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ABSTRACT 

The different concepts of geostatistics will be defined 
and each illustrated by a real application. Starting from 
the samples available, different variograms will be con
structed and related to one another. The precision with 
which volume, tonnage and grades are known will be 
computed and charts giving the expected precision for a 
subsequent drilling grid will be derived. These charts will 
help in the decision of whether or not to proceed with the 
drilling program. 

INTRODUCTION 

THIS PAPER does not intend to demonstrate new results, in 
the theory of ore reserve estimation, but does wish to pro
mote an already several-year-old method by showing all 
the information which can be obtained by rather elemen
tary techniques, once a first campaign of drilling has been 
completed. We will first try to sum up what the principles 
are and then apply them one by one. 

PRINCIPLE AND THEORY 

The theoretical basis of Dr. Matheron's geostatistics has 
already been reviewed in a number of recently published 
papers(J),(2),(3),(4). This theory, which is extensively used in 
Europe, South America and South Africa, considers that 
the grade of ore in a deposit bebves like a regionalized 
variable, which roughly means th:Jt it is neither a random 
variable - a sample near a rich one tends to be rich too 
- nor a continuous function - two very nearby samples 
can differ. We will recall briefly the other properties of 
regionalized variables. 

First of all, they have a support, the grade at one point 
does not mean anything, and one needs to define a small 
volume (on which one takes the average of the grade) 
by its size, orientation and location. Next, the variables 
may be more or less continuous; iron ore will be rather 
continuous, for instance, whereas gold will be completely 
discontinuous, presenting what we call a nugget effect. 
Thirdly. this continuity may not be the same in all direc
tions; the zone of influence of a sample does not have 
the same extent in all directions. and the variable presents 
anisolropies. Lastly, the variables usually present a struc
lure: the dependence of samples on one another decreases 
with their distance and sometimes reaches independence 
after a finite range. 

All these four properties are essential for any precision 
calculation of average grade and tonnage of ore. 
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How to Take Them Into Account 

These four characteristics are easily visualized and quan
tified by a single instrument - the variogram. 

The variogram is a function expressing the variance of 
two samples with respect to their distance and is repre
sented by the following formula: 

2 ,(h) = 6 l[f(X) - f(x + h))2dx 

where D is the field on which the variable f(x) is defined 
and h is a variable, which is the distance between two 
points. 

We will not dwell any longer on the properties of this 
now well-known function and will refer our reader to pre
vious pUblications. Thus, the first thing to do is to con
struct the variogram of the variable one wishes to study. 
What is next? 

The Estimation Problem Itself 

Given a block of ore, one has the choice of assigning 
it the grade of its sample - what would the error then be? 
- or assigning it a weighted average of available samples 
inside and outside the block. Then, are there any weights 
which are better than others? Can we compute them? 

Dr. G. Matheron has already given the answer to all 
these problems, and we will now show which are the basic 
simple formulae which will enable us to reach our goal. 
Once again, we will not demonstrate any formula, but re
fer specialists who want to study the question in depth to 
Dr. Matheron's thesis'6'. 

A CASE STUDY 

The deposit we are going to study is a copper-nickel sul
phide deposit. Roughly speaking, a pegmatite fills a syn
cline and thus the orebody is more or less an elongated 
ellipsoid. Figures 1 and 2 show longitudinal and vertical 
sections. 

The samples available and working variables: After the 
discovery hole was bored, a regular pattern of vertical drill
holes was laid out. The surface plan of the property is 
shown in Figure 3. The problem we want to study is a 
three-dimensional one, but we feel that this map gives us 
sufficient information for a global estimation. In other 
words, we can easily reduce our problem to a two-dimen
sional one by using a variable which we call "accumula
tion" and which is the product, for each vertical drill-hole, 
of the mineralized length and the grade. This variable is 
proportional to the variable we are interested in. We will 
not sell grade, nor tonnage, but a combination of both: a 
quantity of metal. Thus, our working variables will be the 
accumulation and length of intersections, the grade being 
considered as a secondary variable obtained as the ratio of 
the first two. 
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The Questions We Want to Answer 

Usually, for a deposit of this kind, we want to know the 
tonnage and the average grade, and the associated preci
sion. These are the final figures we want to arrive at. In 
fact, there are prerequisites, and these are described below. 

