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ABSTRACT

Andrews, D.J., 1975. A numerical investigation of the thermal state of the earth’s mantle.
Tectonophysics, 25:177—186.

An idealized convecting mantle with internal heat generation and viscosity dependent
on lemperature and pressure is examined with numerical calculations. Temperature and
viscosity are coupled and self-regulating in the quasi-steady solutions, The lack of any ten-
deney for upwelling flow to constrict itself to narrow channels argues against the existence
of plumes, Unsteadiness is an essential feature of mantle convection, not only for mixing
at large Rayleigh numbers, but also to prevent the flow from being impeded by continuous

rigid regians,

Since the advent of the theory of plate tectonics, it has bzcome morve evi-
dent that the thermal state of the earth’s interior must be influenced by mass
flow in the mantle. Earlier theoretical work, taking into account heat trans-
fer by conduction and radiation diffusion alone (MacDonald, 1959; Clark
and Ringwood, 1964) is attractive for its relative simplicity and for its well-
determined solutions. However, to attempt te be realistic, one must enter in-
to the more ambiguous calculations of convection, with viscosity dependent
on temperature and pressure., McKenzie et al. (1974) have thoroughly inves-
tigated models with constant viscosity, and Houston and DeBremaecker (in
press) have calculated models with temperature-dependent viscosity. In both
these investigations it was assumed that the seismic discontinuity at 700 km
depth is a barrier to convection.

Radioactive heat generation and a functional dependence of viscosity on
temperature and pressure are prescribed as part of the input to these calcu-
lations, Quasi-steady temperature and viscosity fields are obtained as output.
Such models can exhibit the feature found by Tozer (1970) that temperature
and viscosity are coupled together and assume values that allow the transport
out of heat at the rate that it is generated. The question of whether there is a
limit on the depth of convective flow is determined in the same self-regulating
manner by the pressure-dependence of viscosity.
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1f a substantial part of the heat flowing out of the earth’s surface originates
not in the crust but throughout the mantle or core, then the mantle is highly
unstable. If one accepts a thermal conductivity not sensitive to temperature
(Schatz and Simmons, 1972) and a uniform viscosity of 1022 poise deter-
mined from glacial rebound (O’Connell, 1971) then the Rayleigh number {or
an internally heated system (Roberts, 1967) for the mantle as a whole is
greater than 10%, With MacDonald’s estimate of thermal conductivity it is re-
duced one order of magnitude, With a Rayleigh number this large one cannol
expect convection to be steady. The unsteadiness will not appear in the form
of turbulence, but rather as shifting patterns of large-scale eddies. Lithospher-
ic plates are part of the overall circulation, Norman Sleep (personal communi-
cation, 1970) has emphasized that the nonsteady pattern of surface plates,
with changing distances from ridges to trenches, obviously implies nonsteady
circulation within the mantle.

The numerical calculations are time-dependent. We seek to approach quasi-
steady solutions, in which horizontal averages of temperature are steady. In
this search for a self-regulating mantle some idealizations are made. A uni-
form value of radioactive heat generation of 107 1% cal. cm™2 sec™! is as-
sumed throughout the mantle, This rate of total heat generation equals the
total heat flow at the earth’s surface. The calculations are two-dimensional.
If a spherical sector of the mantle, 2900 km deep, is flattened, keeping the
same volume beneath a unit area of surface, the depth becomes 1800 km, The
calculational region is chosen to be a square 1800 km on a side. Heat flow at
the bottom boundary is zero. Phase changes are ignored, and uniform com-
position is assumed.

In a steady state, surface heat flow must equal the internal heat generation.
By the principle of conservation of energy, heat from viscous dissipation can-
not appear in the overall energy balance. Viscous heating, which might be im-
portant locally, is compensated by adiabatic temperature changes throughout
the convecting volume. (See the Appendix.) In this work both viscous heating
and adiabatic temperature changes are ignored. Adiabatic temperature changes
with depth are approximated by superimposing on the temperature solution
a gradient of 0.43 deg/km. In other respects the equations used were the same
as in Andrews (1972).

