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Summary. When complex structure is encountered in magnetotellUric surveys, 
interpretation by locally fitted layered models is of questionable validity. 
However, when the processed data show two-dimensional structure, num~ri­
cal inversion schemes for two-dimensional models may be constructed as an 
aid to regional data interpretation. 

The two-dimensional magnetotellurics inversion problem is here formu­
lated in a way that may be applied to many problems. A resulting computer 
program is analysed carefully in terms of its cost relative to that of simpler 
layered modelling. 

As an example, the method is applied to some field data where the 
interpretive advantages of the program become evident. 

Introduction 

1.1 MODELLING MT TRAVERSE DATA 

Magnetotelluric (MT in the following) data in the forms of apparent resistivity, phase and 
Tipper measurements (,Earth Response Functions', or ERF's as in Vozoff (1972) can be 
numerically modelled, and therefore in principle inverted, by various simplified structures. 
In Jupp & Vozoff (1975), and Vozoff & Jupp (1975), a general approach to numerical 
inversion is illustrated by modelling single site MT data with layered earth structure. These 
very simple models have commonly been used for MT interpretation (Patrick & Bostick 
1969; Wu 1968; Vozoff 1972) as well as for the interpretation of other data as in Inman, 
Ryu & Ward (1973), and GJenn et al. (1973). When regional structure is approximately 
horizontal, as is the case in many sedimentary basins, and lateral variation is slow, good 
regional interpretations can be made by fitting layered earth models locally at MT sites, and 
patching the results together along the data traverses (Vozoff 1972). However, when 
structure is not approximately layered, fitting layered models involves systematic errors, and 
quantitative interpretation of the resulting regional models is very difficult. Examples of the 
distorLon produced are given in VolOff ct at. (1975), although the example presented here 
in Section (3.3) shows how local layered modelling can provide useful qualitative in­
formation. 

* Pre,ent address: CSI RO Division of Land Use Rcsc~rch, PO Box 1666, C~nhcrra City, ACT, 2601, 
Australia. 

UNIVERSITY Of UTAH 
RESEARCH INSTITUTE 
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A more general structure that can be modelled is two-Dimensional (or 2D) structure, in 
which regional conductivity varies little in one direction (the 'strike' direction), and where 
data are collected approximately across strike. 2D structures have been numerically 
modelled by various methods. For example, Neves (1957), and Jones & Price (1970) have 
used classical finite differences (although the discussions by Williamson, Hewlett & 
Tammemagi (1974), and Jones & Thomson (1974) should be noted), while Swift (1967, 
1971) and Madden & Swift (1969) use difference schemes based on a network analogy 
(see Praus (1975) for a review). Other methods, such as the Finite Element Method (Coggan 
1971 and Rodi 1976) and the Integral Equation methods of Hohmann (1971) and Lee 
(1975) have been used for 2D electromagnetic modelling, and may provide useful bases for 
2D or even 3D (Hohmann 1973) inversion. All of these methods can lead, in principle, to 
numerical inversion schemes, ranging from crude search by trial and error, to more sophisti­
cated schemes using partial derivatives. Weidelt (1975) has made good progress using the 

Integral Equation Ivlethod for the inverse Geomagnetic Depth Sounding problem, and 
Ku (1976) has used the network method for the inversion of a somewhat restricted MT 
data set. 

In the following, a finite difference modelling method is used, and partial derivatives 
evaluated for it. Much the same approach could be used with any of the methods mentioned, 
and with various geophysical ERF's. 

Any such method must, however, face the problems that arise from the significant growth 
in computing cost associated with 2D inversion. In economic terms, computing cost varies 
widely depending on the given situation, so that cost in the present context is relative in the 
sense that 2D inversion might be 10 times more costly than layered interpretations on the 
same data. In terms of total economic cost of data collection and processing, such expense 
may not be unwarranted. 

When times are quoted to indicate computing cost they are measured on a Univac 1106 
time shared computer, with 256k memory, and EXEC 8 software. The times are about twice 
those expected if the program were run on a Univac 1108. 

1.2 N U i',,1 E RIC A LIN Y E R S ION Iv! E THO D S 

The passage from simple layered model inversion to 2D inversion presents a significant 
change of scale, with respect to both the resulting interpretation, and the computing effort 
required to achieve it. 

In Section 3, it is emphasized that both the data presented for inversion, and the initial 
model, should be the result of considerable care in order to justify the cost of MT 2D in­
version. Assuming slIch care, the inversion method itself mllst be very efficient. 