The Geometric Problem 

In our case, we have ore and sediments. Thus, the dis
tinction between ore and waste is clear and there is an 
answer to the question "what is the ore volume?" Given 
a tonnage factor, which is itself a regionalized variable, we 
will work out the tonnage of ore. This will be called the 
geometric problem. 

Quantity of Metal: Dollar Value of the Depi>Sit 

The estimation of the quantity of metal itself will not 
be a problem, because we have a reglar grid of samples. 
Working out a mean value will be simple arithmetic. 

I 
I 

Precision Computations 

The computation of precision will require far more at· 
tention, and this will be the main contribution of geosta
tistics. Isn't it in fact the most important question for the 
company as well? 

To sum up, we will have three basic regionalized vari
ables to work with: 

s = surface of the mineralized area in horizontal projection; 

h thickness of the mineralized area vertically measured; 

a = accumulation of metal, which is a variable in a horizonta 
plan and expresses the grade times the thickness of ore. 

Thus, we will first study them by their variograms, and 
obtain their mean value and precision. Next, we will con
sider that: 
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the volume of ore = s x h 
the metal quantity = a x h x constant 

the dollar value of ore 

the grade = a/h 
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FIGURE 1 - Vertical section - Expo-Ungava Property. 
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FIGURE 2 - Vertical section - Expo·Ungava Property. 
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FIGURE 3 - Plan showing drill pattern at the Expo-Ungava Property. 
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All these computations will be done for the actual drill
ing grid, but what may be still more interesting is that 
We will be able to see what another grid would give for 
precision. 

The Variogram 

Our first two basic variables will be the accumulation 
of copper and of nickel. The two variograms have been 
constructed in the longitudinal direction. They have been 
plotted on Figure 4, and both of them appear to be de 
Wijsian. This means that they can be described by an 
equation of the form: 

jed) = 3cz (LOg ~ +~) 
where I is the average length of the holes and d the dis
tance between holes; 3a is the coefficient of intrinsic dis
persion and characterizes the variability of the mineral
ization. 

This equation may seem strange at first glance. Why 
this coefficient 3/2? In fact, this equation is a form of 
the equation of the variogram of holes of average length I 
when the underlying punctual variogram has the simple 
form: 

T(d) = 3 cz Logd 

Let us take this opportunity to recall that given the 
variogram of one kind of sample, it is possible to obtain 
the variogram of any other sample by an algorithm which 
Matheron calls "montee" and which we can consider as a 
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FIG URE 4 - Copper and nickel variograms for the Expo
Ungava Property. 
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regularization. This very important problem is solved in 
reference (6), p. 28. 

Reaching this point, we will be able to determine 
whether or not there is anisotropy. This means that we will 
be able to say how deep one has to go to obtain the same 
variation vertically as horizontally, or how many times 
quicker the grade changes in the vertical direction as 
compared to the horizontal one. Let us now see the nu
merical results. 

The variogram of copper accumulation can be fitted to 
the equation: 

jed) = 1900 + 1820 loged 
where the grid size (200 ft) is taken as a unit of distance. 
We can rewrite this: 

jed) = 1820 (lOge 1~8 +~) 
which gives 3 a = 1820 and reveals that the average 
length of the holes is equivalent to 1.58 times the grid unit: 

h = 1.58 X 200' = 316' 
As we know that the true average length is 136.6 ft, we 

deduce that the vertical anisotropy coefficient is 

316 
136.6 = 2.31 

The zone of influence of a sample is more than two 
times wider than its depth. This in fact quantifies a notion 
which is familiar to geologists. . 

