UCRL-52888 Distribution Category UC-66b

Effect of permeability on cooling of a magmatic intrusion in a geothermal reservoir

K. H. Lau*

Manuscript date: January 11, 1980

*University of Hawaii at Hilo, LLNL Summer Institute Employee.

LAWRENCE LIVERMORE LABORATORY University of California • Livermore, California • 94550

Available from: National Technical Information Service • U.S. Department of Commerce 5285 Port Royal Road • Springfield, VA 22161 • \$6.00 per copy • (Microfiche \$3.50)

~ ť

CONTENTS

Nomen	clature	è .	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	٠	•	v
Abstr	act .		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
Intro	ductior	n .	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
Descr	iption	of	Мс	ođe	lin	g P	roc	ess	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	3
1	Governi	ing	Eç	Iua	tio	ns	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	3
	Boundar	у а	anċ	I E	nit	ial	Co	nđi	tic	ns	•	•	•	•	•	•	•	•	•	•	•	•	4
	Numerio	cal	Me	eth	od		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	5
	Numerio	cal	Re	esu	lts		•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	15
Ackno	wledgm	ent	s	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	27
Refer	ences		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	28
Appen	dix: (Com	put	ter	Pr	oqr	am		•	•	•	•		•				•	•		•		29

NOMENCLATURE

u', v'	velocity components in the x and y directions, respectively									
u, v	dimensionless velocity component in the x and y directions,									
	respectively									
g	gravitational acceleration									
н	depth of the reservoir floor									
L	width of the reservoir									
λ _m	thermal conductivity of the porous medium									
λ Cap	thermal conductivity of the cap rock									
ψ'	stream function									
ψ	dimensionless stream function									
θ'	temperature referenced to $T_0 (= T - T_0)$									
θ	dimensionless temperature									
$\Delta \mathtt{T}$	maximum temperature referenced to $T_0 (= T_{max} - T_0)$									
x', y'	Cartesian coordinates									
х, у	dimensionless coordinates									
(pc) _	heat capacity of porous medium									
(ρc) _f	heat capacity of fluid									
Ra	Rayleigh number									
ĸ	permeability in x direction									
ĸ	permeability in y direction									
μ	viscosity of fluid									
ρ	density of fluid									
β	thermal expansion coefficient									
a	thermal diffusivity of fluid porous medium									
t'	time									
t	dimensionless time									
Х	permeability ratio K_{v}/K_{x}									
γ	heat capacity ratio $(\rho c)_{f}/(\rho c)_{m}$									
η	dimensionless measurement from reservoir floor to cap rock									
ρ ₀	density of fluid at $T = T_0$									
Q	surface heat flow									
HFU	heat flow unit									

Subscripts

f	fluid
m	country rock
i	index in x direction
j	index in y direction

Superscript

k	index	in	arbitrary	time	step	k
2n + 1	index	in	(2n+1) th	time	step	

EFFECT OF PERMEABILITY ON COOLING OF A MAGMATIC INTRUSION IN A GEOTHERMAL RESERVOIR

ABSTRACT

This report describes numerical modeling of the transient cooling of a magmatic intrusion in a geothermal reservoir that results from conduction and convection, considering the effects of overlying cap rock and differing horizontal and vertical permeabilities of the reservoir. These results are compared with data from Salton Sea Geothermal Field (SSGF). Multiple layers of convection cells are observed when horizontal permeability is much larger than vertical permeability. The sharp drop-off of surface heat flow experimentally observed at SSGF is consistent with the numerical results. We estimate the age of the intrusive body at SSGF to be between 6000 and 20,000 years.

INTRODUCTION

Because hydrothermal systems of a particular geothermal field are important in all aspects of geothermal power production, geophysicists and geothermal reservoir engineers are greatly interested in magmatic intrusions in the earth's crust. These intrusions, also known as plutons, are cooled by surrounding country rock. If the neighboring formations are permeable and saturated with ground water, then convective hydrothermal systems can result. The nature of these hydrothermal systems is determined by the physical properties of the surrounding formations.

Intrusive magma can take different forms or sizes. A sheet-like intrusive body--perpendicular to the stratification in the bedded rocks--is called a dike. Jaeger¹ and Horai² studied dike intrusion based on heat conduction alone. Recent studies³⁻⁵ suggest that convection of ground water also plays an important role in heat transfer in geothermal fields.

Numerical modeling studies of dike-induced convection flow include the work of Lau and Cheng³ on the effects of dike intrusion on steady-state temperature distribution, streamlines, and shape of water table in a volcanic

island aquifer. Norton and Knight⁴ researched the time dependence of convective circulation and its influence on the cooling rate of massive plutons. Torrance and Sheu⁵ studied the cooling of a pluton by assuming that the intrusion itself becomes permeable below a specified thermal stress-cracking temperature.

In all of these referenced studies, the permeability is assumed constant, and the existence of cap rock is not included in the analysis. Kasameyer and Younker⁶ suggested that the cap rock and a large horizontal-to-vertical permeability ratio can be responsible for the dramatic reduction in geothermal gradient in the Salton Sea Geothermal Field (SSGF).

The present study of the cooling of a magmatic intrusion because of natural convection takes into account the effects of overlying cap rock of various thicknesses as well as of differing horizontal and vertical permeabilities in the reservoir. Results are specifically related to the SSGF. Figure 1 shows an idealized model.

Insulating and no flow boundary

FIG. 1. Idealized model of a geothermal reservoir with dike intrusion.

DESCRIPTION OF MODELING PROCESS

GOVERNING EQUATIONS

The governing equations for the hydrothermal system in a porous medium are the continuity equation, Darcy's law, the energy equation, and the equation of state. With the Boussinesq approximation, these equations can be written as

$$\frac{\partial u'}{\partial x'} + \frac{\partial v'}{\partial y'} = 0 , \qquad (1)$$

$$u' = \left(\frac{-\kappa_x}{\mu}\right) \left(\frac{\partial p'}{\partial x'}\right), \qquad (2)$$

$$\mathbf{v'} = \frac{-\kappa_y}{\mu} \left(\frac{\partial \mathbf{p'}}{\partial \mathbf{y'}} + \rho \mathbf{g} \right) , \qquad (3)$$

$$(\rho c)_{m} \frac{\partial \theta'}{\partial t'} + (\rho c)_{f} \left(u' \frac{\partial \theta'}{\partial x'} + v' \frac{\partial \theta'}{\partial y'} \right) = \left(\lambda_{m} \frac{\partial^{2} \theta'}{\partial x'^{2}} + \frac{\partial^{2} \theta'}{\partial y'^{2}} \right), \quad (4)$$

$$\rho = \rho_0 \left(1 - \beta \theta'\right) \quad . \tag{5}$$

When one introduces the stream function $\psi^{\, t}$ and the following dimensionless variables,

$$u' = \frac{\partial \psi'}{\partial y'} , \qquad (6)$$

$$\mathbf{v}^{\,\prime} = \frac{\partial \psi^{\,\prime}}{\partial \mathbf{x}^{\,\prime}} \quad , \tag{7}$$

$$t = \frac{\alpha}{m^2} t' , \qquad (8)$$

$$\mathbf{x} = \frac{\mathbf{x}'}{\mathbf{H}} , \qquad (9)$$

$$y = \frac{y'}{H} , \qquad (10)$$

$$\theta = \frac{\theta'}{\Delta T} , \qquad (11)$$

$$u = \frac{u'H}{\alpha_m} , \qquad (12)$$

$$v = \frac{v'H}{\alpha_m} ,$$
 (13)

$$\psi = \frac{\psi}{\alpha}, \qquad (14)$$

$$Ra = \frac{\rho_0 \beta g \kappa_y H \Delta T}{\mu \alpha_m} , \qquad (15)$$

the nondimensional form of the governing equations becomes

$$\frac{\partial\theta}{\partial t} + \gamma \left(\frac{\partial\psi}{\partial y}\right) \left(\frac{\partial\theta}{\partial x}\right) - \gamma \left(\frac{\partial\psi}{\partial x}\right) \left(\frac{\partial\theta}{\partial y}\right) = \frac{\partial^2\theta}{\partial x^2} + \frac{\partial^2\theta}{\partial y^2} , \qquad (16)$$

$$\frac{\partial^2 \psi}{\partial x^2} + \chi \frac{\partial^2 \psi}{\partial y^2} = -Ra \frac{\partial \theta}{\partial x}.$$
 (17)

