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Abstract. The problem of defining a smooth surface through an array of poinis in space :
. is well known. Several methods of solution have been proposed. Generally, these restrict Y X
{ . the set of points to be one-to-one defined over a planar rectangular grid (X,Y-plane), 1
Then a set of functions Z = F(X,Y) is determined, each of which represents a surface
segment of the composite smooth surface. In this paper, these ideas are generalized to
include a rauch broader class of permissible point array distributions: namely (1) the point
arrangement (ordering) is topologically equivalent to a planar rectangular grid, (2) the
resulting solution is a smooth composite of parametric surface segments, i.e. each surface
piece is represented by a vector (point)-valued function. The solution here presented is
readily applicable to a variety of problems, such as closed surface body definitions and
pressure envelope surface definitions. The technique has been used successfully in these
areas and others, such as numerical control milling, Newtonian impact and boundary
layer.

Problem Description

Let Pi; be an array of m-n distinct points in space, 7=0, .-+, m—1,
7=0, -+ ,n—1, arranged so that the structure obtained by connecting adjacent
points by straight-line segments is topologically equivalent to an m X n planar
rectangular grid (see Figure 1). It is required to construct a smooth surface,
T, which passes exactly through the P ;. The computations of the resulting
structure, T, will be adapted to high speed digital techniques, so that the defini-
tion of T must not be such that applications yield calculations of a high degree
of complexity.

Basic Curve Segment
Let A, B be two points in space and let T, , Tg be two direction vectorS
i defined at A, Brespectively. We construct aspace curve K through A,B tangent
i to T4 , T which has the following form :

3 . ;
i “P(u) = X R, for 0 Su = 1, P(u) €K, (1) ' f‘
i £=0
!
dap apP
such that P(0) = A, P(1) =B, Zah = Ty, anda; = Tg.

Substituting these conditions in (1) and solving the resulting system of
equations for Ry, Ry, R:, R; gives '

P(u) = u"2(A — B) -+ Ty + Ts] + 3B — A) — 2T, — T] + uT, -+ A. (2)
The notation K = (A, B, Ts, Tg) is used.
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Figs. 1-2

Composile Curve Construction

Consider two families of composite curves, one passing through (for each
t=20, .-, m—1) P;y, j=0, -+, n—1, and the other passing through
(for each j=0,--- , n—1) P;;, =0, ---, m—1 (see Figure 2). Extract from
these curves tangent directions S; ; and T ;at the P;;, whereS; ; is tangent to the
composite curve of increasing j-value and T ; is tangent to the composite curve
of increasing ¢-value. Each composite curve is a collection of basic curve seg-

ments joining successive points of it such that tangency is preserved at their

junctions. Since each basic curve section of a composite curve is defined by two
points and two tangents, it is necessary to devise a means for defining tangents
at ‘the points through which the composite curve must pass. Therefore, consider
in general a set of p distinct points Pr, k = 0, -+, p—1, in space and let
Y denote the tangent sought at P, . Specifying second derivative vectors equal
at the points P, & = 1, -+- | p—2, gives us the following recursive relation

Yi 4+ 4Ye + Yipe = 3(Prpe - P.) k=0---,p=3

representing p—2 equations in p unknowns. One may now assume that Y, and
Y, are known, thus completing the solution. p ,

Basic Suiface Segment

Now assign to each 7, j the four basic curve segments K, = (P:;, Puaj,
T:Ti;), Koy Ks, and K; (see Figure 3). Then the basic surface segment
$;,; is constructed as follows: parametrize K; , K. with respect to the variable u,
and parametrize K;, K, with respect to the variable v. Then locate the points
P(u) € K, and Q(u) € K,. Now interpolate from K; to K, at the value u,
by defining a basic curve segment with P(u), Q(u) as beginning and end points
respectively. This intermediate curve segment is parametrized with respect
to the variable v and is of the form (P{u), Q(u), X(u), Y(u)), where

X () = (au® + bu? + cu + @)Se; + (ew® + fu + gu + h)Sisa, @
Y(u) = (au® + bu’ + cu + d)Suin + (v’ + fu’ + gu + 2)Suiin.
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We wish to determine the coefficients in (3) such that tangency is preserved - :
across the borders Kyand K . Note that by definition of X and Y there is already B \
tangency across K; , K, since X (u) is calculated for 8;,; as Y () is calculated : ‘
for 8;;-1, 7 5 0. (Assume now that ¢ £ m—38, i.e. $iy1,; exists.) The follow- = B
ing conditions must therefore be satisfied: . |

