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Summary. A geophysical inversion procedure based on the generalized 
inversion of a matrix is presented and applied to anisotropic magnetotelluric 
data for one-dimensional models. Various computational aspects of the itera­
tive process involved are discussed together with the use of the resolution 
matrix, information matrix and the eigenvalues and eigenvectors for establish­
ing the global significance of the parameters and their relationship with the 
data. A starting anisotropic model is built gradually, the first stage consisting 
of two separated isotropic problems corresponding to the off-diagonal 
elements of the impedance-tensor. The examples given include an anisotropic 
model as well as a model having two anisotropic layers and an isotropic one. 

1 Introduction 

In this paper we present, discuss and demonstrate a geophysical inversion procedure based 
on the generalized inversion of a matrix. The process is applied to magnetotelluric data for 
an anisotropic one-dimensional layered model. 

Magnetotelluric field data frequently exhibit anisotropic behaviour. Scalar apparent 
resistivities defined by Cagniard (1953) often depend upon the orientation of the co­
ordinate system in which the measurements are taken, as well as upon the polarization of the 
electromagnetic fields. The tensor apparent resistivities (Mann 1965) which are polarization 
independent similarly depend on the orientation of the coordinate axes used. In order to 
account for such a behaviour one has to consider more general geo-electrical models than 
the one-dimensional isotropic one. 

A possible extension to models which produce orientation dependent apparent resistivi­
ties, is the anisotropic laterally homogeneous one-dimensional model. In such models the 
conductivity of the various layers is a tensor quantity rather than a scalar one. TIus is a 
microscopic property of the composite material in the crust of the Earth. However, con­
sidering the averaging-diffusive nature of the very-low-frequency electromagnetic wave 
propagation in the crust, this microscopic property is a good approximation to a variety of 
other materials such as rocks with oriented micro-fracturing. In addition, some two­
dimensional isotropic models might give field results which are similar to the ones charac-
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terizing one-dimensional anisotropic models. This phenomenon is called 'the ambiguity 
problem' or 'equivalence of the second kind'. 

The system function of the Earth's crust in the frequency domain, for the anisotropic 
model, is the impedance tensor. This is a tensorial extension of the scalar apparent resistivi­
ties for the isotropic model and it is computed from the measured vectorial electromagnetic 
fields (Sims, Bostick & Smith 1971). This complex tensorial function is the reduced field 
data which contains the information about the anisotropic model. The purpose of the 
anisotropic magnetotelluric interpretation is to determine the geo-electrical parameters of 
the model given the values of the impedance tensor elements for various frequencies. 

So far the only means for the anisotropic magnetotelluric interpretations has been the 
forward computation of the impedance tensor for anisotropic models. This problem was 
treated by several investigators (e.g. O'Brien & Morrison 1967; Loewenthal & Landisman 
1973; Abramovici 1974; Shoham & Loewenthal 1976). 

The anisotropic magnetotelluric inversion presented here makes use of the analytical 
expressions for the partial derivatives of the impedance tensor components with respect to 
the anisotropic model parameters (Abramovici, Landisman & Shoham 1976): 

This procedure is based upon the generalized linear inverse theory, thoroughly developed 
and discussed by Backus & Gilbert (1967, 1968, 1970). They give a variety of seismological 
examples as well as an approximate treatment of the non-linear problem. A briefer and lucid 
discussion of the generalized inverse theory is presented by Parker (1971,1972). For discrete 
models which are characterized by a fmite number of parameters the generalized inverse 
theory is described in two fundamental works by Jackson (1972) and Wiggins (1972). These 
works rely upon the generalized inverse of an arbitrary matrix as presented by Lanczos 
(1958, 1961) and Penrose (1955). In the present discussion it is assumed that the reader is 
familiar with Jackson's (1972) work. 

The linear generalized inversion has been applied to several geophysical problems. Madden 
(1972) and Jupp & Vozoff (1975) have treated the isotropic magnetotelluric problem. The 
inversion of vertical magnetic dipole data measured over isotropic model is described by 
Glenn et al. (1973). Inman, Ryu & Ward (1973) use the method to invert direct current 
resistivity data for one-dimensional isotropic models. 

The application of the generalized inversion to the anisotropic magnetoteIluric problem 
presents several advantages. Quite frequently the interpreter is faced by the need to invert 
noisy data which might be insufficient to completely resolve all the parameters defining a 
model. This measured data might include some inconsistencies as well as redundancies. 
Furthermore, the nature of the specific inversion problem might be non-unique. Even in 
cases where theoretical uniqueness has been established, the inversion of real measured 
data can exhibit a certain degree of non-uniqueness. The generalized inversion approach 
enables us to determine some of the model parameters with a finite resolving power from 
any set of pertinent geophysical data, even for rather ill-posed situations. 

Once a proper linearization of the problem is achieved the method seems to suit tIus 
delicate task. It is based upon the generalized inverse of an arbitrary matrix which always 
exists. Consequently the method does not fall apart even for very severe situations. As 
shown by Jackson (1972) the generalized inversion reduces to the classical least-squares 
type solution for a well posed case. It continues to work, however, in other cases too, having 
some desirable stable properties such as giving the solution vector with the smallest norm. 

Furthermore, the generalized inversion approach provides the interpreter with some very 
important and useful means for evaluations: 

(a) The information matrix, S (Wiggins 1972) gives the relative importance of the various 
measurements for the resolution of the specific model, as well as their interdependencies. 
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(b) The resolution matrix, R (Jackson 1972) shows the relative resolving power of the 
data set achieved for each of the model's parameters, as well as their interdependencies. 

(c) It gives an insight into the nature of the equivalence problem affecting the inversion, 
through a global formulation for the entire parameter-set. 

(d) The double eigensystem (Inman et al. 1973) demonstrates which combination of 
data affects most a specific combination of parameters, and the relative importance of these 
effects. 

(e) It shows the trade-off nature between resolution and accumulation of errors and 
measures it quantitatively. 

All of this very important information can be used for designing the optimal geophysical 
survey aimed at obtaining the mosC slgnificant information for achieving a specific target, 
and for the evaluation of the resolving power of already measured data. 

2 Formulation of the problem 

The model considered is an anisotropic laterally homogeneous one which consists of a stack 
of n - 1 layers overlaying a half space. The conductivity of each layer as well as the conduc­
tivity of the half space is a 3 x 3 symmetric and positive definite tensor. As has been shown 
by Abramovici (I974) this tensor may be reduced for a laterally homogeneous model to a 
2 x 2 symmetric tensor. Hence the conductivity parameters of the model are a<j1, a~~ and 
aJJ, for each layer (Fig. 1). The spatial parameters are defined in the same special coordinate 
system used by Abramovici et al. (1976), with its origin located at the top of the half space 
and the z axis directed upwards (Fig. 1). Thus, the space parameters are the n - 2 distances 
from the origin of each of the interfaces Zj , and the total distance to the free surface H. All 
the quantities are non-dimensional and scaled in the same manner as described by 
Abramovici et al. (1976). The described N = 4n - 1 parameters form the parameter vector 
x in the following order: 

(X 
- aU)' X - aU)' x - aU)' J' - 0 1 l' - 1 

4j+l~ X~'._4j+2- xy, 4:+3-_ YY ' - , , ... ,' 

X4j+4-Zj, J-I,2, ... ,n - 2, x4-H. 
(2.1) 
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Z, 
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Zo :0 ;x .. 
0-(0) 0-(0) (0) 

HALF SPACE xx xy o-yy 

Figure 1. The anisotropic model paIameters and the coordinates sys tem. 
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The reduced magnetotelluric data is the impedance tensor for various frequencies; 

_lZIl(Wi) ZdWi

J
.._ 

Z( Wi) - , I - 1, ... , 1 
Z21(Wt) Z22(Wi) 

(2.2) 

For laterally homogeneous models with symmetric conductivity tensors, as is the case here, 
the impedance tensor components satisfy 

ZIl(Wi) + Z22(Wi) = 0; i = 1, ... , I. (2.3) 

As demonstrated by several investigators (e.g. Shoham & Loewenthal 1975) equation (2.3) 
holds true for any anisotropic model with symmetric conductivity tensors regardless of the 
principal system orientation for each layer. 

The diagonal elements can be brought to zero by rotation but the rotation angle is 
frequency-dependent in general, and consequently the data consists of three complex values 
or six real values for each frequency. The data can be represented either in a Cartesian form 
using the real and the imaginary parts of the complex values (which are dependent for a 
minimum phase function), or in polar form using the tensor apparent resistivities Ppq( Wi) 
and phases ifJpq( Wi) 

1m (Zpq(Wi)] 
ifJpq (Wi) = arc tan . . 

Re(Zpq(Wi)] 
(2.4) 

p, q = 1,2; i = 1, ... ,1 

Note that neither Ppq nor ifJpq form a tensor. As demonstrated by Abramovici et al. (1976), 
although these are two algebraically equivalent representations they do not necessarily have 
the same resolving power. 

Table I. The data vector y and the four data·modes. 
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Dealing with field data it is well known that the apparent resistivities are noisier than the 
phases for some sites and the opposite may be true in other occasions. Since we want to 
enable the magnetotelluric interpreter to use the data wWch is the quietest and which 
resolves the desired model best, the inversion has been developed and programmed to 
operate in four data-modes. The data forms an M-component real data vector y. The data­
modes and the order of the data vector components are summarized in Table 1. 

The data vector components Yi are non-linear functions of the parameter vector co~- . 
ponents XI 

(2.5) 

Following Jackson (1972) the forward problem can be linearized using Taylor expansion and 
ignoring second and Wgher order terms, about some initial parameter vector Xo. Doing so we 
get a linear relationsWp 

.6y=A . .6x 

where A is an M x N matrix with elements 

i=l, ... ,M 

j=1, ... ,N 

and 

(

.6X = x - Xo 

.6y = Y - y(xo)-

(2.6) 

(2.7) 

(2.8) 

The elements of the matrix A are the first order partial derivatives of the data computed 
at the initial parameter set Xo. Using the expressions for the derivatives developed by 
Abramovici et al. (1976), we get the derivatives for the first, Cartesian, data mode. In order 
to compute the first order partial derivatives for the other, polar, data modes the following 
relations are used 

(2.9) 

(2.1 0) 

3 Iterative generalized inversion 

The general first-order approximation equation (2.6) is a system of linear equations relating 
the generally unknown parameter-differences vector .6x to the generally known data differ­
ences vector .6y. If the functional relation (2.5) between the parameters and the data were 
linear, noise free, M = N and the matrix A non-singular, the problem could be readily solved 
by multiplying both sides of equation (2.5) by the inverse A-I. In general these conditions 
are not satisfied for the problem we want to treat here. M is not necessarily equal to N, 
commonly we have M>N which means that the system is overconstrained and might be 
inconsistent. The rank p of the system matrix may be smaller than min {M, N}, i.e. the 
system is underdetermined at the same time. The data we have contain some noise and the 
relation (2.5) for magnetotellurics is non-linear. Consequently, one has to use sometWng 
different than the usual inverse matrix A-I, which does not exist here, such as the generalized 
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inverse of a matrix (Lanczos 1958,1961) which is denoted by H 

H= VA-IUT (3.1) 

Kl is the inverse of the diagonal matrix A having as diagonal elements the q ordered largest 
common non-zero eigenvalues of AT A and AA T. The columns of V are the corresponding q 
Nth order eigenvectors of AT A while U is similarly constructed using the corresponding q 
Mth order eigenvectors of AA T. Clearly q cannot be larger than p. 