The methods used here are those described in .1 upp & Vozoff (1975), and require partial 
derivatives of the model data with respect to the model parameters (or simply 'partials'). 
The solution methods are variants of the Gauss method (el Marquardt 1970) and use the 
Singular Value Decomposition (Lanczos 1960) of the Jacobian, or Matrix of partials, to 
iterate from an initial model, to one which fils the data within the limitations described in 
Jupp & Vozoff (1975). Important properties of the methods are their stability, and ability 
to converge in relatively few iteratiuns. 

The inversion concept behind our 3pproach is one of interactive modelling or 'refinement 
modelling' (Anderssen 1975). That is, inversion as an aid to interpretation which improves 
the interpreters ideas of regional structure agJinst the collected data. Backus & Gilbert 
(1967,1968,1970) (whose methods make an interc,ting comparison with the early paper by 
Golomb 8: Weinberger 1959), and Andersscn (1975), look for much more in their inversion 
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schemes. Their aim is to find generalized profiles without assuming special structures, and 
restricted model features. While that aim is important, the approach taken here is more 
pragmatic in that interpretation is attempted in terms of specific geological features, and 
practical in that the high cost of 20 inversion rules out extensive 'Non-uniqueness' modelling 
(Anderssen, Worthington & Cleary 1972). 

The cost factor also handicaps attempts at 20 inversion that use 'Trial and error' (e.g. 
Swift 1967), or which are based .on forward evaluations alone (e.g. Ku 1976). In this 
situation, the evaluation of partial derivatives for special models leads to relatively cheap, 
highly effective, and rapidly converging iterative schemes. It is worth pointing out, as was 
done by Glenn et al. (1973) for layered modelling, that approximations to partials by 
differencing also have very poor numerical properties, particularly near to a solution. 

Even when inversion is not intended, the relatively low extra cost of partials evaluation 
allows important studies in the nature of superior 'parametric study' and experiment design 
to be made for 2D models as was done in Vozoff & Jupp (1977) for layered situations. 
These linearized studies, while not as general in their scope as non-uniqueness modelling 
(Anderssen 1975) can provide strong conclusions about model situations as shown in 
Section 3.3. 

2 Numerical methods for MT 20 modelling 

2.1 FORWARD MODELLING 

The conventional right-handed Cartesian system, with z down, and y as the 'strike' direction 
along which conductivity does not vary, is assumed for coordinates. Maxwell's equations 
with a plane wave source then separate into two independent systems of partial differential 
equations. which are often referred to as the E-perpenclicular (E-perp), and If-perpendicular 
(If-perp) to strike polarizations. The two systems may be written in the convenient common 
form, 

LV=O 

Ix =-MV 

and 

Iz = -'NV 

where the differential operators L, M, and N are defined by 

1 a 
M=-

Zx ax 
1 a 

N=-
Zz az 

a a 
L=- -M+-N +Y. 

ax az 

(2.1) 

(2.2) 

(2.3) 

The functions V, Ix. Iz , zx, Zz and Yare identified for each polarization as follows (cf. 
l\ladden & Swift 1969) 

(i) E-perp to strike 

Vo=Ify, Ix=--Ez• Iz=t~" Zx=Zz=a- iEW 

and Y = -iw/1 
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(ii) H-perp to strike 

V= Ey, Ix = Hz, Iz = Hx, Zx = Zz = -iw/1 

and Y = a -iEW. 

The E and H terms are the electric and magnetic field components, W is 21T frequency, 
a is conductivity, which is a function of x and z only, and E and J1 are the permeability and 
susceptibility functions, which are assumed to be constant at the air and free space values 

Eoand/10· 
This general form for the basic equations is adopted from the 'network' analogy due to 

T. R. Madden (Swift 1967, 1971; Madden & Swift 1969). The network method can be 
generalized into a comprehensive approach to numerical and analogue modelling for a broad 

class of geophysical problems (Madden 1972). 
The usual ERF's for the MT method are defined from the solutions to the equations by 

(i) E-perp to strike 

1 
Pxy = -/Zxy /2 ¢xy = phase (Zxy) 

W/1 

where Zxy = Ex/Hy 

(ii) H-perp to strike 

1 
Pyx = -/Zyx /2 

W/1 

where Zyx = Ey/Hx . 

