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ABSTRACT 

The behavior of a layered aquifer under the influence of a pumping well 
is a problem of interest in the fields of hydrogeology, geothermal engineer­
ing, and petroleum engineering. Numerous papers have been written on various 
aspects of this problem. Hantush and Jacob (1955) have presented solutions 
for steady state flow to a well draining one of the layers of a two-layered 
bounded aquifer. Lefkovits et ale (1961) studied the transient performance 
of a stratified bounded reservoir where the producing well is completely pen­
etrating and there is no crossflow. Papadopulos (1966) has studied the same 
problem for only two layers of infinite areal extent. A similar problem, but 
with crossflow between adjacent layers, has also been investigated by Katz 
(1960) and Russell and Prats (1962) for the case of constant head at the well­
bore, and by Jacquard (1960) for constant flow rate. 

In addition to the above works, which are all based on the analytical 
approach, many authors have applied numerical as well as analog models to 
handle problems of flow in layered aquifers (Vacher and cazbat, 1961; Pizzi 
et al., 1965; Javandel and Witherspoon, 1968, 1969; Neuman and Witherspoon, 
1969; Kazemi and Seth, 1969) • Recently, Javandel and Witherspoon (1979) 
studied the problem of flow to a partially penetrating well in a two-layered 
aquifer where the well is open in the top layer and the lower layer is consi­
dered to be infinitely thick. 

In this paper we shall present an analytic solution to the problem of 
transient flow to a partially penetrating well that is open in either layer 
of finite thickness in a two-layered system. Crossflow is permitted at the 
interface between the two layers. Closed form solutions have been obtained 
which can easily be evaluated numerically. Simplified forms of the solutions 
for small and large values of time have been developed from the main solution. 
It has also been shown that the solution reduces to the case of single layer 
partial penetration once we allow the permeability of the nonperforated layer 
to vanish. The approach here is to start with the problem when the pumping 
well is open only in the top layer. A second solution is also developed when 
the well is partially penetrating only in the lower layer. A numerical eval­
uation of these solutions and the application of the results to the interpre­
tation of field problems will be presented in a subsequent paper. 





INTRODUCTION 

The behavior of a layered aquifer under the influence of a pumping well 

is a problem of interest in the fields of hydrogeology, geothermal engineer­

ing, and petroleum engineering. Numerous papers have been written on various 

aspects of this problem. Hantush and Jacob (1955) have presented solutions 

for steady state flow to a well draining one of the layers of a two-layered 

bounded aquifer. Lefkovits et ale (1961) studied the transient performance 

of a stratified bounded reservoir where the producing well is completely pen­

etrating and there is no crossflow. Papadopulos (1966) has studied the same 

problem for only two layers of infinite areal extent. A similar problem, but 

with crossflow between adjacent layers, has also been investigated by Katz 

(1960) and Russell and Prats (1962) for the case of constant head at the well­

bore, and by Jacquard (1960) for constant flow rate. 

In addition to the above works, which are all based on the analytical 

approach, many authors have applied numerical as well as analog models to 

handle problems of flow in layered aquifers (Vacher and,Cazbat, 1961; Pizzi 

et al., 1965; Javandel and Witherspoon, 1968, 1969; Neuman and Witherspoon, 

1969; Kazemi and Seth, 1969). Recently, Javandel and Witherspoon (1979) 

studied the problem of flow to a partially penetrating well in a two-layered 

aquifer where the well is open in the top layer and the lower layer is consi­

dered to be infinitely thick. 

In this paper we shall present an analytic solution to the problem of 

transient flow to a partially penetrating well that is open in either layer 
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of finite thickness in a two-layered system. Crossflow is permitted at the 

interface between the two layers. Closed form solutions have been obtained 

which can easily be evaluated numerically. Simplified forms of the solutions 

for small and large values of time have been developed from the main solution. 