Using this unique generalized inverse, a unique estimate of the unknown parameter differ­
ences vector can be computed 

f1x =H Ay. (3.2) 

This equation is used to define an iterative process in order to successively improve on an 
initial model parameter vector Xl . 
AXi =H AYi; 

(
ixi = xi+l - Xi; 

Ay'i = Yo - Yi 

i = 1,2, ... , (3.3) 

i = 1,2, ... (3.4) 

Yo is the measured data vector. The process is continued until the relative L2 norm satisfies 

I/ixill 
--<e. 
IIx;!1 

The quality of fit is determined from 

(3.5) 

(3.6) 

Both of these criteria are needed in order to evaluate the process. "''bile (3.5) is us.: j here 
as a termination criterion, (3.6) serves as a quality measure. It should be noted that since 
our problem is non-linear, the fmal model might depend on the initial one. 

Combining equations (2.6) and (3.3) we get 

f1x == HA f1x == R f1x (3.7) 

R is called the resolution matrix (Jackson 1972). Its rows are cross-correlation windows 
through which the exact solution space is mapped into the unique estimate £X. The closer R 
is to the identity matrix of order N the better resolution in A'X we get from the data. 

Equation (3.7) can be interpreted in terms of the equivalence phenomenon. Since the 
rows of R determine the relative contributions of f1x elements to the estimate of each 
specific component of 11'X they actually represent parameters interdependencies. These inter­
dependencies are responsi~ for the eqUivalence phenomenon in magnetotelluric soundings, 
as well as in direct current wundings. It follows that R provides, through equation (3.7) a 
general way to represent globally the equivalence family of a certain parameter set represent­
ing a geo-electrical model. Usually this term is used in connection with parameters which 
belong to the same layer, which is a partial and special case of the global equivalence 
described in (3.7) . 

. A certain number, q of eigenvalues and eigenvectors is used to compute H in each 
iterative step. In many cases this number should be taken smaller than its maximum value p. 
The reason is to avoid excessive amplification of data noise due to some possibly small 
eigenvalues which cause large variance in £X and inaccuracies caused by numerical errors 
in the computation of these small eigenvalues. This number q, called the effective number of 
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degrees of freedom, may be optimally determined using the following approaches: (1) If one 
has a good idea about the variances in the data, a trade-off between the global variance of 
the problem and the deviation of R from the identity matrix, both as a function of q is used 
(Jackson 1972; Abramovici et aZ. 1976). (2) A threshold for the minimal eigenvalue is set, 
and only q eigenvalues with absolute values (normalized by the largest eigenvalue) above 
this threshold are considered in computing the generalized inverse. 

The resolution matrix deviates from the identity matrix as q gets smaller. Consequently q, 
or the relative effective number of degrees of freedom q/N, is an appropriate relative 
measure of the degree of equivalence affecting a generalized inversion stage which relates 
specific data to a certain parameter set. Left multiplying equation (3.2) by A we get 

l1y == A £X = AH Ay == S Ay (3.8) 

S is the information matrix (Wiggins 1972). The rows of S are cross-correlation windows 
through which we get the elements of the estimated Ay defined here, from the ,data differ­
ence vector Ay. S deviates from the Mth order identity matrix as q gets smaller. Obviously if 
M> N, S cannot be an identity matrix. Interdependencies in the data are represented by the 
rows of S. Thus by examining S it is possible to find groups of data which support each 
other. The magnitudes of the elements of S reflect the relative importance of the corre­
sponding data in the inversion and therefore S can assist in deciding which data are essential 
and which convey relatively less important information concerning a certain parameter set, 
representing a geoelectrical model. 

An initial model is required in order to start the iterative process defined in equations 
(3.3) and (3.4). As was mentioned before, the final model might depend on the initial one. 

We treat the anisotropic first guess problem by approximately separating it into a couple 
of isotropic similar ones. TItis approach has two major advantages. First, the isotropic first 
guess problem is relatively simpler, involving less parameters to guess. Second, in most real 
situations the two scalar isotropic problems are not totally independent since at least some 
of the interfaces share the same z coordinate value. TIlerefore we can infer from one first 
guess to another, improving the quality of both of them. 