BOUNDARY AND INITIAL CONDITIONS

The initial conditions of the problem are $\psi = 0$ and $\theta = 0$ everywhere in the region except in the intrusive area, where $\theta = 1$. The boundary condition at the surface is a constant temperature; i.e.,

$$\partial(\mathbf{x},\mathbf{l}) = \mathbf{0} \quad . \tag{18}$$

The boundaries at x = 0 and L/H are impermeable to flow and thermally nonconductive; i.e.,

$$\frac{\partial \phi}{\partial \mathbf{x}} (0, \mathbf{y}) = \frac{\partial \theta}{\partial \mathbf{x}} \left(\frac{\mathbf{L}}{\mathbf{H}}, \mathbf{y} \right) = 0 \quad , \tag{19}$$

$$\psi(0,y) = \psi\left(\frac{L}{H}, y\right) = 0 \quad . \tag{20}$$

The boundaries beneath the cap rock are impermeable to flow and thermally conductive; i.e., $\psi(x,\eta) = 0$, (21)

$$\lambda_{cap} \frac{\partial \theta}{\partial y} (x, \eta) = \lambda_{m} \frac{\partial \theta}{\partial y} (x, \eta) \quad .$$
(22)

It is assumed that $\lambda_{cap} = \lambda_{m}$ so that Eq. (16) applies to both the cap rock and the permeable regions.

The boundaries at y = 0 are impermeable to flow and thermally nonconductive; i.e.,

$$\psi(x,0) = 0$$
 , (23)

anđ

$$\frac{\partial \theta}{\partial y} (x,0) = 0 \quad . \tag{24}$$

NUMERICAL METHOD

The energy equation (16) is solved numerically by the Alternating Direction Implicit (ADI) method,⁷ and the flow field equation (17) by the Gauss-Seidel iteration method. The region is divided into a uniform mesh, as shown in Fig. 2. The coordinates of the grid points are given by (x_i, y_j) , where $x_i = (i-1)\Delta x$ and $y_j = (j-1)\Delta y$.

FIG. 2. Uniform mesh for the finite difference numerical solution.

A second-order finite-difference approximation formula is used for all spatial derivatives and a first-order finite-difference approximation for all time derivatives. The upwind scheme for the convection term is not used, but the numerical formulation can be easily adapted to the upwind scheme.

The ADI formulation of the energy equation (16) follows. First, the finite difference approximation for (2n+1)th time step is given as

$$\frac{\theta_{i,j}^{2n+1} - \theta_{i,j}^{2n}}{\Delta t} + u_{i,j}^{2n} \left(\frac{\theta_{i+1,j}^{2n+1} - \theta_{i-1,j}^{2n+1}}{2\Delta x} \right) + v_{i,j}^{2n} \left(\frac{\theta_{i,j+1}^{2n} - \theta_{i,j-1}^{2n}}{2\Delta y} \right)$$
$$= \frac{\theta_{i+1,j}^{2n+1} - 2\theta_{i,j}^{2n+1} + \theta_{i-1,j}^{2n+1}}{(\Delta x)^{2}} + \frac{\theta_{i,j+1}^{2n} - 2\theta_{i,j}^{2n} + \theta_{i,j-1}^{2n}}{(\Delta y)^{2}} , \quad (25)$$

where

$$u_{i,j}^{2n} = \gamma \left(\frac{\psi_{i,j+1}^{2n} - \psi_{i,j-1}^{2n}}{2\Delta y} \right),$$

$$v_{i,j}^{2n} = -\gamma \left(\frac{\psi_{i+1,j}^{2n} - \psi_{i-1,j}^{2n}}{2\Delta x} \right).$$
(26)
(27)

Equation (25) can be rewritten as

$$\begin{pmatrix} -\frac{u_{i,j}^{2n}}{2\Delta x} - \frac{1}{(\Delta x)^{2}} \end{pmatrix} \theta_{i-1,j}^{2n+1} + \begin{pmatrix} \frac{1}{\Delta t} + \frac{2}{(\Delta x)^{2}} \end{pmatrix} \theta_{i,j}^{2n+1} \\ + \begin{pmatrix} \frac{u_{i,j}^{2n}}{2\Delta x} - \frac{1}{(\Delta x)^{2}} \end{pmatrix} \theta_{i+1,j}^{2n+1} = \frac{1}{\Delta t} \theta_{i,j}^{2n} \\ - v_{i,j}^{2n} \begin{pmatrix} \frac{\theta_{i,j+1}^{2n} - \theta_{i,j-1}^{2n}}{2\Delta y} \end{pmatrix} + \frac{\theta_{i,j+1}^{2n} - 2\theta_{i,j}^{2n} + \theta_{i,j-1}^{2n}}{(\Delta y)^{2}} .$$
(28)

Equation (28) is valid for all grid points. At the boundary, both Eq. (28) and appropriate boundary conditions must be satisfied. We will now describe the finite difference equation for each boundary surface.

At the vertical boundary x = 0 (i.e., i = 1), the condition $\partial \theta / \partial x = 0$ requires that

$$\theta_{0,j}^{k} = \theta_{2,j}^{k} .$$
⁽²⁹⁾

JULIE.

Note that $\theta_{0,j}^k$ is a grid point outside of the region of interest at any time step k. With the aid of Eq. (29), Eq. (28) becomes

$$\left(\frac{1}{\Delta t} + \frac{2}{(\Delta x)^2}\right) \theta_{1,j}^{2n+1} - \frac{2}{(\Delta x)^2} \theta_{2,j}^{2n+1} = \frac{1}{\Delta t} \theta_{1,j}^{2n}$$
$$- v_{1,j}^{2n} \left(\frac{\theta_{1,j+1}^{2n} - \theta_{1,j-1}^{2n}}{2\Delta y}\right) + \frac{\theta_{1,j+1}^{2n} - 2\theta_{1,j}^{2n} + \theta_{1,j-1}^{2n}}{(\Delta y)^2}$$
(30)

for $2 \leq j \leq M - 1$.

At the vertical boundary x = L/H (i.e., i = N), the condition $\partial \theta / \partial x = 0$ requires that

$$\theta_{N+1,j}^{k} = \theta_{N-1,j}^{k}$$
(31)

Combining Eqs. (31) and (28), we obtain

$$-\frac{2}{(\Delta x)^2} \theta_{N-1,j}^{2n+1} + \left(\frac{1}{\Delta t} + \frac{2}{(\Delta x)^2}\right) \theta_{N,j}^{2n+1} = \frac{1}{\Delta t} \theta_{N,j}^{2n}$$
$$- v_{N,j}^{2n} \left(\frac{\theta_{N,j+1}^{2n} - \theta_{N,j-1}^{2n}}{2\Delta y}\right) + \left(\frac{\theta_{N,j+1}^{2n} - 2\theta_{N,j}^{2n} + \theta_{N,j-1}^{2n}}{(\Delta y)^2}\right) \quad (32)$$

for $2 \leq j \leq M - 1$.

At the lower boundary y = 0 (i.e., j = 1), the boundary condition $\partial \theta / \partial y = 0$ requires that

$$\theta_{i,0}^{k} = \theta_{i,2}^{k} .$$
(33)

Combining Eqs. (33) and (28), we obtain

$$\left(-\frac{u_{i,1}^{2n}}{2\Delta x} - \frac{1}{(\Delta x)^{2}} \right) \theta_{i-1,1}^{2n+1} + \frac{1}{\Delta t} + \left(\frac{2}{(\Delta x)^{2}} \right) \theta_{i,1}^{2n+1} + \left(\frac{u_{i,1}^{2n}}{2\Delta x} - \frac{1}{(\Delta x)^{2}} \right) \theta_{i+1,1}^{2n+1} = \frac{1}{\Delta t} \theta_{i,1}^{2n} + \frac{2}{(\Delta y)^{2}} \left(\theta_{i,2}^{2n} - \theta_{i,1}^{2n} \right)$$
(34)

for $2 \leq i \leq N-1$.

At y = 1, the boundary condition is

$$\theta_{i,M}^{k} = 0$$
(35)

for $1 \leq i \leq N$.

Equations (28), (29), and (33) lead to

$$\left(\frac{1}{\Delta t} + \frac{2}{(\Delta x)^2}\right) \theta_{1,1}^{2n+1} - \frac{2}{(\Delta x)^2} \theta_{2,1}^{2n+1} = \frac{1}{\Delta t} \theta_{1,1}^{2n} + \frac{2}{(\Delta y)^2} \left(\theta_{1,2}^{2n} - \theta_{1,1}^{2n}\right).$$
(36)

Equations (28), (31), and (33) lead to

$$-\frac{2}{(\Delta x)^{2}} \theta_{N-1,1}^{2n+1} + \left(\frac{1}{\Delta t} + \frac{2}{(\Delta x)^{2}}\right) \theta_{N,1}^{2n+1} = \frac{1}{\Delta t} \theta_{N,1}^{2n} + \frac{2}{(\Delta y)^{2}} \left(\theta_{N,2}^{2n} - \theta_{N,1}^{2n}\right).$$
(37)

Equations (28), (30), (32), (34), (36), and (37) consist of M - 1 sets of N simultaneous equations of the form

$$B\theta_{1,j}^{2n+1} + C_{1,j}\theta_{2,j}^{2n+1} = D_{1,j}$$
(38)

for $1 \leq j \leq M - 1$,

TI

$$A_{i,j} \stackrel{\theta^{2n+1}}{i-1,j} + B_{i,j}^{\theta^{2n+1}} + C_{i,j} \stackrel{\theta^{2n+1}}{i+1,j} = D_{i,j}$$
(39)

for 2 \leq i \leq N - 1, 1 \leq j \leq M - 1 $\,$,

$$A_{N,j}\theta_{N-1,j}^{2n+1} + B\theta_{N,j}^{2n+1} = D_{N,j}$$
(40)

for $1 \leq j \leq M-1$,

where

$$B = \frac{1}{\Delta t} + \frac{2}{(\Delta x)^2} , \qquad (41)$$

$$C_{l,j} = \frac{2}{\left(\Delta x\right)^2}$$
(42)

for $l \leq j \leq M - l$,

$$C_{i,j} = \frac{u_{i,j}^{2n}}{2\Delta x} - \frac{1}{(\Delta x)^2}$$
(43)

for
$$2 \leq i \leq N$$
, $1 \leq j \leq M - 1$,

$$A_{i,j} = -\frac{u_{i,j}^{2n}}{2\Delta x} - \frac{1}{(\Delta x)^2}$$
(44)

for $l \leq j \leq M-l, \ l \leq i \leq N-l$,

$$A_{N,j} = \frac{-2}{\left(\Delta x\right)^2}$$
(45)

for $l \leq j \leq M - l$,

$$D_{i,j} = \frac{1}{\Delta t} \theta_{i,j}^{2n} - v_{i,j}^{2n} \left(\frac{\theta_{i,j+1}^{2n} - \theta_{i,j-1}^{2n}}{2\Delta y} \right) + \frac{\theta_{i,j+1}^{2n} - 2\theta_{i,j}^{2n} + \theta_{i,j-1}^{2n}}{(\Delta y)^{2}}$$
(46)
for $2 \le j \le M - 1, 1 \le i \le N - 1$,

$$D_{i,1} = \frac{1}{\Delta t} \theta_{i,1}^{2n} + \frac{2}{(\Delta y)^2} \left(\theta_{i,2}^{2n} - \theta_{i,1}^{2n} \right)$$
(47)

for $1 \leq i \leq N-1$.

The solution of Eqs. (38), (39), and (40) can be obtained in a straightforward manner. 7 Let

$$w_1 = B$$
 , (48)

$$w_i = B - A_{i,j}B_{i-1}$$
⁽⁴⁹⁾

for $2 \leq i \leq N, \ l \leq j \leq M-l$,

$$b_{i} = \frac{C_{i,j}}{w_{i}}$$
(50)

for $1 \leq j \leq M$ - 1, $1 \leq i \leq N$ - 1 ,

$$g_1 = \frac{D_{1,j}}{w_1}$$
 (51)

for $l \leq j \leq M - l$,

$$g_{i} = \frac{D_{i,j} - A_{i,j}g_{i-1}}{w_{i}}$$
(52)

for $2 \leq i \leq N$ - 1, $1 \leq j \leq M$ - 1 .

The solutions of the tridiagonal system are

$$\theta_{N,j}^{2n+1} = g_{N}$$
(53)

for $l \leq j \leq M - l$,

$$\theta_{i,j}^{2n+1} = g_i - b_i \theta_{i+1,j}^{2n+1}$$
 (54)

for $1 \leq i \leq N-1, \ 1 \leq j \leq M-1$.

The computational procedure used to obtain solutions of the tridiagonal system for each set of the N simultaneous equations is the following. For a given j(jth) set of equations where j is from 1 to M - 1), Eqs. (48) through (54) are computed with ascending value of i from 1 to N. After Eqs. (48) through (54) are evaluated, proceed to evaluate Eqs. (54) and (55) with decreasing value of i from N to 1. The values of the temperature function are stored in temporary storage location to allow evaluation of Eqs. (48) through (54) at previous time step temperature values.

The difference equation for Eq. (16) at (2n+2) th time step is given as

$$\frac{\theta_{i,j}^{2n+2} - \theta_{i,j}^{2n+1}}{\Delta t} + u_{i,j}^{2n+1} \left(\frac{\theta_{i+1,j}^{2n+1} - \theta_{i-1,j}^{2n+1}}{2\Delta x} \right) + v_{i,j}^{2n+1} \left(\frac{\theta_{i,j+1}^{2n+2} - \theta_{i,j-1}^{2n+2}}{2\Delta y} \right) = \frac{\theta_{i+1,j}^{2n+1} - 2\theta_{i,j}^{2n+1} + \theta_{i-1,j}^{2n+1}}{(\Delta x)^{2}} + \frac{\theta_{i,j+1}^{2n+2} - 2\theta_{i,j}^{2n} + \theta_{i,j-1}^{2n+2}}{(\Delta y)^{2}} \quad .$$
(55)

Equation (55) can be rewritten as

$$\begin{pmatrix} -\frac{v_{i,j}^{2n+1}}{2\Delta y} - \frac{1}{(\Delta y)^2} \end{pmatrix} \theta_{i,j-1}^{2n+2} + \begin{pmatrix} \frac{1}{\Delta t} + \frac{2}{(\Delta y)^2} \end{pmatrix} \theta_{i,j}^{2n+2} \\ + \frac{v_{i,j}^{2n+1}}{2\Delta y} - \frac{1}{(\Delta y)^2} & \theta_{i,j+1}^{2n+2} = \frac{1}{\Delta t} \theta_{i,j}^{2n+1} - u_{i,j}^{2n+1} \begin{pmatrix} \frac{\theta_{i+1,j}^{2n+1} - \theta_{i-1,j}^{2n+1}}{2\Delta x} \end{pmatrix} \\ + \frac{\theta_{i+1,j}^{2n+1} - 2\theta_{i,j}^{2n+1} + \theta_{i-1,j}^{2n+1}}{(\Delta x)^2}$$
(56)

for $2 \leq i \leq N-1, \ 2 \leq j \leq M-1$.