As well, the very important 'Tipper' (Vozoff 1972), or vertical to horizontal field ratio can 
be computed for the H-perp polarization as HzIIlx' This ERF is related to the 'Parkinson 
Vectors', (Parkinson 1959) and to the general class of ERF's described by Lilley (Lilley 

1974) for the geomagnetic induction problem. 
In each case equation (2.1) is solved for V. Ix and Iz are generateu from (2.2) and (2.3), 

and the appropriate ERF's computed by identifying components. It is important to notice, 
hmvever, (Swift 1971) that the boundary conditions are not the saIlle for both polarizations. 
For each case they are that the fields decay to zero in the earth, and that Hx and Hz are 
constant at the 'top' of the atmosphere. For E-perp, this means that V is constant, and for 

H-perp, that iJVjiJz is constant at the 'top'. 
To reduce (2.1) to a discrete system of equations by finite differences, one of a number 

of discretizations has been chosen. For example, Praus (1974) discusses the interesting 
variations in schemes used for the geomagnetic induction problem. ;\s usual, a rectangular 
spatial n?esh is deJmed parallel to the x and z coordinate directions. The intersections of the 
horizontal rows and vertical columns of the mesh arc its nodes, and the mesh is assumed to 
be terminated at sufficient distance from the data collection sites to ensure reasonable 
coverage of the region influencing their data. Basically, the function V is replaced by its 
values Vij at the nodes rCi, j), i = r,il1, j =r;-R} and a discrete approximation to (2.1) set up 

on the mesh. 
It is important for the success of the scheme that restrictions arc made 011 the model. 

Specifically, conduciivity interfaces must be segments of mesh lincs. \\'ith this restriction, 
it is convenient to discuss the model in terms of a 'basic mesh' (~1:Idden 1973). This mesh 
contains only sufficient mesh lines to define boundaries, locate illterfaces, and provide 
nodes for MT data sites and must normally be fUl ther subdividcd for accuracy. A simple 

example of a basic mesh is shown in Fig. I. 
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Figure 1. Simple example of a model \\,ith its basic fInite difference mesh. 

The most important interface is the earth-air boundary, which need not be flat, but may 
have approximate 2D topography. The mesh has to extend into the air for the H-peJp 
polarization, but may be terminated at the highest topographic point for the E-perp polariza­
tion provided appropriate termination conditions are imposed (Swift 1971). In the earth, 
the interfaces define NB Blocks, each with resistivity Pk> for k = l,NB. For example, in the 
simple model of Fig. 1, NB = 2 and the two Blocks have resistivities PI and P2' 'n1e second 

'Block' is all of the earth contained by the outer boundaries minus Block (1). 
The basic mesh is normally further subdivided for an accurate finite difference scheme, 

so that gen~raJly, the mesh has 111 rows, and N columns, and each node (i, j) has an associated 
'cell' (Fig. 2) with resistivity Pij' This cell is a section of (say) the kth Block, and it is con­

venient in these terms to define the kth Block by the index set 

that is, by the set of node indices whose corresponding cell belongs to the Block. 
For such a geometry, the scheme may be generated either classically using Green's 

Theorem on 'mesh regions' as in Varga (1962, p. 181 ff.), or by the network analogy as 
described by Swift (1967) and Madden & Swift (1969). The result is a system of linear 

figure 2. Diagram showing the (i, j) cell of the finite difference mesh. 
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equations that approximate (2.1 )-(2 .3). 

AV=S (2.4) 

(2.5) 

(2.6) 

where the vector V = [Vij] for i = 1, M and j = I,N approximates V at the nodes of the 
extended mesh, and Ix and Iz approximate Ix and Iz at the data collection sites. 

The matrix A is normal, sparse, and generally well conditioned, having only two off­
diagonal bands on each side of the diagonal for the finite difference method used. The 
matrix decomposition for the solution of (2.4), and later equations, is very effectively 
accomplished by a special case of Block Gauss elimination known as the 'Greenfield algo­
rithm' (Greenfield 1965). 

Significantly, there are now two levels of approximation to real Earth structure. One is 
the model problem, which includes the restrictions placed by the model geometry, and 
consists of the general problem of model inadequacy. The other is the approximation made 
to the model itself by the finite difference scheme. The consequences of this second level 
are discussed in Section 2.3. 

2.2 PAR TIAL DERIVATIVES FOR INVERSION 

Suppose q is a parameter of the model, which for the present case is a Block resistivity. 
From equation (2.4), since the source is independent of the Block resistivities, direct 
differentiation yields 

av aA 
A-=--V 

aq aq (2.7) 

which may be solved for av/aq once V is known (el Rodi 1976, for the finite clement 
method). 

Using the notation introduced in Section 2.1, if Pij is the resistivity of the (i, j) cell, and 
Bk is the index set for cells in the kth Block (which has resistivity Pk), then 

_ aA V= L aA V. 
apk (i, j)EBk apij 

For the finite difference scheme chosen, (aAlapi) V has only four non-zero terms, 
which can be easily calculated, making the accumulation of the vector - (aAlapd V simple 
and rapid. 

