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ABSTRACT 

The function, J(x,y), which has appeared frequently in analytical solutions 

of a variety of technical problems, is described and its applications briefly 

reviewed. Two detailed examples of applications are given. Tabulations of 

functions related to J(x,y) are listed, and relationships of J(x,y) to these 

functions are stated. ,Methods of computation of J(x, y) , suitable for use with 

digital computers, are described. 
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1. INTRODUCTION 

Analytical solutions of the partial differential equations of mass or 

heat transport in porous media with time-dependent (non-equilibrium) transfer 

of mass or heat between fluid and solid phases may include certain irreducible 

integrals in which the integrands are, in general, products of exponential 

functions and Bessel functions. These integrals have appeared frequently in 

the literature on heat and mass transport, as well as in that describing other 

phenomena, and in recent years have been abbreviated by use of the functional 

designation J(x,y). Aside from purely mathematical interest, knowledge of the 

properties of the function J(x,y) is required for its numerical evaluation in a 

variety of technical applications. Here we briefly review properties and 

applications of the function J(x,y), describe published (and unpublished) tabu

lations of related functions, and discuss methods for numerical evaluation of 

J(x,y). 
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2. DEFINITIONS AND PROPERTIES OF J(x,y) 

The function J(x,y) can be defined (Goldstein, 1953) by: 

x 
-y ( -~ 

J (x, y) = 1 - e -b e 10 (2~) d~, x ~ 0, y ~ O. 

where I (z) is the modified Bessel function of the first kind, of order o 

(1 ) 

zero, with argument z. The form (1) appears to have been used most frequently 

in technical applications. Other, equivalent forms have been derived by 

Anzelius (1926): 

-~ e 
(2) 

and by Terazawa (1922) and Goldstein (1932, 1953): 

00 

(3) 

where JO(z) and Jl(z) are the Bessel functions of the first kind, of orders 

zero and one respectively, with argument z. Vermeulen and Hiester (1952) appear 

to have been the first to use the symbol J(x,y) for this function. 

;Mathematical properties of J(x,y) have been summarized by Goldstein (1953) 

and, more extensively, by Luke (1962). Some of the more useful properties deriv-

able from (1) are listed below, where subscripts x and y indicate partial 

differentiation. 

J (x, y) + J (y, x) = 1 + e -x-y 10 (2 '\{Xy) , (4 ) 
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J ( ) 1 1 -2x 
x, x = 2 + 2e 10 (2x) 

J x (x, y)=- e-x- y IO(2VXy) 

Jy(X, y) = e -x-y ( yX) 1/2 

J(x,O) 
-x 

e 

J(O,y) = 1 

Rim J(x,y) 0 
x-+cc 

Um J(x,y) = 1 
y-+oo 

1 
Rim J(x,x) =-2 

X-+<¥l 

II (2 vxY) 

Fiqures 1-4 show the variations of J(x,y) over limited ranges of the 

arguments x and y. 

(5) 
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3. APPLICATIONS 

The function J(x,y) and related functions occur in the analytical solu

tions of a variety of technical problems. A sampling of such problems is given 

below with two detailed examples; the reader is referred to the original litera

ture for detailed statements of other problems, including governing differential 

equations, initial conditions, and boundary conditions. 

(1) heat exchange and heat transport: 

Anzelius, 1926; Brinkley, 1947; Hougen and Marshall, 1948; Klinkenberg,· 

1948; Carslaw and Jaeger, 1959 (pp,,259-260, 393-396). 

(2) hydrodynamics: 

Terazawa, 1922 (p. 99); Goldstein, 1932 (pp. 66-72). 

(3) probability and statistics: 

Bose, 1947; Brinkley and Brinkley, 1947; Masters, 1955. 

(4) fluid flow in pipes, electric current in cables: 

Binnie and Miller, 1955. 

(5) mass transport in porous media with interphase mass transfer: 

(a) convective transport only: 

Thomas, 1944, 1948, 1949; Walter, 1945; Hiester and Ver

meulen, 1952; Vermeulen and Hiester, 1952; Goldstein, 1953; 

Opler and Hiester, 1954; Gardner and Brooks, 1957 • 

(a) convective and dispersive transport: 

Lapidus and Amundson, 1952; Ogata, 1961, 1964, 1969, 1970, 1976; 

Banks and Igbal, 1964; Eldor and Dagan, 1972; Lindstrom and 

Narasimhan, 1973, Lindstrom, 1976; Cameron and Klute, 1977; 

deSmedt and Wierenga, 1979a, 1979b; Carnahan and Remer, 1981. 

Two detailed examples of applications of the function J(x,y) in problems 
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concerning mass transport with interphase mass transfer are set forth below. 

The first example considers purely convective transport with a nonlinear ex-

pression for the rate of mass transfer. The second example considers convective 

and dispersive transport with a linear rate expression. 

Hiester and Vermeulen (1952) considered a fixed-bed ion exchange process 

in which an ionic solute, A, in the feed solution exchanges with another solute 

previously sorbed on the solid phase (resin) occupying a packed column. The 

material halance relation for solute A at a given cross section of the column 

is (with minor changes of notation): 

where c is the number of equivalents of A per unit volume of fluid phase, q is 

the numher of equivalents of A per unit mass of dry resin, P is the bulk density 

of dry resin, f is the porosity of the column, v is the total column volume from 

inlet to cross section, and V is the volume of fluid fed to the column. The 

rate expression for ion exchange is: 

= 

where T is time, k is a rate constant, K is the selectivity coefficient for the 

ion-exchange reaction, goo is the exchange capacity of the resin, and c is the 
o 

total solute concentration in the fluid phase. The problem is recast by use 

of the dimensionless variables, r, s, and t, 

where 
-1 

r K 

s = kvpq"" R 
-1 

t k(V-fv)c R 
-1 

k 
-1 

(T-fv:R )c 
0 0 
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and R is the volumetric rate of flow of feed solution. With this notation (6) 

and (7) become, respectively, 

l 
c 
c 

o 

with the boundary conditions: 

clc 
o 

g/q 
00 

1 at s o 

o at t o 

The resulting solutions are 

and 

c 
c 

o 

.9. 
q 

00 

= J(rs,t) 

J(rs,t) + e(r-l) (t-s) [l-J(s,rt)] 

1 - J(t,rs) 

J(rs,t) + e(r-l) (t-s) [1-J(s, rt8 
where J(x,y) is defined by (1). 

(8 ) 

(9) 

Carnahan and Remer (1981) considered a three-dimensional porous mec'lium with 

porosity E: supporting a flow of fluici with velocity v parallel to the z-axis and 

moving toward the positive direction. A solute is introduced at a constant rate, 

TO mass units per unit. time, at the origin of coordinates and is subjected to 
o 

convective transport with hydrodynamic dispersion, the dispersion being character-

ized by coefficients D and D in directions parallel and perpendicular, 
L T 

respectively, to the direction of fluid flow. If c is the solute mass per 
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unit volume of fluid and q is the sorbed solute mass per unit volume of solin 

phase, the mass balance equation at a point (x, y, z) at time t >'0 is 

where 

i£ +a~ = at at 

l-E. 
a=-E:-

D a ·c +!...£. + 
( 

2 2 ) 

T ax2 ai 

The rate expression for sorption is assumed to be linear and takes the form 

.2s = at 

where kl and k2 are forward and backward rate constants. The linear 

(10) 

(11) 

rate expression used here corresponds to "I,angmuir" sorption in which q is much 

smaller than the sorptive capacity of the solid. Initial conditions are: 

c = 0, q = 0 for all (x,y,z) att=O (12) 

and the boundary conditions are 

Q, im C = 0, t > 0 
x,y,Z+OO 

= m t 
o ' 

t > 0 

The solutions to (10) and (11) satisfying (12) - (14) were found to be: 

2 2 2 
t x +y (z-v,) 

J [ak1 ' ,k2 (t-T~ Q{: 4DT, 4D
L

, d, 
e = 

3/2 -0 , 

x 2+y2 ' 2 

kl [ 
(z-v,) 

4D
T

, 4D
L

, jl-Jh<t-T),Uk1TII d, 
q -Q e 3/2 

k2 0 , . . 