Equation (56), when combined with boundary conditions (29), (31), (33), and (35), results in the following equations:

$$\left(-\frac{\mathbf{v}_{1,j}^{2n+1}}{2\Delta y} - \frac{1}{(\Delta y)^2} \right) \theta_{1,j-1}^{2n+2} + \frac{1}{\Delta t} + \frac{2}{(\Delta y)^2} \theta_{1,j}^{2n+2} + \left(\frac{\mathbf{v}_{1,j}^{2n+1}}{2\Delta y} - \frac{1}{(\Delta y)^2} \right) \theta_{1,j+1}^{2n+2} = \frac{1}{\Delta t} \theta_{1,j}^{2n+1} + \frac{2}{(\Delta x)^2} \left(\theta_{2,j}^{2n+1} - \theta_{1,j}^{2n+1} \right)$$
(57)

for $2 \leq j \leq M - 1$,

$$\begin{pmatrix} -\frac{v_{N,j}^{2n+1}}{2\Delta y} - \frac{1}{(\Delta y)^2} \end{pmatrix} \theta_{N,j-1}^{2n+2} + \left(\frac{1}{\Delta t} + \frac{2}{(\Delta y)^2} \right) \theta_{N,j}^{2n+2} \\ + \left(\frac{v_{N,j}^{2n+1}}{2\Delta y} - \frac{1}{(\Delta y)^2} \right) \theta_{N,j+1}^{2n+2} = \frac{1}{\Delta t} \theta_{N,j}^{2n+1} + \frac{2}{(\Delta x)^2} \left(\theta_{N-1,j}^{2n+1} - \theta_{N,j}^{2n+1} \right)$$
(58)

for $2 \leq j \leq M - 1$,

$$\left(\frac{1}{\Delta t} + \frac{2}{(\Delta y)^2}\right) \theta_{i,1}^{2n+2} - \frac{2}{(\Delta y)^2} \theta_{i,2}^{2n+2} = \frac{1}{\Delta t} \theta_{i,1}^{2n+1} - u_{i,1}^{2n+1} \left(\frac{\theta_{i+1,1}^{2n+1} - \theta_{i-1,1}^{2n+1}}{2\Delta x}\right) + \frac{\theta_{i+1,1}^{2n+1} - 2\theta_{i,1}^{2n+1} \theta_{i-1,1}^{2n+1}}{(\Delta x)^2}$$
(59)

for 2 \leq i \leq N - 1 $\,$,

$$\left(\frac{1}{\Delta t} + \frac{2}{(\Delta y)^2}\right) \theta_{1,1}^{2n+2} - \frac{2}{(\Delta y)^2} \theta_{1,2}^{2n+2} = \frac{1}{\Delta t} \theta_{1,1}^{2n+1} + \frac{2}{(\Delta x)^2} \left(\theta_{2,1}^{2n+1} - \theta_{1,1}^{2n+1}\right) ,$$
 (60)

$$\begin{pmatrix} \frac{1}{\Delta t} + \frac{2}{(\Delta y)^2} \end{pmatrix} \theta_{N,1}^{2n+2} - \frac{2}{(\Delta y)^2} \theta_{N,2}^{2n+2} = \frac{1}{\Delta t} \theta_{N,1}^{2n+1} + \frac{2}{(\Delta x)^2} \left(\theta_{N-1,1}^{2n+1} - \theta_{N,1}^{2n+1} \right) .$$
 (61)

Equations (56) through (61) consist of N sets of (M - 1) simultaneous equations of the form

$$B\theta_{i,1}^{2n+2} + C_{i,1}\theta_{i,2}^{2n+2} = D_{i,1}$$
for $1 \le i \le N$,
$$(62)$$

$$A_{i,j}\theta_{i,j-1}^{2n+2} + B\theta_{i,j}^{2n+2} + C_{i,j}\theta_{i,j+1}^{2n+2} = D_{i,j}$$
(63)

for $1 \leq i \leq N, \; 2 \leq j \leq M-2$,

$$A_{i,M-1}\theta_{i,M-2}^{2n+2} + B\theta_{i,M-1}^{2n+2} = D_{i,M-1}$$
(64)

for l \leq i \leq N $\,$,

where

$$B = \frac{1}{\Delta t} + \frac{2}{\left(\Delta y\right)^2} , \qquad (65)$$

$$c_{i,1} = \frac{-2}{(\Delta y)^2}$$
 (66)

for $l \leq i \leq N$,

$$c_{i,j} = \frac{v_{i,j}^{2n+1}}{2\Delta y} - \frac{1}{(\Delta y)^2}$$
(67)

for $l \leq i \leq N$, $2 \leq j \leq M - 1$,

$$A_{i,j} = -\frac{v_{i,j}^{2n+1}}{2\Delta y} - \frac{1}{(\Delta y)^2}$$
(68)

for $1 \leq i \leq N, \; 2 \leq j \leq M-1$,

$$D_{i,j} = \frac{1}{\Delta t} \theta_{i,j}^{2n+1} - u_{i,j}^{2n+1} \left(\frac{\theta_{i+1,j}^{2n+1} - \theta_{i-1,j}^{2n+1}}{2\Delta x} \right) + \frac{\theta_{i+1,j}^{2n+1} - 2\theta_{i,j}^{2n+1} + \theta_{i-1,j}^{2n+1}}{(\Delta x)^2}$$
(69)

for 2 \leq i \leq N - 1, 1 \leq j \leq M - 1 ,

$$D_{1,j} = \frac{1}{\Delta t} \theta_{1,j}^{2n+1} + \frac{2}{(\Delta x)^2} \left(\theta_{2,j}^{2n+1} - \theta_{1,j}^{2n+1} \right)$$
(70)

.

for $l \leq j \leq M - l$,

$$D_{N,j} = \frac{1}{\Delta t} \theta_{N,j}^{2n+1} + \frac{2}{(\Delta x)^2} \left(\theta_{N-1,j}^{2n+1} - \theta_{N,j}^{2n+1} \right)$$
(71)

for $l \leq j \leq M - 1$.

The solutions of the N sets of tridiagonal systems can be obtained in a straightforward manner. Let

$$W_1 = B , \qquad (72)$$

$$b_{j} = \frac{c_{i,j}}{w_{j}}$$
(73)

for $1 \leq i \leq N,\; 1 \leq j \leq M-2$,

$$w_{j} = B - A_{i,j}b_{j-1}$$
(74)

for $1 \leq i \leq N,\; 2 \leq j \leq M-1$,

$$g_{1} = \frac{D_{i,1}}{w_{i}} , \qquad (75)$$

$$g_{j} = \frac{\sum_{i,j}^{D} - A_{i,j}g_{j-1}}{w_{j}}$$
(76)

for $1 \leq i \leq N, \; 2 \leq j \leq M-1$.