The approach here is to start with the problem when the pumping well is open 

only in the top layer. A second solution is also developed when the well is 

partially penetrating only in the lower layer. A numerical evaluation of 

these solutions and the application of the results to the interpretation of 

field problems will be presented in a subsequent paper. 
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Figure 1. Schematic diagram of a two-layered aquifer with 
a partially penetrating well in the upper layer. 
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WELL OPEN IN THE TOP LAYER 

Let us consider an aquifer consisting of two layers that is contained 

above and below by impervious layers as illustrated on Figure 1. Each layer 

has its own flow properties, is finite in thickness, and extends radially to 

infinity. The interface between the two layers is an open boundary, meaning 

that no discontinuity of potential or its gradient is allowed across this 

surface. The top layer of the system is partially penetrated by a well of 

infinitesimal radius for a length ~ from the top of the aquifer. If the well 

is pumped at a constant rate, Q, we are interested in determining the value 

of drawdown, s(r, z, t), at any point after pumping starts. The differential 

equations and initial and boundary conditions to describe this problem can be 

written as: It 

,2 
(ls. 

2 
as. (:) s. 

1 
a s. 

1 ~ ~ ~ ~ 
i + --- + 1 , 2 

2 2 
ar r ar az <l. at 

(1) 

~ 

s. (r, 
~ 

z, 0) = 0 (2) 

aS
1 

(r, h1 ' t) 0 (lz 
(3 ) 

aS
2 

(r, -h
2

, t) 0 
Clz 

(4 ) 

lim si(r, z, t) 0 (5) 
r+oo 

81 (r, 0, t) s2 (r, 0, t) (6 ) 

Cls aS
2 

K1 
1 (r, t) K2 (r, t) 

dZ 
0, 

az 
0, (7) 

* Note: Explanation of all terms is given in the Notation. 
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lim 
r+O 

( dS') 
lim r a/ 
r+O 

(8 ) 

o for -h
2 

< z < (h
1 

- ~) (9 ) 

In order to handle the nonuniform boundary condition along the axis of the 

well, one can arbitrarily divide the top layer of the aquifer into two sepa-

rate layers by considering an imaginary interface at the elevation of 

z = h -~. The system is then made of three layers, two of them having the 
1 

same flow properties. Let us then designate three different symbols for draw-

down: s1 for the top layer in the zone between the top of the aquifer and an 

imaginary plane passing through the elevation at the bottom of the well~ s2 

for the bottom layer~ and s3 for the zone between the elevation at the bottom 

of the well and the top of the lower layer. 

The solution of the problem can be obtained by successive application of 

Laplace and Hankel transformations over t and r, respectively. If we indi-

cate the Laplace transform of si(r, t) by si(r, p) and the Hankel transform 

of s i (r, p) by S i (f" p), then equations 1 through 9 become: 

2= 
d s 1 

2 
dz 

2= 
d s2 

dz 
2 

2= 
d s3 

dz 
2 

-

-Q 

2= w
2

s
2 

o 

2= - w
1

s
3 

o for 0 < z < (h
1 

- ~) 

( 10) 

( 11) 

( 12) 
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= o ( 13) 

o ( 14) 

( 15 ) 

8
3 
(~, 0, p) = 8

2
(£;;, 0, p) (16) 

ds 1 
(i;, h1 - 1/." p) 

dS
3 (s, h1 - It, p) dz dz 

( 17 ) 

d8
2 ( s, 

d8
3 

K2 dz 
0, p) K1 dz (s, 0, p) (18) 

where w = (~1 + s2) ~ and w = (!; + s 2) ~ 1 2 

Equations 10 through 12 are now simple, ordinary differential equations 

whose solutions may be readily written as: 

= 

+ --,Q=---
2 1T 1/.,K pw2 

1 1 

Note that conditions 13 and 14 have already been considered in writing 

equations 19 and 20. 