The raw data for the anisotropic first guess is the unrotated impedance tensor as function 
of frequency, ;;'~pressed in the measuring coordinates, equation (2.2). The elements of this 
tensor satisfy equations (2.3). For each frequency there is a coordinate system, in which 
both diagonal elements of the impedance tensor vanish. Tltis frequency-dependent system of 
coordinates is called the principal system and is related to the measuring coordinates through 
a rotation in the x-y plane. Since equation (2.3) is satisfied also by the magnetotelluric 
impedance tensor for a two-dimensional isotropic model, we shall analogously call the direc­
tion of one of the axes the strike. This strike direction is frequency dependent unless there is 
a coordinate system in which all the model's conductivity tensors are diagonal, which is a 
special case for which the anisotropic problem can be completely separated into two 
isotropic ones. In the general case an optimal, global strike direction can be found for the 
entire data set by finding a rotation angle a to satisfy 

I 
\}J(a) == L IZ ll(w;,a)1 2 = minimum. (3.9) 

;=1 

For the special case mentioned above tlus ntinimum is zero. Applying rotation transforma­
tions to the impedance tensor, differentiating \}J(a) and using the necessary condition for a 
minimum 

o\}J(a) 
--=0 

oa 
(3.10) 
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we get an expression for this optimal rotation angle 

(Lt [R 11(R 12 + R 21 ) + 111 (112 + 121)]~ 
a = 1/4 arc tan =-: _________________ _=_ 

[ttl W4 [(R12 + R21)2 + (112 + 121)2] - (R~1 + lid}]) 
where 

{
RP~ = Re {Zpq(w;, O)} 

1pq- Im{Zpq(w;,O)} 

i = 1, ... , 1; p, q = 1, 2. 

(3.11) 

(3.12) 

The raw data is rotated through an angle a to this optimal global principal system. The 
generalized inversion process treated here is carried out entirely in this system using the 
transformed impedance tensor as data. 

This rotation, based on minimizing 'lI(a) involving Zl1(w, a) only, is suitable for treating 
data which are known to represent a model which belongs to the class considered here. 
Dealing with general field data it may be necessary to include both diagonal elements of the 
impedance tensor in the definition of 'lI(a), equation (3.9). If the data represent a different 
kind of model, this generalized inversion procedure will yield an anisotropic model that best 
approximates the field data in the least-squares sense. 

Once the global principal system is found and the data transformed to it, we consider two 
separated isotropic prQblems with apparent resistiVities and phases computed from the two 
off-diagonal impedance-tensor elements using equation (2.4). Thus the next stage is to find 
two isotropic initial models, e.g. by using the method described by Patrick & Bostick (1969) 
or through an interactive simple and fast isotropic forward modelling program employing 
trial and error. The initial guess may be further refined using an isotropic inversion. Such a 
method is described by Wu (1968), Patrick & Bostick (I969) and others. We preferred 
to use an isotropic, generalized inversion procedure. This refinement is optional, and has to 
be carried out only if a close enough first guess could not be found using the direct and 
faster means. The two initial isotropic models are merged now into a single anisotropic 
model, in w~ all the conductivity tensors are diagonal. All the interfaces from both 
models are considered. Thus, if no interfaces coincide, the number oflayers in this model is 
equal to the sum of the numbers of layers in each of the two isotropic models and in order 
to avoid electrically insignificant layers or interfaces, some of the layers are combined with 
adjacent ones. The model obtained is taken as the initial anisotropic model. 

Illis model cannot account for the diagonal impedance tensor elements. However, these 
have a minimum value in the global principal system and therefore the initial model may be 
close enough. The logical steps followed in order to get the anisotropic initial model are 
summarized in Fig. 2. 

The next stage consists of K cycles. In each cycle the data tensor has diagonal elements 
becoming gradually closer to the given ones; 

r~Zl1 Z121 (z" ~z"J k=l, ... ,K. 
(3.13) 
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MAGNETOTELLURIC ANISOTROPIC INITIAL MODEL 

ESTIMATION PROCEDURE 

INPUT 

Unrotaled impedance 
tensor data in f--_I 

( Re, rm) mode 

Desired data mode 

PROCESS OUTPUT 

i Rotation angle 7 

f-----'J! Rotated data 7 
L-_____ ~ 

Compute and plot two 
principat apparent 
resistivities and phases 

r--!..!.n---<c Refine? 

y 

Refine initiar models 
using isotropic 
generalized inversions 

Initial anisotropIC model 

Figure 2. Simplified block diagram for initial anisotropic model estimation. 
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The final model obtained after the process converges in step k is used as an initial one 
for the step k + 1. After the last cycle is completed we get the inverted anisotropic model. 

4 Computational and operational considerations 

A computer program which executes the anisotropic generalized inversion was written. The 
Tel-Aviv University CDC-6600 computer was utilized to develop the program and for all 
the computational examples presented in the next section. Special care has been taken' to 
carry out the calculations as accurately as possible. All the forward computations of the 
impedance tensor elements and their various derivatives were done using the analytical ex­
pressions given by Abramovici (1974) and Abramovici et al. (I976), assuring the high 
accuracy which is essential for the derivative-sensitive generalized inversion procedure. 
A crucial stage is the computation of the generalized inverse matrix H of equation (3.1) 
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which involves the solution of two eigensystems in order to compute all the eigenvalues and 
eigenvectors of AA T and A TA. We have examined several procedures and decided to use an 
approach recommended, presented and programmed by Smith et al. (1974) in their 
EISPACK subroutine package which we have found to be the most accurate. 

The computer program can be used in either of two basic operational modes, a forward 
resolution analysis mode and an iterative inversion mode. Each of these modes has a variety 
of options enabling the interpreter to benefit most from the inversion, to optimize it 
according to a specific data set, parameter set and purpose, and to obtain all the pertinent 
information concerning the process and the model which the process can yield. 