The solutions are

$$\theta_{i,M-1}^{2n+2} = g_{M-1}$$
(77)

for l \leq i \leq N ,

$$\theta_{i,j}^{2n+2} = g_{j} - b_{j} \theta_{i,j+1}^{2n+2}$$
(78)

for $1 \leq j \leq M$ - 2, $1 \leq i \leq N$.

A second-order finite-difference approximation for the stream function equation (17) is

$$\frac{\psi_{i+1,j} - 2\psi_{i,j} + \psi_{i-1,j}}{(\Delta x)^{2}} + \chi \frac{\psi_{i,j+1} - 2\psi_{i,j} + \psi_{i,j-1}}{(\Delta y)} = -Ra \left(\frac{\theta_{i+1,j}^{2n+1} - \theta_{i-1,j}^{2n+1}}{2\Delta x} \right)$$
(79)
for $1 \le i \le N - 1, 1 \le j \le M - 1$.

Equation (79) can be rewritten as

$$\begin{split} \psi_{\mathbf{i},\mathbf{j}} &= \frac{1}{2(\mathbf{l} + \varepsilon)} \left[\begin{array}{c} \psi_{\mathbf{i}+\mathbf{l},\mathbf{j}} + \psi_{\mathbf{i}-\mathbf{l},\mathbf{j}} &+ \varepsilon \psi_{\mathbf{i},\mathbf{j}+\mathbf{l}} &+ \varepsilon \psi_{\mathbf{i},\mathbf{j}-\mathbf{l}} \\ &+ \frac{\operatorname{Ra}(\Delta x)}{2} \left(\theta_{\mathbf{i}+\mathbf{l},\mathbf{j}}^{2n+\mathbf{l}} - \theta_{\mathbf{i}-\mathbf{l},\mathbf{j}}^{2n+\mathbf{l}} \right) \right] \end{split}$$

for $1 \leq i \leq N - 1$, $1 \leq j \leq M - 1$,

where

$$\varepsilon = \chi \left(\Delta y / \Delta x \right)^2 . \tag{81}$$

(80)

NUMERICAL RESULTS

The flow field (stream function, velocity) is initialized to zero everywhere in the flow region. The temperature field is zero everywhere except in the region of an intrusive dike, where it is equal to 1. Figure 3 charts the numerical computation procedure, which is as follows:

1. Initial data values are set to conform with initial conditions of the problem.

2. Temperature field solutions are obtained for (2n+1)th time step using Eqs. (53) and (54).

3. The stream function equation (80) is solved by the Gauss-Seidel iteration method. The iteration is terminated when maximum change in stream function values is less than 10^{-5} during two successive iteration cycles.

4. Velocity components are computed using Eqs. (26) and (27).

5. Temperature field solutions are obtained for (2n+2)th time step using Eqs. (77) and (78).

6. Steps 3 and 4 are performed again.

7. If desired, the temperature, stream function, velocity vector, and surface heat flow can be plotted.

8. If the maximum time step is reached, then the program is terminated. Otherwise a return to step 2 is required.

FIG. 3. Flowchart diagram of the numerical computation procedures.

The reservoir parameter values used in the numerical computation are

Parameter	Value
K (permeability), mD	160
H (depth), m	6,000
L (width), m	12,000
λ_{m} (conductivity), $W/(m \cdot K)$	3.3
α_{m} (diffusivity), m^{2}/s	1.33×10^{-6}
$\Delta extsf{T}$ (maximum temperature), K	700

The surface heat flow in terms of the dimensionless thermal gradient $\partial\theta/\partial y$ is given by

$$Q = \lambda_{\rm m} \frac{\partial \Theta'}{\partial y'} = \lambda_{\rm m} \frac{\Delta T}{H} \frac{\partial \Theta}{\partial y} = 8.6 \frac{\partial \Theta}{\partial y}$$
(HFU) . (82)

The relationship between real time (t') and dimensionless time (t) is given by

t' =
$$\frac{H^2}{\alpha_m}$$
 t = 870,000 t (in years) . (83)

Figures 4 through 6 show the graphs of temperature, stream function, velocity vector, and surface heat flow produced by the cooling of an intrusive dike complex 1500 m in width and 3900 m in height located at the left boundary. All results were obtained with Ra = 200 and time (t') = 10,400 y. Figure 4 is obtained with $\chi = 2$, Fig. 5 with $\chi = 0.25$, Fig. 6 with $\chi = 0.5$.

It is interesting to note from Figs. 4 and 5 that the surface heat flow is higher for the case of lower permeability ratio (χ). One can explain this by observing the flow patterns in these figures. For the case of the higher χ , the flow is behaving like the flow near a vertical flat plate and therefore produces very little convection of heat from the top of the dike region to the surface. On the other hand the lower permeability ratio (χ) produces large convective flow on the top of the dike region. Figures 6 through 8 present the effects of the dike's vertical dimension on surface heat flow. It is quite clear that the closer the top of the intrusion is to the surface, the higher the resulting surface heat flow.

Figure 9 presents the history of surface heat flow. The sharp drop-off of surface heat flow in the Salton Sea Geothermal Field (SSGF) as noted by Kasameyer and Younker⁶ is consistent with these numerical results. Figure 10 presents the temperature contour plots at various time steps. A simple analytic model by Hanson⁸ involving horizontal convection transport beneath a conductive cap suggests that the age of the intrusive body is between 6000 and 20,000 y, based on field data from the SSGF. Figure 9 provides more data substantiating this estimate of the age of the intrusive dike. In Fig. 11, the results indicate that when χ is very small, multilayer convective cells exist.

The appendix contains the finite-difference heat and mass transport computer program used for the above calculations.

FIG. 4. Temperature (a), stream function (b), velocity (c), and surface heat flow (d) produced by cooling of intrusive dike located at left boundary. Ra = 200, χ = 2.0, η = 0.9, and t = 0.012.

FIG. 5. Temperature (a), stream function (b), velocity (c), and surface heat flow (d) produced by cooling of intrusive dike located at left boundary. Ra = 200, χ = 0.25, η = 0.9, and t = 0.012.

FIG. 6. Effect of the vertical dimension on temperature (a), stream function (b), velocity (c), and surface heat flow (d) during cooling of intrusive dike located at left boundary. Ra = 200, χ = 0.5, η = 0.9, and t = 0.012.

FIG. 7. Effect of the vertical dimension on temperature (a), stream function (b), velocity (c), and surface heat flow (d) during cooling of intrusive dike located at left boundary. Ra = 200, χ = 0.5, η = 0.9, and t = 0.012. Note change in size of dike.

FIG. 8. Effect of the vertical dimension on temperature (a), stream function (b), velocity (c), and surface heat flow (d) during cooling of intrusive dike located at left boundary. Ra = 200, χ = 0.5, η = 0.9, and t = 0.012. Note change in size of dike.

FIG. 9. History of surface heat flow for dike located at left boundary. Ra = 200, χ = 0.5, n = 0.9 with t = 0.004 at (a), t = 0.008 at (b), t = 0.012 at (c), t = 0.016 at (d), and t = 0.020 at (e).

FIG. 10. Temperature contour plots for dike located at left boundary. Ra = 200, χ = 0.5, η = 0.9 with t = 0.004 at (a), t = 0.012 at (b), and t = 0.02 at (c).

ACKNOWLEDGMENTS

This work was supported by Lawrence Livermore National Laboratory (LLNL) Summer Institute Program. Invaluable suggestions were received from LLNL scientists J. M. Hanson, who proposed this research problem; P. W. Kasameyer; and L. W. Younker, formerly of the Department of Geological Sciences, University of Illinois, Chicago.

