed. In many regions, the disposal of flows 
of such magnitudes poses a rather serious problem. It 
has therefore been proposed to solve the problem by 
reinjecting the nash water into the ground. This appears 
to be a logical solution, which may even have the 
advantage of facilitating the maintenance of reservoir 
pressure. 

The reinjection of waste fluids into permeable for
mations is gradually becoming an important method of 
disposal. There are now a considerable number of rein
jection wells in operation (EST 1968). However. most 
of these projects involve relatively small mass flows of 
chemical wastes and there are no major problems en
countered in pumping the fluids into the ground. On the 
other hand, thc vcry llluch difrerent milgnitude of flow 
in the case of geothermal !lash water poses a Ilumber 
of problems. Pirst, ill order to prevent re-emerging at 
the surface, the flash water has to be injected into rela
tively deep formations. In many cases involving low
permeability formations, the pumping pressure and 
power requirements for reinjection become quite sub
stantia!. Second, many types of geothermal flash waters 
are supersaturated with silica and other minerals. De
posits 11l<ly oceur at the points of re-entry <ind further 

* l)cp;lrllllcnl ur Ckc:lI1ogr"phy, O"egon State University, 
Curvallis. Oregon 97331, USA. 

aggravate the power problem. Finally, because of the 
very substantial flows into the ground, there is danger 
of a thermal contamination of the active producing 
reservoir. If the reinjection wells are not propcrly sited, 
the nash water, which has a temperature consiclenlbly 
below reservoir conditions, may flow into the produc
tion zones and have a detrimental efTect on the ste,lm 
production. This dangcr is especially acute in the case 
of geothermal reservoirs producing [rom a rel:ttively 
deep groundwater table. A small decrease in production 
temperature may have a considerable influence on the 
rate of production and on thestabLlity of the producing 
wells. The siting of reinjection w~1Ts'·i.s, therd ore, of 
particular importance in these cases.,~ 

The purpose of this paper is to present Cl ~ 
discussion of the thermal problems involved in the siting ~ 
of reinjection wells in geothermal reservoirs. The sub-
surface temperature field around the wells will be dis-
cussed in some detail with the aim of arriving at con-
clusions of practical interest. The present subject maller 
is closely related to the theory of petroleum productiol] 
by thermal methods ,IS discussed by, for example, 
BAILEY and LARKIN (1960). 

The subsurface temlJerature field around reinjec
tion wells 

Because of complexities in the natural environment. the 
exchange of heat between geological formations and per
colating water is a rather involved process. For the 
present purpose, it is, nevertheless, possible to employ 
simple idealized models and obtain semi-quantitative 
results which are quite helpful in the design of rein
jection systems. Of particular importance in this respect 
is to recognize that geological formations exhibit m;tinl y' 
two difTerent types of permeability. that is, (1) l11icro
perme,lbility due to very sm,t11 intergnlllular opl'nings. 
and (2) macropermeability due to individual fr:'ctures 
and other major openings. The first type of perme,lbililY 
is generally encountered in porous clastic secliments. 
whereas most igneous rocks ancl limestones exhibit onl)' 
macropermeability clue to fractures, tubes and solution 
openings. In the following, we will refer to the two 
types of flows involved as intergrallular ;1Ilt! fr;lcture 
flow respectively. It is well known th;lt fracture l1uw 
is the more imporl<lIlt type of flow in geothl'rm:i/ ,lrl',IS, 
since ,111 major geothermal prodlw:iun wells produl'e 
from fractures or other simil,lr openings. The thl'ory uf 
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the temperature field associated with these t.wo flow 
types has to be treated along somewhat different lines, 
,IS will be discussed below. 