The first calculation was naively attempted with a small constant value of
thermal conductivity, The solution was highly unsteady, and would have re-
quired an inordinate amount of computer time to approach a quasi-steady
state, FFor that reason the specification of conductivity was changed to be:

K=a+bT3

where T is absolute temperature and the coefficients are:
a=6-1073 cal.em™ 'sec ldeg !

b=5-10"12 cal.em 'sec ldeg™*

This function closely approximates MacDonald’s function.
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Viscosity is specified as:
1=1, exp [(E' +PV*)/RT]

when 7ng is chosen to give n = 3 + 102! poise at 200 km depth if 7= 1673 °K
(1400 °C). The choice of n, was the most arbitrary of this work. Recently
published estimates of the effective viscosity of olivine at 1400 °C, 70 kbar,
and shear stress of 10 bars range from 3 - 1023 poise (Stocker and Ashby,
1973) to 102° poise (Kirby and Raleigh, 1973). The activation energy
adopted:

E* =100 kcal/g-atom

is in the mid-range of published estimates (Gordon, 1965; Goetze, 1971;
Weertman, 1970; Stocker and Ashby, 1973). Two different values of activation
volume are considered, V* =5 cm?/g-atom and V* = 6 cm?/g-atom, both near
the lower end of the range of published estimates. To avoid numerical diffi-
culties an upper limit on viscosity of 5 - 1024 poise was imposed.

Other physical parameters are:

density po = 3.4 g/em?
acceleration of gravity g =990 cm/sec?

thermal expansivity o« =3-107° deg?

heat capacity ¢, = 0.311 cal.g™ ! deg™!

The lithosphere is included in the calculation, for the variable viscosity al-
lows it to be considered as part of the single fluid. However, it is important
to account for deformation of the lithosphere by earthquakes in an approx-
imate manner. A change of strain of 3 - 10~* in a major earthquake with a
repeat time of 100 years gives an average strain rate of 107*% sec™, This
strain rate occurs only if stress is large enough to cause earthquakes — let us
say 1 kilobar. Then the effective viscosity is 1022 poise, much smaller than
the actual viscosity of a cool plate, and it can have a significant effect on the
flow. The effective viscosity is highly nonlinear, for it does not allow shear
stress to rise above 1 kilobar, Therefore, a yield stress of 1 kilobar is imposed
in the numerical calculation.

The temperature field at the start consisted of a small horizontal temper-
ature gradient designed to start convection superimposed on an adiabatic tem-
perature field. An adiabatic temperature gradient is unstable in the case of in-
ternal heating.

In order to reach a quasi-steady state, the calculation was run for about
3109 years. The calculation was done in stages of about 100 million years,
and the output was examined after each stage, before restarting the computer
calculation, Some qualitative observations of the unsteady solution may be
informative,

The magnitude of the fluid velocity never exceeded 10 cm/year. After an
initial transient, there was no tendency for upwelling to be concentrated in a
narrow plume, and no tendency for any upwelling to remain in the same lo-
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cation. These observations argue against the plume hypothesis (Morgan, 1972
due to thermal effects alone. A chemical plume is possible, but it cannot be
expected to remain in the same location.

After conductivity was increased midway in the calculation, the solution be-
came smoother, and temperature in the lower mantle decreased slowly, changing
200 degrees in 10° years, Fluid velocities in the upper mantle changed little
with the change in conductivity, remaining in the range 1/2—2 cm/year. This
confirms the conclusion of Tozer (1965) that velocity is insensitive to con-
ductivity.

The unsteadiness of the convective flow never manifested itself as turbu-
lence or small-scale eddies, but rather as a shifting of the pattern of large-scale
eddies at a velocity comparable to the fluid velocity.

The one stable element of the flow was the down-going lithosphere, which
never left the boundary of the calculational region. Although it warms up
somewhat during its descent, it cools neighboring material sufficiently to form

reflection for both temperature and stream function, for this is the only rea-
sonable prescription to use if an overall energy balance is to be obtained. Un-
fortunately, this means that the down-going slab has a double thickness and
warms up only a quarter as rapidly as it should. After the down-going slab
was established, a perturbation of the solution could not change its location.

Calculations were run until horizontal averages of temperature were steady.
After such a quasi-steady state was reached for the case V* = 5 cm?3/g-atom, a
calculation was started with V* = 6 cm? /g-atom, starting from that solution.
A period of 1200 m.y. was required to reach a new quasi-steady state.
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Fig. 1. Isotherms are shown for quasi-steady solutions with two different values of acti-
vation volume. Both the right and left boundaries are planes of reflection.
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Fig. 2. Streamlines for the two cases shown in Fig. 1. The counter eddies in the upwelling
region on the right in each case are not steady features,

Quasi-steady temperature contours for the two cases are shown in Fig. 1.
The cold down-going slab is seen on the left side in each case, and new mate-
rial is being added to the surface plate on the right. Temperature in the lower
mantle is higher for the case V* = 6 cm?® /g-atom, and there is a larger temper-
ature gradient in the upper mantle,