REFERENCES

- J. C. Jaeger, "Thermal Effects of Intrusions," <u>Rev. Geophys. 2</u>, 443-446 (1964).
- K. Horai, "Heat Flow Anomaly Associated with Dike Intrusion," J. Geophys. <u>Rev. 79</u>, 1940-1946 (1974).
- K. H. Lau and P. Cheng, "The Effect of Dike Intrusion on Free Convection in Conduction-dominated Geothermal Reservoirs," <u>Int. J. Heat Mass Transfer</u> <u>20</u>, 1205-1210 (1977).
- D. Norton and J. Knight, "Transport Phenomena in Hydrothermal Systems: Cooling Plutons," <u>Am. J. Sci.</u> 277, 937-981 (1977).
- K. E. Torrance and J. P. Sheu, "Heat Transfer from Plutons Undergoing Hydrothermal Cooling and Thermal Cracking," <u>Numerical Heat Transfer 1</u>, 147-161 (1978).
- P. W. Kasameyer and L. W. Younker, "Natural Fluid-flow Patterns in the Salton Sea Geothermal Field," <u>Geothermal Resources Council</u>, <u>Transactions</u> <u>2</u>, 359-361 (1978).
- D. W. Peaceman and H. H. Rachford, Jr., "The Numerical Solution of Parabolic and Elliptic Differential Equations," <u>J. Soc. Indust. Appl.</u> <u>Math. 3</u>, <u>No. 1</u>, 28-41 (1955).
- J. M. Hanson, Lawrence Livermore National Laboratory, Livermore, California, private communication (1979).

APPENDIX: COMPUTER PROGRAM

*****	CHAT	170A BC	X W42	07:51:30 08/08/79R					
000001 000002 000003 000004 000005 000006 000006 000007 000008	000000	VARIABLE T(I,J) S(I,J) U(I,J) V(I,J)	RIPTIONS ERATURE VALUE AT GRID POINT (I,J) AM FUNCTION VALUE AT GRID POINT (I,J) CITY COMPONENT IN X-DIRECTION AT GRID POINT (I,J) CITY COMPONENT IN Y-DIRECTION AT GRID POINT (I,J)						
000009 000010 000012 000013 000014 000015	00000000	KRÁŤIÓ IPWS IPW IPHI IPH IUH IUH IMAX	ICAL AND HORIZONTAL PERMEABILITY RATIO BOUNDARY OF DIKE IT BOUNDARY OF DIKE OHT OF THE DIKE HT OF THE DIKE TION OF THE CAP ROCK MUM NUMBER OF POINT IN X-DIRECTION MUM NUMBER OF POINT IN X-DIRECTION						
000017 000018 000019 000020 000021 000022 000023 000024		DELT DELX DELY RELAX R CYMAX IPLOT	I NCR I NCR I NCR RELA RAYL MAXI NUME	REMENTAL VALUE OF EACH TIME STEP REMENTAL VALUE OF EACH GRID POINT IN X-DIRECTION REMENTAL VALUE OF EACH GRID POINT IN Y-DIRECTION XATION FACTOR USED IN STREAM FUNCTION ITERATION EIGH NUMBER MUM NUMBER OF TIME STEPS DESIRED SER OF TIME STEPS BETWEEN TWO RJET PLOTS					
000025 000026 000027 000028 000029 000030 000031 000032 000033 000034 000035	C	PRÖGRAM G REAL KRAT DIMENSION DIMENSION DIMENSION DIMENSION DATA 5/12 DATA 5/12 DATA V/12	GEOTHER FIO N T(61, N CL(6) N CS(6) N X(61) 281*0./ 281*0./ 281*0./ 281*0./	<pre>RMAL(TAPE59,TAPE61) 21),S(61,21),U(61,21),V(61,21) ,Y(61),W(61),G(61),B(61),TS(61) </pre>					
000038 000037 000038 000039	С С С	STATE	1ENT FL	UNCTION USED BY ADI SOLUTION					
000040 000041 000042 000043 000044 000045		D(I,J)=DE 1 DELY21 D1(1,J)=E 1 DELX21	ELTIN*1 *(T(1, DELTIN* *(T(1+	<pre>F(I,J)-V(I,J)*(T(I,J+1)-T(I,J-1))/(2.*DELY)+ J+1)-2.*T(I,J)+T(I,J-1)) *T(I,J)-U(I,J)*(T(I+1,J)-T(I-1,J))/(2.*DELX) + +1,J)-2.*T(I,J)+T(I-1,J)</pre>					
000046 000047 000048 000049	000	PROGRA	AM STAF	RTS HERE					
000050 000051 000052 000053 000054		CALL CHAN CALL ASSI CALL RJE	NGE("+0 IGN(61, TID	GEOTH1") GHPRINT1)					
000055 000056 000057 ******	000	TEMPER	RATURE	FIELD PLOTTING LEVEL VALUES					

****	CHAT	170A	BOX W42	07:51:30	08/08/79	R	MAIN.	
000058 000059 000060 000062 000063 000064 000065 000066 000067 000068 000069 000070 000071 000072 000073 000075 000075 000075 000075 000075	50 C C	CL(1)= D0 50 CL(1)= CONTIN PAR	0.1 I=2,6 CL(I-1)+0 UE AMETERS 0	.2 F THE PROB	3LEM			-
	Ū	I PWS=1 I PW=6 CYMAX= I PLGT= I UH=20 I PHI=1 DELT=C I MAX=2 JMAX=2 KRATIC	20 4 HI .001 1 =0.01					
000080 000081 000082 000083 000085 000086 000086 000087 000088 000090 000091 000092 000093 000093 000093 000095 000095 000095 000095 000095 000098 000095 000098 000099 000101 000102 000103 000103 000105 00000000	C C 11 12	0TH IMAX1= JMAX1= IMAX2= IMAX2= ICYC=0 DELY=1 DELY=1 DELY=1 IDELY21 IPH1=1 EXSAX=0 SDEL=0 X(1)=0 X(1)=0 X(1)=1 CONTIN D0 12 Y(1)=1 CONTIN	ER COMPUT IMAX-1 JMAX-2 JMAX-2 JMAX-2 JMAX-2	ATIONAL CO JMAX1) *DELX) *DELY) X*DELY21*	DELX			-
000113	C	SET	INITIAL	TEMPERATU	RE FIELD	VALUES		-

000115 C 000116 DO 10 I=IPWS,IPW DO 10 J=1,IPHI T(I,J)=1.0 CONTINUE 000118 000120 10 000121 000122 000123 000 _____ ITERATION LOOP STARTS HERE 000123 000124 000125 000125 000127 000128 1000 CONTINUE ----------00000 000128 000129 000130 000131 000132 START ADI ITERATION FOR TEMPERATURE FIELD ADI IN X-DIRECTION FOR Y=0 000133 ITIME=1
W(1)=DELTIN + 2.*DELX2I
B(1)= -2.*DELX2I/W(1)
G(1)= DELTIN * T(1,1) + 2.*DELY2I*(T(1,2)-T(1,1))
G(1)=G(1)/W(1)
D0 100 I=2,IMAX
A=U(I,1)/(2.*DELX) + DELX2I
W(I)=W(1) + A*B(I-1)
B(I)=(U(I,1)/(2.*DELX)-DELX2I)/W(I)
G1=DELTIN*T(I,1) + 2.*DELX2I*(T(I,2)-T(1,1))
G(I)=(G1+A*G(I-1))/W(I)
CONTINUE 000133 000134 000135 000136 000137 000138 000139 000140 000141 000142 000143 000144 000145 100 CONTINUE 000146 000147 000148 0000 SOLUTION FOR TEMPERATURE FIELD AT Y=0 STORE SOLUTION IN TEMPORARY STORAGE 000148 000149 000150 000151 000152 TS(IMAX) = G(IMAX)000152 000153 000154 000155 000156 000157 D0 101 I=1, IMAX1 I1=IMAX-I TS(I1)=G(I1)-B(I1)*TS(I1+1) CONTINUE . 101 000158 000159 000160 0000 SOLUTION FOR TEMPERATURE FIELD AT ALL OTHER Y IMPLICIT SOLUTION FOR ALL OTHER Y IN X-DIRECTION 000161 000162 000163 D0 105 J=2,JMAX1 G(1)=D(1,J)/W(1) D0 106 I=2,IMAX A=U(I,J)/(2.*DELX) +DELX2I W(I)=W(1) + A*B(I-1) B(I)=(U(1,J)/(2.*DELX)-DELX2I)/W(I) G(I)=(D(I,J)+A*G(1-1))/W(I) 000164 000165 000166 000168 000169 000170 000171 106 CONTINUE

170A BOX W42 07:51:30 08/08/79R

MAIN.