(l3) 

<14 ) 

(15) 

(16 ) 



where 

Q 
m 

o = --~~~~~~--
8 3/2n D 1/2 

TI T L E 

8 

Although solutions (8) and (9) could be evaluated by use of tables of 

the function J(x,y), it is evident that numerical evaluation of the irreducible 

integrals in (15) and (16) requires an efficient computational scheme for J(x,y). 
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4. TABULATIONS 

Although the function J(x,y) as defined by (1)-(3) does not appear to 

have been tabulated in the published literature, tabulations of several related 

functions have been published or reported. 

(1) Bose (1947) has tabulated the function L(P,p,A) where 

For the case p = 2, 

J(x,y) = 1 - L (\J2x, 2,'i2Y) 

(2) Brinkley and Brinkley (1947) reported an unpublished table of the pro-

bability, p(r,R), that the point of impact of a missile aimed at the 

origin of coordinates will lie within a circle of radius r whose center 

is distance R from the origin; p(r,R) is sometimes called the offset 

circular probability function, and was defined. by 

2 

p(r,R) ( 
-t 

e 10 (2RVt) dt 

Then, 

J(x,y) = 1 - P (~,~y) 

(3) The Rand Corporation (1951) has tabulated the offset circular prohabil-

ity function q(R,r), where 

q(R,r) (17) 

(17) 
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Then, 

J(x,y) = q(V2X. \f2y) 

(4) Wilson (1951) and the Admiralty Research Laboratory (1953) have published 

tabulations of the Function F (S,p) where 

Then, 

F(e,p) 1
8 2 

-n e 

o 

J(x,y) = 1 -'fITx F(~,~ 

(5) Brinkley, Edwards, and smith (1952) reported an unpublished table of the 

function ¢o(x,y) applicable to exchange of heat between a fluid and 

a porous solid, where 

Then, 

x 

.O(x,y) = eX 1 
o 

-x-y 
J(x,y) = 1 -e ¢o(x,y) 

(6) .Masters (1955) tabulated the offset circular probability function, 

P(zla,Rla), and indicated the utility of this function in problems of 

nuclear particle scattering and heat conduction. P(zlc, Ria) was 

defined by: 

P(z/a, R/a) "" 
2 a 

and is related to J(X,y) by: 

J(x,y) = 1 - P (\}2x., V2Y) 

2 2 
-r /20 

e 
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5. COMPUTATIONAL METHODS 

The tabulations of functions related to the function J(x,y) are not suit-

able for repeated, numerical evaluations of J(x,y) required for many practical 

applications. However, several computational methods are available. 

Walter (1945) and Klinkenberg (1948) have given an analytical approxima-

tion to J(x,y), based on the error function and applicable for large values 

of the arguments (x,y). Hastings and Wong (1953) have provided twenty-two 

analytical approximations to the function q(R,r) defined by (17); their ap-

proximations are valid for a variety of ranges of argument values and exhibit 

a variety of accuracies. 

An asymptotic expansion in a series of Bessel functions was attributed 

to L. Onsager and was described by Thomas (1944, 1948). Asymptotic expansions 

\.,hich are more easily implemented numerically have been derived by Goldstein 

(1953). 

The available analytical approximations are not accurate enough for evalua-

tion of expressions such as (15) and (16), where J(x,y) appears as part of the 

integrand in integrals which must be evaluated by numerical methods. The 

remainder of this section describes methods which have been implemented at 

the Lawrence Berkeley Laboratory for computation of J(x,y) as part of a study 

of mass transport in porous media (Carnahan and Remer, 1981). 