!i\TERGRA:\ULAR FLOW 

Consider a homogeneous and isotropic porous and 
permeable formation saturated with an incompressible 
fluid which percolates through the rock. We assume 
that the rock grains are so smali that there is a perfect 
te1!"perature contact between the fluid and the grains. 
I n other words, the grains and the fluid have at any 
given point the same temperature. The combined con
vective and conductive heat transport through the for
mation is then given by 

h = -k\lT + sT (1) 
where 

k thermal conductivity of the wet rock 
T temperature 
s hcnt capacity of the fluid 
h heat transport per unit area and unit time 
q mass flow vector of the fluid 

By observing that \lh = -cp aT/at + S, we obtain 
the basic heat transport equation 

pc (aT/at) + sq . \IT = k\l~T + S (2) 

where 

? = density of the wet rock 
c heat capacity of the wet rock 
S heat production per unit volume 

The fi rst term on the right of (2) represents the 
etfect of heat conduction on the macroscopic scale. Since 
most practical cases involve relatively small temperature 
gradients \I T, this term can be neglected compared 
with the convective term, which is the second term on 
the left of (2). Assuming no heat sources, equation (2) 
can thus be simplified to 

(aT/at) + w' \IT = 0 (3) 

where w = sq/ pc, which we shall call the transport 
vector. In the case of a homogeneous one-dimensional 
flow in the direction of the x-axis, this equation has the 
very simple solution 

T = [(x-wt) (4) 

where f is an arbitrary piecewise different.iable function 
and w is the scalar sq/pc. Equation (4) is an important 
result showing that the temperature field is simply trans
latcd with the velocity w. In other words, consider the 
case when f (x) is the unit step function, that is, zero 
for x < 0 and unity for x > O. As indicated in Figure 
], this temperature front is then translated through the 
rock with the velocity w. As a matter of course, this 
velocity is different from the fluid velocity in the pores. 

This result can be interpreted in a slightly differ
cnt way. Supposc we wish to heat a given mass M of 
fluid from zero temperature to a temperature T by 
thrusting it through a volume of porous rock having tlw 
temperature T. The formation volume V required for 
this heating follows from the above results, 

64 

V = sM/pc (') 

The volume V will be called the contact volumc 
required for the heating of thc fluid mass /1'1. Sinc(; thc 
total mass flow during the timc t through a cross section 
A is M = Aqt, and the corresponding contact volumc 
is V = Ax, equation (4) can be written 

T = f(V - sM fpc) (6) 

T IJ 

POROUS ROCK 

-i------~ 

I 
I 
~w 
I 

:= I 

o X 

TEMPERATURE FRONT 
FIG. 1.- The one·dimensional unit temperature frol1t in porous 

rock. 

The advantage of this form results from the fact that 
by reinterpreting V, M,; and q, it is also 8pplicable to 
certain cylindrically and spherically symmetric flows. 
Two such cases are of particular interest. 

Consider a' homogeneous porous and permeable 
solid having a temperature To. A point source of mass 
flow Q kg/sec is introduced at time t = O. Let the tem
perature of the inflowing fluid be zero. Neglecting den
sity currents and assuming spherical symmetry of the 
temperature and flow fields where r is the distance from 
the source, it follows that 

q = Q/4 .. ,,", \IT = aT/ar 

and hence equation (3) is of the form 

(aT fat) + (sQ/47i.pcr2) (aT jar) = 0 

which has a solution of the form (6) where 

V = 47i.r"/3 = sQt/pc = sM/pc 

(7) 

(8) 

(9) 

At time t when a total mass of M = Qt has been injected 
into the formation, the' temperature is zero inside a 
contact volume V which is a sphere with a radius 

:: 

r V 3sM/47i.pc (10) 

and To outside this sphere. This is shown on the sketch 
in Figure 2. 

The same considerAtions apply to the cylindrically 
symmetric C3se of a line source of mass flow Q kg/sec, 
meter embedded in a formation of thickness h as shown 
in Figure 3. The contact volume per unit length of the 
source is then V = 7i.r~ where r is the distance from 
the source. The corresponding result for the radius of 
V is then with M = Qt 

.. ,-
r = V-;M/~pc ( 1 1) 
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FIG. 2. - Temperature field aroul1d a point source of tempera
ture :::ero in homogeneous porous rock with il1itial temper
ature To. 

