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ABSTRACT 

Otogenic andesite magmas probably evolve at 1100 to 900°C, have between 1 and 
5~wt_ % H20 and fo above the NiNiO buffer during phenocryst precipitation, 
a~ nay be saturaeed with a second fluid phase prior to eruption. Conse­
q~e~tly, many solid/liquid trace element partition coefficients appropriate to 
a~esites are higher than for basalts, perhaps due to the presence of fewer 
oc~edrally coordinated sites in andesite liquids as well as to lower tem-

{%. • 

peracures. 

S~le quantitative interpretation of trace element concentration data for 
o~enic andesites in general or for most specific suites is not possible 
uSing available partition coefficients. Fractional crystallization models 
i~olving magnetite or amphibole or both seem less at odds with available data 
tnan do models invoking equilibration with subducted oceanic crust or over­
lYing peridotite. Critical choices between simple models, or identification 
o~ supplementary or more complex processes, require a more rigorous data base 
t~n presently available. 

f it. INTRODUCTION 
~ 

Arirlesite origins remain unsatisfactorily explained in part because possible 
hypotheses typically fail when their ability to account for trace element con­
centrations in andesites is tested quantitatively or semiquantitatively (e.g. 
TAYLoR, 1969; GILL, 1974; LOPEZ-ESCOBAR et al., 1976). No general model of 
anrlesite genesis accounts for all the trace-element characteristics of oro­
genic andesites discussed below. Indeed, there are no specific andesite 
Suites with 6 Si0 2 > 5 wt. % in which the behavior of most trace elements can 
be explained quantitatively. This discrediting role of trace element studies 
is due in part to uncertainties in the numerical value, the variation, and 
the applicability of partition coefficients (D), which are discussed else"There 
in this volume. However, failure to account for trace element data also re­
flects the simplicity of testable models and the practical difficulties in 
Setting up even these tests. 

For example, tests of fractional crystallization require choice of parent­
daughter pairs and of an appropriate degree of crystallization. Strati­
graphic, geochronologic, and petrologic data sufficient for establishing a 
realistic context in which to make these choices generally are not available 
for andesite volcanoes. Consequently, most tests of andesite genesis use 
analyses of rocks collected, at best, from a given volcano or volcanogenic 
formation but without benefit of a detailed context for sampling. This pro­
Cedure would suffice if all ejecta produced within the lifespan of a given 
Volcano were monogenetic, but apparently this is not always or even often the 
case. There can be sizeable changes within the volcanic pile in trace ele­
ment concentrations (e.g. the depletion of K, Rb, and Ba but enrichment of Sr 
and Eu in lavas from the Shastina vent, Shasta volcano, USA; CONDIE and 
S~NSON, 1973) or isotopic composition (e.g. the increase in 87 Sr/86 Sr at 
QUhalibu volcano, St. Lucia, Antilles; PUSHKAR et al., 1973) without sufficient 
C ange in overall composition or mineralogy to alert the unwary. 

~related matter is evaluation of the mass fraction solidified (F) during gen­
~ration of daughter from parental magma. This fraction can be estimated by a 
east squares method utilizing the major element composition of rocks and 
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710 J. B. Gill 
constituent minerals, and evaluated in light of the modal proportion of min­
erals present as phenocrysts, in inclusions, or in relevant experimental 
charges (e.g. EWART et al., 1973). Alternatively, D(l)bulk = 0 can be assumed 
for a trace element i, and F calculated for any parent (P)-daughter(A) pair by 
F = 1 - cl/ct where c is the concentration of i in parent or daughter. Zr 
often is the best choice of i for andesites because Zr should be incompatible 
and is non-volatile, relatively immobile during alteration, and present in 
high enough concentrations (50-150 ppm) to be easily determined. However, no 
studies yet have demonstrated that Zr is uniformly distributed within andesite 
flows. Moreover, F's calculated by the two methods cited above frequently dis_ 
agree, with F(least squares) typically exceeding F(Zr) by > 25%-(e.g. data of 
EWART et al., 1973). 

Similar but inherently less tractable problems affect partial fusion models as 
they require assumptions about source composition and refractory mineralogy as 
well as the degree of fusion. None of the hypotheses in which andesites are 
treated as primary partial melts are sufficiently detailed petrologically to 
significantly constrain trace element calculations. A quasi-exception is the 
analysis by GILL (1974) of eclogite fusion, based on GREEN'S (1972) experi­
mental study. 

Finally, the presence of 20 to 50 vol.% phenocrysts in most andesites poses 
the problem of whether analyzed samples were once liquid. Because decompres_ 
sion of hydrous liquid causes precipitation unless the liquid is superheated 
aphyric andesites also will be atypical. Indeed, REE patterns can be less ' 
regular in aphyric than porphyritic andesites (FUJIMAKI, 1975). Only demon­
stration of mineralogical disequilibrium, therefore, can unambiguously iden­
tify samples whose compositions may not be that of a liquid. 