( 19 ) 

(20) 

( 21) 
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Constants A, B, C
1

, and C
2 

can be found through application of boundary 

conditions 15 through 18. Substituting the expressions for the above constants 

in equations 19 through 21 and performing the Hankel transform inversion, one 

can obtain: 

= 

-
S3 = 

where 

00 

I { 1 
- h )] 

1 

K2W2 sinh(w2h2 )coSh[w 1 (h 1- .e)] + Klw1cosh(w2h2)sinh[w1 (h 1 
FF (w 1' w2 ) 

_Q-

21TJl.K1 

K2w2 

00 

f 
o 

00 

f 
0 

sinh( w
1
.e) 

2 
pW

1 

+ h )] 
2 

sinh(w2h2)sinh(w1z) 

- £)J } 

(22) 

(23) 

(24 ) 

Equations 22 through 24 represent the Laplace transform solutions for drawdowns 

in the aquifer. 
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To obtain the inverse solutions of equations 22 through 24, let us first 

consider 

P(p) 
G(p) 

cosh [W 1 (z - h 1) ] 

w2 
(25) 

g(p) p 1 

K2W2sinh(W2h2)cosh[W1(h1 - ~)] + K1W1cosh(W2h2)sinh[w1(h1 - ~)] 

FF(W
1

, (
2

) 

If the zeros of g(p) are shown by P1' P2' P3' ••• , Pn' ••• such that each of 

them has a different value, provided that P(p ) * 0 and g' (p ) * 0, then the 
n n 

inverse transform of G (p) may be obtained from the following formula, 

Jaeger (1949): 

G(t) = 

Any of the summation terms 

[IP 
- Pn)Plp) ] 

g(p) p=p 
n 

e 

P(p ) 
n P t n 

e 

n=1 

in equation 26 may be replaced by 

p t 
n 

(26 ) 

The zeros of g(p), as defined in equation 25 are p 
2 0, P = -~ a , (equivalent 

1 

to 0), as well as all zeros of 

o (27) 

Depending on the nature of w
1 

and w
2

' four different cases should be considered. 

Case 1. When both WI and Wz are real. The left hand side of equation 27 

is always greater than zero and, as a result, the equation has no zeros for 

such a case. 
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Case 2. If both w
1 

and (02 are purely imaginary, then we may introduce 

the following change of variable, 

±ii)/h
1 

and = 

where p and yare both real and positive. Equation 27 may now be written as 

Ay tany + ~ tan~ 
n n n n 

o (28 ) 

where 

A and 

Equation 28 has an infinite number of zeros such as Y1' y , Y , ••• Y , ••• , 
2 3 n 

and the corresponding values of p are given by: 
n 

Case 3. When w
1 

is real and w
2 

is purely imaginary, then one can set 

w1 = ±~n/h1 and w
2 

= ±iYn/h 2 where again, Yn and Sn are real and positive 

numbers. In this case equation 27 becomes: 

Ay tany - ~ tanh~ = 0 
n n n n 

where 

/:) 
n + 

Equation 30 usually has a limited number of zeros. 

(29) 

(30 ) 

Case 4. When w
1 

is purely imaginary and w
2 

is real, then let w
1 

= ±i~n/h1 and 

w
2 

= ±rn/h2' where, Yn and P
n 

are both real and positive. Here equation 27 

may be written 



where 

AY tanhY - ~ tanS 
n n n n 

i:S = 
n 

o 

Equation 31 also has a limited number of zeros. 

9 

(31 ) 

Depending on the parameters of the problem, zeros of either one or two of 

the last three cases described above should be considered. Once the zeros are 

found, corresponding terms in the summation in equation 26 can easily be cal-

culated. In equation 26 the term corresponding to p = 0 is 

f( f;,) :: 
(p - O)P(O) 

g( 0) 
(32 ) 

cosh[f;,(z - h
1

)] K2sinh(~h2)coSh[S(h1 - t)] + K
1
cosh(Sh

2
)sinh[S(h

1 
- t)] 

2 f;, K2sinh(~h2)cosh(~h1) + K1coSh(~h2)sinh(Sh1) 

and the term corresponding to p ~2 is - a. 
1 

(p + t;; 2a. )P(p) 2 
1 -t; a. t 

1 
g(p) 

e 
p = _~2a. 