It follows that equations (2.4) and (2.7) may be solved by one matrix factorization and 
(NB+ 1) solutions for right-hand sides, which is very much cheaper than solving (NB+ 1) 
separate systems. It is this fact that justifies the claim to relatively cheap partials made in 
Section 1.2, and developed further in Section 2.3. 

The partials for the other components follow from the direct systems 

alx aB av 
--=--V-B­
apk apk apk 

oIz ac av 
--=---V-C­
apk apk apk 

(2.8) 

(2.9) 

and if 
In 

be me 
furthE 

At 
may t 

(i) E 

apXyj 
I 

apk I 
a tan I 

~ 
wher~ 

Zxy =-1 

(ii) J 

o tan' 

where 

TI 
the e 
the fi 
the f~ 

OV 
L-op, 

aIx = 

apk 

aIz _ 

OPk 

with 
TI 

aM 
apk 

oN 
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and in each case, OB/OPk a/llj ;IC/OPk are sparse and straightforward to compute. 
In principle, although will, /llore complicated logic, the locations of some interfaces could 

be made variables as well. ·"d.~ extension has not been made, but it constitutes worthwhile 
further work. 

At each site and for caclt frequency then, in addition to the MT ERF's, the following 
may be computed, 

(i) E-perp to strike 

OPxy = ~ Re {OZx y . Zx/'} 
OPk W/l OPk 

a tan </>xy = {1m (OZXY) _ fll/I r/Jxy Re (OZX1'.)} IRe (Zxy) 
OPk OPk OPk /J 

where 

_ oZxy _ I (;J/~ OHy ) 
Zxy - Ex/Hy and -- - ;- -Zxy -

OPk 1/)1 rlPk OPk 

(ii) H-perp to strike 

OPYX 2. {OZyx } 
--=-Re -- Z '4< 

OPk W/l OPk' yx 

a t;::y~ = (1m (:~:x)_ fall</>yX Re C~:x) }/Re (Zyx) 

where 
oZyx 

Zyx = -Ey/Hx and -- == 
oPk 

The padials described a re computed directly flOm the finite difference equations, and are 
the exact partials for the di\c/(~te system, but only approximations to the exact partials of 
the fields. Since the source is independent of the model parameters, the exact partials satisfy 
the following system of part i:d differential equations 

oVaL 
L -=-- V 

OPk OPk 
(2.1 0) 

a/x ov aM 
-=-M---V 
OPk OPk apk 

(2.11 ) 

o/z ov aN 
--=--N---V 
OPk apk apk 

(2.12) 

with homogeneous boundary conditions. 

The partials of the operators L, M, and N are defmed by 

aM 1 a 1 a (1) 
apk = zfax where zf = a;;; Zx 
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and 

aL (a aM a aN ) a y -=----+--+-
apk ax apk az apk apk 

Notice that there is considerable simplification in the H-perp polarization, where Zx and Zz 

are independent of Pk' 

Equations (2.10)-(2.12) can be solved approximately by the same finite difference 
method (given V from (2.7)), and the consistently discretized version of the system (2.10)­
(2.13) is very similar to the system (2.7}-(2.9). In fact, for the finite difference method 
chosen, the two are identical. That is, (in this case) the approximate partials obtained by 
solving (2.1 0)-(2 .12) by finite differences are precisely the directly evaluated partials from 
(2.7)-(2.9). One consequence of this identity is that for the second level of approximation 
(cf. Section 2.1) the accuracy of the finite difference scheme is the limitation in both 
forward evaluation, and partials computation. 

2.3 THE COM PUTING COST 0 F M T 2 D INV E RSION 

TIle forward and partials modelling methods, together with the numerical inversion methods 
described in Jupp & Vozoff (I 974) can solve the inverse modelling problem within the limits 
of model inadequacy (the first level of approximation), and discretization inaccuracy (the 
second level). 

The second level error could be reduced more or less arbitrarily provided the basic mesh 
could be refined by further subdivision in a more or less unlimited way. Unfortunately, 
apart from numerical problems, the computing cost, measured by time and storage, grows 
rapidly as the mesh subdivision becomes finer. In practice, therefore, the second level of 
approximation involves 2D inversion in an important cost/accuracy trade-off. 