CHAT

******	· CHAT	170A BOX W42	07:51:30 08/08/79	9R	MAIN.
000172 000173	С				
000174	C C	STORE SOLUT	ION FROM TEMPORARY	STORAGE IN	TEMPERATURE FIELD
000177		DO 107 I=1,IMA T(I,J-1)=TS(I)	x		
000179 000180	107	CONTINUE			
000182 000183	с с	SOLUTION IS	STORED IN TEMPORA	RY STORAGE	
000184 000185 000186		TS(IMAX)=G(IMA)	X)		
000187		I1=IMAX-I TS(I1)=G(I1)-B	(11)*TS(11+1)		
000189 000190 000191	108 105	CONTINUE			
000192	C C	STCRE SOLUT	ION_FROM_TEMPORARY	STORAGE	
000194 000195 000196	C C	INTO TEMP	ERATURE FIELD		
000197 000198		DO 109 I=1,IMA T(I,JMAX1)=TS(X 1)		
000199	109	TIME=TIME+DELT			
000202		GO TO 305			
000204 000205 000206	C C	SECOND HALE	OF ADI SOLUTION S	TARTS HERE	
000207 000208	č				
000209 000210 000211	C C	SOLUTION FO	R X=0		
000212	č				
000214 000215 000216	180	CONTINUE ITIME=2 W(1)=DELTIN +	2 ×DELY21		
000217 000218		B(1) = -2.*DELY G(1) = DELTIN*T(21/W(1) 1,1) + 2.*DELX2I*(T(2,1)-T(1,1))
000219		G(1)=G(1)/W(1) DO 200 J=2, JMA A=V(1, J)/(2)	X1 *DELY) + DELY21		
000222		W(J)=W(1) + A* B(J)=(V(1,J)/(B(J-1) 2.*DELY)-DELY2I)/W	'(J)	
000224 000225 000226	200	G1=DELTIN*T(1, G(J)=(G1 + A*Ġ CONTINUE	J) + 2.*DELX2I*(T((J-1))/W(J)	2,J)-T(1,J))	
000227	200 C				

POV U42 07:51:20 08/08/708

MAIN.

****	CHAT	170A	B0X W42	07:51:30	08/08/79R	1	MAIN.	
000229	C	STC	RE SOLUTI	ON IN TS	TEMPORARY			
000230	C							
000232		TS (JMA	.X1)=G(JMA	(X1)				
000233		DØ 201	J=1, JMAX	(2				
000234		J = JMA	XI-J =G(JI)-B(11) xTS(11	+1)			
000236	201	CONTIN	IUE					
000237	<u> </u>							
000239	č	SOL	UTION FOR	R 0 <x<l< td=""><td></td><td></td><td></td><td></td></x<l<>				
000240	С							
000242		DØ 205	I=2.IMAX	(1				
000243		G(1)=D	1(1,1)/W(1)				
000244			5 J=2,JMA) 1)/(ク *DE	(1 51 Y) + DEL	Y21			
000246		Ŵ(J)=Ŵ	(1) + A*E	S(J-1)				
000247		B(J) = (V(1, J)/(2	2. *DELY)-C	DELY2I)/W(J)		
000249	206	CONTIN	IUE	- A+G(0-1)	()/W()/			
000250	•							
000251	Č	STO	RE SOLUTI	ON INTO T				
000253	Ĉ							
000254		DO 207	J=1.JMA	(1				
000256		T(I-1,	J) = TS(J)	• •				
000257	207	CONTIN	IUE					
000259	Ç							
000260	ç	STC	RE SOLUTI	ON TEMPOR	RARY IN TS			
000262	C							
000263		TS (JMA	(X1) = G(JMA)	X1)				
000265		J1=JMA	(X1-J	~2				
000266	000	TS(J1)	=G(J1)-B([J1)*TS(J1	+1)			
000268	205	CONTIN	IUE					
000269	~							
000270	č	SOL	UTION FOR	R X=L				
000272	С							
000273		G(1)=[DELTIN*T	(MAX, 1)+2.	*DELX2I * (T	(IMAX1,1)-	TIMAX,	1))
000275		G(1) = 0	S(1)/W(1)	/1		-	-	
000277		A=V(IM	1AX,J)/(2.	*DELY) +	DELY21			
000278		W(J) = V	/(1) + A*E	3(J-1)		N 70 C TN		
000280		G1=DEL	TINXT(IMA	(Z, *DEL) (X, J) + 2.	*DELX21*(T	(ÍMAX1,J)-	TIMAX.	J))
000281	210	G(J) = (G1+A*G(J·	-1))/W(J)		-	-	
000283	210	CONTIN						
000284	С	STO	RE SOLUTI	ION INTO 1	r			

33

•

*****	CHAT	170A BOX W42 07:51:30 08/08/79R MAIN.
000286 000287 000288 000289	211	DO 211 J=1,JMAX1 T(IMAX1,J)=TS(J) CONTINUE
000290 000291 000292 000293 000294 000295	212	TS(JMAX1)=G(JMAX1) D0 212 J=1,JMAX2 J1=JMAX1-J TS(J1)=G(J1)-B(J1)*TS(J1+1) CONTINUE
000296 000297 000298 000299 000299	000	SOLUTION OBTAINED FOR X=L
000301 000302 000303 000304 000305 000305	213	DO 213 J=1, JMAX1 T(IMAX,J)=TS(J) CONTINUE TIME=TIME+DELT ICYC=ICYC+1
000307 000308 000309	000	ENTER STREAM FUNCTION ITERATION LOOP
000310 000311 000312 000313 000314 000315 000316	305	DELS=0. SMAX=0. SMIN=0. DO 310 I=2,IMAX1 IF(I.LT.IPWS)GO TO 311 IF(I.GT.IPW)GO TO 311
000318 000319 000320 000321 000322 000322	311 312	GO TO 312 JSTART=2 DO 315 J=JSTART,IUH1 ST=S(I+1,J)+S(I-1,J)+EPSI*(S(I,J+1)+S(I,J-1)) ST=ST+RX*(T(I+1,J)-T(I-1,J))/(2.*DELX) ST=ST/(2*(1.+EPSI))
000324 000325 000326 000327 000328 000329	316	SIT=S(T,J) S(T,J)=RELAX*ST + (1RELAX)*S(T,J) IF(SMAX.GT.S(T,J))GO TO 316 SMAX=S(T,J) CONTINUE IF(SMIN.LT.S(T,J))GO TO 317
000330 000331 000332 000333	317	SMIN=S(I,J) CONTINUE DELS1=ABS(ST1-S(I,J)) IF(DELS1.LT.DELS)GO TO 315
000334 000335 000336 000337	315 310	DELS=DELS1 CONTINUE CONTINUE
000338 000339 000340 000341	000	CHECK TO SEE IF ITERATION CONVERGENT CRITERIA WERE MET
000342		IF(DELS.GT.1.0E-5)G0 T0 305