1 

Therefore, equation (26) may be written as: 

00 

_~2a. t 

L G(t) f(~) 
1 - e + 

~2 
n=1 

where p are now only roots of equation 27. 
n 

Noting that 

~1 
L 

I 
I 1 

~2 \ 
- e 

2 
-t; a. t 

1 1 

s2 
e (33) 

P(p ) P t n n 
e 

g' (p ) 
n 

(35) 
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the inverse Laplace transform of equation 22 may now be written 

n=1 
g' (p~) 

P t) e n d~ (36 ) 

00 

f 
o 

J (1;r) ~ (_1 - f ( ~) -
o ~2 

00 

pep ) 
n 

Introducing the following dimensionless parameters: 

~ = J/,/h I 
D 1 

D '" a /a. , 
2 1 

where 

2 
r 

D 

00 

f xJO(xrD) [) - f ,(x) + 

o 

00 

B; exp {_ 
A' 

n=1 

cosh [x (1 - z )] 
D 

AH tanh(Hx)cosh[x(1 - )/,D)] + sinh[x(1 - ~D)] 

2 
x AH tanh(Hx)cosh(x) + sinh(x) 

(38 ) 

and the expressions for A' and B; depend on the nature of w
1 

and w
2

• If both 

wand ware imaginary, then 
1 2 

B' 
1 

cos rp (z 
L n D 

} 
cosY sinB + ~l (AH2 + D)cosY cosS 

n n n n n 

+ AD ::) P~ sinYnsin"n 1 (39) 

1)]{AYnSinYnCOS[l3n(1 - .li. D)] + i3nCOSYnSin[r\(1 (40 ) 
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If either w
1 

or w
2 

becomes real, then an or Y
n 

in equations 39 and 40 should 

be replaced by (i~ ) or (iY ), respectively. 
n n 

One can find the inversion of s2 and s3 in a similar manner. 

sionless forms, the solutions become: 

where, 

2 

fl, 
D 

1 

2 
x 

00 

00 

00 

00 

n=1 

cosh[x(ZD + H)]sinh(xfl,D) 

AH sinh(xH)cosh(x) + cosh(xH)sinh(x) 

sinh(xfl,D) AH sinh(xH)sinh(xz
D

) + cosh(XH)cosh(xz
D

) 

2 
x AH sinh(xH)cosh(x) + cosh(xH)sinh(x) 

and when wand Ware both imaginary, 
1 2 

B' 
2 

B' 
3 

sine ¢ fl, ) {AY sinY sine a Z ) - a cosY cos( a z )} 
n D n n n D n n n D 

In dimen-

(41) 

(42) 

(43) 

(44) 

(45) 

(46) 

Here, too, if either wI or w2 becomes real, then a or Y in equations 45 and 
n n 

46 should be replaced by (i~ ) or (iY ), respectively. 
n n 
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solution for single layer case 

The solution for a single layer aquifer with a partially penetrating well 

can be obtained from the two layer solution by letting the permeability of the 

lower layer vanish. Letting KL = 0, equation 22 becomes 

S 
1 j {p~~ 

o 

Using the table of the Laplace transformation, one can find 

-1 { Binhlw,(z - h )] sinh[w
1

(h
1 

- R,)] 

}= . 1 
L 

sinh( W
1
h 1) w

1 

00 

q2) ] 2a 

2: exp [-a t (n2,2 n1r(z - hl ) 1 
sin sin 

hl 1 h2 hl 
n=l 1 

Integrating equation 48 with respect to Z gives 

-1 { COBhIW,(: - h )] sinh [w 1 (h 1 - R, ) ] 

}= 1 L 
w

1 
sinh( W1h 1) 

00 

n1rt 

h1 

+ ,2)] · 2u
1 2: exp [-a,t (n:( 1 n1rR, nlT(z - hl ) 

sin 
hl 

cos 
h1 1T n 

n=l 

Also, 

L-' { 
cosh [W

1 
(z - h )] sinh [ w 1 (h 1 - R,)] 