For nickel, we obtain a variogram of the same kind, 
which gives: 

3a = 1300 
and yields a similar anisotropy coefficient. Had we found 
different ratios for copper and nickel, it would have 
raised serious genetic problems! 

We also need the variogram of thicknesses, as these val
ues are certainly not independent of each other. Here 
again we have a De Wijsian variogram, the slope of which 
is 3 a = 2360 (Figure 5). 

We now reach our last basic variable, the surface. The 
geometric variogram has such properties that we don't even 
need to compute it; we can directly reach the precision of 
our estimation of the surface by means of simple para
meters. 
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ESTIMATION PROBLEMS 

The Geometric Problem 

To obtain an estimate of the surface, we simply assign 
to each mineralized hole a square of influence and we 
count 34 such squares, so that our estimate of the area -
which might seem crude - but still bears no meaning 
without a variance, is: 

S = 34 x 200 x 200 = 1,360,000 square feet. 

The problem is now to put a confidence range on that 
area. Is it 1,360,000 ± 5 per cent or ± 20 per cent? The 
answer is given by the following formu1?- by Matheron(1), 
(10) which is deduced from the transitive theory (6,108). 

~ _1_ [N61 + 0.0609
N
N

i 1 .............. N2 ~ Nl 
S2 n 2 1 

where: 

a2 
• 

S2 is the relative variance of the surface 

al x a2 is the grid surface 

s is the estimated surface 

n is such that s = n x al x a2 

Nl is the total length of border, parallel to the north
south direction, divided by 2al. 

N2 is the same for the east-west direction, divided 
by2a2. 

This formula will give us the opportunity to point out 
another essential principle of geostatistics, which states 
that a global estimation variance can be obtained by the 
combination of a "line term" and a "section term". More 
precisely(6,81), the estimation of maximum density lines, 
from samples, can be considered as independent of the 
estimation of a section (plan) by these lines. The two 
successive extensions (grade of a point into a line, and 
grade of the line into a rectangle) result in independent 
variances. 

This yields, obtaining N, and No from Figure 3: 
2 -'+ = 0.0028 or ~ = 0.05 

s s 

which in clearer (?) terms means that we have 95 per 
cent chances that the surface we are estimating is 1,360,-
000 ± 10 per cent approximately. 

Estimation of Thickness 

When one has a deposit regularly drilled one has an 
estimation variance (where R is such that 'IT R2 = a2): 

2 [ R 5 R2 1 R 4 ] 
aE = 30:: 1.344 11 - 12 h2 + 12 h4 .... 

(valid for h > 2R) 

which is tabulated in Matheron(7,304) and gives: 

~ = 0.0042 

A verage Accumulation Estimation 

Let V be the volume of the deposit and H the total 
length drilled. Matheron has shown that the estimation 
variance of the accumulation is 

,,~ = 3:<. 0.76 ~:a ...... Matheron (7,306) 
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Once again, this formula is obtained from the "variance 
composition" principle. 

In our case, taking into account our anisotropy ratio, 
we obtain: 

for nickel. ......... a~ = 18.50 
for copper ......... a. = 25.90 

To this we must add the incidence of the geometric def
inition of the surface, which is not perfect. This adds a 
term, which is: 

2 

a;up = ai. a: .................. Formery (5, 179) 
s-

where a; /S2 has already been computed and where a; is 
the variance of the variable we are working on. 

Thus, reaching the relative variances we have: 

D2(a) ~a + a~ a~ 
a2 a2 a2 . S2 

which gives a relative precision of 0.073 for nickel and 
0.086 for copper. 

This concludes all the preliminary computations and 
what follows is only trivial arithmetic. We obtain all the 
precisions we want to know, thanks to our three basic 
variables. 