The program used for this paper incorporates an automatic mesh subdivision scheme 
due to T. R. Madden based on his measures of discretization accuracy (Jlfadden 1973). For 
each frequency, the scheme ensures, by sub-division, that local discretization error is kept 
below some specified level. It is essential, however, that this, or any similar scheme, achieves 
the accuracy with the addition of as few nodes as possible, as the following timing analysis 

shows. 
Fig. 3 describes a silllple model consisting of a vertical contact with resistivities 1 and 10, 

and a relatively conductive overburden of rcsistivity 3. Apparent resistivity and phase data, 
computed for this model with very strict accuracy requirements, are located at three sites as 
shown, and comprise the 'data' for inversion. A detailed timing analysis during inversion for 
this model on a Univac 1106 computer indicates that for each iteration, 

(i) 75 per cent of tbe time is taken in the matrix decomposition and solution for V and 

aV/apk (k"" D here). 
(ii) 5 per cent of the time is taken by tbe rest of the computation for the forward problem 

and partials. 
(iii) 20 per cent of the time is taken by the rest of tbe program, which includes the in-

version method, input, output, and general organiJ.ation. 

Because of the nature of the computations, these fractions should Villy only marginally for 
different machines, and the large proportion of the time taken by matrix decomposition be 
taken 35 a consequence of the method. 

The time for decomposition and solution for various right-hand sides depends ba~ically on 
the extent of mesh subdivision, and marginally on the number of variable Blocks. As a 
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Figure 3, A simple artificial model for MT 2D inversion. 

general rule, based on operation counts and pegged by actual runs, the cost per iteration has 
been estimated by 

C""" (NB/1O + 2)F 

where NB is the number of Blocks, <lnd F is the time for <l single forward evaluation. That is, 
NB must increase by about 10 Blocks to increase the cost per iteration by F, which is a 
cOllsequence of the parti<lls evaluation method of Section 2.3, Notice, however, th<lt signifi­
cant changes in NB will also increase F, since the need for further subdivision to retain the 

given accuracy grows, 
The most significant component in the cost is F, and approximately 

(2.13) 

where AI and N are the number of rows and columns of the subdivided mesh, and NFREQ is 
the number of frequency values recorded. It is clear from this formula that as few nodes as 
possible should be added to achieve accuracy. For example, the simple model of Fig, 3 has a 
basic mesh of 6 rows and 9 columns, or 54 nodes. During inversion, to ensure local approxi­
mation to within 4 per cent, the mesh was subdivided to an <lverage of II rows and 9 
columns, or 99 nodes. The precise number depends on the frequency, so that over the seven 
frequencies used in the example, some would have more, and some less, than 99 nodes. 

Both the cost increase imposed by requiring local accuracy, and its strict necessity, can be 
illustrated by the following artificial example. The exact model data for Fig. 3 were inverted 
in a velY simple way by setting the three resistivities to 1 and letting them readjust. There is 
no problem here with misplaced interfaces, or noise on the data, and a sensitivity analysis 
indicates that all three parameters are velY well resolved by the data. 

Case (1). With no subdivision of the B<lsic mesh, inversion took four iterations, and 90 s 

Univac 1106 CP time, The final model reached was 

(PI,P2,P3) == (0.75,13.4,2.3) 

which in view of the conditions of the problem, is greatly perturbed. 
Case (2). With subdivision to 4 per cent accuracy, inversion took four iterations, and 

304 s Univac 1 106 CP time, The final model of 

(PI, P2, P3) == (1.0, 9.8, 3,2) 
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was within acceptable reach of the exact model of 

(PI> P2, P3) = (1.0,10.0,3.0). 

While the second result is still perturbed (by 4 per cent) from the exact model, even 
though the data are exact, the inversion took the correct path. The first result, due to poor 
approximation to model and partials, took a perturbed path to an incorrect solution. For 
more complicated examples, it is certain that valuable inversions can only be made if the 
cost imposed by accuracy requirements is accepted. 

To summarize, given that the inversion scheme is efficient, in that the total number of 
iterations is kept to a minimum, accurate 20 inversions can only be obtained at respectable 
computing cost. This cost, although small relative to the cost of gathering data, must be 
justified in terms of the quality of the data, and the superior interpretation they can provide. 

3 Modelling MT traverse data 

3.1 DATA PRESENTATION AND l\IODEL PREPARATION 

Effective geophysical interpretation depends on having plentiful data of high quality. In the 
MT method, 20 inversion may not be justified at all unless there is good data that fully 
samples the region being investigated. The cost of 20 inversion, as discussed in Section 2.3, 
itself justifies more effort in data presentation than might be given to simpler modelling. 

The ERF's for MT (20) interpretation consist of tensor rotated apparent resistivity, 
phase and Tipper data collected on a traverse of sites which show a consistent strike 
direction (ef Vozoff 1972). At each site, the processed data with each sampling run plotted 
separately show a broad frequency dependent scat ter, as is illustrated by the 906 apparent 
resistivity and phase values plotted in Fig. 4(a) and (b). This data is taken from a recent 
survey in an Australian Basin, and is typical in its noise structure. The scatter is a fll11ction 
of regional signal to noise properties, and must be reduced to the underlying c13ta for 
effective 20 modelling. 