}= 1 
2 sinh( W

1
h

l
) PWl 

00 t 

,2) ] dt 2a )' nlT(z - h 1) r exo[-u T (n2,2 + 1 1 sin 
n1TJI, 

cos 
1T ~ n hl hl J o 

~ 1 \ 2 
n=1 h, 

(47) 

(48) 

(49 ) 

(50 ) 



By introducing the following change of variables: 

2 
r 

y = 4U T 
1 

and u= 
2 

r 
4a t 

1 

and finally, the Laplace inversion of equation 47 may be written 

Q 

00 

13 

+ 
1 

sin (51) 
n 

n=1 

Equation 51 is exactly the same as that given by Hantush (1957), and we have 

been able to check the validity of the new solution for one special case. 

Solution for small values of time 

To find a solution for the early stages of pumping one has to look for 

sufficiently large values of p corresponding to small values of t. Let us 

consider the second part of the integrand in equation 22. Rearranging this 

tenn one gets 

coSh[W
1

(z - h
1

)] K2W2sinh(W2h2)cosh[W1(h1 - ~)] + K1W1cosh(W2h2)sinh[W1(h1 - 2)] 

PW~ K2W2sinh(W2h2)cosh(W1h1) + K1W1cosh(W2h2)sinh(W1h1) 

cosh [W 1 (z - h 1 )] 

w2 
P 1 

sinh[W (h - .R,)] 
1 1 

K2W2tanh(W2h2)coth[W1(h1 - ~)] + K1W1 
K~W~tanh(W~h~)coth(W1h.) + K.W. 

,G ~ '" '" I I I 

(52) 
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Noting that both tanh(x) and coth(x) are almost equal to unity for all values 

of x greater than 3, the right hand side of equation (52) may be simplified to 

cosh[w
1

(z - h
1

)] sinh[w
1

(h
1 

- R,)] 

2 sinh(w
1
h

1
) 

pW
1 

provided that w2h 2 ~ 10 and wl(h 1 - ~) ~ 10. Asa result, under this con-

dition, equation 22 may be written as 

Q i t:~-
o 

cosh[w
1 
(z - h )] 

1 

which is the same as equation 47 which leads to the solution for the single 

layer partial penetration problem. 

The above conditions may be expressed in terms of dimensionless time. 

Recalling the definition of w
2

' we can write 

10 or 

In terms of dimensionless parameters, this becomes: 

2 
10or o 

10 

Similarly, the corresponding condition for w
1

(h
1 

- ~) ~ 10 leads to: 

(53) 

(54 ) 

Condition (53) or (54), whichever is smaller, gives an approximate value of too 

At earlier times, the aquifer behaves as if the lower layer were absent. 
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Solution for large values of time 

To obtain a solution for large values of time, we shall examine the case 

when p is small. One may note that at large values of time, provided r
D 

>'/1, 

only small values of ~ make a major contribution. Since sinh x ~ x and 

cosh x ~ when x < 0.01, for sufficiently large values of time and r > hi, 

equation 22 may be simplified to: 

00 

f {~ P 1 
a 

After simplification equation 55 becomes 

21fK h 
1 1 

00 

+ 

Using the table of Laplace transformations one can easily find 

00 

exp [-
h1K1 + h2K2 

f [ 1 -Q 
J 0 «r) < , 

S1 + S2 
s1 21f(K

1
h

1 
+ K

2
h

2
) ,.-2 

s 
0 

Equation (57) may be written as (Javandel, 1979) , 

00 

Q f e-y 
dy s1 41f (K

1
h

1 
+ K

2
h

2
) y 

v 

where 

2 
r (S 1 + S2) 

v 
4t ('r 1 + T

2
) 

(55 ) 

(56 ) 

(2
tJj 

dt; (57) 

(58 ) 

b 
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In the form of dimensionless parameters we have 

00 

+ f (59) 1 

v 

Since we are dealing with large values of time, equation 59 may be approxi-

mated by 

2.3 ( 2.25(1 + T/T1») 
-+-(-T-/-T-) logtD + log 1 + 8

2
/8

1 2 1 

(60) 

This is a very interesting result because it indicates that a plot of dimen-

sionless drawdown, 8 ,versus dimensionless time on semi logarithmic paper 
. D1 

will become a straight line when the pumping time becomes sufficiently large. 