FRACTURE FLOW 

The model of interest in the present context is 
the case involving the injection of a fluid from a 
borehole into an extensive fracture of a small uniform 
width. For convenience, the fracture will be assumed 
to be horizontal and to extend to infinity in all direc
tions. Let the rock be impermeable and have a constant 
initial temperature To and let the injection from the 

TEMPERATURE FRONT 
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I 
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T=O I T=To 
I 
I 
I 

-'-.' -,rr-//://,'. /1///11 Ill/ill !///',~,'l/ I lill Ii/illi 1111/)I)ml/l!711/11 

FIG. 3. - Temperature field around a line source of temperature 
zero ill a layer of porous rock with initial temperature To. 

borehole start at time t = O. The temperature of the 
inflowing fluid is assumed to be zero and the mass 
flow Q kg/sec is assumed constant. The problem is 
to derive the resulting temperature field in the rock. 
This case is similar to a case treated elsewhere by the 
present writer (BODVARSSON 1969), and a slight modi
fication of these results will furnish the solution in the 
present case. 

As indicated in Figure 4, let r be the radial distance 
from the borehole and y be the coordinate perpendicular 
to the fracture which is located at y = O. Moreover, 
let a be the thermal diffusivity of the rock, and neglec
ting heat conduction in the radial direction, the problem 
is then to solve the simple heat conduction equation 

a('FT lay" = aT/at (12) 

with the boundary condition at y = 0 

sQ (aT jar) = 4TCrk (aT lay) (13) 

and the initial condition T = To at t = O. The solution 
is obtained by assuming that T is of the form T (u, t) 
where u = -;;r"b + y m:d b = 2k/sQ. Since 

aT/i)r = 2-;-crb (01' lou) 

and aT/ily = ilT/ilu, (l"T/ily" = iFf /ilu" ( 14) 

the boundary condition (13) is satisfied and equation 
(12) takes the form 

ai)"T /(lu" = ilT/ill 

The transformed boundary conditions are 

T (u, 0) = To T (0, t) = 0 
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FIG. 4. - Temperature field in the rock adjacent to a lIarroll' 
horizontal fracture into which 1000 kg/sec of \l'ater 0/ 
temperature 150°C have been continuously injected durillg 
a period 0/ 25 years. The initial temperature of the rock 
is 250 "C. 

The solution of the problem defined by (15) and (16) 
is well known (CARSLAW and JAEGER 1959, page 59). 

T =To erE (u/2'\, at) = To err [(-;-chr" + Y)/2\ af] 
( 17) 

where erf denotes the error-function which is tabulated 
in the mathematical literature (CARS LAW and JAEGER 

1959, page 485). Fora (u/2 V at) < 1/2, equation (17) 
can be simplified to 

T = To [(-;;br" + y)/2V-at] (10) 

Equations (17) and (18) can be applied to esti
mate the extent of the thermal contamination in the 
injection fracture. 

Practical considerations 

The main results of the abo.ve discussion are given 
by equations (6), (10), (11), aJ,d (1 Z), Clearly. these: 
simple results have been obtained with the help or 
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highl: iJe,l1izcd models, and their applicability in prac
tiel! e,l,e5 is therefore greatly restricted. Nevertheless, 
it is possible to apply the t"ormulas in order to obtain 
useful semi-ljuantiwtive estimates at" a number of quan
tities \\'hieh arc important in the designing of geothermal 
reinjection systems. This docs, in particular, apply to 
the minimum distances of reinjection wells from pro
duction zones. An illustrative examp\c will be discussed 
below. 

Consider the case of a single flash power plant of 
J 00 M W which is operated on a fluid phase geothermal 
reservoir-With a base temperature of 250 "C. Let the 

-~ --j11ass flow of flash water be 1000 kg/sec at 150 nC. 

" 

Assuming almost continuos operation, the cumulative 
{low during an amortization period of 25 years would 
be 7.5 X 10' metric tons of water. We will assume that 
this water has to be reinjected into the ground. Since 
s = 4.2 kT/kgOC, and we can assume that p = 2.5X 10" 
kg/me and c = 1 kJ /kg"C, equation (5) gives the total 
contact volume of 1.3 k111". Considering the simplest 
case, that is, the case of a spherically symmetric contact 
volume in rock with intergranular flow and a single 
injection point, we find a radius of almost r = 0.7 k111. 
Since this is the case of maximum symmetry, this figure 
is the minimum distance of thermal contamination from 
the injection point. In unsymmetric ITow, the thermal 
efTects would reach a greater distance in some preferred 
direction. 