A practical (computing) reason for reducing the data is equation (2.13), where the cost of 
20 inversion is shown to be linear in the number of frequency values sampled. Moreover, the 
statistical benefits of removing outliers, and regional noise, from the inversion process are 
well known. The reduction may be made either during the data processing «(1 Sims, Bostik 
& Smith 1971; Bentley 1973), or by estimating the background noise structure of the 
processed data for outlier rejection, and locally averaging the overlapping data. The second 
method applied to the data of Fig. 4 produces Fig. 5(a) and (b) which comprise a reasonable 
set for input to IvlT 20 inversion. 

The reduced data arc usually collected into a 'pseudosection' (sec Figs 6 and 7) for a 
convenient visual sUlllmaIY, and as input for inversion. Pscudosections were suggested by 
Neves (1957), and plot MT site locations on a horizontal distance scale, against frequency 
vertically on a-log f scale. The values of the various ERF's are filled in as a table, and 
separate pseudosections drawn for .each polarization. For visual assessment, the pseudo­
section is normally contoured. 

In addition to having compact, and statistically well presented data, it is essential that the 
initial model for 20 inversion be chosen with great care. As described in Section 1.2, the 
approach taken is one of model implOvcment, and assumes that the model being improved 
has· prior information built into it. The sources of this information are the available 
geological and geophysical data for the area, and cheaper initial analyses of the 1vlT data, 
which usually consist of Joc31layered interpretation, and fonvard modelling. 
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Figure 4. (a) tilT appart'nt resistivity data from a single site showing the general frequency-dependent 

noise. (b) l\1T phase data for the same site and polarization . 

An approximation to 2D structure over an MT traverse can often be made by fitting 

layered models separately at each site, and patching the results together as a rough resistivity 

section. The method described in Vozoff (1972), is further discussed in Section 3.2. 
For more complex structures (Vozoff et al. 1975), the meaning of layered models fitted 

to separate polarization data becomes obscure, and their combination to form 20 sections is 

a process of questionable validity. However, construction of 2D starting models is a critical 

step in our linearized refinement modelling process. Assistance can be obtained by reference 

to suites of basic reference models for simple geometric figures, such as dykes, normal and 

reverse faults, etc., under various depths of overburden. Forward modelling, in which an 
appropriate example from such a suite is altered systematically, will reveal the locations of 

most significant discontinuities on the traverse, so that a block structure can be defined. 

Section 3.2 illusllates one example of the problem and a solution. 

3.2 THE M 3 TRAVERSE DATA 

To illustrate the methods uescribed in the paper, they are applied to some field data. The 

data consist of apparent resistivities for both polarizations at nine frequencies collected 
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Figure 5. (a) lifT apparent resistivity data of Fig. 4 reduced for inversion. (b) ~!T phase data of Fig. 4 
reduced for inversion. 

along a traverse of nine sites, and are plotted in pseudosection form in Fig. 6(a), and (b). 
They were collected in 1967 in Texas, and used in another context by Mitchell & Landis­
man (1971), but are referred to here as the M3 data. 

Only the apparent resistivity data are used (as originally reported) and this, together with 
the gaps in the data and uncertain values, makes the data far from well-presented in the sense 
of Section 3.1. I {owever, the data arc typical of many field results of that vintage. Together 
with the basement arch structure known to exist, they illustrate the 2D inversion method 
well. 

Earlier qualitative, interpretation based on H-perp contoured pseudosections (Fig. 6), 
suggested a deep narrow conductive zone, although the missing values and uncertain data at 
0.001 Hz made identification difficult. Low-frequency variations in the E-perp data, 
indicated a possible parallel resistive feature at depth. 

The results of fitting layered earth models to apparent resistivities of each polarization 
and at each site, are presented as resistivity sections in Fig. 8(a) and (b). The two sections, 
one for each polarization, plot MT site locations, on the same horizontal scale as the pseudo­
sections, against depth vertically down on a log Z scale. This exercise was relatively cheap, 
taking a total of 15 min Univac 1106 CP time for five modelling runs on each of the 18 data 
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sets. Where correlation is possible between adjacent sites the results from the local layered 
model inversions have been continued horilOntally across the traverse for a 'regional'in­
terpretation. 

These regionalized layered inversion models are seen to form blocks from common depth 
intervals at adjacent sites which have approximately the same resistivities. This should always 
OCCIl[ if site separation is sufficiently small on a traverse crossing a 20 structure. Since the 
two polarizations respond differently to nonlayered structures, their block patterns will 
differ. 