One method uses an iterative Simpson's rule routine to evaluate the inte-

gral S(x,y), where 

s(x,y) 
1 : r -x~ . 

=)0 e 10 (2 VXy7;)dt; 

Approximations to S(x,y) are made on successively smaller subintervals of 6 ~ 
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until the absolute fractional error between successive approximations is less 

than an assigned value. The modified Bessel function is computed using polynomial 

approximations given by Olver (1965). If argument x$lO, or if x>lO while X$y, 

J(x,y) is formed from: 

J(x,y) = 1 - xe-Ys(x,y) 

If x>lO while x>y, the routine computes S(y,x), and J(x,y) is formed from: 

J(x,y) 

-6 This method produces results which have relative errors of about 1 x 10 • 

Another method uses infinite series expansions of J(x,y). If the modified 

Bessel function in (1) is expanded in the series (Olver, 1965) 

00 

(18) 

and the integration is performed term by term, the following result is obtained: 

00 n 

J(x.y) e-X- y L:-f, L: 
n=O . m=O 

m 
x 
m! 

(19) 

'fhis or equivalent results have been stated by Thomas (1944, 1948), Walter (1945), 

and deSmedt: and Wierenga (1979a, 1979b). An alternative form, stated by deSmedt 

and Wierenga (1979a, 1979b), can be derived by using (19) to write J'(y,x) and 

finding J(x,y) by use of (4) and (18). The result is: 

J(x,y) 
-x-y 

1-e 
00 

)' ~~ "n=1 I: 
m=O 

m 
l
m! 

(20) 
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In principle, (19) and (20) can be used to compute J(x,y) to any desired degree 

of accuracy. We have found that, for a given degree of accuracy, (19) requires 

fewer computational steps if x > y, while (20) is faster in this sense if 

y > x. In practice, large values of x and y require a large number of computa-

tions because of the slow rate of convergence of the double sum in the two 

expressions. Also, the numerical value of the double sum may exceed the range 

of the computing device for very large argument values. For example, assume 

that the computation is carried to a number of terms so that the contribution 

of the next term in the summation over n, relative to the double sum computed 

-6 thus far, is less than 1 x 10 • Then if both x and y equal 116, the 

double sum equals about 10
100

, and if both x and yequal 372, the double 

322 sum equals about 10 ,which is the upper limit of the range of real con-

stants allowed by the CDC-7600 computer in use at this laboratory. In both 

examples, the value of J(x,x) is about 0.5. 

The problems of slow convergence and out-of-range computations encountered 

in use of (19) and (20) can be minimized by application of available asymptotic 

expansions of the function J(x,y). We have adapted several expansions given by 

Goldstein (1953) to computations of J(x,y) with large values of the arguments, 

our principal modification being the sUbstitution of an asymptotic expansion 

of the modified Bessel function of the first kind of order zero wherever the 

Bessel function occurs in Goldstein's equations. We have also derived recur-

sion relations for the coefficients occurring in the expansions. 

The asymptotic expansion of the modified Bessel function of the first 

kind of order zero with argument z is (Goldstein, 1953): 

z e 
00 

L 
m=O 

A 
m 

(2z)m 
(21) 
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where AO 1, 2 2 2 
1·3 ••• (2m-l) 

4mm! 

The recurrence relation for the coefficient A 

A m 
= ...;:.,( 2=m,;--__ 1.<....) 2 

4m 
A 

m-l 

m 
is 

The expansion (21) can be used in (5,) to derive an asymptotic expansion of 

,J (x,x ) : 

1 
J(x,x) 'V "2 + 1 

4 '\f7Tx 

00 

L 
m=O 

A 
m 

The following computational scheme provides J(n)(x,x), the approximation of 

J(x,x) including terms through m = n: 

2 
Q -( x) = -"'( 2,,-m_-l-'..!)_ Q () 
m 16mx m-l x 

n 

J(n)(x,x)= 1 +~ 0 (x) = 
2 m=O 111 

J(n-l)(x,x) + Q (x) 
n 

Define the relative difference, 1<. , hetween successive approximations 
n 

J ( n) (x, y ) by 

In this case, 

Q (x) 
n 

R "" n 

(22) 