Stream function for the two cases is shown in Fig. 2, using the same con-
tour interval between streamlines in each case. Velocity in the upper mantle
is larger in the case V* = 6 cm? /g-atom because of the larger temperature
gradient. Flow in the upper mantle is not steady. In both solutions shown
there is a counter eddy under the ridge. This counter eddy shifts position
as time proceeds, so that flow under the ridge does not remain in the same
direction,

The velocity of the surface plate and down-going slab is smaller in the case
V* =6 cm? /g-atom, despite larger velocity in the asthenosphere. The expla-
nation may be found from the viscosity contours plotted in Fig. 3. The mate-
rial of the down-going slab and its surroundings is cool and has a high viscosity.
It extends down to the lower mantle and joins high-viscosity material there.
The down-going slab is impeded by this continuous cool rigid region. With a
larger activation volume, viscosity is larger in the lower mantle, and the veloc-
ity of the surface plate is smaller.

Regions in which the yield stress is reached are stippled in Fig. 3.

Yielding occurs where the plate bends at the subduction zone, as expected.
Yielding also occurs in the lower mantle in the down-going slab and the cool ma-
terial around it. The slab is constrained by the boundary of the calculational
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Fig. 3. Viscosity contours for the two cases shown in Fig. 1. The stippled areas are at the
yield stress of 1 kilobar,

region to continue going down in the same place at all times. Therefore a cool
rigid pillar standing on the bottom boundary is formed.

Temperature averaged horizontally is plotted as a function of depth in
Fig, 4, The dashed line in the figure shows the adiabatic temperature gradient.
The temperature gradient found in both cases is subadiabatic, as is to be ex-
pected for an internally heated fluid (McKenzie et al., 1974). In Fig. 4 the
horizontal harmonic mean of viscosity is also plotted as a function of depth.
The curve labelled 5 is for the case V* = 5 cm? /g-atom. When the activation
volume was changed to V* = 6 cm? /g-atom, viscosity jumped to the dashed
curve. The curve labelled 6is the horizontal harmonic mean of viscosity aftera
new quasi-steady temperature field was established. The self-regulating feature of
a convecting system with a variable viscosity is evident here, Limitations of
computer time prevented examination of larger values of V*, for which there
might be a natural lower limit to convection,

It is clear from these solutions that subduction that remains at one loca-
tion is not the most favored mode of flow. If the subduction zone could
migrate in the calculation, then old subducted material would not impede
continuing subduction, and larger plate velocities would result. Since the flow
is confined in a box in this calculation, the subduction zone does not migrate.
The horizontal average of the temperature field found under this constraint
is an upper limit on results expected from less constrained cases, in which
flow velocities will be larger.
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Fig, 4. Left, Horizontal average of tempexatule as a function of depth for activation vol-
ume equal to 6 cn13/g atom and 6 em® /g-atom. The dashed line shows the adiabatic gra-
dient,

Right. Horizontal harmonic mean of viscosity for the two quasi-steady solutions (solid
cwrves). Viscosity calculated with V* = 6 em3/g-atom with the temperature solution for
V' = 5 em3/g-atom is shown as a dashed line to indicate sensmwtv to this parameter and
the self-regulating feature of the quasi-steady solutions.

CONCLUSIONS

This work provides an example of the approach required for a theoretical
investigation of the thermal state of the earth’s mantle.

The mantle is unstable enough that it is unlikely that a compositional strat-
ification has been established. Therefore a depth limit for convection will
be determined by pressure-dependence of viscosity. The entire depth of the
mantle will be a self-regulating system.

Viscosity increases with depth in the quasi-steady solutions, and would in-
crease even more rapidly with a larger activation volume, contrary to conclu-
sions drawn from glacial rebound data.

Unsteadiness is an essential feature of convective flow in the mantle. It is
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required, not only by the large Rayleigh number of the warmer part of the
flow, but also as a mechanism to mix and reduce the rigidity of the cooler
portion of the mantle.
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APPENDIX
Viscous dissipation in a convecting system

For any velocity field in a viscous fluid the rate of heat generation per unit volume due
to viscous dissipation is positive definite, and its integral over the fluid volume is nonzero,
The principle of conservation of energy in a naturally convecting system in steady state
requires that heat flowing out of the fluid equals heat {lowing into the fluid plus radio-
active heat generated within, Viscous heating cannot contribute to the overall energy
balance. The paradox is resolved if the convecting fluid is recognized as a heat engine doing
work upon itself (deffreys, 1930, 1956). Then the viscous dissipation integrated over the
volume of the fluid must equal the work of thermal expansion integrated over the fluid,
and this work must be derived from part of the heat {lowing through the fluid. This con-
clusion, which must hold in general, will be illustrated in the Boussinesq approximation,

