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lVlultival'iable Curve In tCl'pola Lion 

JAMES FERGUSON 

'J'he Boeing Company, Seattle, Washington* 

Abstract. The problem of defining a smooth surface through an array of points in space 
is well kno~-n. Several methods of solution have been proposed. Generally, these restrict 
the set of points to be one-to-one defined over a planar rectangular grid (X,Y-plnne). 
Then a set of functions Z = F(X, Y) is determined, each of which represents a surface 
segment of the composite smooth surface. In this paper, these' ideas are generalized to 
include a much broader clu~s of permissible point array distributions: namely (1) the point 
arrangement (ordering) is topologically equivalent to a planar rectangular grid, (2) the 
resulting solution is a smooth composite of parametric surface segments, i.e. each surface 
piece is represented by a vector (point)-valued function. The solution here presented is 
readily applicable to a variety of problems, such as closed surface body definitions and 
pressure envelope surface definitions. The technique has been used successfully in these 
areas and others, such as numerical control milling, Newtonian impact and boundary 
layer. 

Problem Description 

Let Pi,j be an array of ?n·n distinct points in space, i=O, , m-l, 
j = 0, ... ,n-l, arranged so that the structure obtained by connecting adjacent 
points by straight-line segments is topologically equivalent to anm X n planar 
rectangular grid (see Figure 1). It is required to construct a smooth smface, 
r, which passes exactly through the P i,i' The computations of. the reSUlting 
structure, r, will be adapted to high speed digital techniques, so that the defini­
tion of r must not be such that applications yield calculations of a high degree 
of comp!exity. 

Basic Curt'e Segment 

Let A, n be two points in space and let TA , TB be tv,rQ direction vectorS 
defined at A, n respectively. We construct a space curve J( through A,B tangent 
to TA , TB which has the following form: 

3 

L Riu\ for 0 ~ u ~ 1, P(u) E K, 
i~O 

P(u) (1) 

such that peO) = A, P(I) = n, drIP I = T A , and drIP/ := T B • 
u u=O 1t u=l 

Substituting these conditions in (1) and solving the resulting system of 
equations for Ro , Hi , R~ , R3 gives 

P(u) = u3
[2(A - n) + TA + TBJ + u2

[3(B - A) - 2TA - TBJ + UTA + A. (2) 

The notation [{ = (A, H, TA , T B ) is used. 
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FIGs. 1-2 

Composite Curve Construction 

Consider two families of composite CUlTes, one passing through (for each 
i = 0, ... , m-1) P i.f, } = 0, ... , n-l, and the other passing through 
(for each}=O,···, n-l,) Pi,f, i=O,···, m-1 (see Figure 2). Extract from 
these curves tangent directions Si,j and Ti,jat thePi,j, where Si,j is tangent to the 
composite curve of increasing j-value and Ti,i is tangent to the composite curve 

. of increasing i~value. Each composite curve is a collection of basic curve seg­
ments joining successive points of it such that tangency is preserved at their 
junction.'), Since each basic curve section of a composite curve is defined by two 
points and two tangents, it is necessary to devise a means for defining tangents 
at the points through which the composite curve must pass. Therefore, consider 
in general a set of p distinct points Pk , k = 0, .,. , p-1, in space and let 

. Y k denote the tangent sought at Pk • Specifying second derivative vectors equal 
at the points Pk , k = 1, ... , p-2, gives us the following recursive relation 

Y k + 4Yk+1 + Y k+2 = 3(P1:+2 - Pk ) k = 0, ... ,p-3, 

representing p-2 equations in p unknowns. One may now assume that Yo and 
Y p-1 are known, thus completing the solution, 

Basic Swjace Segment 

NO\v assign to each i, } the four basic curve segments Kl = (P i,f, P i+l,; , 
T i ,iT i+1,f) , K 2 , K 3 , and K4 (see Figure 3), Then the basic surface segment 
Sid is constructed as follows: parametrize K1 , K2 with respect to the variable u, 
and parametrize K 3 , K4 with respect to the variable v. Then locate the points 
P(u) E K1 and Q(u) E K 2 • Now interpolate from Ka to K{, at the value u, 
by defining a basic curve segment with P ( u), Q (t/,) as beginning and end points 
respectively. This intermediate curve segment is parametrized with respect 
to the variable v and is of the form (P(u), Q(u), X(u), Y(u», where 

X(u) =' (au3 + btt2 + cu + d)Si,i + (ett3 + fu2 + gu + h)SiH,;, 

Y(u) = (au3 + bu
2 + en + d)Si.iH + (ei + fu2 + gu + h)Si+l.lH' 