(23) 
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The computational scheme for J(x,x) gives R 
n 

n = 2, and R = 8 x 10-7 for x = 10 and n = 3. 
n 

-8 5xlO for x = 100 and 

In contrast, use of (19) 

requires 152 terms in the outer summation to achieve R = 8 x 10-7 with 
n 

x = y = 100. It is noted that (23) begins to diverge (~ > ~-l) at a 

value of m approximately equal to 4x + 1, and if a desired R value has not 
n 

been achieved by this step, it never will be achieved. For this reason, use of 

(23) is not advised for argument values less than x = 4 if R < 10-7• 
n 

Jf the arguments of J(x,y) are unequal, the asymptotic expanS1.ons given 

in the following paragraphs can be used. Using ~oldstein's notation, the fol-

lowing variables are defined: 

If t;, is large while t;, /z < 1/2, we have 

J(x,y) 
-z e 

IV ---

2"27T~ 
s (x,y) for n <1 

00 

-z 
J(x,y) IV 1 + e 

Soo(x,y) for n > 1 
2V27T~ 

where 

00 A 

[1 + Sm(~'Z)J S (x,y) =L: m l+n 
00 

(20m 1-n 
m=O 

A is defined by (22), and S ( t;., z) 1.S defined by 
m m 

1, S (~,z) 
m 1 + (24) 
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. 2m(2m-2) •.•. (2m.,.2k+2) 
(2m-l)(2m-3) ••• (2m-2k+l) 

The following computational scheme provides J(n)(x,y): 

B 1 (~, z) = - ~(2~.) B (~z) = _ 2m+2-2k (2~) 
m, 2m-l Z ' m,k' 2m+1-2k Z Bm,k_l (~,z) 

Compute B (~,z) according to (24). 
m 

C = 1 + l+n C = 1 + l+n ( o 1-n' m 1-n Bm ~,z) 

2 C 
DO = CO' D = (2m-I) m D m 8m~ C . 

m-1 m-1 
n 

S == L D = S + D n m n-1 n 
m=O 

/n)(x,y) 
-z 

::: e 
S 

2"27r~ n for n < 1 

-z (n) 
1 + e J (x,y) = S for n > 1 

t"27r~ n 

R "" IS::1 
for n < 1 n 

-z D 
R e n for n > 1 

n t"27r~ J(n-1) (x,y) 

Using arguments x = 100, y = 0.1, this scheme produces J(10)(x,y) 

3.13601 x 10-42 with RIO 0.99 x 10-6. 

If ~ 18 large while ~/z > 1, we have 
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00 

,T(x,y) 'V F(I:,z) + ~ e-
z L:lGm(O + Hm(I:,Z)J 

m=l 

where 

F(I:,z) = 

G (f;) = 
m 

-z 
e + 1:. (1 ::;: 

ZVZ'ITI: 2 

A 
m 

a T (z) {r 
H (I:,z) = + m m ~ 

m m 'IT 
(Z~+z) 

and A is defined in (22). 
m 

'Vz 2 
erf Vi) , erf Vz = 1 J e -u du 

. ~ 0 
(25) 

(26) 

In (25) and (26) the upper signs are used if n< 1, and the lower signs are used 

ifn> 1. In (Z6), note that 2'; + z = <Vx+'\fY>:- a and T (z) are defined 
m m 

by: 

a = m 
1.3·S ••• (Zm-l) 
2·4·6 ••• (2m) 

z2 + z + 1. 
4 

(m-l) (m-2) 
2! 

m-3 z + ••• 

+ 1:..1 ... (k- :) • (m-l) (m-2) ••• (m-k) 
2 2 l k! 

m-k-l 1 3 3) 
z + ... + 2 • 2··· (m- 2" 



18 

(n) 
The following computational scheme provides J (x,y): 

