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ABSTRACT 

,\I1<irews, D.J., 1975. A numerical investigation of the thermal state of the earth's mantle. 
Tectonophysics, 25: 177-186. 

All idealized convecting mantle with internal heat generation and viscosity dependent 
oil il'lllperature and pressure is examined with numerical calculations. Temperature and 
I'j"'osity are coupled and self-regulating in the quasi-steady solutions. The lack of any ten
dl'I1l'Y for upwelling flow to constrict itself to narrow channels argues against the existence 
of plumes. Unsteadiness is an essential feature of mantle convection, not only for mixing 
;\1 large Rayleigh numbers, but also to prevent the flow from being impeded by continuous 
rj~id regiOl'ls. 

Since the advent of the theory of plate tectonics, it has b.:;comc more evi
dent that the thermal state of the earth's interior must be influenced by mass 
flow in the mantle. Earlier theoretical work, taking into account heat trans
fer by conduction and radiation diffusion alone (MacDonald, 1959; Clark 
and Ringwood, 1964) is attractive for its relative simplicity and for its well
determined solutions. However, to attempt te be realistic, one must enter in
to the more ambiguous calculations of convection, with viscosity dependent 
on temperature and pressure. McKenzie et al. (1974) have thoroughly inves
tigated models with constant viscosity, and Houston and DeBremaecker (in 
pn'ss) have calculated models with temperature-dependent viscosity. In both 
these investigations it was assumed that the seismic discontinuity at 700 km 
(kpth is a barrier to convection. 

Radioactive heat generation and a functional dependence of viscosity on 
temperature and pressure are prescribed as part of the input to these calcu
lations. Quasi-steady temperature and viscosity fields are obtained as output. 
Such models can exhibit the feature found by Tozer (1970) that temperature 
and viscosity are coupled together and assume values that allow the transport 
out of heat at the rate that it is generated. The question of whether there is a 
limit on the depth of convective flow is determined in the same self-regulating 
manner by the pressure-dependence of viscosity. 
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If a substantial part of the heat flowing out of the earth's surface originates 
not in the crust but throughout the mantle or core, then the mantle is highly 
unstable. If one accepts a thermal conductivity not sensitive to temperature 

. (Schatz and Simmons, 1972) and a uniform viscosity of 1022 poise deter
mined from glacial rebound (O'Connell, 1971) then the Rayleigh number for 
an internally heated system (Roberts, 1967) for the mantle as a whole is 
greater than 108 . With MacDonald's estimate of thermal conductivity it is reo 
duced one order of magnitude. With a Rayleigh number this large one cannot 
expect convection to be steady. The unsteadiness will not appear in the form 
of turbulence, but rather as shifting patterns of large-scale eddies. Lithospher· 
ic plates are part of the overall circulation. Norman Sleep (personal communi· 
cation, 1970) has emphasized that the nonsteady pattern of surface plates, 
with changing distances from ridges to trenches, obviously implies nonsteady 
circulation within the mantle. 

The numerical calculations are time-dependent. We seek to approach quasi· 
steady solutions, in which horizontal averages of temperature are steady. In 
this search for a self-regulating mantle some idealizations are made. A uni
form value of radioactive heat generation of 10-14 cal. cm- 3 sec- 1 is as
sumed throughout the mantle. This rate of total heat generation equals the 
total heat flow at the earth's surface. The calculations are two-dimensional. 
If a spherical sector of the mantle, 2900 km deep, is flattened, keeping the 
same volume beneath a unit area of surface, the depth becomes 1800 km. Tlw 
calculatio;1al region is chosen to be a square 1800 km on a side. Heat flow at 
the bottom boundary is zero. Phase changes are ignored, and uniform com
position is assumed. 

In a steady state, surface heat flow must equal the internal heat generation. 
By the principle of conservation of energy, heat from viscous dissipation can· 
not appear in the overall energy balance. Viscous heating, which might be im· 
portant locally, is compensated by adiabatic temperature changes throughout 
the convecting volume. (See the Appendix.) In this work both viscous heating 
and adiabatic temperature changes are ignored. Adiabatic temperature changes 
with depth are approximated by superimposing on the temperature solution 
a gradient of 0.43 degjkm. In other respects the equations used were the same 
as in Andrews (1972). 

