Geothermics (1974) - VOL. 3, No. 3

A Computational Method for Determining Segmental and Overall Geothermal Gradients and Geothermal Heat Flow Values

A. E. RAINIS *, DUANE R. SKIDMORE ** AND H. H. RIEKE III **

GL03832

ABSTRACT

A new computational method is presented which calculates geothermal heat flow values and geothermal gradients with more precision than permitted by previously published techniques. The data required are: geothermal temperature at a known depth, mean surface temperature, the rock types in the stratigraphic column and the thermal resistivity values for the different types of rocks. This method is valuable in areas that have no measured gradient values. Basic equation used was the Fourier heat transfer equation $\dot{Q}/A = -1/\rho_i (\partial T/\partial x)$ where \dot{Q}/A is heat flux in $|\text{tcal}/(\text{cm}^2 \text{ s}), \rho_i$ is thermal resistivity (°C s cm/ $|\text{tcal}\rangle$) and $\partial T/\partial x$ is the x component of the temperature gradient (°C/cm). The thermal resistivity was allowed to vary linearly with temperature $\rho_i = \rho_i^{\circ} [1 + K_i (T - 30)]$ where ρ_i is thermal resistivity of the lithographic segment « i » at a temperature T, ρ_i° is thermal resistivity. The procedure consisted of intergrating the combined equation for heat flux in terms of temperature dependent resistivity.

[Two iterative solutions were used to simplify the calculations: exact and approximate. The heat flux for each well was assumed to be 1.0 HFU and segmental temperatures were calculated from the bottom (arbitrarily) up, until a surface temperature was obtained. The calculated surface temperature could then be compared with the mean surface temperature (MST). Correction in the heat flux value was made until the calculated surface temperature and MST agreed. An analysis of three deep Appalachian test wells was made and the results showed the critical importance of lithographic ordering and the temperature dependence of thermal resistivity upon calculated geothermal quantities.

Introduction

Individual geothermal gradients and heat flux values are important for predicting surface or *in situ* temperature effects which result from thermal perturbations. Some perturbations result from thermal recovery of heavy oil, *in situ* shale oil or coal conversion, or geothermal energy extraction. In addition, the individual thermal effects are often accumulated into various types of regional geothermal surveys, such as geothermal gradient and heat flow maps. These maps are then correlateable with historical geologic factors, geophysical factors and phenomena, geochemical obervations, and large-scale plate tectonic theories in order to formulate a theoretical thermal model of the earth's crust (SCHUBERT, ANDERSON 1974). Some former solutions to the problem of determining local geothermal gradients and heat fluxes have lacked some of the refinement recommended here (JOYNER 1960; GRISAFI, RIEKE, SKIDMORE 1974). In these former solutions the actual lithographic column was replaced by a regional or local characteristic column composed of rock with intermediate thermal properties. This replacement simplified the calculation of heat flux values or geothermal gradients but the simplification gave averaged answers which lost a large degree of local detail.

In other simplifications (GRISAFI, RIEKE, SKIDMO-RE 1974), segmental values of thermal resistivity have been grouped rather than ordered naturally, have been averaged over temperature, or have been presumed constant with temperature. As will be shown, each of these assumptions has an effect upon heat flow values as well as overall and segmental geothermal gradient values. These effects are compared by means of the computational methods proposed by the authors.

The methods presented here provide two improved solutions to the steady state conductive heat transfer problem. These solutions, however still have several constraints. The constraints are:

- the thermal resistance consists of horizontal stacked semiinfinite slabs so that heat flow lines are parallel outward and are unaffected by edge effects,
- the lithographic segments although differing from each other are internally homogeneous and isotopic,
- the heat generated or absorbed in a segment is negligible,
- the thermal resistivity (or conductivity) values vary with each segment and change instantaneously at the segmental boundary, and
- the thermal resistivity varies from segment to segment and within a segment increases linearly with temperature (Joy-NER 1960).

Equations governing heat flow by conduction under these constraints have been written and solved by two approaches, namely, exactly and approximately. In both the exact and approximate solutions the heat flow equation was solved by formally integrating the heat equation and manipulating that result. The exact solution used the thermal resistivity function exactly, whereas the approximate solution used the arithmetic mean thermal resistivity for a lithologic segment. The

^{*} Physics Department, West Virginia University, Morgantown, W. Va. 26506, USA. ** School of Mines, West Virginia University, Morgantown,

W. Va. 26506, USA.

exact solution was applied to the lithographic column and the column was artificially altered in the following ways:

- inverted,
- rock types, i.e. sandstones, limestones and shales, together,
- rock types grouped together and inverted, and
- thermal resistivity held constant at p° for 30 °C for a given rock type $(K_i = 0)$.

Mathematical approach

The data used for these calculations are:

- mean surface temperature,
- thermal properties of extant rock types,
- lithologic character of the stratigraphic column (rock type, sequence, and thickness),
- bottom hole temperatures and well depth. Good subsurface temperature data are often not available.

Uncertainty is greatest in bottom hole temperature measurements which may have been obtained for thermal non-equilibrium situations. SCHOEPPEL and GILAR-RANZ (1966) have shown that the maximum logged temperatures, when properly recorded, provide better basic data than previously realized. In addition the rock type was inexactly described owing to mixtures of different lithologies, e.g., silty sandy shale.

Data used in the illustrative computations were extracted from well logs of exploratory wells drilled in West Virginia. Description of each well and the location are presented in Table 1. With these data, the

heat flow per unit area can be calculated using the Fourier heat transfer equation

$$\frac{\dot{Q}}{A} = -\frac{1}{\rho} \frac{\partial T}{\partial x}$$
(1)

Mai

Segment

3 4

5 6 7

11

area in µcal/(cm² s), ρ is the thermal resistivity (°Ccms/ μ cal), ∂T is the temperature difference (°C) across a slab thickness ∂x (cm). The negative sign governs the convention from the second law of thermodynamics; i.e., that heat flows from hotter to cooler regions.

Ran	dolph	Co., Hu Elev. MST	A. W ttonville D 2036 feet; = 12.8 °C	ELL No. 1 istrict, WV (Ra 38° 45' N; 79° 5 BHT = 11	ndolph N 55′ W 9 °C	lo. 103*
Segment number	Dep	th range (ft)	Thickness of segment (cm)	Lithology	Resistivity at 30 °C (°C s cm/µcal)	К (°С ^{—1})
1 2 3 4 5 6 7 8 9 10 11 12	0 2280 230 2480 2695 2830 3460 4906 5703 5917 7310 10118	2280 2310 2480 2695 2830 3460 4906 5703 5917 7310 10118 13121	69494.40 914.40 5181.60 6553.20 4114.80 9202.40 44074.08 24292.56 6522.72 42458.64 85587.84 91531.44	Sh LS Sh LS SS LS SS LS+SS+Sh Sh Impure SS Sandy Sh Sh LS	296 162 250 184 95 162 170 296 157 211 296 162	0.001 0.003 0.001 0.003 0.003 0.003 0.001 0.001 0.001 0.001 0.003
Segment number	Dept	pringfie Elev. MS h range (ft)	Id District; 900 feet; 3 T = 12.8 °C (u) it sedunces (u) it setup it setup	(Hampshire No 99° 30' N, 78° 3 2 BHT = 82.2 ° Lithology	tesistivity 20 % 70 % 70 % 70 % 70 % 70 % 70 % 70 %	К (°С ⁻¹)
1 2 3 4 5 6 7 8 9	0 295 660 2360 2560 2760 3140 3188 3780 3850	295 660 2360 2560 2760 3140 3188 3780 3850 4144 5600	8991.60 11125.20 51816.00 6096.00 11582.40 1463.04 18044.16 2133.60 8961.12 44378.88	Sh Impure SS LS SS+Sh Sh+LS SS+Sh+LS Impure SS Impure SS Impure SS Impure SS Impure SS	296 157 162 157 221 157 157 157 157 157 157	0.001 0.003 0.003 0.001 0.001 0.001 0.001 0.001 0.001 0.003 0.001

C. WELL No. 3

Marshall	Co.,	Libert	y Dis	strict,	W	V; ((Mar	shall	No.	539 *
	Elev.	1423	feet;	39°	50′	N;	8 0º	30'	W	

MST = 12.8 °C BHT = 115 °C

) 🔹							
	Depth range		ckness egment cm)	Lithology	stivity 30 °C cm/µcal)	К	
	- 47 I		(11)	Thic of se ((Resi at (°C s	(°C—1)
1	, 1	0	280	8534.4	Impure SS	157	0.003
	;	280	450	5181.60	Sh	296	0.001
	1	450	560	3352.80	Impure SS	157	0.001
1	4	560	650	2743.20	Impure SS	157	0.001
	5	650	730	2438.40	-Impure SS	157	0.003
1	6	730	780	1524.00	LS+Sh	162	0.003
1	1	780	940	4876.80	Sh	296	0.001
	8	940	1120	5486.40	LS	162	0.003
	9	1120	2280	35356.80	Sh	296	0.001
1	10	2280	2370	2743.20	LS	162	0.003
1	11	2370	2620	7620.00	Impure SS	157	0.003
1	12	2620	2973	10759.44	Sh	296	0.001
	13	2973	2993	609.60	Impure SS	157	0.003
1	4	2993	3170	5394.96	Sh	296	0.001
	15	3170	3205	1066.80	Impure SS	157	0.003
1	16	3205	3240	1066.80	Sh	296	0.001
	17	3240	3285	1371.60	Impure SS	157	0.003
	18	3285	3310	762.00	Sh	296	0.001
	19	3310	3350	1219.20	Impure SS	157	0.003
	20	3350	3520	5181.60	Sh	296	0.001
	21	3520	3540	609.60	Impure SS	157	0.003
	22	3540	7575	122986.80	Sh	296	0.003
1	23	7575	7802	6918.96	LS	162	0.003
1	24	7802	7890	2682.24	Impure SS	157	0.003
	25	7890	9780	57607.20	LS+DC	162	0.003
	26	9780	10150	11277.60	Sh	296	0.001
2	27	10150	10190	1219.20	DO	162	0.003
	28	10190	10470	8534.40	Impure SS	157	0.003
1	29	10470	12400	58826.40	Sh	296	0.001
1	. 50	12400	13800	42672.00	Sh+LS	221	0,001
	1	13800	14040	7315.20	LS	162	0.003
1	32	14040	16095	62636.40	DO	162	0.003
	11	16095	16273	5486.40	Impure SS	157	0.003
Ĩ.	, 1 4	16275	16512	1223.76	LS	162	0.003

* West Virginia Geological and Economical Survey well numbers.

The major mathematical problem when employing the Fourier heat transfer equation is that the thermal resistivity is a function of temperature of the material. According to JOYNER (1960) a linear relation between temperature and thermal resistivities of different rocks exists and can be expressed as

 $\rho_i = \rho_i^{\circ} (1 + K_i (T - 30))$

where ρ_i° is the thermal resistivity at 30 °C, K_i is the temperature coefficient of thermal resistivity $({}^{\circ}C^{-1})$, **and** T is the temperature in $^{\circ}$ C.

The variation from linearity of the T vs x expression is determined by the change in thermal resistivity. Thus, a thicker segment with a higher temperature coefficient would tend to deviate more from a linear T vs x relation.

Values of $\frac{Q}{A}$ were calculated for each of the three

exploratory wells described in Table 1 using both the exact and approximate methods. These values are listed in Table 2 and the two methods, for these cases, give identical results. Results upon heat flow of various assumptions about the lithographic column, calculated exactly, are presented in Table 3. As expected, significant changes occur in HFU. Maximum value changes at K = O reflect lower resistivities which result from the neglect of the resistivity temperature dependence. Other changes occur with inversion of extant stacking order, grouping by K, and inverted grouping by K (Table 3). The need for precise and detailed lithographic stacking order, as well as thickness and rock type, is obvious.

The same factors which influence heat flow also determine segmental geothermal gradients. Table 4 shows the effect upon each segmental gradient of each of the transpositions described. Inversion places a segment into a different temperature range and thermal

FIG. 2. — Logic for computation of heat flow (\dot{Q}/A).

TABLE 2. — Values of heat flow (Q/A) for three test wells calculated by two different methods. Lithology is in normal stratigraphic sequence for each well.

Well No.	1	2	3
Q/A μcal/(cm ² s)	(12 lithologic segments)	(15 lithologic segments)	(34 lithologic segments)
Exact	1.25	0.82	0.74
Linear approximation in o	1.25	0.82	0.74

TABLE 3.	- H	leat	flow	(\dot{Q}/A)	values	exac	tly	calculated	for	the
three	test	wel	ls en	ployin	g diffe	rent	stra	tigraphic	arra	nge-
ment	for	the	vario	us lithe	ologic 1	units	-			

Lithelesis with	1	2	3	
arrangement	(12 lithologic segments)	(15 lithologic segments)	(34 lithologic segments)	
Normal order	1.25	0.82	0.74	
Inverted order	1.27	0.85	0.74	
Grouped by K ($K = .001$ first)	1.27	0.85	0.75	
Grouped by K ($K = .003$ first)	1.24	0.82	0.72	
Normal order $K = O$	1.32	0.85	0.79	

resistivity range while neglect of temperature dependence lowers resistivity and changes geothermal gradient. Segmental interlayer temperatures and effective resistivites (not shown) varied slightly for the lithographic transpositions described.

Additional contributions could be made by extending the resistivity function in temperature to the quadratic and by determining effective surface temperatures and heat flow values in the field.

Conclusion

A simple method was devised for computing heat flux, segmental and overall geothermal gradients and effective thermal resistivities for lithographic columns from data comprising bottom hole temperature, depth, mean surface temperatures, rock types, thermal resistivity at 30 °C and variation in thermal resistivity with the temperature coefficient of thermal resistivity.

Results on three test wells show that use of an average (arithmetic mean) thermal resistivity in a segment leaves exact values unaltered while neglect of K, and various rearrangements of lithographic segments change important values significantly.

The computational method was programmed using FORTRAN IV. The program and complete outputs for the three test wells are available upon request from the authors. A sample output is presented in Table 5.

116

TABLE 4. — Descriptions of three wells used to demonstrate computation method.