Thus, while better knowledge of partition coefficients and their behavior will 
help, this knowledge alone is unlikely to solve the andesite problem. The 
premier tasks are acquisition of field, age, petrographic, and isotopic data 
to constrain sample selection for trace element analysis, and study of ejecta 
from single eruptions to constrain the extent of, and reasons for, differences 
in elemental concentrations in magma at one point in time. 
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Figure 1. Nomenclature of orogenic andesites. Equations of lines 1, 2 and 3 are, 
respectively: KZo=.145 (SiOZ)-5.135; K20;.0818 (Si02 )-2.754; K20=.0454 (SiOZ)-1.864. 
Contours enclose the number of nominal andesites (by namer's definition) whose analyses 
are stored in datafile RKOC76. 
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Partition coefficients in models of andesite genesis 

ASPECTS OF OROGENIC ANDESITE MAGMA RELEVANT TO CHOICE AND 
USE OF PARTITION COEFFICIENTS 

711 

FolrroNing TAYLOR (1969) and others, I shall define andesites as hypersthene­
norn2~ve volcanic rocks with 53 to 63% Si0 2 , and shall define orogenic ande­
siUS as andesites with < 1.75% Ti0 2 and K20 < (0.145 X Si02 - 5.135) (Figure 
1). This definition of orogenic andesite excludes most rocks called iceJ.an­
dites. trachy-something, latites, or shoshonites, while including over 70% of 
the 2?proximately 2500 rocks originally called andesite by someone and stored 
by'R9176 in F. Chayes' databank RKOC76. The bivariant frequency distribution 
inlKzo-Si0 2 space of these 2500 nominal andesites is included in Figure 1 
where orogenic andesites are subdivided rather arbitrarily into low, medium, 
and high-K as well basic and acid types. Each of these six subdivisions can 
benc:-ther described as tholeiitic or calcalkaline depending on their level of 
ir~~richment, and there is a crude inverse correlation between K20 contents 
and PeO*/MgO ratios of suites (see JAKES and GILL, 1970). For example, about 
63% of the low-K orogenic andesites of Figure 1 are tholeiitic according to 
thlcriteria of MIYASHIRO (1974, Figure 1) or IRVINE and BARAGAR (1971, Fig­
urt2). whereas only 35% of the medium and high-K andesites are tholeiitic 
us~ Miyashiro's criterion or only 13% using Irvine and Baragar's. 

Thf structure of liquids having these bulk compositions probably is interme­
diate between that of basalt and rhyolite in degree of polymerization and 
ratio of octahedral to tetrahedral sites. SilO ratios and alkali contents, 
for e:~arnple, usually are 0.32+.01 and 3 to 5 mole %, respectively, in orogenic 
andesites. The pre-eruption water content of these magmas is poorly con-

However, the apparent co-existence of plagioclase and a pyroxene on 
1iquidus of most andesites (EWART, 1976a), the differences between tempera­
of eruption and the dry liquidus temperature at 1 atm of the same 

tes (EGGLER, 1972; ARAMAKI and KATSURA, 1973), and the estimated volatile 
of andesite glass inclusions in phenocrysts (ANDERSON, 1974), all 
water contents between 1 and 5 wt. % during phenocryst precipitation. 
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Figure 2. Plot of f vs. T for . 
various andesites ang2 f o buffers. 
Lines 1, 2 and 3 and the 2so1id 
circles are for orogenic ande­
sites. Data sources: Namosi, 
Fiji (GILL and TILL, in prep); 
Shasta (A.T. ANDERSON, written 
comm., 1976); Rabaul (HEMING and 
CARMICHAEL, 1973); Japan 
(BUDDINGTON and LINDSLEY, 1964); 

OPX (CARMICHAEL, 1967a); Hekla 
(BALDRIDGE et al., 1973); Thing­
muli (CARMICHAEL, 1967b). 
Rectangle at 1200°C encloses ex­
perimental results of FUDALI 
(1965) for an orogenic andesite. 
All results are based on the same 
extrapolition by I.S.E. Carmichael 
of BUDDINGTON and LINDSLEY'S 
(1964) experimental data for co= 
existing Fe-Ti oxides. 
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Oxygen fugacities of orogenic andesites have not been measured in situ but 
sometimes can be estimated from the composition of coexisting oxide minerals. 
This method is limited in andesites by the infrequence and high R203 contents 
of ilmenite phenocrysts, as well as calibration problems. However, at least 
one temperature calculated using similar data for a non-orogenic andesite erup~ 
ted during 1970 from Hekla volcano, Iceland "(BALDRIDGE et al., 1973) agrees to 
within 15°C with a temperature measured during the eruption (THORARINSSON and 
SIGVALDASON, 1972). Results for orogenic andesites are summarized in Figure 2 
Oxygen fugacities (f0 2 ) are approximately parallel to, but up to one log unit' 
above the NiNiO buffer, and substantially above the estimated f02 of non-oro_ 
genic andesite magmas at comparable temperatures. Based on FUDALI'S (1965) 
experiments at 1200°C, the Fe203/FeO ratio is _ 0.3 in medium-K acid andesite 
magma in which f0 2 is near or above the NiNiO buffer; this ratio will increase 
as alkali contents increase. 