The volume (V) is V = h x s, and thus one has ap
proximately: 

a:i(v) D2(h) a; 
V2 ~+T 

or a relative precision of a(V) = 0.08 
v 

The metal quantity is proportional to the product a x s, 
thus 

a2 (Q) ~ D2(a) a; 
Q2 - --a? + 52 

. a(Q) 
for mckel. ........... Q = 0.090 

a(Q) 
for copper. .......... Q = 0.096 

Note that this, in fact, together with the correlation co
efficient between copper and nickel, will provide us with 
what we are interested in; that is, the precision on the 
dollar value of the deposit. 

We obtain the precision on the grade by 

t = a/fi 
where t is the average grade we are looking for 

a is the average accumulation 

ii is the average thickness. 
We thus have: 

a2~t) ==::::0 :! +~ _ 2 Pub ~ ~ 
t2 a2 h2 h a 

and we obtain in this way a relative precision 

at t = 0.075 for copper 

~t = 0.070 for nickel 

What Would Another Grid Have Given? 

An obvious question at this stage is: what would have 
been the effect of increasing or decreasing the number of 
holes drilled? To make this apparent, we will express all 
the variances we have computed in the previous paragraph 
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FIGURE 6 - Precision as a function of cost for SUR
FACE estimation (Expo-Ungava). 

as functions of n (the number of holes drilled), and we 
will obtain a set of values which will allow us to select 
the grid size according to the precii;ion we want. We will 
quickly review all these formulae. 

Surface Variance 

The general formula for a square grid is, in this case: 

,,2 1 -f = 0.55 . -:;-z-
s n7" 

which gives the curves of Figure 6. 

In our particular case, it seems a priori obvious that a 
rectangular grid is better than a square one. Let us see 
how much better a grid of 200 by 400 ft would have 
been -

., 
a; = 0.0054, or a precision of ± 15 per cent; s 

a grid of 200 by 600 ft -
2 

-'+ = 0.0105, or a precision of ± 20 per cent; s-

a grid of 300 by 600 ft -
2 

a; = 0.016, or a precision of ± 25 per cent. s 

This can help us to decide which grid to use for further 
drilling, in the same type of serpentine, for volume defini
tion. 

Thickness Variance 

As thickness can be regarded as an accumulation in an 
isotropic deposit of grade one, we can apply Matheron's 
formula which gives: 

2 
ah = 3cz. 0.~6 Is 

h "\j n 3 

or, with our values: 

~ 0.83 
h2 n% 

Accumulation Variance 
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FIGURE 7 - Precision as a function of cost for VOLUME 
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FIGURE 8 - Precision as a function of cost for NICKEL 
and COPPER quantity. 

We have to add to these terms the effect of the uncertainty 
on the surface. These terms are -

for nickel: .475 a; 
s 

for copper: .545 a~ 
S2 

2 

or finally, replacing:!; by its value, we obtain _ 
s-

for copper: 0'; 1.25 
liZ n3~ 

for nickel: a2 0.997 . 
a2 IJJr 

Following the same formula, we find the average value Variance of the Volume 
of accumulation -

for copper: a~ 0.95 
a2 n% 

for nickel: cr; 0.730 
liZ !)"% 
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\Ve repeat again the reasoning and obtain: 

a
2
(v) = ~ + ~ = 1.38 

V2 n% n% nH' 

which gives the curve of Figure 7 for relative precision. 

189 



WW1'f4'M1ffXM&'Mfj"'¥i'%-i{1l1W:WMUWfFitftftl!!E¥fWt Yf7iM __ Pl!If!h*)WlliWt¥ti¥~_1¥z\\ll11lPiLetm~¥'m't-~~ 

Variance of the Metal Quantity 

We have again -
2 

aQ for copper: Q2 

2 
aQ for nickel: Q2 

1.25 + .55 
n% n% 

_1 + .55 
n% n% 

1.8 
n% 

1.55 
~ 

which can be represented on the curves of Figure 8. 

