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TGD-TYPE GEOTHERMAL-GRADIENT METERS

B, V., Shekhvatov and E, V, Suvilov

The TGD-type instruments developed at the Institute of ‘Oceanology
for measuring geothermal gradients in clastic deposits are described,
Improvements ir instrument design and measuring techniques made dur-

_ ing use of the TGD resulted in better —quality data and more effective
studies, The technique used to measure the heat conductivity in bottom
samples is described,

The TGD-type instruments developed at the Institute of Ocea_ﬁology, USSR Academy of
Seiences for measuring the geothermal gradient in bottom deposits are effectively used in field
operations to measure the heat flow from the sea bottom. Improvements in instrument design
and measuring techniques made during use of the TGD resulted in improved data quality and re-
search effectiveness,

The method most generally used to determine the heat flow is the indirect method in which
the heat flow is computed from the vertical geothermal gradient in the bottom deposits and their
heat conductivity, The vertical geothermal gradient is usually measured by immersing heat
sensors in the deposit; the sensors are installed in geological core samplers or special bottom
probes, together with a measuring device, and launched on a cable from aboard ship {1]. The
heat conductivity of the bottom can be measured directly in the deposit or in the geological core
sampler (after the core sampler has been hoisted aboard ship) using the needle-probe method
[51. ‘

The heat flow is defined by the formula

Q=ATk

where AT is the temperature gradient and k is the coefficient of heat conductivity of the deposit,
The TGD~65 thermogradiometer and its modifications, developed in 1965 at the Institute
of Oceanology as instruments for measuring the geothermal gradient in bottom deposits, are
automatic instruments designed to be installed in standard geological core samplers [3], The
instrument consists of a measuring-recording unit in a durable housing and a set of external
heat sensors with connecting leads, A block diagram of the TGD-65 is shown in Fig. 1, The
temperature sensor TS is comected to a measuring bridge circuit B, The bridge is balanced
with potentiometer P, which operates in a scanning mode, The potentiometer and recorder are
driven by an electric motor M through reduction gear RG, The output voltage of the measuring
bridge is applied to the phase detector PD via amplifier A, The signal from the detector is fed
to recorder-amplifier RA and then to recorder R, The bridge circuit and phase detector are
supplied by an auxiliary generator G, The device is turned on and off by programmer PR,

. which connects the circuit to the power supply PS,

The heat sensor and measuring circuit of the device are selected with the specific features
of the measurement of the thermal gradient in the sea in mind, Foremost among these special
features is the difficulty of submerging the heat sensors in the hottom at great depths and the
comparatively low thermal gradient in the bottom deposits, The average thermal gradient is
about 0,05° C/m; the minimum is 0,002° C/m and the maximum some tenths of a degree per
meter, To improve the measuring accuracy the baseline between heat sensors in the bottom
should be increased, But this baseline is governed by the ability of the geological core sampler
to penetrate the bottom, The average depth of penetration of direct-flow core samplers is 3-8
meters, depending on the nature of the bottom; with pneumatic core samplers the penetration is
10-15 meters, These quantities also govern the maximum spacing between sensors, However,
in view of the circumstance that the measurement of thermal gradient in the surface layer of
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section 10 < t < 100 sec, is defined by the quantity q/4Tlk, The value of k is computed with known
q. A standard bridge measuring circuit is used to measure temperature, T = ¢(t) is recorded

with the EPP-09 or PS-01-21 potentiometers, The power required by the probe-heating element )

s about 1 watt and is regulated with a pointer-indicating instrument, If the temperature and
heater power are regulated to 1% the thermal conductivity can be established to +3%, The accu-
racy of establishing the heat flux amounts to x (10-15)%, Heat flux studies using this cquipment
have become an indispensable adjunct to geophysical studies at sea on the R /V's Akademik Kur~
chatov, Dmitri Mendeleyev, Vityaz' and Vavilov, Thermal gradient measurements have bheen
made in the Pacific, Indian and Atlantic Oceans and in the Black Sea and Sea of Okhotsk, These
measurements have provided new data on the deep heat flows through individual areas of the
ocean and sea bottoms, .

REFERENCES

1, Lyubimova, E, A, and G, B, Vdintsev, Measurement of the heat flow through the sea
bottom, Okeanol, issled, No, 13, 1964,

2, Spravochnik po okeanologicheskim priborom i oborudovaniyu (Handbook of oceanographic
instruments and equipment), Izd, AN SSSR, 1962,

3. Shekhvatov, B. V. Development of scientific instrument construction at the Institute of
Oceanology, USSR Academy of Sciences, Okeanologiya, 10, No. 4, 1970,

4, Shekhvatov, B, V., New methods for monitoring the depth of oceanographic instruments,

. Okeanologiya, 12,..No, 4, 1972, )
5. von Herzen, R, and A, E, Maxwell, Measurement of the thermal conductivity of deep-sea
. sediments by the needle~probe method, J. Geophys. Res., 64, No, 10, 1959,
P, P. Shirshov Institute of Oceanology

Received February 25, 1974
USSR Academy of Sciences .

OCEANOGRAPHIC MODIFICATION OF THE SEISMIC
WAVE-REFLECTION TECHNIQUE

L. I, Kogan, L, P, Merklin, and G, B, Udintsev

An automated shipboard system for data collection, used to modify
the oceanographic reflected-wave method, is considered, It is distinguished
by its high efficiency, great depth accessible to investigation and large in-
formation capacity.

The development of modern, high-speed oceanographic vessels has brought with it the re-
quirement for reliable geophysical measurements made continuously over extended times at ship
speeds up to 18 knots. This imposes the following requirements on the seismic reflection meth-
od: (1) an increase in the effectiveness of the sources of excitation of elastic waves; (2) im-
proved reliability and noise immunity of the recording channel; (3) smaller size, better durability
and increased sensitivity of the receiving devices at high towing speeds; (4) recording -of original
data on magnetic tape in a form suitable for processing in an electronic computer; (5) operational
checking and analysis (rapid-processing) of the data obtained, :

Excitation of elastic waves, In seismic operations at sea with the wave-reflection method,
the elastic waves are usually generated from the ship while underway by a high~explosive charge
or non-explosive sources [1, 5 and others), To realize a high signal-to-noise ratio and great
depth capabilities, either a large high-explosive charge or a towed group of pneumatic sources
involving as many as tens of units is required {6]. The non-explosive sources of sufficient pow-
er presently known are not suitable for group towing at high speed and their use demands a sub-
stantial refitting of oceanographic vessels and the installation of high-power compressors, In
the present stage of development of the oceanographic reflected-wave technique the explosive
source is chosen, but with a small charge weight so as to limit the zone of destruction of living
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‘Fig. 1, Influence of explosion depth of a
50 gram charge of TNT on the shape of
_the radiating pulse:

1) first shock; 2) second shock; A) filter:
200-300 Hz; B) Filter: 20-30 Hz,

organisms and high-enough energy capacity to yield a good depth for investigation at high ship
speeds and without requiring spec;ﬂaliT T1"ef}§’cti1g1g.s (8] b
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