The slope of this line is 

m 

and the value of tD corresponding to sD 
1 

(61) 

o is 

(62) 

provided r
D 

> 1. Although equation 62 holds for r
D 

> 1, (61) is true for all 

values of r
D

" Another important result that one be drawn from equation 58 is 

that, if we introduce a new set of dimensionless definitions for drawdown and 

time in the following form: 

SD 
41T (T

1
+ T

2
) 

s1 
1 Q 

(63) 

and 
t(T

1 
+ T

2
) 

tD 2 
8

2 
) r (8

1 
+ 

(64 ) 

then plots of s versus t for two-layer aquifers at large values of time 
D1 D 

will be parallel to the Theis curve. 
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WELL OPEN IN THE LOWER LAYER 

When the pumping well is open along the length R, at the upper part of'j 

the lower layer (Fig. 2), then following the same approach as above, one can 

easily find the solution in the Laplace transform domain of each of the three 

divisions as given below. 

Q 
co 

I{ 
o 

coSh[W
1

(z - h
1

)] 

2 
pW

2 

K
2

W
2 

{sinhw
2

h
2 

- sinh[w
2

(h
2 

FF(w
1

, w
2

) 

~i{ 
o 

1 
2 

pw" ... 

- <II I } 
(65 ) 

sinh[w2(h2-~)] [K2w2coshw1h1coShw2z-K1w1sinhw2zsinhw1h1]+K1w1sinhw1h1cosh[w2 (z+h2 )] } 

FF(W
1

, w
2

) 

00 

+ h )] 
2 

• -K 1w1sinhw 1h 1 + K1w1sinhw1h1coShw2R, + K2w2coshw1h1sinhw2£ t 
FF(w l' w2 ) f 

(66) 

(67) 
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Figure 2. Schematic diagram of a two-layered aquifer with 
a partially penetrating well open only in the 
lower layer. 

It can be easily verified that equations 65 through 67 satisfy the 

appropriate boundary conditions of the problem. The Laplace inversion of the 

above expressions can be readily obtained through the same procedure discussed 

above. In regard to the inversion of s1' for example, note that the nonremov-

able zeros of the denominator of the integrand are p = 0 as well as all the 

roots of FF(w
1

, w
2

) = 0, which have already been discussed above. Finally, the 

solutions for s1' s2' and s3 in the nondimensional form are 

00 

2 ( 
J(.D 0/ 

0 

;J 0 ( ;; D) f R 1 ( ; ) + 
~ 

00 

}, 
"--' 

n=1 

q1 exp r-(Y~ 
<5 L--

(68 ) 



s = 
D2 

sD 
3 

where 

co co 

2 

f ~JO(~;D) { ~2 - 2: q2 
exp [-(Y~ '2 · '2J} . " 

-;:; R
2

(X) + r + x )tDrD dx 
X, n=1 

I.J 
0 

co co 

2 2: q3 
-;:; + "6 
ll-
f ~O(~;D) {R3(~) exp [ -(Y~ '2 . '2J} · + x )tDrD . dx 

D 
0 n=1 

A A'" A 

cosh[x(ZD - H)] sinh(x) - sinh[x(1 - 1
D

)] 

1 
'\2" 
x 

..... 2 A A AI"<. A 

x cosh(xH)sinh(x) + (H/A)sinh(xH)cosh(x) 

A A "A AA A A 

19 

(69) 

(70) 

(71) 

(72 ) 

sinh [xC 1 - t
D

)] [cosh( xH )cosh( XZ
D

)- (H/A )sinh( XZ
D

) sinh( xH)] + (H/A )sinh( xH )cosh [xC zD + 1) ] 
A,.. AA A 

cosh(xH)sinh(x) + (H/A)sinh(XH)cosh(x) 

cosh[~(~ + 1)] 
D 

"2 
x 

AA A AA ~ 

cosh(xH)sinh(x) + (H/A)sinh(xH)cosh(x) 

and when w
1 

and w
2 

are both imaginary, 

(73) 