In the forward resolution analysis operational mode, the geoelectrical parameters of the 
initial model are used to form the parameter vector x according to equation (2.1). A forward 
computation is then used to calculate the data vector y for the given set of frequencies. The 
program can be terminated at this point if one wishes merely to do forward computation. 
Next, all the derivatives are computed to form the system matric A, equation (2.7). Using this 
matrix the eigenvalues and eigenvectors of AA T and A TA are found and presented graphi­
cally in a fashion similar to the one used by Inman et al. (1973). A desired number of resolu­
tion and information matrices pairs for various numbers of effective degrees of freedom q, 
beginning with its maximum value and going down, is computed. All the matrices are 
normalized to the open interval (-10; 10) and printed, leaving a blank wherever a null value 
occurs for the sake of clarity of presentation. 

This forward resolution analysis is especially valuable if one has some idea concerning the 
model, in order to evaluate the feasibility and the resolving power of a magnetotelluric 
survey f~)f such a model, and in order to optimally design this survey. It is also very helpful 
in the evaluation of a model obtained in the iterative mode. The resolution matrix for the 
effective number q of the degrees of freedom used in most iterations can reveal the relative 
resolution in each of the parameters and the equivalence families affecting the inverted 
model. The information matrix for this q describes the relative importance of the data and 
their interdependencies. The coupled and ordered eigensystems provide a graphical presenta­
tion from which one can tell which combination of data contributes most to the determina­
tion of a specific parameter combination. An idea concerning the noise effect on specific 
parameters may be obtained from the order of tIllS eigensystem and the relative magnitudes 
of the eigenvalues. 

Any number of the follovving three options may be used in the forward resolution 
analysis mode: 

(I) Any of the data-modes as shown in Table 1. 
(2) Any number of parameters may be fixed. A fixed parameter is removed from the 

parameter vector and the corresponding derivatives are not included in the system matrix A. 
This parameter is considered known and is ignored by the process. 

(3) A transformed set of parameters may be used in which the parameters representing 
the diagonal values of the conductivity tensors and the vertical coordinate parameters are 
replaced by their natural logarithms. The corresponding derivatives are transformed 
accordingly. 

In the iterative operational mode an initial parameter vector Xl is formed using the para­
meters of the first guess model. The data vector Yo is formed using the impedance tensor 
data rotated to the global principal system. K cycles of iterative generalized inversion are 
performed as described in the previous section. The termination criterion defined in 
equation (3.5) is employed in each cycle using a desired E. The maximum allowed number of 
iterations in each cycle may be externally set by the user. For evaluation purposes lIi'xtll, 
IIx; II and lillY; II are printed for each iteration as well as x;, Llx;, Yi and Lly;. 
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After all K iterative inversion cycles are completed a.nd a final model is found, a forward 
resolution analysis is performed for this model and the given frequencies. If any of these 
iterative cycles fails to converge - a forward resolution analysis is performed on the initial 
model and the user may benefit from the information provided about this model. 

All the three options described for the forward analysis mode may be used in the iterative 
mode as well. The parameter fixing option is very useful if one has some knowledge about 
the model from other independent sources. In the final model the value of a parameter 
which has been fixed is identical to its value in the initial one. The transformed logarithmic 
parameters option is a way to guarantee the positiveness of those parameters which should 
not become negative (Patrick & Bostick 1969). 

In the iterative mode, any of the following additional options may be used: 

(1) An acceptance test which is performed on the parameter vector after each iteration. 
This test checks for the positiveness of the diagonal elements of each conductivity tensor 
and of the layer thicknesses as well as whether each of the conductivity tensors is positive 
definite. 

(2) The parameter-variations vector elements, fuej may be bounded such that the condi­
tions of the acceptance test described above are not violated. 

Clearly, some of the operational options available in the iterative mode are not inde­
pendent. However, the ability to employ any of them, choosing the ones which are most 
suitable for the specific inversion problem, gives the user considerable flexibility and con­
venience in applying this anisotropic generalized inversion procedure. The main logical steps 
of the anisotropic generalized inversion program are described in Fig. 3. 

5 Computational examples 

In order to check the anisotropic generalized inversion algorithm and the computational 
procedure, we applied them to a number of models, most of them having all the layers 
anisotropic, and some composed of both isotropic and anisotropic layers. All the options 
which have been described in the previous sections and in Fig. 3 have been tested. 

The procedure and the computer program can be used in a multitude of ways, depending 
on the various selections made. Obviously we cannot demonstrate all the possibilities here 
and we shall have to restrict ourselves to some characteristic examples, in order to aid 
possible users of the method. 

The examples shown here are synthetic. In order to further check the method, the 
synthetic data, taken as measured data, were produced using the method of Shoham & 
Loewenthal (1975) which is independent of the forward computation by Abramovici 
(1974), used in the work presented here. In the algorithm by Shoham & Loewenthal (1975) 
the symmetric conductivity tensor of each layer is expressed by its two diagonal elements, 
the principal conductivities, ap), a?), and the angle OJ between the measuring coordinates 
and the principal system of each layer. The synthetic data which is computed by using this 
algorithm is expressed in the measuring coordinates. 

Although the examples we present here are synthetic, they are not unrealistic. In fact the 
parameters of the models treated here were chosen such that they give rotated principal 
apparent resistivities which are similar to both TE and TM modes measured at the Zohar 
magnetotelluric field site (Shoham, Ginzburg & Abramovici, in preparation). 

5.1 EXAMPLE 1 

Model A which is considered in the first example consists of three anisotropic layers over an 

3 
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Figure 3. Simplified block diagram for anisotropic generalized inversion. 
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Table 2. Parameters for model A, related to the measuring coordinates. 

Layer 

HS 
1 
2 
3 

Z/ (m) 

0.0 
20000.0 
22000.0 
23000.0 

Principal conductivities 
(1) (2) 

0/ 0/ 

1.000 2.000 X 10-1 

2.560 X 10-2 1.563 X 10-2 

2.025 X 10- 1 1.225 X 10- 1 

9.000 X 10-2 4.000 X 10- 2 

61 (deg) 

6.0 
20.0 
30.0 

5.0 
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anisotropic half-space. The parameters of this model which were used to compute the syn­
thetic data are given in Table 2. The conductivity values in this table as well as throughout 
this work are in (Qmfl. 

In the first stage the impedance tensor elements as function of frequency are computed 
in the measuring coordinate system. Next a rotation angle of -10.221 degrees is found as 
described in Section 3 using equation (3.11). The impedance tensor data are rot~ted through 
this angle into the global principal system. This is the system in which we shall perform the 
generalized inversion, and in which the global contribution of the diagonal elements of the 
impedance tensor is minimized. The parameters of model A expressed in this principal 
system are given in Table 3. 

In the next step a generalized inversion is performed. The data for the inversion consists 
of the im'pedance tensor elements in (Re, 1m) mode for ten frequencies, equilogarithmically 
spaced: WI = 25.119 cps and WlO = 10-4 cps. This is a common frequency range in magneto­
telluric surveying. The order of the data vector elements is shown in Table 1. The generalized 
inversion is performed in two inversion cycles, i.e. K = 2. The termination criterion of 
equation (3.5) is used with € = 10-5 . For demonstration purposes one parameter, X4, is fixed 
on its true value. As seen from equation (2.1) this parameter represents the total thicknessH 
of the stack oflayers over the half space. 

Three initial models were tried for tlus example, and for all of them the generalized inver­
sion process converged yielding the same final model. The parameters of the first initial 
model are given in Table 4. These parameters are the ones of Table 3 perturbed by some 
± 25 per cent. The second initial model is equal to the first one except for a~q, i = 0, ... , 3, 
which are equal to zero. This second initial model represents one which is obtained by the 
procedure described in Fig. 2. 

Using the initial model as shown in Table 4, the first generalized inversion cycle 
converged after seven iterations, and the second cycle took three iterations to converge. 

Table 3. Model A parameters expressed in the global principal system. 

Layer 

HS 
1 
2 
3 

Zj(m) 

0.0 
20000.0 
22000.0 
23000.0 

9.957 XlO-1 

2.531 X 10-' 
1.933 XlO-1 

8.959 X 10-2 

(I) 
°12 

- 5.872 X 10-' 
1.670 X 10-3 

2.547 XlO- 2 

-4.531 X 10-4 

Table 4. First set of initial parameters for model A inversion. 

Layer zj(m) o(i) (i) 
II Oil 

HS 0.0 1.240 1.040 X 10-1 

1 19000.0 1.900 X 10- 2 2.500 X 10- 3 

2 21500.0 2.300 X 10-1 2.600 X 10-2 

3 23000.0 7.500 X 10- 2 5.400 X 10- 3 

2.043 X 10-1 

1.591 X 10-2 

1.317 XlO-1 

4.041XI0-' 

2.600 X10- 1 

1.300 X 10-2 

1.800 XIO-1 

3.000 X 10-' 
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Table 5. Third set of initial parameters for model A inversion. 

Layer 

HS 
1 
2 
3 

I 
2 
3 
4 
5 
6 
7 
8 
9 

10 
II 
12 
13 
14 
15 
16 
17 
16 
19 
20 
21 
22 
23 
24 
25 

'" 26 
w 27 
'" 28 
'" 29 
=> 30 

31 
32 
33 

~ 34 
"" 35 

36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 

zi(m) (0 
all 

0.0 2.000 
17000.0 1.200 X 10-2 

21000.0 3.600 X 10-1 

23000.0 4.500 X 10-2 

3 3 
3 3 

5 
3 2 1 

3 3 1 
1 8 1·2 1 1-1 

II 2 1 
1·2 2-1 1 1 

1 -17 ·2 2 2 
2 5 4 -1 -1 

1 1·2 5 3 1 ·1 
·1 2 5 3 -1 -1 

4 2 
1 2 3 0-1 1 -1 

1 3 -I 6 2 -1 
·1 2 9 1 

I 9 1 
·1 2 9 I 

-I I 2 2 2 2 
·1 ·1 I 2 2 2 2 

-1 ·1 I 3 2 2 2 
2 4 4 4 

2 4 4 4 
2 4 4 4 

2 4 4 4 
2 4 4 4 

2 4 4 4 
2 4 4 4 

2 4 4 4 
2 4 4 4 

·3 -2 
-3 ·3 

-5 
-5 -3 

·4 ·3-2 
-7 -1 2 

-J -3-1 
·3 ·4 2 -1·1 2 

·8-1 2 -1 2 ., -I 
-I -I ·1 3 -I I-I 

-I ·1 1·6 2-1 ·2 2 
-2 -5 ·3 4 2 

·2 ·5 ·3 3 2 
·2 -5 -2 4 2 

·2 -4 -5 -2 
·1-1 -4 ·6 -I 

-4 -6 -3 
-2 -7 I 

-2 -8 2 
-2 -7 I I 

-2 -I -I -I -I 
-2 -I -I -1 -I 

·3 -I ·1 ·1 ·1 
-I ·2 -3 -J .J 

-I -1 ·3 ·3 -3 
-I -2 ·3 -3 .J 

·2 ·3 ·3 .J 
-2 -3 ·3 -J 

-2 .) ·3 .) 