Various methods of estimating the temperature of orogenic andesite magma upon 
eruption or during phenocryst precipitation suggest about 1100°C for pyroxene 
basic andesites and 900 to 1000°C for hornblende acid andesites (e.g. Figure 
2). Viscosities at the liquidus of anhydrous acid andesite magma have been 
determined experimentally to be 10 3 to 10 4 poise within the crust (e.g. KUSH IRQ 
et al., 1976); the viscosity of magma beneath Trident volcano, Alaska was es­
timated to be lOB poise (MATUMOTO, 1971); and the viscosity of an acid andesite 
upon eruption from Santiaguito dome, Guatemala was observed to be 5 x lOB 
poise (ROSE, 1973). 

The time elapsed between magma formation and eruption bears on kinetic studies 
of element distribution, but is essentially unknown. However, the time neces­
sary for an andesite stratovolcano to go through a crude cycle of cone con­
struction, caldera collapse, and resurgence, is about 10 4 to 10 5 years (e.g. 
ROSE et a1., 1977; KATSUI et al., 1975)." This also approximates the interval 
between formation of basal~and eruption of andesite from Irazu volcano, Costa 
Rica (ALLEGRE and CONDOMINES, 1976), but is much longer than the period of 
months estimated for 30% crystallization and resulting fractionation of basalt 
magma erupted from Fuego volcano, Guatemala (ROSE et al., in press). 

Few solid/liquid trace element partition coefficients have been determined 
experimentally at the T-X-f0 2-fH20 conditions described above. Thus, applica­

-tion of partition coefficients to andesite genesis requires either generaliza-
tion of coefficients so as to be independent of liquid and solid composition, 
or reliance on data from natural phenocryst/matrix pairs for andesites. 
Because the former is not yet possible in most instances, a summary of the 
latter is given in Table 1. 

A final issue is the spatial and temporal extent to which andesite liquid co­
exists with another fluid phase as well as with crystals, thus requiring 
knowledge of fluid/fluid as well as solid/liquid partition coefficients. 
Water-saturation (retrograde boiling) will occur atop shallow chambers and 
within dikes during and sometimes before eruption of most orogenic andesites, 
but is unlikely at depths> 4 km if water contents are < 5 wt. %. Thus, water­
saturation may affect the concentration of volatile elements such as alkalies 
in an indeterminate volume fraction of magma without being a realistic con­
dition during magmatic differentiation if differentiation occurs primarily at 
depths > 4 km. In contrast, widespread saturation of orogenic andesite magma 
with C02 or S is possible (MYSEN et al., 1975; ANDERSON, 1974). 

SELECTED TRACE ELEMENT CHARACTERISTICS OF OROGENIC ANDESITES 

This summary is restricted to a few aspects of orogenic andesite geochemistry 
which can be evaluated with available partition coefficients; data for other 
elements and for related rock types are omitted. Emphasis is on accounting 
for trace element systematics which constrain genetic relationships within 
andesite suites, rather than on comparisons between average andesites and 
basalts. 

Concentrations of K, Rb, Cs, Sr, and Ba in orogenic andesites cover a wide 
range, reaching from levels near those of mid-ocean ridge basalts and extend­
ing to those of granites. This is illustrated for Rb and Sr in Figure 3. All 

- these elements except Sr correlate positively with silica in andesites and 
usually increase about two-fold in concentration between 53 and 63% Si02. If 
D = 0 for these elements, their rate of increase implies an average of 5% crys­
tallization for each 1 wt. % increment in Si02 • Alternatively, the variation 
in alkali concentrations requires a factor of two difference in percent fusion 
to generate the spread in Si0 2 of andesites. 
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Sr contents typically remain approximately constant in orogenic andesites, im­
plying D(Sr)bulk - 1, although Sr correlates positively with silica in some 
high-K suites and correlates negatively with silica in the acid portion of 
some high-K suites (Figure 3). Also, Rb-Sr covariance is similar regardless 
of whether or not Rb/Sr ratios correlate positively with initial 87Sr/86Sr 
ratios thereby yielding ~seudoisochrons. Such similarity is more compatible 
with addition of Rb and 7Sr by contamination than with equilibration between 
each andesite melt and old upper mantle, as required by the proposal ·of JAMES. 
et al. (1976). 

K/Rb ratios correlate negatively with % K when orogenic andesites as a whole 
are considered (Figure 4), defining a region above but roughly parallel to the 
main trend of SHAW (1968). Within individual suites, however, frequently 
there is < 20% change in K/Rb ratios, and sometimes ratios increase as K and 
Si contents increase. Within specific volcanic arcs both K and Rb contents 
in orogenic andesites increase relative to silica as the distance between the 
site of their eruption and the convergent plate boundary increases (e.g. lines 
9 and 10, Figure 4). Rb contents increase more than K, causing K/Rb ratios to 
fall across volcanic arcs (JAKES and WHITE, 1970). 

Light REE contents also vary widely between low and high-K orogenic andesites. 
from < 10 to > 100 times chondri tic levels, and correlate positively with sil­
ica within suites (Figure Sa). In contrast, there is consistently less varia-. 
tion in heavy REE or Y contents which are about 8 to 15 times chondri tic 
levels and 20 to 25 ppm, respectively (Figure 5b). 

Positive correlation between Yb and Si is the norm, although there is less 
change than for La and several instances are known in which a negative corre-) 
lation occurs. Except for Osima-osima volcano in the Sea of Japan, all these~ 
instances occur in andesites which ascended through relatively thick continen~ 
tal margins or interiors. 
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Often REE concentrations differ by only 20 to 50% between basic and acid oro­
genic andesites, or between basic andesites and associated basalts. That is, 
REE and especially heavy REE are significantly more compatible than alkalies 
in andesite magmas. Eu anomalies> 10% are uncommon despite the ubiquity of 
plagioclase phenocrysts. Positive Eu anomalies, suggesting plagioclase accu­
mulation, do occur but are as common in aphyric as porphyritic samples (e.g. 
YAJIMA et al., 1972). Negative anomalies are restricted largely to acid oro­
genic andesites (e.g. FUJIMAKI, 1975; LOPEZ-ESCOBAR et al., 1976), but are 
much sm~ller than in icelandites or trachytes of similar-silica contents. The 
detailed internal shape of REE patterns for orogenic andesites is not well 
known due to insufficiently precise or complete data. However, maxima occur 
at Nd-Sm in some (e.g. KAY, 1977) while minima occur between Eu and Er in 
others (e.g. ARTH, 1974; GILL, 1976). 

Ni contents of orogenic andesites vary by an order of magnitude between suites 
(Figure 6). In part, this variation reflects differences between suites in 
degree of differentiation relative to silica contents (HEDGE, 1971; MIYASHIRO 
and SHIDO, 1976, but differences exist even in rocks having similar MgO 
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Figure 6. (a) Ni vs. Si02 contents in selected orogenic andesite suites. Lines drawn 
as in previous figures. The CA-TH dashed line separates ca1calkaline (CA) from tho­
leiftic rocks according to MIYASHIRO and SHlDO (1976). (b) Ni vs. MgO contents for 
some of the same suites. The Kilauea trend is from GUNN (1971). The stipled field 
is from HEDGE (1971) for island arc high-alumina basalts. Other data sources for both 
6(a) and (b) are: 1., 5., 11. BROWN et al. (1977); 2. LAMBERT et al. (1974); 3. ZIELINSn 
and LIPMAN (1976); 4. ANDO (1975); 6~EWART et al. (1973); 7. COL~(in press); 8. BLAKE 
and EI1ART (1974); 9. GILL ,and TILL (in prep.~ 10. KELLER (1974); 12. LOPEZ-ESCOBAR 
et al. (1976), Ancud; 13. CONDIE and SI1ENSON (1973), Rainier; 14. TAYLOR et al. (1969). 
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contents of FeO*/MgO ratios. In general, however, Ni contents are low: rarely 
.> 100 ppm, usually < 40 ppm, and frequently < 10 ppm. In addition to the var­
iation within this range between suites, a second striking feature of Figure 6 
is the surprising consistency of average Ni contents within suites. 

V g~~erally follows Fe 2+ and Ti in orogenic andesites, remaining constant or 
going through a maximum in suites showing much Fe-enrichment, but decreasing 
steedily in suites lacking much Fe-enrichment (Figure 7). In some cases, the 
SUDden drop in V contents seen in Figure 7 is associated with the first modal 
appearance of magnetite phenocrysts. However, the kinks in Figure 7 connect 
dis?arate populations, as shown for the Tonga and Mashu data, which could 
reflect pooling of genetically unrelated rocks (see Introduction) as well as 
ch~ges in coexisting phases along a liquid line of descent. In general, 
th~e is a two to three-fold decrease in V, Cr, Co, and Sc contents between 53 
~anD 63% Si0 2 • 

'eu contents have been determined in over 30 suites of orogenic andesites, range 
fr~ 10 to 150 ppm, and have an average of about 60 ppm which is several times 
more than in most icelandites or trachytes having similar Si0 2 contents. In 
most suites, Cu contents decrease irregularly with increasing silica (e.g. 
GILL, 1976), but remain relatively constant in others (e.g. CONDIE and 
SWESSON, 1973). A maximum between 55 and 60% Si0 2 occurs in some suites char­
acterized by rapid Fe-enrichment (e.g. EWART et al., 1973). There is no cor­
relation between Cu and Ni contents in andesites-as would be expected if 
silicate-sulfide liquid immiscibility were an important' genetic factor. 
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Figure 7. V contents vs. 
FeO*/MgO ratios in selected oro­
genic andesite suites. Lines 
drawn as in previous figures. 
Solid triangles are data for 
Mashu; circles are for Tonga, 
with filled circles used for 
samples lacking magnetite pheno­
crysts and open circles used for 
those containing magnetite. 
Arrows point in the direction of 
increasing Si02 . FeO* = total 
Fe as FeO. Data sources: 1. 
LOWDER and CARMICHAEL (1970); 2. 
BAKER (1968); 3. GILL (1976); 4. 
GILL and TILL (in prep.); Tonga, 
EWART et al. (1973); Mashu, ANDO 
(1975):- -

ROLE OF PARTITION COEFFICIENTS IN MODELS OF ANDESITE GENESIS 

Solid/liquid partition coefficients can be used to test simple models in which 
orogenic andesites are considered to be primary partial melts or products of 
fractional crystallization of something. Specifically, the trace element char­
acteristics described above might reflect equilibration over a melting interval 
with refractory phases in subducted oceanic crust (GREEN, 1972) or in overlying 
and hydrated peridotite (KUSHIRO, 1972). Alternatively, these trace element 
characteristics may result from fractional crystallization of basalt due to 
separation of anhydrous minerals (KUNO, 1968) or of amphibole (CAWTHORNE and 
O'HARA, 1976). However, solid/liquid partition coefficients are not yet as 
useful in evaluating other likely explanations of these trace element charac­
teristics, such as crustal contamination (WILCOX, 1956), magmatic mixing 
(EICHELBERGER, 1975), or fluid/fluid fractionation. Because my scope here is 
more concerned with partition coefficients than trace element aspects of ande­
site genesis, these latter alternatives will not be discussed. 
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1. Orogenic andesites as partial melts of subducted oceanic crust 

The refractory mineralogy and resulting bulk distribution coefficients appro­
priate to this model are a function of the depth to which oceanic crust is 
subducted before fusion. Depth to the Benioff Zone beneath active volcanoes 
at various convergent plate boundaries is 136±41 km (1 0), although this fig­
ure may decrease by 10 to 20 km as lateral heterogeneities in velocity struc­
ture beneath island arcs are taken into account when locating earthquake foci 
(e.g. ENGDAHL, 1973). If Benioff Zone earthquake foci beneath andesite vol­
canoes lie either at the slab/mantle boundary or < 25 km below the top of the 
slab within the colder, more brittle interior (ENGDAHL, 1973), then subducted 
oceanic crust is > 110 km beneath the volcanoes. At such depth, refractory 
phases during melting of a basaltic composition will be mostly clinopyroxene 
and garnet rather than amphibole. Potential accessories include phlogopite or 
orthoclase, kyanite, sphene, rutile, apatite, and sulfides, but their effect 
cannot be predicted quantitatively because of lack of partition coefficients 
and lack of constraints on their mass fraction in the residue. Estimates of 
the degree of fusion necessary to produce andesitic bulk compositions are 20 
to 40%, but are weakly based (GILL, 1974). 

The requirement that D(Sr)bulk _ 1 within orogenic andesite suites is incom­
patible with an eclogite-residuum, even if the residuum contains minor refrac­
tory apatite. Also, K, Rb, Cs, and especially Ba contents in andesites are 
higher than expected in products of 20 to 40% fusion of even alt'ered ocean 
floor basalt, but this is a problem concerning source materials rather than 
partition coefficients. In contrast, the negative correlation between K/Rb 
ratios and K contents across island arcs has been attributed to variations in 
partition coefficients or percent fusion. JAKES and WHITE (1972) appealed to 
a changing refractory assemblage containing amphibole (D(K/Rb)amph - 3) at 
shallow depths but ph1ogopite (D(K/Rb)ph1 - 0.3) at greater~epths. However, 
this explanation is invalid if the K/Rb ratio of the material be.ing fused re­
mains constant because the D(K/Rb)bu1k of the residuum must increase with 
depth to explain the pattern observed. Alternatively, BESWICK (1976) showed 
that repeated fusion of the same source, leaving refractory phlogopite each 
time, could account for the K and Rb distribution. However, successive frac­
tional fusions of a common source are thermally unlikely, and this explanation 
also requires phlogopite to be more refractory at high degrees of fusion than 
low. Thus, the K-Rb distribution remains unexplained and may reflect varia­
tions in source c'omposition rather than in partition coefficients or percent 
fusion. 

REE provide three sensitive tests of this model (GILL, 1974; THORPE et a1., 
1976; LOPEZ-ESCOBAR et al., 1976; DOSTAL et a1., 1977). First, if the source 
initially had a f1at~E~pattern with 10 to 15 times chondritic concentra­
tions, if garnet and clinopyroxene alone constitute the residuum, and if the 
partition coefficients of Table 1 pertain, then at < 40% fusion the light REE 
concentrations of a partial melt will be two to three times higher than ob­
served in low or medium-K orogenic andesites, and the heavy REE will be two to 
three times lower than in all but a very few orogenic andesites. Secondly, 
magmas should become increasingly heavy REE-enriched as percent fusion in­
creases; i.e. eclogite melting should lead to a negative correlation between 
heavy REE and silica. Such negative correlation occasionally occurs (lines 
10 to 13, Figure 5b), but is not a general feature and seems mostly restricted 
to magmas erupted through> 30 km of crust. Finally, if the source material 
is light REE-dep1eted, then some characteristics of that depletion (e.g. 
~a < Ce) will be preserved in partial melts, but are not observed in natural 
orogenic andesites. The three conclusions listed above are valid if: D(La)gar 
< 0.1 whereas D(Yb)gar > 5; D(La)cpx < 0.2 whereas D(Yb)cpx > 0.5; accessorY-­
minerals with D(Yb) - 0 constitute < 20% of the residuum; and garnet consti­
tutes > 25% of the residuum. 

Both absolute and relative concentrations of some fourth period transition 
metals also are problematical. For example, if subducted oceanic crust has 
100 ppm Ni, if both D(Ni)cpx < 3 and D(Ni)gar < 1 at 1100 to 1200°C, and if 
garnet constitutes > 25% of the residuum, then any partial melt will have > 40 
ppm Ni. However, IRVING (1977) reported D(Co)gar = 9.0 at 950°C and 30 kb for 
dacite. If D(Ni)gar > D(Co)gar, as expected for octahedral coordination, then 
garnet may be a Ni sink, thereby removing this objection to eclogite fusion. 
However, garnet also is a Sc sink according to IRVING (1977), with D(Sc)gar = 
28 under the conditions mentioned above. Because most orogenic andesites ha\~ 
> 20 ppm Sc, which requires D(Sc)bu1k < 3.5 if subducted oceanic crust con­
tained 60 ppm Sc, Irving's experiment clearly adds a serious problem for ec­
logite fusion models while possibly removing another. Finally, the two to 
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thre2-fold decrease in V contents within orogenic andesites (Figure 7) cannot 
pe ~?lained by fusion of bimineralic eclogite at nearly constant temperature 

pro- ~nd ~Jz is the partition coefficients of Table 1 are a guide. 
s b 
oes ~hus. available D~ and Dgar values for Sr, REE, Ni and Sc are unfavorable to 
fig- :the e:::logite fusion hypothesis as a general explanation. However, the model 
ruc- ~ay ~x~lain the origin of atypical andesites having the following characteris­
foci tics= strong positive correlation between Sr and silica; steep REE patte~ns 
01- ~ith Yb < 1 ppm, Y < 20 ppm, and La/Yb > 20; < 10 ppm SCi and probably> 40 ppm 
the t', ia::d. > 300 ppm V. 'possible examples have been described by LOPEZ-ESCOBAR 

cted t al. (1977) and KAY (in press) . 
ry 
ene 
te or I.' <Q':::-ogenic andesites as partial melts of hydrated peridotite 

ect i ~ts eitjer the trace element composition of the source, the percent fusion, nor 
of ',he :::-efractory assemblage appropriate to this hypothesis have been specified 
20 y its proponents, so there are few quantitative trace element arguments for 

, r against it. Three issues which depend on partition coefficients are appli-
able, however. First, the REE patterns of individual orogenic andesites can 

~e rno~elled satisfactorily by postulating < 5% fusion of a lherzolite source 
Mith two to three times chondritic REE contents and without refractory amphi­

ole or mica LOPEZ-ESCOBAR et al., 1976, 1977). Presence of refractory amphi­
ole ~ould require concomitant~EE~enrichment of the source above three-times 
chon~itic levels. 
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Seco=~, the low Ni contents of most orogenic andesites require D(Ni)ol > 50 for 
equilibration with upper mantle olivine. Although the value of 3O-reported by 
LEEK~~ and LINDSTROM (1977) for olivine/basalt equilibration at 1100°C, and 
by DAVIS and HART (1977) for olivine equilibration with magma containing 4 wt. 
% MgJ helps avoid this problem, fractional crystallization of olivine or pyrox­
ene curing ascent seems necessary for andesites containing < 60 ppm Ni. 
~ 