(3) 
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We wish to determine the coefficients in (3) such that tangency is preserved 
across the borders Ka and K4 . Note that by definition of X and Y there is already 
tangency across K 1 , K z , since X(u)Is calculated for Si,i as Y(u) is calculated 
for SU-l, j ~ O. (Assume now that i ~ m-3, i.e. Si+I,i exists.) The follow­
ing conditions must therefore be satisfied: 

(i) 

(ii) 

(iii) 

X(O) = Si,i, 

YeO) = Si.i+I. Y(l) = Si+I.i+I 

ap(u, v) I = aQ(u, v) 1 

au u=I au .u=o' 

where P( u, v) E Si,i, Q( 1t, v) E Si+l,i, and 
3 3 

P( u, v) = .L: I: upvqRp.q 
. p=O q=O 

(4) 

° ~ u, v ~ 1. (5) 

The Rp •2 are determined from the above definitions of P(u), Q(u), X(u)and 
Y(u), and in particular depend on a, b, c, d, e, 1, g, hj a similar relation holds 
for Q(u, v). (See Figure 4.) Xow, from (iii) of (4) above, equate coefficients of 
like powers in v, obtaining 

'c + 2b + 3a = 0, g + 21 + 3e = c, g = 0 (6) 

and from (i), (ii) above equate coefficients of like terms to obtain 

d = 1, h = 0, a +.b + c + d = 0, e + 1 + g + h = 1. (7) 

Assembling 6 and 7 one finds 

3a + 2b + c = ° 
- c ~ + 3e + 2f = ° 

a+ b+c =-1 
(8) 

e + f = 1. 

Si,i+1 

P .. 
\ ',1 

j, 

Pj+ 1,j+l 

-
Sl+1.i+1 

T;+l,i+1 

~+l,i 
FIGS. 3-4 
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Another relation among a, b, c, e, f follows if we specify that the quantity 
(ap(u, v)/au) I u=o is interpolated similarly to X(u), i.e. 

ape u v) \ (3 . 2 d) (3 f 2 )' _' = av + bv + cv + Tid + ev + v + gv + h fi,i+!' 

au u=o 

Using. (5) to expand this partial derivative and comparing it with (8) we find 

c = O. So, from (8) it follmvs that . 

a = 2, b = -3, e· = -2, f = 3. (9) 

Note also that (ap(1l, v)/au) I u=l is similarly interpolated from TH1,i to Tj+1,i+l' 

I Thus, the equation for Si,i is (5), where 

Ho.o = P •• ; 
R o.l = S •. ; 

I H
O

•
2 

= 3(P (.;+1 - P •. ;) - (2S •. ; + S •. ;+I) 
. H

O
.3 = 2(P •. ; - P •. ;+I) + (S •. ; + S'.hl) 

R1.a = T.,; 
H1.1 = 0 
R1.2 = 3(T '.hl - T •. ;) 
R l .• "" 2(T • .; - T '.hl) 
Hz.o = 3(P .+1.; - P • .;) - (2T •. ; + T .+1.;) 
H 2.1 = 3(S'+I'; - S •. ;) 
R

z
.2 = 3[3(Pl+l.i+1 - P •. i+l + P • .; - P.+l.;) + 2(T •. ; - T'.i+I) + (Tl+l'; - T'+1

.i+l) 

+ 2(S •. ; - S'+I';) + (5 •. ;+1 - S.+I';:'p)] 
R

2
.3 = 2[3(P'+l'; - p •. ; + p • .;+! - P.+l';+I) + 2(T'';+1 - T •. ;) + (T'+l,j+l - T.+1

.;)] 

+ 3(S'+I.; + 5'+1.i+l - 5 •. ; - 5i.Hl) 
H3.0 = 2(P •. ; - P .+1.;) + T i.; + T .+1./ 
R •. l = 2(Si,j - S'+I.;) 
R3.2 = 3[2(Pi.i+1 - P'+l,j+1 + P'+l.; - Pi.;) + (T i .;+! + T i+1.i+l) - (T •. ; + T.+l,;)] 

+ 4(5.+1'; - Si.;) + 2(5.+1.;+1 - S •. ;+I) 
R

3
.3 = 2[2(P i.; - P 1+1.; + P (+1.;+1 - P •. ;+1) + (T •. ; + T 1+1.;) - (T •. ;+1 + T .+1.;+1) 

+ (S • .; - S'+I.; + 5 •. ;+1 - S'+I';+1)1 

We use the notation 

S •. ; = (Pi.;, Pi-tl.;, P'.Hl, P'+l';+I, Ti.; ,T.+1.;, T •. ;+!, T'+l.;+I, S.,;, S'+I.;, 
S •. ;+1 , Sl+l.;+I). 