(74 ) 
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q2 sin[Y (1 - t )] {Y cosS cos(y ; ) + (S /A)sin(Y ; )sinS } 
n D n n nD n nD n 

+ (~ /A)sinp cos[Y (~ + 1)] 
n n' n D 

(75) 

(76 ) 

q3 cos[Y (~D + 1)] {(B /A)sin~ - (~/A)sinp cos(Y i ) - Y cosS sin(Y i )} n n n n n nD n n nD 

"2 {. (DH2 Y 

2 

+ x) ~ sinS cosY -----2
n 

n n n At) 
n 

,,2 ) 

(

DH Y S 
y2 sinS sinY _____ n + ~ 

n n n S AY 
n n 

+ Y!COSOnCOSYn (1 + ~2)} (77 ) 

If either wI or w2 becomes real then S or Y in equations 74 through 77 
n n 

should be replaced by (i~ ) or (iY ), respectively. 
n n 

Examination of equation 66 reveals that if we let the permeability of the 

top layer vanish, the solution for s2 converges to the one for single-layer 

partial penetration. However, in this case, due to the direct contact with 

the top layer, the solution at small values of time cannot be closely approxi-

mated with single layer solutions unless the ratio of K1/K2 is very small. 
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CONCLUSIONS 

Analytic solution to the problem of transient flow toward a partially 

penetrating well in a two-layered aquifer has been presented. A solution has 

been given for both cases: when the well is open in the upper layer as well 

as the case when the well is open in the lower one. These solutions easily 

lend themselves to numerical evaluation. It has been shown that the solutions 

would reduce to the case of single layer partial penetration once we allow 

the permeability of the nonperforated layer to vanish. Asymptotic solutions 

for small and large values of time have been deduced from the transformed form 

of solution. Furthermore, it was shown that: 

(1) the behavior of the pumped layer at early times is exactly similar to the 

(2) 

behavior of a single-layer aquifer; 

for larger values of time the plot of dimensionless drawdown s versus 
D1 

dimensionless time t on a semi logarithmic paper becomes a straight line 
D 

whose slope is only a function of the ratio of transmissibility of the 

two layers. 
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NOTATION 

A 

D 

h1 thickness of the top layer 

h2 thickness of the lower layer 

H 

"" 
H 

J O(X) Bessel's function of the first kind and zero order 

K1 ' K2 permeability of upper and lower layers, respectively 

J/, depth of penetration 

J(,D J/,/h1 

L- 1 Laplace transform inversion operator 

p 

Q 

r 

r 
D 

s, 
~ 

Laplace transform parameter 

rate of discharge 

radial distance 

r/h
1 

r/h 2 

drawdown of different layers 

SD, 4~1h1si/Q, dimensionless drawdown 
~ 

sD 4nK
2

h
2

s
i

/Q, dimensionless drawdown 
i 

Dimensions 

L 

L 

L/T 

L 

L 

L 



SD 
1 

8
1

, 

s. 
1. 

S. 
1. 

t 

t 
D 

" 
tD 

t 
D 

T l' 

x 

x 

z 

z 
D 

z 

<X1 ' 

b 
n 

y 
n 

t; 

w
1 

w
2 

8
2 

T2 

<X2 

storage coefficient of the upper and lower layer, respectively 

Laplace transform of s. 
1. 

Hankel transform of s. 
1. 

time 

2 
<X1t/r , dimensionless time 

2 
<x

2
t/r , dimensionless time 

2 
t(T

1 
+ T

2
)/r (8

1 
+ 8

2
), dimensionless time 

transmissibility of the upper and lower layer, respectively 

~h1' dummy variable 

~h2' dummy variable 

vertical coordinate 

diffusivity of layer and 2, respectively 

roots of characteristic equation 28 

Hankel transform parameter 

L 

T 

L 
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