Lithologic segment	Exact solution	Inverted order	Grouped by K (0.001 first)	Grouped by K (0.003 first)	Normal order $K = 0$	
		A. RANDO	lph No. 10	3		Sector Sector
1 2 3 4 5 6 7 8 9	2.49 2.74 2.75 2.17 3.81 2.17 2.11 1.23 2.39 3.16	2.02 2.09 2.76 2.19 3.91 2.27 2.40 1.42 2.75 3.38	2.02 2.17 2.78 2.17 3.86 2.20 2.10 1.23 2.37 3.38	2.47 2.10 2.70 2.33 3.75 2.13 2.38 1.39 2.68 3.12	2.15 2.15 2.80 2.08 3.92 2.25 2.15 1.26 2.44 3.31	
11 12	2.08	2.45	1.96	2.54 3.65	2.15 3.92	
		B. Hamps	hire No. 12	2		10
1 2 3 4 5	1.50 1.79 2.48 1.31 1.32	1.50 1.79 2.49 1.31 1.32	1.34 1.79 2.52 1.34 1.34	1.41 1.86 2.58 1.36 1.31	1.38 1.79 2.52 1.34 1.34	
6 7 8 9 10 11	1.29 1.31 2.44 1.29 1.29 1.82	1.29 1.30 2.44 1.29 1.29 1.82	1.34 1.34 2.44 1.29 1.29 1.82	1.39 1.30 2.63 1.40 1.40 1.97	1.34 1.34 2.52 1.34 1.33 1.88	RI GF
12 13 14 15	1.29 1.30 1.24 2.40	1.29 1.30 1.24 2.40	1.29 1.30 1.24 2.40	1.40 1.33 1.27 2.65	1.34 1.38 1.34 2.52	Joy Sci
		C. Marsh	all No. 539			
$ \begin{array}{c} 1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\12\\13\\14\\15\\16\\17\\18\\19\\20\\21\\22\\23\\24\\25\\26\\27\\28\\29\\30\\31\\32\\33\\34\end{array} $	$\begin{array}{c} 1.50\\ 1.45\\ 1.48\\ 1.46\\ 1.74\\ 2.31\\ 1.34\\ 1.38\\ 2.29\\ 1.35\\ 1.30\\ 1.34\\ 2.34\\ 1.20\\ 2.21\\ 1.19\\ 2.22\\ 1.19\\ 2.22\\ 1.19\\ 2.22\\ 1.19\\ 2.22\\ 1.19\\ 2.22\\ 1.19\\ 2.21\\ 1.19\\ 2.22\\ 1.19\\ 2.21\\ 1.19\\ 2.22\\ 1.19\\ 2.21\\ 1.19\\ 2.21\\ 1.19\\ 2.21\\ 1.19\\ 2.22\\ 1.19\\ 2.21\\ 1.19\\ 2.16\\ 1.16\\ 1.15\\ 2.15\\ 1.14\\ 1.11\\ 1.14\\ 1.11\\ 1.14\\ 1.10\\$	$\begin{array}{c} 1.50\\ 1.45\\ 1.48\\ 1.46\\ 1.74\\ 2.31\\ 1.34\\ 1.38\\ 2.29\\ 1.35\\ 1.30\\ 1.34\\ 2.34\\ 1.19\\ 2.20\\ 1.34\\ 2.34\\ 1.19\\ 2.20\\ 1.19\\ 2.21\\ 1.19\\ 2.21\\ 1.19\\ 2.21\\ 1.19\\ 2.20\\ 1.19\\ 2.21\\ 1.19\\ 2.21\\ 1.19\\ 2.21\\ 1.19\\ 2.21\\ 1.19\\ 2.21\\ 1.18\\ 2.16\\ 1.15\\ 1.16\\ 1.15\\ 2.15\\ 1.14\\ 1.11\\ 1.14\\ 1.11\\ 2.14\\ 1.10\\$	$\begin{array}{c} 1.13\\ 1.11\\ 1.15\\ 1.16\\ 1.62\\ 2.20\\ 1.20\\ 1.24\\ 2.22\\ 1.26\\ 1.24\\ 1.28\\ 2.44\\ 1.35\\ 2.30\\ 1.35\\ 2.32\\ 1.35\\ 2.31\\ 1.36\\ 2.31\\ 1.39\\ 2.31\\ 1.38\\ 1.45\\ 2.34\\ 1.48\\ 2.36\\ 1.49\\ 1.44\\ 1.26\\ 1.44\\ 2.37\\ 1.45\end{array}$	$\begin{array}{c} 1.40\\ 1.36\\ 1.38\\ 1.37\\ 1.72\\ 2.35\\ 1.29\\ 1.34\\ 2.37\\ 1.32\\ 1.27\\ 1.30\\ 2.28\\ 1.16\\ 2.38\\ 1.16\\ 2.39\\ 1.16\\ 2.39\\ 1.16\\ 2.38\\ 1.16\\ 2.41\\ 1.16\\ 1.12\\ 1.28\\ 1.12\\ 1.12\\ 1.28\\ 1.12\\$	$\begin{array}{c} 1.28\\ 1.24\\ 1.28\\ 1.28\\ 1.28\\ 1.24\\ 1.28\\ 2.33\\ 1.24\\ 1.28\\ 2.33\\ 1.24\\ 2.33\\ 1.24\\ 2.33\\ 1.24\\ 2.33\\ 1.24\\ 2.33\\ 1.24\\ 2.33\\ 1.24\\ 2.33\\ 1.24\\ 1.28\\ 2.33\\ 1.24\\ 1.28\\ 2.33\\ 1.24\\ 1.28\\ 1.24\\ 1.28\\ 1.24\\ 1.28\\ 1.24\\$	