2 
G1(~) = (8~)-1 , Gm(~) = (2m-:-1) G (0. 

8m~ m-1 

T (z) 
m 

m-1 

=L 
k=O 

where C 0 = m, 

m-k-1 
C kZ m, 

(k- 1:.) (m-k) 
2 1, C .... ---k--m,k 

• C 
m,k-1 

H1 (I;,z) = ± 
Vz 2m-1 ,Tm (z) -1 ( ) 

, H (I;,z) = -z;- . T
m

_
1

(z) (21;+z) Hm_1 I;,z 

n 

/n) (x,y) 

-z 
e 

R = -2-
11 

2 ( 2i; +z )'\frr m 

fG (I;) + H (l;,z)1=8 1+ G (I;) + H (I;,z) 
Lm m J n- n n 

G (!;)+H (I;, z) 
n n 

J(n-1)(x,y) 

Using arguments x = 100, y = 10, this scheme produces /lO)(x,y) = 
-7 

with RIO = 2.3 x 10 . 

- 22 
3.61548 x 10 

The following asymptotic expanS10n is useful when ~ is large and z is 

neither very large nor very small relative to ~ , in particular when ~~ z~ 2;: 

00 

m=l 

-z 
e 

J(x,y) 'V 1 + M(I;, z) + ---
2\J27f1; 

00 

for n > 1 

m=l 



where 

L (0 
m 

A m =--

19 

00 

M(~,z) = _e_-_
z
_ ±Vx +VY erfc'¥; , 

Z"Z1f~ ~ [;
z -u 

erfc'\[Z = ~ e 'du 

(x:-y)amS
m 

(z) 

(ZOrn 

and A and a remain as defined previously. 
m m 

'fiT z 

In (27) the plus sign is to be used if n< 1, and the minus sign if n >1. Go1d-

stein (1953) defines the function ~ (z) by 
m 

rem - .!) 
Z S (z) = -~-=-

m r(~) 

3 rem - -) 
Z 

Sl (z) = 1 --vrrz e
Z 

erfc-vz 

and gives a recurrence relation which we write as 

(m>l) 

... 

r (0 is the gamma function with argument I;; and has the property (navis, 1%5): 

1 r(m- -) 
2 1 • 3 • 5 • 7 ; •• ( Zm-3 ) 

Zm-l 
(m>l) 
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(n) 
The following computational scheme provides J (x,y): 

2 
L1 (0 = _1_ L (0 =(2m- 1) Lm_1 (0 

8~ ,m 8m~ 

S (z) = N zS ( ) m m - m-1 z 

where N1 = 1 N = 2m-3 
'm 2 N 

m-l 

K1(~'z) = 
(x-y)Sl(z) 

4~ 

S (z) 
2m-1 K (~, z) m 

Km_1(~'z) = 
Sm_1(z) m 4m~ 

-z 
( . e 

J n)(x,y)= M(~,z) + --=:..-

~ 

n 

L [Lm(O + Km(~'Z)] ,n<l 

m=l 

J(n) (x,y) 
-z 

= 1 + M(~,z) + _e.::....-_ 
t+F;;E, 

L (~) + K (~,z) 
n n 

-z R = __ e __ 
n /n-1) (x,y) 

n 

L [Lm(O + Km(~'Z)] ,n> 1 
m=l 

Using arguments x = 100, y = 4, this scheme produces J(S)(x,y) = 1.2~273 x 10- 29 

with RS = 8.8 x In-8 . 

The computational routines for the asymptotic expansions given here can be 

performed on a desk-top electronic calculator, provided certain functions such as 

erfYZ, erfc'\{Z, and e- z/(2\!2rrt, ) are calculated or obtained from tables 

and stored beforehand. For implementation with a digital computer, software 

routines are usually available for calculation of the error function or its 



21 

complement; alternatively, rational approximations and asymptotic ex-

pansions are available and are easily coded (see, for example, Gautschi, 1965). 
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