Reinjection into one or more fracture-like openings 
is, however, the case of greater practical interest. Many 
of the major geothermal reservoirs are found in volcanic 
formations composed of a series of almost horizontal 
lava beds. Some of the contacts between the lava beds are 
highly permeable due to vesicular and tubular openings. 
Very thin permeable horizons extending over areas of 
tens of square kilometers are often formed by the con
tacts. They represent the principal horizontal conductors 
o[ thermal water in geothermal areas of this type. Some 
of these horizons can be used for reinjection purposes. 
Assuming one injection point and a rotationally symmet
ric rIow from this point, equations (17) and (18) can 
be lIsl'd lo eslilll;ile lhe exlenl of lhermal conlallli!wlion 
by llie rei njecled waler. I II eUllll',ISI 10 I he ;Ihuve case 
of intergrallplar 110w, this case involves a sI11001h te111-
perature field where the temperature increases gradually 
with increasing distance from the point of re-entry. 
Using the above example and prescribing a temperature 
decrease of 5 DC as the maximum acceptable thermal 
contamination within the permeable horizon, equations 
(17) and (18) can be applied to estimate the distance 
from the point of re-entry to the boundary of the accep
tab\c contamination. For computational purposes, the 
temperature of the water to be reinjected is taken to be 
zero and all temperatures will therefore have to be 
reduced by 150 "C. Using equation (17) with To = 
250 - 150 = 100 "C, Ie = 2.5 walt/moC, Q = 10" 
kg/sec and hence b = 1.2 X 10--" lim, we find that 
following- an injection period of 25 years a computed 
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temperature of T = 95 "C will be present al a disl<lllee 
of 4.5 kilometers from the point of re-entry. I knee, 
the actual temperature of the water in the pnmeah1c 
horizon at this distance is estimated at 245 "C. The 
unacceptable thermal contamination is thus estimated 
to have reached a distance of 4.5 kilol11eters frum the 
point of re-entry. The temperaturc field in the forma
tions adjacent to the permeable fracture according tu 
equation (17) is shown in Figure 4. 

As stated, the above results have been obtained 
with the help of a number of simplifications. In this 
respect, there are mainly three factors which have: to be 
stressed. First, the actual subsurface flow is rarely uni
form and there will be preferred directions. Second, a 
possible interaction between production and reinjection 
has been neglected. Finally, on the positive side is the 
fact that density currents within the reservoir 111,ly be 
helpful in minimizing this interaction. In the present 
example, the density of pure water at 250 DC is 800 
kg/m" whereas water at 150 nC has a density of 915 
kg/m3

• The flash water has, therefore, a density excess 
of 115 kg/mao This density difference can gener8te den
sity currents causing the colder water being rei!1jected 
to sink below the hotter reservoir water. Density cur
rents may thus in many cases help to prevent a h;:rmfuJ 
intermixture of the two components. The subject of den
sity currents is, however, quite involved and an attempt 
at an useful discussion will have to be based on specific 
field models. 

The principal result of the above discussion is that 
the reinjection of volumes of water of the order of one 
cubic kilometer during periods of a few tens 0f years 
should be carried out into (1) extensive thick formations 
with intergranular permeability or (2) one or more ex
tensive permeable contacts which are open over areas 
of the order of several tens of square kilometers. Never
theless, even under such favorable circumstances, the 
thermal effects of the injected water may reach out to 
several kilometers from the points of injection. Rein
jection wells will, therefore, have to be si ted at consid
erable disUlllces from the active pclrts of the reservoir. 
Moreover, in order 10 lake m,lximulll adv;IIlt<I~e of (kn
sity currenls, the depth or injectioll should be greater 
than the depth of main production zones. 
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