TABLE 5. — Sample printout for well No. 1: normal order, exact solutions.

DELTA = 0.50E-07 HEAT FLOW IS 1.25 MICROCALORIES/CM**2/SEC.

N = 12 TBOT = 0.1190000E 03 TTOP = 0.1280000E 02

AVERAGE Q OVER INTERVAL 1.25 COMPARISON WITH THE CALCULATED VALUE -0.00 PER CENT

1. S. A. L.		·						
LEVEL	TEMPERATURE	GRADIENT	RHO AVE	THICKNESS	ТОР ТЕМР	DELTA TEMP	RHO 30	К
1	96.16	-0.25E-03	199.70	0.9153E 05	96.16	-0.228E 02	162.00	0.30E-02
2	77.84	-0.21E-03	171.23	0.8559E 05	77.84	-0.183E 02	162.00	0.10E-02
3	66.17	-0.27E-03	219.86	0.4246E 05	66.17	-0.117E 02	211.00	0.10E-02
4	64.75	-0.22E-03	173.70	0.6523E 04	64.75	-0.142E 01	157.00	0.30E-02
5	55.49	-0.38E-03	304.92	0.2429E 05	55.49	-0.926E 01	296.00	0.10E-02
6	45.93	-0.22E-03	173.52	0.4407E 05	45.93	-0.956E 01	170.00	0.10E-02
7	41.88	-0.21E-03	168.76	0.1920E 05	41.88	-0.405E 01	162.00	0.30E-02
8	41.37	-0.12E-03	98.31	0.4115E 04	41.37	-0.506E 00	95.00	0.30E-02
9	39.82	-0.24E-03	189.85	0.6553E 04	39.82	-0.156E 01	184.00	0.30E-02
10	38.18	-0.32E-03	252.25	0.5182E 04	38.18	-0.164E 01	250.00	0.10E-02
11	37.99	-0.21E-03	165.93	0.9144E 03	37.99	-0.190E 00	162.00	0.30F-02
12	12.40	-0.37E-03	294.58	0.6949E 05	12.40	-0.256E 02	296.00	0.10E-02
1 Jack								

REFERENCES

GRISAFI T. W., RIEKE H. H. III, SKIDMORE D. R. 1974 — Approximation of geothermal gradients in Northern West Virginia using bottom hole temperatures from electric logs. *Bull. amer. Ass. Petrol. Geol.*, v. 58, 321.

Bull. amer. Ass. Petrol. Geol., v. 58, 321. JOYNER W. B. 1960 — Heat flow in Pennsylvania and West Virginia. Geophysics, v. 25, 1229.

SCHOEPPEL R. J., GILRRANZ S. 1966 - Use of well log temper-

atures to evaluate regional geothermal gradients. J. Petrol. Techn., v. 18, 669.

SCHUBERT G., ANDERSON O. L. 1974 — The earth's thermal gradients. *Phys. Today*, v. 27, 28.
 SLACK P. B. 1974 — Variance of terrestrial heat flow between

 SLACK P. B. 1974 — Variance of terrestrial heat flow between the North America Craton and the Canadian Shield. *Geol. Soc. amer. Bull.*, v. 85, 519.
 URBAN T. C. 1971 — Terrestrial heat flow in the Middle Atlantic

URBAN T. C. 1971 — Terrestrial heat flow in the Middle Atlantic States. *Ph. D. Thesis, Univ. Rochester.*