An Interesting Property 

We consider here the point-tangent arrangement of a basic surface segment 
and deduce those orientations which identify the surface equally. From this it is 
easily concluded that the entire surface r is not altered if like orientation changes 
are made for each of its component pieces. For notational convenience, let Go 
be a basic surface segment defined by Go = (A, B, C, D, T a, Tb, T c, Td, Sa, 
Sb, Sc, Sd)' By comparing coefficients of like powers of the parameter variables 
in the equations for each of the following surfaces, we find that they form, along 
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TABLE 1 

1 p o•o = (2, 5, 2) 14 1'3.: = (10..153, -1.473, 1.276) 
2 P l •O = (2.49, 2.549, 2.7) 15 1' •. 2 = (10.30·1, -2.065, 1.2) 
3 PM = (2.0S1, .097,2.9) 16 P O•3 = (14.055, 3.503, 1) 
4 P a•o = (3,471, -2.354,3) 17 l'l.a = (14.191, 2.261, .8) 
5 P '.0 = (3.061, :'-4.806, 3) 
6 P O•l = (7.45,4.001,2) 18 I' 2.3 = (14.331, 1.018, 1.2) 

7 P I •l = (7.35, 2.004, 3) 19 P3,3 = (14.469, - .224, 1.6) 

8 P 2 •1 = (7.251, .006,2.5) 20 P '.3 = (14.607, -1.466, 1.25) 

9 P a •l = (7..151, -1.991,1.5) 21 1'0 .• = (15, 4, 0) 

10 p •. l = (7.051, -3.080,2) 22 Pl .• = (15.720, 2.GSO, 0) 
11 . P O• 2 = (10.901,3.005, 1.5) 23 P 2 •• = (16.457, 1.378, .2) 
12 P I • 2 = (10.751, 1.512, 1.425) 24 1'3 .• = (17.185, .066, .6) 
13 P 2 • 2 = (10.602, .02, 1.35) 25 }' •.• = (17.014, -1.245,1.2) 

FIG. 5 

with Go, a complete system of eight identical surfaces (complete in the scnse 
of exhaustion of all possible point-tangent orderings, allowing tangent reversals): 

Gl = (C, D, A, B, Te, T d , Ta, '1\, -SCI -Sa, -5., -56) 

. G2 = (n, A, D, C, -'1'6, -'1'., -'I'd, -Te, 56, Sa, Sd, 5,) 

Ga = (D, C. B. A. -Ta. -'ret -T6. -Ta, -Sa, -SCI -Sb, -5.) 

G, = (C, A, D. B. -5" -5., -Sa, -56, T e , '1' •• 'I'd, To) 

G, = (B, D, A, C, So, Sa,S., Se, -T6, -Td, -'1'., -Te) 

Gs = (D, B, C. A, Sd. -56, -5" -Sa, -'I'd, -T6, -T" -T.) 

G7 = (A, C, B, D,S., Sc, So. Sd, T., Te. T6, 'I'd). 

,. 
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FIG. G 

FIG. 7 

Example. Twenty-five pointsPi,i, i = 0, 1,2,3,4, j = 0, 1,2,3, 4, are 
listed in Table 1. Necessary computer programs were written using the methods 
of this paper to define a smooth smfacc through the points. The surface equations 
were used by these programs to generate a family of tabulated coordinate 
curves on the composite surface, which in turn were dra\vn by a numerically 
controlled drafting machine in the views of Figures 5, 6, and 7. 

1I igher-Dimensional Generalizations 
The notions of the previous sections are preserved for this discussion. First, an 

E4 (four-dimensional Euclidean space) vector-valued function is defined, whose 
domain is a unit cube in E\ the corners of which map into a given 8-point array 
in It such that the st.ructure of lines joining adjacent points is equivalent to the 
cube-type structure 'of Figure 8. For cOll\'enience then, the discussion henceforth 
is notation ally dirccted to this cube. At each Aiik is defined (sanie as previous 
composite curve construction) three direction vectors Tfik , Tiik , Trik correspond-