Both sections of Fig. 8 show the arch, the south-dipping sediments south of the arch, a 
change in crustal resistivities at the arch, and other features known to occur. An objective 
of 20 modelling is to convert these sections to their true values. A large lateral resistivity 
change in the blocks of either component can only arise from a true lateral 'break' and it 
must be represented by a lateral block boundary in the 20 starting model. Likewise, 
horizontal block edges in the 20 starting model must be situated wherever large changes 
occur vertically in the regionalized layered models. These requirements impose severe de­
mands when the total number of blocks as well as the nUlllbers of rO\vs and columns of 
nodes is restricted. 

Only the grosser features can be accounted for. Interfaces having shallow dips may re­
quire more rows of nodes than can usually be spared. Hence shallow dips must often be 
approximated by horizontal surfaces, which require only a single row of nodes. Similarly, 
steep dips must frequently be made vertical. 

The 20 starting model was constructed using the aforegoing guidelines. The excess 
numbers of blocks were eliminated by combining adjacent blocks having approxiJ113tely the 
same resistivities. As will be suggested in Section 3.3, a properly constructed starting model 
utilizes much of the data, simplifying conSiderably the solution to the problem of finding 
block resistivities. 

After some initial inversions with the II-perp data alone, the final model obtJined using 
all of the data is shown as a resistivity section in Fig. 9. The model is simple, and might be 
improved by further ~ddition of blocks, but confirlIls the general features inferred froll1 the 
local layered modcJ1ing. The total fit is goou at 20 per c"nt Ri\lS error to all of the data con­
sisting of apparent resistivities from all nine sites, for both polarizations, and at nine 
frequency values. 

The lllesh subdivision, in order to achieve 4 per cent local discretiz:ltioll erIOr, took the 
basic mesh (see Section 2.1) from 12 x 18 (216 nodes) to an average of 15 x 30 (450 nodes) 
for each frequency, and the final run took six iterations, and 108 min of Univac 1106 CP 
time. This time is consistent with the rules given in Section 2.3. 

The model data are plotted as pseudosections in Fig. 7(a) and (b), anu contoured for 
comparison with Fig. 6. The model seems to be poor at 0.001 Hz in the H-perp polarization 
clata, but in view of the missing elata, :ll1d general uncertainty has comprised well. Clearly, 
for bdter interpretation, the missing values would be most helpful. Also, as describeu in 
Scction 3.3, phase data are almost essential in any morc serious interpretation. 

For the purposes of this paper, the lesult is a good illustration of the MT 20 inversion 
method. 

3.3 !',\R:\\tETFR RI:SOLllTIO\, SITDILS 

An important adjunct to nUlllerical invelsion is Ihc study of the resolution properties of the 
final model 13ar:lillct,:rs. The ap13ro:1ch of local!y lineari,/ing the nonlincar modelling problem 
at the solution was llscd in Jupp & V()mIT (1975) to provide mC3surcs of parameter 
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importance, resolution, and sensitivity to data variations. Local linearization has a number of 
problems and pitfalls (Anderssen 1975), but there are very informative conclusions that can 
be made which are stable in the sense that they remain valid for reasonable changes in the 
model. 

Stable conclusions are made by classifying the parameters of the model as Important, 
or Unimportant depending on whether they correspond to relative Singular Values of the 
local Jacobian Matrix of partial derivatives which are above, or below, a fixed Threshold' 
value (see Jupp & Vozoff (1975) for notation and definitions). Many conclusions based on 
linear theory can be applied to the Important parameters, and expected to hold with respect 
to reasonable variations in the model (ef Vozoff & .Jupp 1977). 

Two additional studies, based on these ideas, assume great significance for successful 
modelling and interpretation. The first is the study of how complex a model may be 
supported by a given set of data. Sensible answers to this question can be found by asking 
how many Important parameters can be supported and computing models with no more 
than this maximum number. The second study, which is illustrated with the final model for 

Table l. Parameter Importance measures, and total parameter Importance for five data situations. 