As a conclusion to these variance calculations, we will 
note that all of them can be expressed by a formula of 
the type: 

a2 = An-3/2 

whereas the application of standard statistics would have 
suggested a variance of the type: 

A 
a2 =

n 

BLOCK-GRADING, KRIGING 

The problem of optimum weighting factors for block
grading has been completely solved by Matheron by means 
of the kriging technique(6,214l, and we can thus obtain the 
best estimate for the grade of a' block, given the grade of 
some nearby intersections. 

Optimal Weighting Factors for Large Blocks 

We will consider the following problem. 

C1 Bl 
0 0 

B4 0 0 

c4 B3 
0 0 

FIGURE 9 - Block-grading. 
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68-'9 
o 

67-8 
o· 

FIGURE 10 - Example for block-grading. 
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Given a block of 200 by 200 ft, and the grade of the 
nearest grid points, how would we weight them to grade 
the block? The grade of the central block will be obtained 
by a linear estimate of the form: 

Z = (1 - A - IJ.) u + AV + IJ.W 

where u is the grade of the central hole 

v is the average grade of the first "round" 

w is the average grade of the second "round" 

and (1 - A - IJ.), A, IJ. are their respective weights (Figure 9). 

These weights are uniquely determined by the two fol
lowing conditions. They add up the one in order to obtain 
the same average for blocks and for samples. They should 
minimize the estimation variance (a function of the vario
gram). 

D2 (Z - Z*) minimum. 

This condition yields a system of linear equations in which 
the unknowns are the weights we are looking for. 

To avoid solving this system for each block, a set of 
charts has been produced by which one reads the weights 
and related precision (kriging variance), given the con
figuration of samples. 

Let us take as an example the following particular case 
(Figure 10). This configuration is shown on Figure 11. 

We have to read, on the horizontal axis, a ratio which 
is the average thickness over the grid side. Here it is 136/ 
200, but we have seen that, due to anisotropy, 136 ft is 
equivalent to 316 ft, or that the ratio is thus 1.58. We thus 
read on the chart: 

A = 0.27 

IJ. = 0.13 

1 - A - IJ. = 0.60 
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FIGURE 11 - Kriging chart. 
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Because the accumulations are: 

for 68-14 ......... 102.26 

68-9 .......... 44.64 

68-11. . . . . . . .. 79.24 

67-8 .......... 149.0 

68-20. . . . . . . .. 21.92 

we have: 

Z = (0.60) (21.9) + (0.27) (44.6 ~ 102.2) + (0.13) 

(79.2 -1: 149.0) = 47.79 

instead of 21.9. 

When giving this block the aforementioned Z grade, 
the variance is given by the same chart, on which we read: 

1 
3a a2

k = 0.22 

which makes: = 022 x 1800 = 260; 

compared tc 18.50 x 34 if we had not weighted our values, 
or 629.00. 

CONCLUSION 

We have seen the sum of the quantified information 
which can be obtained - at a very low cost - from a 
regular sampling grid when one first is able to formulate 
the problems one wants to solve and secondly is able to 
use precise concepts and tools. The theory developed by 
Matheron and his team in Fontainebleau does provide these 
concepts for simple cases such as the one we have seen 
here, or for more intricate cases, where a clear understand
ing of the problems is the most important thing when 
coping with a large quantity of data. 

How many times has a large quantity of samples and 
measurements been handled, tossed and shuffled by a com
puter without any result, for the simple reason that no 
firmly established theory was fed in at the same time? 
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APPENDIX 

Glossary of Geostatistical Terms 

Here is a short list of terms which have a very precise 
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sense in geostatistics and which one should make sure to 
fully understand before attempting any application to Dr. 
Matheron's theory. 

These terms have been approximately defined in the 
previous section. Their precise definition can be found in 
Dr. Matheron's thesis, or on page 375 sq. of Dr. Serra's 
thesis. 

accumulation 
anisotropy 
estimation variance 
geometric problem 
kriging 
"montee" 
nugget effect 
range 
regionalized variable 
regularization 
support 
variogram 
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