Third, equilibration with a refractory lherzolite assemblage during a few per­
cent melting can explain neither the diversity of V distributions observed 
(Fio/Jre 7) nor the two to three-fold drop in concentration of most fourth pe­
riod transition metals within andesite suites. That is, neither temperature, 
f0 2 , nor refractory mineral weight fractions vary enough within the melting 
interval to produce such a variation in partition coefficients. Both the Ni 
and V arguments suggest that orogenic andesites are more likely related by 
fractional crystallization than partial fusion. 

rce 3. Orogenic andesites as products of crystal fractional involving anhydrous 
minerals 
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Variations in major element composition within orogenic andesite suites fre­
quently can be approximated by addition or subtraction of anhydrous phenocryst 
minerals using least squares calculations (e.g. EWART et al., 1973; LOWDER and 
CAR¥JCHAEL, 1970). These calculations typically indicate-rhat each one per­
cent increment in Si0 2 content of the liquid is accompanied by 12 to 14% crys­
tallization of basic andesite or 8 to 10% crystallization of acid andesite. 
As noted earlier, these degrees of crystallization are higher than those esti­
mated using the distribution of incompatible trace elements such as Zr or 
alkalies. Thus, either the fractional crystallization hypothesis is incorrect 
or at least incomplete and the successful least squares calculations are for­
tuitious, or the elements are more compatible than suggested in Table 1. 
Because choice between these alternatives is not yet possible, unequivocal 
models of fractional crystallization are not available for testing. However, 
Some general principles can be noted. 

First, plagioclase typically constitutes 50 to 65% of the mass of crysalline 
phases removed in least squares solutions. This is consistent with the re­
quirements that D(Sr)bulk - 1 and increases as fractionation proceeds, based 
on experimental determinations of D(Sr)El by SUN et al. (1974) and DRAKE and 

40 I WEILL (1975). Although such extensive plagioclase involvement should also 
for lead to positive Eu anomalies upon plagioclase accumulation or negative Eu 
hen anomalies upon plagioclase removal, nei'ther is cornmon in orogenic andesites. 
. However, if log f0 2 is -8.0 at 1100°C (Figure 2), then the predicted Eu*/Eu 3 

= ratio is - 4 (WEILL and DRAKE, 1973) which compares favorably with Eu*/Eu 3 

~ve f 3.3 for plagioclase phenocrysts separated from andesites (PHILPOTTS and 
SCHNETZLER, 1970). This EU*/Eu 3 ratio will produce only a 3% Eu anomaly for 

- each 10% plagioclase added or subtracted because of the generally low I D(REE) El· 

r Q..c ..... -.. 
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Secondly, magnetite typically constitutes 5 to 10% of the solids removed to 
prevent Fe-enrichment in least squares solutions. If it constitutes 10%, then 
D(v)bulk will be > 3 which, for example, is consistent with values between 3 
and 4 calculated by the method of ALLEGRE et al. (1977)· using data of EWART 
et al. (1973) for Fonualei volcano, Tonga,-an~data of BAKER (1968) for Mt. 
Misery volcano, Antilles, assuming D(Zr)bulk = O. 

Thirdly, the REE seem to behave more compatibly in some orogenic andesites 
than predicted by the partition coefficients of Table 1 (e.g. GILL, 1976, 
LOPEZ-ESCOBAR et al., 1976), but data are insufficient to quantify this argu­
ment. Two explanations are possible. First, the D(REE)~ of Table 1 may be. 
too low for andesite magmas. For example, DRAKE and HOLLOWAY (1977) found . 
D(Sm)aug _ 1 at iooo°c for an acid andesite. Alternatively, apparent compati­
bility may reflect precipitation of accessory apatite which is included in the 
phenocrysts of some andesites. Apatite stability may differ amongst orogenic 
andesites due to variable halogen and water fugacities and this difference may, 
in turn, explain why P 2 0 S correlates positively with silica in relatively Fe­
enriched suites but negatively in more calcalkaline ones (ANDERSON and 
GOTTFRIED, 1971). If so, greater incompatibility of REE is predicted in more 
tholeiitic (Fe-enriched) orogenic andesites. Such contrasting compatibility 
is suggested by data of YAJIMA et al. (1972) for the pigeonitic and phyer­
sthenic rock series of central Honshu, Japan, although their samples are from 
several different volcanoes. 