Block 
(see Fig. 9) 

2 
3 
4 
5 

6 
7 
8 
9 

10 

11 
12 
13 
14 
15 
16 
17 
18 
19 

20 

21 
22 
23 
24 

Total Para­

meter 

Case (i) 
with phase 

1.00 
1.00 
1.00 
1.00 
1.00 

0.98 
0.94 
0.99 

(0.26) 

0.98 

0.92 
0.53t 
0.93 
0.92 
0.67 
0.94 

(0.49)t 
(0.23) 
0.89 

0.90 

0.66 
0.85 
0.74 
0.95 

Importance 19.4 

Case (ii) 
missing data 

1.00 
1.00 
1.00 
1.00 
1.00 

0.98 
0.92 
0.99 

(0.20) 

0.98 

0.91 
(0.37)* 
0.90 
0.85 
0.56t 
0.88 

(0.35 )* 
(0.19) 
0.80 

(0.24)* 

(0.49)*t 
0.74 

(0.45)*t 
0.85 

17.4 

* Signiricant change frum culull1n (i). 
t Threshold paLJlllctcr. 
( ) Unrcsolved parameter. 

Case (iii) Case (iv) 
no phase Ep only 

1.00 1.00 
1.00 1.00 
1.00 1.00 
1.00 1.00 
1.00 1.00 

0.98 0.97 
0.92 0.86 
0.99 0.99 

(0.20) (0.16) 

0.98 (0.30)* 

0.91 0.91 
(0.39)* (0.44 )*t 
0.91 0.91 
0.85 (0.03)* 
0.56t 0.62 
0.89 (0.03)* 

(0.37)* (0.38)* 
(0.19) (0.06) 
0.80 0.82 

(0.25)* 0.85 

(0.49)*t 0.55t 
0.73 0.69 

(0.45)*t (0.48)*t 
0.86 (0.47)*t 

17.45 15.4 

Case (v) 

lip only 

1.00 
1.00 
1.00 
1.00 
1.00 

0.98 
0.87 
0.99 

(0.08) 

0.98 

0.75 
(0.03)* 
0.93 
0.88 

(0.06)* 
0.78 

(0.13)* 
(0.18) 
0.54 *t 

(0.19)* 

(0.18)* 
0.81 

(o.45)*t 
0.88 

15.6 

Surface 
blocks 

Conductive 
Dyke 

Basement 
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the M3 data, is how parameter resolution in the final model is changed by alterations in the 

experimental situation. 
A stable measure of parameter Importance may be defined with the notation of Jupp & 

Vowff (1975) in a similar way to the damped 'error bounds' by 

d=lVlt 

where V is the parameter transformation matrix obtained from the Singular Value de­
composition of the Jacobian, and the t/s are the second order 'damping factors' described 
in Jupp & Vozoff (1975, Sections 2.7 and 2.8). tj is near to 1 if the jth transformed para­
meter is Important, and ncar to zero if it Unimportant. It follows that d; is a 'damping 
factor' for the ith original parameter, which is Important if d; is close to 1 and Unimportant 
if it is ncar to zero. If d; is ncar to 0.5, the parameter is said to be at the 'Threshold'. 

In Table 1 the values of d; for the 24 Blocks of Fig. 9 are presented for the following 

cases: 

(i) All data present, and phase data as well. 
(ii) The inversion situation missing data, and no phase. 
(iii) No data missing, and no phase. 
(iv) E-perp data only (but with phase data). 
(v) H-perp data only (but with phase data). 

RESISTIVITY SECTION Two dimensional model 
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Figure 9. Resistivity section inferred from }'IT 2D inversion for the M3 data. 
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The last row of Table 1 shows the total 'number' of Important parameters as measured by 
the sum of the di's, and measures Total Parameter Importance for each case shown. This 
measure would be exactly the number of Important parameters if Singular Value Truncation 
rather than Second Order Marquardt damping were used (cf Jupp & Vozoff 1975, Section 
2.7). 

A number of interesting conclusions are apparent. 

(a) There is significant information about Blocks 12, 17, 20, 21 and 23 added by using 
phase data in addition to apparent resistivity data. The addition of phase data is much 
more significant than supplying the missing apparent resistivity data. 

(b) E-perp and Il-perp alone respond principally to the resistive and conductive features 
respectively. However, Blocks 12, 17, 21 and 23 need both sets of data to become 
resolved at the level chosen. 

Together, these conclusions imply that phase data, which adds little to the cost of 
inversion should be present for effective modelling. Also, they imply that for final models, 
both polarization data should be used for inversion. 

Conclusions 

The inversion of data by modelling may be extended in a straightforward way from one­
dimensional layered structure to 2D structure. When the significant increase in computing 
cost is justified in terms of the resulting interpretation, the methods described provide very 
effective interpretations of large amounts of data on a regional scale. 

Since modelling consists of improving existing ideas against the data, there is much to be 
learnt about constructing starting models for 2D inversion from the results of simpler 
layered inversion. Also, in the future, a search for cheaper methods for forward modelling 
of complex structures would payoff when inversion methods are applied to them as they 
are to the finite difference method in this paper. 
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