* * * * * * *	CHAT	170A	BOX W42	07:51:30	08/08/79R	MAIN.
000343						
000344	С					
000345	Č	PLO	T ON RJE	т		
000346	č	PID	T TEMPER	ATURE		
000347	č					
000348	Ŷ					
000040		IE (MOD	LICVO IP	INT NE ON	CA TA 4000	
000350		CALL M.	APS(0 Y	MAY 0 1		2)
000351				547, 0., 1., 547, 547, 547, 547, 547, 547, 547, 547	2 0)	37
000351				0,1.0,0,0, ME	2,0)	
000352	•	WRITEL	100,3711			
000353	3	PORMAI		AIURE AI	$\begin{array}{c} 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11$	AV 1)
000354		CALL R	CONTROS,	CE, U, I, 61,	Χ, Ε, ΙΜΑΧ, Ε, Υ, Ε, ΟΜΑ	48,1)
000355		CALL FI	RAME			
000355	~					
000357	ž		T OTOFAM	TUNOTION		
000358	U C	PLU	I SIREAM	FUNCTION		
000359	C					
000360			~ • • • • •			
000361		CS(1) = 3	SMIN			
000362		CS(6) = 1	0.			
000363		DS=(SM	AX-SMIN)	/5.0		
000364		D0 360	1=2,5			
000365		CS(I) =	CS(1-1) +	DS		
000366	360	CONTIN	UE			
000367		CALL M	APS(O.,X	MAX, O., 1.,	0.11,1.0,0.11,0.4	3)
000368		CALL S	ETLCH(O.	5,1.5,0,0,	2,0)	
000369		WRITE(100,4)			
000370	4	FORMAT	("STREAM	FUNCTION")	
000371		CALL R	CŐNTR(6,	CS,0,S,61,	X,1,IMAX,1,Y,1,JMA	AX,1)
000372		CALL F	RAME			
000373						
000374	С					
000375	С	COM	PUTE VEL	OCITY		
000376	С					
000377						
000378	4000	CONTIN	UE			
000379		SMAX=0	•			
000380		DØ 400	I=1,IMA	X		
000381		DØ 400	J=1,IUH			
000382		U(I,J)	=(S(1,J+	1)-S(I,J-1))/(2.*DELY)	
000383		V(I,J)	=(S(I-1,	J) - S(I+1, J)))/(2.*DELX)	
000384		IF (ABS	(U(I,J))	.LE.SMAX)G	0 TÕ 410	
000385		SMAX=A	BS(U(1,J))		
000386	410	IF(ABS	(V(I,J))	.LE.SMAX)G	O TO 400	
000387		SMAX=A	BS(V(I.J))		
000388	400	CONTIN	UE			
000389						
000390	С					
000391	С	PLØ	T VELOCI	TY		
000392	С					
000393						
000394		IF(MOD	(ICYC, IF	LOT).NE.O)	GØ TØ 4010	
000395		CALL M	APSIOLX	MAX, 0 1	0.11,1.0,0.11.0.4	3)
000396		CALL S	ETLCH(Ó.	5,1.5,0.0.	2,0)	
000397		WRITE	100.5)		-	
000398	5	FORMAT	("VELOCI	TY")		
000399	-	DØ 430	1=2, 1MA	X1		
****			_,			

*****	CHAT	170A	вох	W42	07:51:30	08/08/79R	MAIN.
000400		DO 430 XS=X(1	J=2	, JMAX	1		
000402		YS=Y(J))				
000403		FAC=2.	5				
000404		XE=XS+1		J(1, J //1 T) * DELX/SMA/	*	
000405			ACA Y	(X S, V)	S XE VEL	^	
000407	430	CONTIN	IF	(7,0,1)	0,/[.,] [/		
000408	400	CALL F	AME				
000409							
000410	С				~ ~ ~ ~		
000411	ç	PL0	L LEI	1 PERA	TURE PROFI	LES	
000412	С						
000413				- - УМ	AV 0 1 0	11 1 0 0 11 0 421	
000415		CALL N		4(0)5	15002	0)	
000416		WRITE		5)	, 1.0,0,0,2	, 0,	
000417	6	FORMAT	ŤÉ	MPERA	TURE PROFI	LES")	
000418	•	DO 450	1 = 1	, IMAX	1,10		
000419		IF(I.E	ວ. 1) (бо то	451		
000420		XS = X(I))				
000421		CALL	INEC	XS,1.	0,XS,0.,0)		
000422	451	DD 460	1=1	, JMAX	=		
000423	460			57*0.	5+X(1)		
000424	400		RACE	(TS Y	IMAX)		
000426	450	CONTIN	JE	(,,,,	, 011/0/07		
000427	400	CALL F	RAME				
000428							
000429	С						
000430	C	PLO	r su	RFACE	HEAT FLOW		
000431	С						
000432							
000433			NPS(о хм	AX 0 20	0 11 1 0 0 11 0 31	
000435		CALL S	ΞΤΙ C	Н(0.5	24.00.2	(0)	
000436		WRITE(100.	7)	, _ 4, , 0, 0, 2] 0 /	
000437	7	FORMAT	("SÚ	RFACE	HEAT FLOW	")	
000438		DØ 500	I = 1	, IMAX			
000439		W(1) = (1)	T (I ,	JMAX2)-T(I,JMAX))/(2.*DELY)	
000440	500		(])*. 	8.6			
000441	500		SACE	(x w	TMAX)		
000443		VALL I	NAOL	(,,,,,,	1100		
000444	С						
000445	С	PLO	Τ ΤΕ	MPERA	TURE BENEA	TH THE CAP	
000446	С						
000447				~ V.			
000448		DO 510	4451	U., XM 1 M A V	AX, U., U. 5,	0.11,1.0,0.61,0.8)	
000449		W(T)=T	(1 1)	, пал			
000451	510	CONTIN	ÙÉ'	0117			
000452		CALL S	ETLC	H(0.5	,1.0,0,0,2	,0)	
000453		WRITE(100,	8)		-	
000454	8	FORMAT	(" <u>TE</u>	MPERA	TURE BENEA	TH THE CAP")	
000455		CALL T	RACE	(X,W,	IMAX)		
000456		CALL F	RAME				

****	CHAT	170A BOX W42 07:51:30 08/08/79R MAIN.
000457	~	
000458	L L	LAGD NACK EGD NEVT TIME STED
000439	č	LOUF BACK FUR NEXT TIME STEP
000461	C	
000462	4010	CONTINUE
000463	4010	
000463		
000465		
000466	C	
000467	č	PROGRAM END. WILL PRINT THE LAST TIME STEP TEMPERATURE AND
000468	č	STREAM FUNCTION VALUES
000469	č	
000470	-	
000471		PRINT 9000
000472	9000	FORMAT("1 THIS IS THE TEMPERATURE DATA")
000473		DØ 20 I=1,IMAX
000474		PRINT 9001, (T(1, J), J=1, JMAX)
000475	9001	FORMAT(1H ,11F10.5)
000476	20	CONTINUE
000477		PRINT 9002
000478	9002	FORMAT(1H1, "STREAM FUNCTION")
000479		DO 21 I=1,IMAX
000480		PRINT 9001, (S(I,J), J=1, JMAX)
000481	21	
000482		CALL EXIT
000483		END

U.S. Government Printing Office: 1981/1-789-002/5540

ł