10 20 30 

-3 

·2 

3 

iO 
i2 

0(0 
» 

2.000 X 10-> 4.000 X 10-1 

1.300 X 10-3 8.000 X 10-3 

6.000 X 10-' 2.700 X10- 1 

-1.000 X 10-4 2.000 X10-> 

·3 
-5 

-j 

3 
5 

-5 ·3 
·4 -3 

·7 
-2 -3 

'J ·4 
·2 -1 2·8 

·1 
-1 ·1 2 
2 ·1 

1 

3 
3 

6 

2-1 
2 

3 

-1 

-1 

-1 
-1 

·1 
·1 

-2 ·2 
-I 1·2 ·1 
3-6 ·2·1 

·5 -4 
·1 2 -5 -4 

-1 -5 ·4 
-3 ·5 -2 

1-2 -3 -6 .-2 
-I 2 -2 ·6 -2 

1 -2 -7 -2 ·1 
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2 
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2 
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2 
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-I ·2 2 

3 .J 
·1 ·3 ·3 

-1 
·3 

-3 -3 
·3 

-3 -3 
I ·1 .) .) 
-I -3 -3 

-I ·3 .) 
-3 ·3 

4 6 4 I 
3 5 4 2 2 

6 8 2 
3 4 4 

3 4 6·2 I I 
2 2 -2 3 

I I 1 I 
I 2 )-J 

-3 7 
I 6 3 -2 -1 

6 4 -2 -1 
7 ) -2 -I 

3 6 3 
4 6 2 

3 6 3 
-2 3 6 1 

-2 2 8 2 
·2 3 6 2 

-I I I I 
-I 2 

·1 2 I 
I 2 

1 2 2 
I 2 2 

2 3 
2 3 

2 ) 

40 50 60 

DATA NUH8lR 

Figure 4. Information matrix for the model of Table 5, (Re, 1m) data mode, q = 14. 

When the second initial model is used the first cycle took eight iterations and the second 
cycle three, before the convergence criterion was satisfied. The final models for both cases 
coincide up to four significant digits in all of their parameters with model A as shown in 
Table 3. 

In order to further test the inversion process a third initial model was tried under the 
same conditions as before. The parameters for this model are shown in Table 5. These para­
meters were obtained by perturbing the ones for the true model A, Table 3, by as much as 
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100 per cent. Even so, the generalized inversion converged again to a final model which coin­
cides with model A up to four significant digits. This time the first cycle took 13 iterations 
to converge and the second cycle required three iterations. 

The data used for the inversion were read by the program with five significant digits and 
hence contained a very small amount of noise. Consequently, we could afford to use a severe 
convergence criterion (e = 10-5

) and a rather liberal threshold criterion of 10-4 in the eigen­
value relative magnitude for the determination of q. Thus, all the iterations in example 1 
were performed using the maximum number of effective degrees of freedom which is 14 in 
this case since one parameter is fixed. One should not expect to find such a nice situation 
when inverting noisier field data. 

The resolution matrix for 14 degrees of freedom is the identity matrix, and the informa­
tion matrix normalized. to the open interval (-10; 10) is shown in Fig. 4. It has several 
interesting features. The two 30 x 30 blocks on the main diagonal represent the real and the 
imaginary parts of the data whereas the off-diagonal blocks represent interdependencies 
between real and imaginary parts. This matrix shows clearly that each data tends to relate 
more closely 'to other data which represent the same impedance tensor elements rather 
than to data which represent other elements. This implies that the different impedance 
tensor elements contain relatively independent information. Hence we are led to an im­
portant conclusion. In order to invert tensorial magnetotelluric data an inversion proce­
dure that makes use of the information included in all of the tensor elements is needed. 
A method which is based merely on any scalar mode, TE or TM, separately, might lack 
essential information . 

For the same model we performed also a two-cycle iterative generalized inversion using 
the (p, ifJ) data mode (Table 1), under the same conditions as before and the initial model of 
Table 4. The convergence was slower, the first cycle required 21 iterations. Most of the 
iterations were done with q = 13. The final model is not as good as the one achieved using 
the (Re, 1m) data mode. The parameters obtained are less accurate especially the half-space 
conductivity tensor elements which are in error of as much as 20 per cent. The nature of the 
resolution achieved in each of the parameters is revealed indeed by the model·evaluations 
means which are given by the generalized inversion. 

1 5 4 -1 

2 4 5 1 

3 -1 9 

5 9 

6 9 

9 

8 9 

9 9 
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11 9 

12 9 

13 9 
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1 2 3 5 6 7 8 9 10 11 12 13 14 15 

Parameter Number 

Figure 5. Resolution matri .... for the model of Table 7, (p, 1/» data mode, q = 13. 
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Figure 6. Last part of the eigensystem for the model of Table 7. 

The resolution matrix for the final model and 13 degrees of freedom is shown in Figure 5. 
It is clearly seen that the conductivity parameters of the half-space are less resolved and 
more interdependent and consequently more affected by the equivalence problem. Another 
representation of the same quality is given by the douhle eigensystem in the forward resolu­
tion analysis for the final model, the last part of which is shown in Fig. 6. 
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Figure 7. Eigenvalue ratio for two data modes. 