) X(0) = Sis,  X(1) = Sus - |
- (i) | Y(0) =Sijui, Y1) = Siuin (1) |
aP(u, v) _0Q(u, v)
(i) U =t U ueo
where P(u, v) € 8i;, Q(u,v) € 81,5, and '
3 3
P(u,0) = 20 2 w'R,y 0 S w051 (5)

p=0 ¢=0

The R,., are determined {from the above definitions of P (%), Q(u), X(u)and
Y (u), and in particular depend on a, b, ¢, d, ¢, f, g, k; a similar relation holds
for Q(u, v). (See Figure 4.) Now, from (iii) of (4) above, equate coefficients of
like powers in v, obtaining

c+2%+3 =0 g+2f+3=c g¢g=0 (6)
and from (i.), (i1) gzbove equate coeflicients of like terms to obtain
d=1 h=0 a+b+tc+d=0 e+f+g+h=1  (7)
Assembling 6 and 7 one finds ) '
- 3a +2b +¢
— ¢+ 3¢+ 2of
] , . a+ b+e
: . ' e+ f=1
i
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Aunother relation among a, b, ¢, ¢, { follows if we specify that the quanﬁty
(9P (u, v)/du) | umo 18 interpolated similarly to X (u), ie. .

QP(u, ) = (a0 + w4+ o 4+ )T + (e + 1 + g + YT 1.

) ou u=0 '
Using. (5) to expand this partial derivative and qonlparillg it with (8) we find
¢ = 0. So, from (8) it follows that ' .'

=2 b=-3 e=-2 §=38 (9)

" Note also that (8P(u, v)/ 1) | wmr Is similatly interpolated from Tiya,; t0 Tiprsr -

Thus, the equation for $:.;is (5), where

Roo = P

Roa = Sii -

Ro: = 3P — Pag) — (2S¢ + Sijsr)

Ros = 2P; — Pi-:‘+l) + (Ss'-i + SM’+1)

Riye = T

Rx,l = 0

Rz = 3(Ti.:'+l - Ti.:‘)

Rys = 2(Ti; — Tiin)

Roo = 3(Pin — Pag) — @Tas + Tisns)

Req = 3(Sisni — Sad)

Rs: = 3BPunin — Poin + Pis — Pins) + 2(Ti; — Togn) + (Tong — T ip1.541)
4 2(Ssj — Sand) + G — S )]

Ras = 28®uns — Puj + Piga — Ponjs) + 2Cain — Tig) + T — T
4+ 3(Sini + Seirt — S — Si.i41) '

Rio = 2(Pi; — Pund) 4+ Tij+ Tig

Ry = 2(S:; — Si+1-i)

Ris = 32@uin — Pipngn + Puni — Pug) + (Tagn + Tonn) — Tai+ Tl
+ 4(Sini — Sid) + 28 — Sije1)

Ros = 22®@:; — Pung + Ponin — Poj) + Tig + Tond) = Tasa + Titniet)

4 (Suj — Sii + Sain — Siprirn)]

We use the notation

Sui = (Pij, Pungs Piges Pinins» Tai» Tivn s Tasrs Teonist s Sai s Sipng
Sy Sunin)e

An Interesting Property

We consider here the point-tangent arrangement of a basic surface segment
and deduce those orientations which identify the surface equally. From this it is
easily concluded that the entire surface T is not altered if like orientation changes
are made for each of its component pieces. For notational convenience, let Go
be a basic surface segment defined by Go = (4, B,C, D, T, T, Tc, T4, Sa,
Ss, Sc, Sa). By comparing coefficients of like powers of the parameter variables
in the equations for each of the following surfaces, we find that they form, along
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with (8) we find

(9)

Tipi to Toa, i

. .
atg = Tinim)

v

it = Tonn)]

(Toj + Ting)]

w1t Ty i)

ySai s Seng,

surface segment
v. From this it is
entation changes
avenience, let Gy
Te, T., Ts, S.,
ameter variables
they form, along
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with Gy, a complete system of eight identical surfaces (complete in the sense
of exhaustion of all possible point-tangent orderings, allowing tangent reversals):

G
.Gy
G,
G,
G
Gs
G,

Poo = (2,5, 2)

P = (2.49, 2.549, 2.7) 15 Pi.= (10.304, —2.965, 1.2)
P2 = (2,981, .007, 2.9) 16 Pos = (14.055, 3.503, 1),
Pso = (3471, —2.354, 3) 17 Py = (14.104, 2,961, .8)
II:"° - g.zgl;-&gl.sog, 8 ‘18 P.g = (14.331, 1018, 1.2)
P:’i _ (7'35' 2,004, 3) 19 Pi; = (14.469, —.224, 1.6)

‘ Peciaede 20  Pus = (14.607, —1.466, 1.25)

P.y = (7.251, .006, 2.5)
Py, = (7.151, —1.991, 1.5)
P.i = (7.051, —3.989, 2)

.Po,2 = (10.901,
Py = (10.751,
P.. = (10.602,

I

I

1

(C, D, A B,
B, A, D, C,
(D, C, B, A,
(C, A, D, B,
(B, D, A, C,
(D, B, G, 4,
(A, C, B, D,

MULTI-VARIABLE CURVLE INTERPOLATION

TABLE 1

4 Py = (10453, —1.473, 1.276)

21 Po.o = (15, 4, 0)
22 Piao= (15.729, 2.689, 0)

3.005, 1.5) 23 P« = (16.457, 1.378, .2)
1.512, 1.425) 24 Py = (17.185, .066, .6)
.02, 1.35) 25  Puy= (17914, —1.245, 1.2)