25 

, 
I 

'I , 1 

I 

I 
I 

I 

\.,."...,...~,_,.,,...\ ~:_"b"""-7'"~J')'~:~: ..... -:.t+, .• ,!. _'r 

~--.,,-~ 
.~_~~~~~ ____ ~,~~;:-r-~~r."",,~~~::,~,",,\,,!,,_~r. --- .... ~; 

, ~ " 



1IICLTI-YAHlAllLE Cl)Un; L,\'l'EHrOI,.\TIO~ 227 

FIGs. 8-10 
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ing to the edge directions of the u, v, w-cube at each corner. Keep in mind that we 
really. desire an interpolation scheme in E., i.e. to find functions P (u, v, w) which 
smoothly map adjacent 8-pointed cubes into a rectangular-like parallelepiped 
net of points in If. The intention here is to generalize the results of the ono- and 
two-dimensional solutions directly. To this end, first recall these equations. For 
notational convenience let {u = [(2u + 1)(u. - 1)2, 7/(3 - 2u), u(u- 1)2, 
u2(u - 1)] and TJu= [(2u + 1)(u- 1)2, t/(3 - 2u)]. Then: (i) the curve 
equation can be written (Figure 9) as a dot product 

P(u) = (Ao, AI, To", 1'1") . {It , u E [0, 1]; 

(ii) the tw'o-dimensional surface segment equation is written as (Figure 10) 

P(u,v) = [PO(u),PI(u), (T~o,Tro)'TJu, (T~I,T~I)'TJu]'{v, u,v E [0,1], 

wherePm(u) = (Aom,Alm,T~m,T~m)'{u, (m = 0,1). 
By examining the forms of these equations, the following generalization is 

apparent (for If): 

P( u, v, w) = (poe u, v), PI( u, v), [(T~oo , Troo)' TJu, (,1';10, 1';10)' TJu]' TJ., . 
(10) 

[(T~ol ,Trol)' TJu , C1';ll, T~ll)' TJ,,]' TJuJ • {w u, v, w E [0, 1], 

where Po(u, v) and P1(u, v) have interpretations similar to Po(u) and P1(u) 
above. 

Now check that this equation satisfies the problem requirements. It can be 
shown by evaluating (10) at the cube corners that the initial conditions are 
satisfied: 

(a) P(i, j, k) = A;jk 

(b) Du P(i,j, Ie) = Tt·" , (Du = a/au), 
(c) Dv P(i,j, k) = T~jk 
(d) Dw P(i, j, lc) = Trjk, i, j, k = 0, 1. 

! ~ • 

,":"" 

~;,.'-.'~"-'''>'' ~~"·""~7?TI"?'7:'~'7,~:;:~·~:~':·r~~"7;~'0~::··;,;:::r:':7f~~T~"J?~3'JjF?f~'·~·;?:~?Tf:~r.::,~,:;~:'~~:?~=?~'!;':;:?>'-::'T?~"~~~~ 
:.' .: ° 0 0 '.< " • J' .• ' .,0_, , , ~. ".: .. , • .... ',., : • ~". _ • 

. :. ,_:, " .'. :.i. /' ,: / :<,..~. , 
- , ; . ." ., •• ' ..' • ·.'L' ':'. ." .','- .... 

· ... 



I 

1 
I 
[ 

f 
r 
f 
f 
! 1 
t 

1 

! 
f 

1 
f 
! 
i 

i 
I 
t 

I 
I 
I 
I 
i 
t 

1 
f , 

I 
f 
t 
t 
I 
! 

, 
I 

I 

\ 
~ .. ~"i 

228 J.'c)!ES I<'ERGUSO)< 

The condition for sinoothness is: at each point in a boundary face between 
two hypersurfaces of the composite surface, the three directions DuP, DvP, 
DwP arc identically calculated. Thus, considering just one hypersurface segment 
1'(11, v, w), the following relations must be shown: 

(1) Dm P(O, v, w) ~ Dm P(I, v, w), 

(2) Dm P(1t, 0,10) ~ Dm P(u, 1, w), 

(3) Dm P(1I, v, 0) ~ Din P(u, v, 1), m = u, v, w, 

where the· symbol "R" restricts the equality to "after corresponding point­
tangent substitutions are made between opposite faces." It is only a matter of 
arithmetic to show these to be true. 

In a like manner, generalizations to E5
, E6

, and so forth, can be constructed 
and verified. 

Applications for the higher-dimension surfaces can be found in regional point 
distributions where associated ,vith each point is some physical intensity valu­
ation, such as temperature, pressure, sound intensity, electric field strength, etc. 
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