A further comparison of the two data modes is demonstrated in Fig. 7 in which IAi/Ad 
from the forward resolution analysis for both fInal models is shown. TIus eigenvalue ratio 
affects the inversion since it controls the data noise amplifIcation as well as the effective 
number of degrees of freedom q determined using either an eigenvalue threshold or trade-off 
curves. It is clearly seen that we are much better off using the (Re, 1m) data mode for this 
model. If the data were noisier we could use eigenvalue threshold which is 1.5 orders of 
magnitude higher than the 10-4 used here and still have q = 14 for the (Re, 1m) data mode 
but only q = 9 for the (p, rf;) data mode. It should be noted, however, that this conclusion 
holds true only for the final models, and the situation may be somewhat different for each 
of the intermediate models in the various iterative inversion steps. 

We see that the (p, rf;) data mode is not as strong in resolving model A parameters as the 
(Re, 1m) one, which is in agreement with the observation made on the eigenvalues for 
another model (Abramovici et al. 1976). We do not claim, however, that the (Re, Im) data 
mode is better for any data and any model but only that different data modes differ in their 
resolving power with respect to various models, and therefore a forward resolution analysis 
should be performed for each case individually. 

5.2 EXAMPLE 2 

TIle use of the magnetotelluric anisotropic inversion is demonstrated here for a model which 
has one isotropic layer and two anisotropic layers. This model is similar to model A and was 
constructed by using the same parameters as in Table 2 for layers 2, 3 and for the half-space, 
and changing layer 1 into an isotropic one with conductivity of 2.560 x 1O-2(Dmrl. We 
used as an initial model for the inversion the same one as in Table 4, taking oW::: 0, 
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j = 0, ... , 3 as if we do not know about the existence of an isotropic layer. The parameters 
of the fmal model obtained by the generalized inversion performed under the same con­
ditions as before agreed with the exact model up to four significant digits. 

All the iterations were performed using q = 13 since the smallest eigenvalue was 
practically zero. Thls is how the isotropic layer reveals its existence. Although the initial 
model had anisotropic conductivities for layer 1, the process came up with two values for the 
diagonal elements of the conductivity tensor which agreed up to four digits 

aW = 2.5601 x 10-2 and aW = 2.5599 x 10-1
• 

5.3 EXAMPLE 3 

In the two previous examples the initial model had the same number of layers as the exact 
model. This number is not known generally. In this examplE; the behaviour of the generalized 
inversion for a case in which the initial model has a 'wrong' number of layers is demon­
strated. We consider again model A, for which the exact parameters in the principal system 
are shown in Table 3, and (Re, 1m) data mode. The initial model used is given in Table 6. 
This model is actually the one of Table 4, with an extra layer whlch was added to it. It is a 
low-conductivity layer, whlch makes it even more difficult for magnetotelluric inversion. 

The process which was performed with same conditions as in example 1 converged slower 
than in the other examples. The first cycle took 30 iterations and the second four before 
convergence was attained. The final model is shown in Table 7. 

It is clearly seen that the process actually got rid of the extra layer by equalizing the con­
ductivities on both sides of the interface at z 1 and thus making thls interface insignificant. 
Tlus is one way in wluch the generalized inversion is overcoming an initial model with too 
many layers. In some other cases the process may yield an insignificant layer by maldng it 
electrically very thin. 

The generalized inversion conveyed the information about the final model through its 
evaluation means. Most of the iterations were done with q = 17. The resolution matrix 
normalized to the open interval (-10; 10) for 17 degrees of freedom is diagonal. All of the 
diagonal clements are equal to 9 except the one corresponding to Xs (i.e. z 1)' which is equal 
zero classifying therefore tIus parameter is insignificant. A similar information is revealed by 
the eigensystem: Xs is represented only in VIS which belongs to the smallest eigenvalue. 

Table 6. Initial model for example 4. 

Layer zj(m) a(i) 
II 

HS 0.0 1.240 
1 19000.0 1.900X 10- 2 

2 20000.0 1.000X 10- 3 

3 21500.0 2.300XI0 -I 
4 23000.0 7.500X 10-2 

Table 7. hna! model for example 4. 

Layer zi(m) (i) 
all 

HS 0.0 9.956 X 10-1 

1 3918.0 2.543 x 10- 2 

2 20000.0 2.531 X 10- 2 

3 22000.0 1.933 X 10- 1 

4 23000.0 8.959 X 10- 2 

(i) 
a" 

1.040 X 10-1 

2.500 X 10- 3 

1.000 X 10--
2.600 X 10- 2 

5.400 X 10- 3 

(i) 
a" 

-5.872 X 10- 2 

1.671 X 10- 3 

1.670 X 10- 3 

2.547 X 10- 2 

-4.531 X 10- 3 

(i) 
all 

2.600 X 10-1 

1.300 X 10- 2 

2.000 X 10-3 

1.800 X 10-1 

3.000 X 10-2 

2.043 X 10-1 

1.590 X 10-2 

1.591 X 10- 2 

1.317 X 10-1 

4.041 X 10-' 
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Conclusions 

Based on the examples shown here we are certain that the presented generalized inverse 
procedure is able to produce geophysically significant anisotropic models, and to charac­
terize their global significance. The iterative process involved is quite stable and the 
computer-time is not excessively high. It may be that in some cases it will be necessary to 
re-run the program several times after examining all the information in the eigenvectors, 
resolution matrix, etc, for every stage. 
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