The first calculation was naively attempted with a small constant value of 
thermal conductivity. The solution was highly unsteady, and would have re
quired an inordinate amount of computer time to approach a quasi-steady 
state. For that reason the specification of conductivity was changed to be: 

J( = a + bT3 

where T is absolute temperature and the coefficients are: 

a = 6 . 10-3 cal.cm- 1sec- 1 deg-1 

b = 5,10-- 12 cal.cm- 1 sec-1 deg-4 

This function closely approximates MacDonald's function. 
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Viscosity is specified as: 

1) =7)0 exp [(E* +PV*)/RT] 

when 1)0 is chosen to give 77 = 3 . 1021 poise at 200 km depth if T = 1673 oK 
(1400 °C). The choice of 7)0 was the most arbitrary of this work. Recently 
published estimates of the effective viscosity of olivine at 1400 °c, 70 kbar, 
and shear stress of 10 bars range from 3 . 1023 poise (Stocker and Ashby, 
1973) to 1020 poise (Kirby and Raleigh, 1973). The activation energy 
adopted: 

E* = 100 kcal/g-atom 

is in the mid-range of published estimates (Gordon, 1965; Goetze, 1971; 
Weertman, 1970; Stocker and Ashby, 1973). Two different values of activation 
volume are considered, V* = 5 cm 3 /g-atom and V* = 6 cm3 /g-atom, both near 
the lower end of the range of published estimates. To avoid numerical diffi
culties an upper limit on viscosity of 5 . 1024 poise was imposed. 

Other physical parameters are: 

density 
acceleration of gravity 
thermal expansivity 
heat capacity 

Po = 3.4 g/cm 3 

g = 990 cm/sec2 

a: = 3 . 10-5 deg- I 

cp = 0.311 cal.g- 1 deg- 1 

The lithosphere is included in the calculation, for the variable viscosity al
lows it to be considered as part of the single fluid. However, it is important 
to account for deformation of the lithosphere by earthquakes in an approx
imate manner. A change of strain of 3 . 10-4 in a major earthquake with a 
repeat time of 100 years gives an average strain rate of 10-13 sec-I. This 
strain rate occurs only if stress is large enough to cause earthquakes - let us 
say 1 kilobar. Then the effective viscosity is 1022 poise, much smaller than 
the actual viscosity of a cool plate, and it can have a significant effect on the 
flow. The effective viscosity is highly nonlinear, for it does not allow shear 
stress to rise above 1 kilo bar. Therefore, a yield stress of 1 kilo bar is imposed 
in the numerical calculation. 

The temperature field at the start consisted of a small horizontal temper
ature gradient designed to start convection superimposed on an adiabatic tem
perature field. An adiabatic temperature gradient is unstable in the case of in
ternal heating. 

In order to reach a quasi·steady state, the calculation was run for about 
3 . 109 years. The calculation was done in stages of about 100 million years, 
and the output was examined after each stage, before restarting the computer 
calculation. Some qualitative observations of the unsteady solution may be 
informative. 

The magnitude of the fluid velocity never exceeded 10 cm/year. After an 
initial transient, there was no tendency for upwelling to be concentrated in a 
narrow plume, and no tendency for any upwelling to remain in the same 10-
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cation. These observations argue against the plume hypothesis (Morgan, 1972) 
due to thermal effects alone. A chemical plume is possible, but it cannot be 
expected to remain in the same location. 

After conductivity was increased midway in the calculation, the solution be· 
came smoother, and temperature in the lower mantle decreased slowly, changin~ 
200 degrees in 109 years. Fluid velocities in the upper mantle changed little 
with the change in conductivity, remaining in the range 1/2-2 cm/year. This 
confirms the conclusion of Tozer (1965) that velocity is insensitive to con
ductivity. 

The unsteadiness of the convective flow never manifested itself as turbu
lence or small-scale eddies, but rather as a shifting of the pattern of large-scale 
eddies at a velocity comparable to the fluid velocity. 

The one stable element of the flow was the down-going lithosphere, which 
never left the boundary of the calculational region. Although it warms up 
somewhat during its descent, it cools neighboring material sufficiently to form 
a rigid pillar reaching into the lower mantle. Both side boundaries are planes of 
reflection for both temperature and stream function, for this is the only rea
sonable prescription to use if an overall energy balance is to be obtained. Un
fortunately, this means that the down-going slab has a double thickness and 
warms up only a quarter as rapidly as it should. After the down-going slab 
was established, a perturbation of the solution could not change its location. 

Calculations were run until horizontal averages of temperature were steady. 
After such a quasi-steady state was reached for the case 11' = 5 cm 3 /g-atom, a 
calculation was started with 11* = 6 cm 3 /g-atom, starting from that solution. 
A period of 1200 m.y. was required to reach a new quasi-steady state. 
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Fig. 1. Isotherms are shown for quasi-steady solutions with two different values of acti
vation volume. Both the right and left boundaries are planes of reflection. 
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Fig. 2. Streamlines for the two cases shown in Fig. 1. The counter eddies in the upwelling 
region on the right in each case are not steady features. 

Quasi-steady temperature contours for the two cases are shown in Fig. 1. 
The cold down-going slab is seen on the left side in each case, and new mate
rial is being added to the surface plate on the right. Temperature in the lower 
mantle is higher for the case V* = 6 cm 3 /g-atom, and there is a larger temper
ature gradient in the upper mantle. 

Stream, function for the two cases is shown in Fig. 2, using the same con
tour interval between streamlines in each case. Velocity in the upper mantle 
is larger in the case V* = 6 cm3 /g-atom because of the larger temperature 
gradient. Flow in the upper mantle is not steady. In both solutions shown 
there is a counter eddy under the ridge. This counter eddy shifts position 
as time proceeds, so that flow under the ridge does not remain in the same 
direction. 

The velocity of the surface plate and down-going slab is smaller in the case 
V* = 6 cm 3 /g-atom, despite larger velocity in the asthenosphere. The expla
nation may be found from the viscosity contours plotted in Fig. 3. The mate
rial of the down-going slab and its surroundings is cool and has a high viscosity. 
It extends down to the lower mantle and joins high-viscosity material there. 
The down-going slab is impeded by this continuous cool rigid region. With a 
larger activation volume, viscosity is larger in the lower mantle, and the veloc
ity of the surface plate is smaller., 

Regions in which the yield stress is reached are stippled in Fig. 3. 
Yielding occurs where the plate bends at the subduction zone, as expected. 
Yielding also occurs in the lower mantle in the down-going slab and the cool ma
terial around it. The slab is constrained by the boundary of the calculational 
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Fig. 3. Viscosity contours for the two cases shown in Fig. 1. The stippled areas are at tl1l' 
yield stress of 1 kilobar. 

region to continue going down in the same place at all times. Therefore a cool 
rigid pillar standing on the bottom boundary is formed. 

Temperature averaged horizontally is plotted as a function of depth in 
Fig. 4. The dashed line in the figure shows the adiabatic temperature gradient. 
The temperature gradient found in both cases is subadiabatic, as is to be ex
pected for an internally heated fluid (McKenzie et aI., 1974). In Fig. 4 the 
horizontal harmonic mean of viscosity is also plotted as a function of depth. 
The curve labelled 5 is for the case V* = 5 cm 3 /g-atom. When the activation 
volume was changed to V* = 6 em3 /g-atom, viscosity jumped to the dashed 
curve. The curve labelled 6 is the horizontal harmonic mean of viscosity after a 
new quasi-steady temperature field was established. The self-regulating feature of 
a convecting system with a variable viscosity is evident here. Limitations of 
computer time prevented examination of larger values of V* , for which there 
might be a natural lower limit to convection. 

It is clear from these solutions that subduction that remains at one loca
tion is not the most favored mode of flow. If the subduction zone could 
migrate in the calculation, then old subducted material would not impede 
continuing subduction, and larger plate velocities would result. Since the flow 
is confined in a box in this calculation, the subduction zone does not migrate. 
The horizontal average of the temperature field found under this constraint 
is an upper limit on results expected from less constrained cases, in which 
flow velocities will be larger. 
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Fig. 4. Left. Horizontal average of temperature as a function of depth for activation vol
ume equal to 5 cm 3 /g-atom and 6 cm 3 /g-atom. The dashed line shows the adiabatic gra
dient. 
Hight. Horizontal harmonic mean of viscosity for the two quasi~steady solutions (solid 
curves). Viscosity calculated with V* = 6 cm 3 /g-atom with the temperature solution for 
V' = 5 cm 3 /g-atom is shown as a dashed line to indicate sensitivity to this parameter and 
the self~regulating feature of the quasi-steady solutions. 

CONCLUSIONS 

This work provides an example of the approach required for a theoretical 
investigation of the thermal state of the earth's mantle. 

The mantle is unstable enough that it is unlikely that a compositional strat
ification has been established. Therefore a depth limit for convection will 
be determined by pressure-dependence of viscosity. The entire depth of the 
mantle will be a self~regulating system. 

Viscosity increases with depth in the quasi-steady solutions, and would in
erease even more rapidly with a larger activation volume, contrary to conclu
sions drawn from glacial rebound data. 

Unsteadiness is an essential feature of convective flow in the mantle. It is 



184 

required, not only by the large Rayleigh number of the warmer part of the 
flow, but also as a mechanism to mix and reduce the rigidity of the cooler 
portion of the mantle. 
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APPENDIX 

Viscous dissipatioll in a cOllveeting system 

For any velocity field in a viscous fluid the rate of heat generation per unit volume due 
to viscous dissipation is positive definite, and its integral over the fluid volume is nonzero. 
The principle of conservation of energy in a naturally convecting system in steady state 
rl'<tuires that heat flowing out of the fluid equals heat flowing into the fluid plus radio· 
active heat generated within. Viscous heating cannot conlt'ibute to the overall energy 
balance. The paradox is resolved if the convecting fluid is recognized as a heat engine doing 
work upon itself (Jeffreys, 1930, 1956). Then the viscous dissipation integrated over the 
I'olume of the fluid must equal the work of thennal expansion integrated over the fluid, 
and this work must be derived from part of the heat flowing through the fluid. This con' 
c1usion, which must hold in general, will be illustrated in the Boussinesq approximation, 

[n the Boussinesq approximation the velocity field is required to be incompressible, 
but density changes due to thermal expansion are taken into account in the fOl'ce balance. 
The Boussinesq approximation does not conserve mass locally, so it is not surprising that 
paradoxes arise in regard to conservation of energy. Density is taken to be: 

p = Po - poaT 

Hydrostatic pressure due to the constant reference density: 

l' = Po g Y 

is subtracted from the stress tensor, leaving stress components of a smaller order of mag
nitude. 

[n the general case let Uj be the velocity veclor of the fluid and aU be the stress tensor 
arising from an arbitrary rheology, Summation is implied over repeated subscripts, and 
a subscript following a comma indicates diffel'entiation with respect to that coordinate. 
The rate of change of internal energy of a volume element due to mechanical work is 
stress times strain rate, and its volume integral can be related to other work integrals as 
follows: 

(Uj}'a" dV= J(u· a··)· dV-Ju, a" ,dV . , I) 1 I) J 1 I).) 

(1) 

'11!C first term on the right-hand side of the equation is work done at the boundaries, and 
is assumed to be zero. Inertial force is negligible for flow in the earth, so the force density 
from the stress tensor is balanced by the gravitational body force: 

0ij,j = -p gj 

Then the second term on the right is the rate of change of gravitational potential energy, and 
is zero for a steady closed circulation. Therefore the Icfl-hand side of the equation, the in
ternal work done in the fluid, is zero. The shear contribution to the integral (which is pos
itive for a viscous fluid) must be cancelled by the dilatational contribution. 

The Boussinesq approximation violates these general considerations, and some careful 
consideration is needed to conserve energy. For an incompressible fluid the left-hand side 
of eq. 1 is the total viscous dissipation, \I'D' and is nonzero. The second term on the right

hand side of eq. 1 is also nonzero. It is a fictitious net work done by the buoyant force: 

II'B = -Po agj JT Uj dV 

and is positive, since temperature is larger where velocity is opposite to the direction of 
gravity. An integration by parts, as in eq. 1, yields the result: 

in the Boussinesq approximation. 
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While maintaining the approximation of incompressibility in the determination of thr 
velocity field, we must not neglect the product of a small density change times the large 
hydrostatic pressure in the energy balance. The work due to adiabatic density change is: 

WA=jPui,idV 

In the Boussinesq approximation: 

aT 
U· . = au· T . + a-

1,1 I ,I at 
The integral of the time derivative of temperature will drop out if horizontal averages of 
temperature are steady. Then: 

W A = Po g a j Y ui T, i d V 

After making the approximation: 

ui T,i ~ (ui T),i 

one can integrate by parts and find: 

WA = WE = WD 

Therefore energy can be conserved in the Boussinesq approximation if adiabatic work 
is taken into account in the determination of temperature. A complete thermodynamic 
description of the heat engine requires another thermal variable, such as entropy or a 
thermodynamic potential. Elimination of all t.hermal variables except temperature yi('ld, 
terms representing adiabatic temperature changes with depth and also adiabatic temper' 
ature changes at constant depth as the fluid gains or loses heat (McKenzie, 1968). The 
latter term, integrated over the volume, must be equal and opposite to the integrated 
temperature increase from viscous heating. The differential equation is developed by 
Turcotte et al. (1974). 

The relative importance of all these work terms is measured by the dimensionless 
number: 

agh 
D=-

cp 

where h is the depth of the fluid (Turcotte et aI., 1974). For a depth of 2000 km in the 
earth's mantie, D;?, 0.5. Using the definition of Griineisen's parameter r, an equivalent 
expression can be found: 

D=r
pgh 

hs 

where hs is the isentropic bulk modulus. Griineisen's parameter for any material is of 
order one. Therefore, D, which has been called the dissipation number, is described morr 
graphically as the compression ratio of the heat engine. 
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