Fic. 5

Te, Tay Toy Tsy, —=Sey ~Sa, —Sa, —Sy)

—Tsy —Ta, —~Ta, —Tey Sty Say Sa, So)

=Ty ~Tey ~Ts, —Tay —Say ~S:y, =S5, ~Sa)
~S.y =S4, =S4y =S4, To, Tar Ta, To)

Sbn sd; Say Sc: "‘Tbv "‘Tdv "Ta' "Tc)
Sd' —Sbi _“560 “Sa; —’l‘d' "“Tbr “’rcp —’ra)
Sao Sc: Sbn Sdo Tav Tc- Tbo ‘d).
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F1a. 7

Example. Twenty-five points Py ;, i=0,1,234 7=0,123,4, are
listed in Table 1. Necessary computer programs were written using the methods
of this paper to define a smooth surface through the points. The surface equations
were used by these programs to generate a family of tabulated coordinate
curves on the composite surface, which in turn swere drawn by a numerically
controlled drafting machine in the views of Figures 5, 6, and 7.

Higher-Dimenstonal Generalizations

The notions of the previous sections are preserved for this discussion. First, an
E* (four-dimensional Euclidean space) vector-valued function is defined, whose
domain is a unit cube in E°, the corners of which map into a given 8-point array
in I such that the structure of lines joining adjacent points is equivalent to the
cube-type structure of Figure 8. I'or convenience then, the discussion henceforth
is notationally directed to this cube. At each Ay is defined (same as previous
composite curve construction) three direction vectors T , Th , Ttix correspond-




T ow
010 n T Ao
T o8
oo = S e
001 oy 107 ol
%0 |7 v Ao =y
7 Toib The
- el T, v
wl T 100
Toou] Tood £,
100
T
- - - i}
= x - u T4
Ag00 Tl Moo T8 Mo n
Figs. 8-10

ing to the edge directions of the u, », w-cube at each corner. I{eep in mind that we
really.desire an interpolation scheme in E', i.e. to find functions P (u, v, w) which
smoothly map adjacent 8-pointed cubes into a rectangular-like parallelepiped
net of points in E*, The intention here is to generalize the results of the one- and
two-dimensional solutions directly. To this end, first recall these equations. For
notational convenience let &, = [(2u + 1)(x — 1)% W*(3 — 2u), u(u— 1)}
W(u — 1] and n.= [(2u + 1)(u— 1)} (3 — 2u)). Then: (i) the curve
ecquation can be written (Figure 9) as a dot product
P(u) : (AO ’ A ) "Ou; ‘lu) Cuy, UE [O; 1];

(ii) the two-dimensional surface segment equation is written as (Figure 10)

P(u: i)) = [Po(u),~P1(u), (,FEO y T?O) *Nuy (Tgl ) ‘;1) ' 77"]' & y WV € [OJ 1]’
‘Vhere Pm<u) == (AOm 3 Alm ) T(l)‘m 3 T;‘m) '{U ) (7n = O) 1)’

By examining the forms of these equations, the following generalization is
apparent (for E'):
P(u) v, ’LU) = {PO(u: 11), Pl(u) l)), [(rrﬂwﬂo ; '1‘1000) ‘Nuy ('-[‘:)010 ) T;DIO) '7711]'77' ’ ‘

\ 1w 10 1w (10)
[(Ton ’ Tio1) 7y (Tor, Thu) nud md & w0, w € [0, 1],

where Po(u, v) and Py(u, v) have interpretations similar to Po(u) and Pi(u)

above.
Now check that this equation satisfies the problem requirements. It can be
shown by evaluating (10) at the cube corners that the initial conditions are

satisfied:

(a) P(3, 5, k) = Aip

(b) DuP(i, . k) = Th, (Du = d/ou),
(¢) DvP(i,7, k) = Tixn C
(d) DwPG,j, k) =T, 15,k =0, 1.
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The condition for smoothness is: at each point in a boundary face between
two hypersurfaces of the composite surface, the three directions DuP, DvP,
DuwP are identieally caleulated. Thus, considering just one hypersurface segment
P (u, v, w), the following relations nust be shown:

(1) Dm P(0, v, w) = Dn P(1,v, w),
(2) Dm P(u, 0, w) R D Py 1, w),
(3) Dm P(u, v, 0) R DmP(u,v, 1), m=u,v,w,
where the symbol “R” restricts the equality to “after corresponding point-

tangent substitutions are made between opposite faces.” It is only a matter of

arithmetic to show these to be true. A

In a lke manner, generalizations to E°, E°, and so forth, can be constructed
and verified.

Applications for the higher-dimension surfaces can be found in regional point
distributions where associated with each point is some physical intensity valu-

Il

“ation, such as temperature, pressure, sound intensity, electric field strength, ete.
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