Finally, relatively constant Ni contents within suites are inconsistent with 
this model if pyroxenes and magnetite constitute> 1/3 of the crystallizing C 

phases and have D(Ni) > 3. Clearly the role of olivine fractionation is re­
stricted and, significantly, no andesite suites containing olivine phenocrysts 
have constant Ni contents. 

Thus, trace element data, except Ni in many cases, are least at odds with frac­
tional crystallization models involving anhydrous minerals. However, there are 
few instances where analyses of incompatible and key compatible trace ele:::ents 
and analyses of minerals all are available for enough representatives of a ~ 
possibly cogenetic suite to test models rigorously, much less to test whetr£r 
the variations in trace element distributions cari be attributed to variaticns· 
in the mineral proportions being separated. 

4. Orogenic andesites as products of crystal fractionation involving 
amphibole 

Hornblende provides an alternative to magnetite as a phase whose 
would produce Si-enrichment but relatively little Fe-enrichment. Because the 
bulk composition of hornblende approximates that of a mixture of plagioclase~ 
pyroxenes, and magnetite, least squares calculations such as those referreffito 
above also yield satisfactory results when hornblende is included as a poss£ble 
crystallizing phase (e.g. ARCULUS, 1976). The percent crystallization ne~­
sary for each one wt. % increment in liquid Si02 content is similar to th.ait.:in 
anhydrous solutions, but the weight fractions of plagioclase and magnetite de­
crease slightly when amphibole is included; amphibole typically constitutes:30 
to 40% of the crystallizing phases. • 

t 
Hornblende crystallization would help rationalize the apparent compatibili~·of 
alkalies and REE in orogenic andesites. However, separation of equal masses. of 
hornblende and plagioclase would cause K/Rb ratios to drop by a factor of ~:to 
3 if F = 0.5 and D(K/Rb)hb - D(K/Rb)pl = 2 to 4; such a drop is not obserw<!d .. 
(Figure 3). SimilarlY-iY-D(Ba)hb~ DTLa)hb or D(Ba)hb > D(Rb)hb as suggested 
by ALLEGRE et al. (1977) and~RTH (1976),~hen hornblende fractionation s~ld 
cause significant drops in Ba/Rb and Ba/La ratios. Equilibration with 
blende also could account for orogenic andesites whose REE patterns· have a 
minimum near Dy. 

However, consistent Ni contents within suites are an equal or greater prcbillem 
than in the fractionation of anhydrous minerals if D(Ni)hb > D(Ni)~ (Tablei 
1) • Similarly, if D (V) hb » D (V) px, then the mass fraction-of hornblende l 
which can be removed ls-Very restricted. Finally, the hornblende/dacite ~Iirs 
analyzed by ANDRIAMBOLOLONA et al. (1975) suggest that D(Ni)hb < D(Co)hb end 
D(Cr)hb < D(V)hb, in contras~to-prediction for octahedrar-coordination-of 
these~ransition metals. If true, then hornblende crystallization would ~use 
a positive correlation between silica contents and Ni/Co or Cr/V ratios, w.aich 
is not observed. 
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~hUSi partition coefficients may help distinguish cases of anhydrous versus 
hydrous mineral fractionation events. Examples of the latter involving horn­
blende will be characterized by: rapidly dropping K/Rb and possibly Ba/Rb and 
Ba/La ratios as well as Ni and V contents with increasing silica contents; 
nearly constant or decreasing heavy REE and Y contents with a REE minimum 
near Dy; and possibly by a positive correlation between Ni/Co or Cr/V ratios 
and silica contents. No clear examples with these characteristics are known 
to me. 

CONCLUSIONS 

The origin of most orogenic andesites probably reflects a combination of one 
or more of the four models discussed above, together with other processes less 
testable using solid/liquid partition coefficients. However, before invoking 
~ore complex hypotheses one must try to demonstrate that failure of a given 
~del to account for observed trace element characteristics is not a function 
of the samples chosen, the degree of crystallization assumed, or the parti­
tion coefficients used. Reconnaissance studies have not provided adequate 
data with which to make this demonstration; future trace element studies need 
to be accompanied by more thorough field, petrographic, and isotopic work than 
has been common heretofore. Such accompaniment may lead to families of frac­
tional crystallization models, or to mUlti-stage genetic hypotheses invoking 
the mixing of partial melts of different sources or the additive effects of 
partial melting, crystal and liquid/liquid fractionation, and magma mixing . 
Present versions of such mUlti-stage schemes can be successful in modelling 
specific andesites (e.g. LOPEZ-ESCOBAR et aI, 1977j DOSTAL et al., 1977), but 
are non-unique and ad hoc, and await criteria for their selection. Successful 
explanation of the trace element characteristics of orogenic andesites pro­
bably requires models of such complexity. 
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