In the Boussinesq approximation the velocity field is required to be incompressible,
but density changes due to thermal expansion are taken into account in the force balance.
The Boussinesq approximation does not conserve mass locally, so it is not surprising that
paradoxes arise in regard to conservation of energy. Densily Is taken to be:

p=po —poatT
Hydrostatic pressure due to the constant reference density:

P=pogy
is subtracted from the stress tensor, leaving stress components of a smaller order of mag-

nitude.
In the general case let u; be the velocity vector of the fluid and gy; be the stress tensor

arising from an arbitrary rheology. Summation is implied over repeated subscripts, and
a subscript following a comma indicates differentiation with respect to that coordinate,
The rate of change of internal energy of a volume element due to mechanical work is

stress times strain rate, and its volume integral can be related to other work integrals as

follows:
.r“i,jU,'j dv = f(u,~ Oif)J' dv — fu,~ Gijj dv
= fu; 05 dS; + fp giu; AV (1)

The first term on the right-hand side of the equation is work done at the boundaries, and
is assumed to be zero. Inertial force is negligible for flow in the earth, so the force density
from the stress tensor is balanced by the gravitational body force:

Uijj =P 8i

Then the second term on the right is the rate of change of gravitational potential energy, and

is zevo for a steady closed circulation, Therefore the left-hand side of the equation, the in-
ternal work done in the fluid, is zero. The shear contribution to the integral (which is pos-
itive for a viscous fluid) must be cancelled by the dilatational contribution.

The Boussinesq approximation violates these general considerations, and some careful
consideration is needed to conserve energy. For an incompressible fluid the left-hand side
of eq. 1 is the total viscous dissipation, Wp, and is nonzero. The second term on the right-

hand side of eq. 1 is also nonzero. It is a fictitious net work done by the buoyant force:
‘VB =—Po Qg; IT u; dV

and is positive, since temperature is larger where velocity is opposite to the direction of
gravity. An integration by parts, as in eq. 1, yields the result:

‘VD = LVB

in the Boussinesq approximation.
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While maintaining the approximation of incompressibility in the determination of the
velocity field, we must not neglect the product of a small density change times the large
hydrostatic pressure in the energy balance. The work due to adiabatic density change is:

WA = fP Ll,"i dv
In the Boussinesq approximation:

T
;= ouy T,i + ozé?

The integral of the time derivative of temperature will drop out if horizontal averages of
temperature are steady. Then:
Wa =pogafyuT;dV
After making the approximation:
wT; % T);
one can integrate by parts and find:
WA = ‘VB = IVD

Therefore energy can be conserved in the Boussinesq approximation if adiabatic work
is taken into account in the determination of temperature. A complete thermodynamic
description of the heat engine requires another thermal variable, such as entropy or a
thermodynamic potential. Elimination of all thermal variables except temperature yields
terms representing adiabatic temperature changes with depth and also adiabatic temper-
ature changes at constant depth as the fluid gains or loses heat (McKenzie, 1968). The
latter term, integrated over the volume, must be equal and opposite to the integrated
teinperature increase from viscous heating. The differential equation is developed by

Turcotte et al, (1974).
The relative importance of all these work terms is measured by the dimensionless

number:
agh
p=2£
cp

where & is the depth of the fluid (Turcotte et al., 1974). For a depth of 2000 km in the
earth’s mantle, D 2 0.5. Using the definition of Griineisen’s parameter I', an equivalent

expression can be found:

pgh
k

where kg is the isentropic bulk modulus. Griineisen’s parameter for any material is of
order one, Therefore, D, which has been called the dissipation number, is described more
graphically as the compression ratio of the heat engine,

D=T

§

Tectonopl:,
2 Elsevier ¢

ON THE i
FOR THI.

A BOTTA}

Istituto Gec
Istituto Inte

{Submitted

ABSTRAC

Bottari, A. .
tions for

P-wave
depth range.
gives a velo:
300—480 k«
we Land fe
decreases ra:

The resui:
characterize:

It is also
Pacific islan.
the Tyrrher

INTRODUC(

Geophy
several wor
tectonice si
difficulties
Tyrrhenian
attempts fo

In our oy
by which t!
again. 1t is,
pear insuffi
and becaus:

The pres
in the deep:




