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ABSTRACT

A mathematical method of modeling geothermal reservoirs
has been developed using a computer program called SHAFT
(Simultaneous Heat and Fluid Transport). This program
numerically solves the coupled equations describing the
simultaneous transport of mass and energy by a one- or
two-phase fluid in porous media for transient or steady-state
systems in one, two, or three dimensions. The governing
equations are set up in terms of two expressions, one for
flow and one for internal energy. Solutions are obtained
by solving for two unknowns, density and internal energy,
as a function of time and position within the system. Details
of the development of flow and energy equations are
presented. Two examples of the application of SHAFT to
two-phase geothermal reservoirs are included.

INTRODUCTION

Geothermal systems are receiving an increasing amount
of attention, and consequently it is important to understand
the behavior of these complex systems. One approach is
to simulate their behavior by use of mathematical models,
and a recent review (Witherspoon et al., 1975) reveals the
growing interest in such methods. As part of our research
effort in this field we have devcloped a computer program
called_SHAFT, which stands for ‘simultaneous heat and
fluid transport. This program is an extension of an earlier
code developed by Lasseter and Witherspoon (1974) to
handle nonisothermal flow of gases in porous media.

SHAFT numerically solves the coupled equations describ-
ing the simultaneous transport of mass and energy by a

mean_that the thermodynamic behavior of the fluid is
dependent on the nature of the matrix_as well as of the

fluid.

GENERAL APPROACH

The classical behavior of matter can be fully described
in_terms of three equations for the conservation of mass,
momentum, and energy. For a_multicomponent fluid, we
must have a conservation-of-mass _equation for each
component, but in the present approach we have assumed
that the fluid is pure water. We therefore have only one
equation for conservation of mass. This approach may also
be applicable to mixtures whose composition is essentially
the same in both liquid and vapor phases.

For flow in porous media, it is customary to describe
the behavior of the system on a macroscopic scale and
to replace the momentum equation by the empirical equation
known as Darcy’s Law. Darcy (1856) determined that the
flow of water through a bed of sand was proportional to

the pressure gradient. His law has since been extended to
other fluids in many different kinds of porous and fractured
media. Deviations from Darcy behavior have also been
observed, but in most practical field problems Darcy’s law
is perfectly acceptable. Since we shall be dealing with

two-phase flow, we must have separate Darcy equations

one- or_two-phase fluid in porous media for transient or
steady-state systems in one, two, or three dimensions. The
fluid must be pure or of uniform composition in both phases,
although different fluids can be handled as long as they

are confined to separate regions of the system. The equation

of state which describes the thermodynamic behavior of
the fluid is a function not only of the fluid’s inherent

properties but also of the pa position of the fluid within the

system. This is_particularly important for flow in_porous
media where re interactions between the fluid and sohd mamx

for each phase.

Thus, the basic governing equations in the present version
of SHAFT consist of one equation for conservation of mass,
two Darcy equations, and one energy equation. We will
show how the conservation-of-mass equation and the two
Darcy equations can be combined into a single equation,
which will be called the ‘‘flow”’ equation. The resulting
flow and energy equations can be solved numerically for
two unknowns, the density and internal energy of the fluid
as a function of time and position within the system.

Iwo equations i m«a&gngpletelx_cgglgd mnner,_g_do_thxs,

one would estimate the energy field and solve for the density
distribution at a particular time. By substituting the density

distribution back into the energy equation, one could obta_m
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a better estimate of the energy field, which could then be
" used in_the flow equation to obtain a second solution for

‘the density distribution. This process could be continued
until the differences between successive estimates of the
_energy and density distributions are within acceptable limits.

“This procedure would have to be repeated for each time

step and becomes expensive and time-consuming for large

problems.
Direct methods of solving the coupled flow and energy

equations are also possible. However, the nonlinearities in
the equations and the large differences in time constants
between the two governing equations make such a technique
less efficient than the one we use.

The SHAFT program uses a standard technique that has
been found acceptable in many applications and involves
_decoupling the governing equations. In_this_method, one
_starts with the initial energy distribution and assumes that
this distribution remains relatively constant over a short
interval of time. We then solve for the new density distribu-
tion at the end of the time step. Using this new density
distribution, we solve for the energy field at the end of

a s@mMﬁmnMg_djgm_
What makes this rgy

field varies much more slowly than the density field, that
is the energy time con of the system are much larger
than the corresponding density time constants, Thus, while

itis necessary to takg !auygly small tlmg stegs to accurately

solve the densit can
b_mthJaLgeLSelecung—Lhe-appmmecJme_ﬂst_SﬂJhat
the solution procedure is both accurate and efficient is_one
of the most important parts of this numerical method.

Basic Numerical Method

The basic numerical method can be most easily demon-
strated by developing the finite difference equation for the
simple transient conductive heat flow equation:

aT
pc?=V‘kVT (n

where p is the density of the material, c is the heat capacity,
T is the temperature, t is time, and k is the thermal
conductivity (see Table 1 for a complete nomenclature list).
Integrating Equation (1) over a region R having a volume
V and a surface S having an area A, and applying the
divergence theorem to the right-hand side, we have:

aT
f (pc ——~> dv = é (kV'T- 1) da 2)
R at s

where i is the outward-directed unit normal to the surface
S.

To derive the corresponding finite difference equation,
we will make the following assumptions: (1) the volume
integral on the left-hand side can be represented by an
average value times the volume of region R; and (2) the
surface S of the region can be broken into a series of
subsections, A, . over which the normal component of the
conductive energy flux vector can be approximated with
an average value.

We can therefore rewrite Equation (2) as
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aT
\% — Ak, (VT 3
) g, o

where k, is the effective thermal conductivity over surface
subsection m and (VT),, is the normal component of the
temperature gradient vector over the surface subsection m.
We will now consider a general region which we have
subdivided into many subregions. We will refer to these
subregions as nodes. Figure 1 shows a typical node n
connected to an adjacent node m. The area of the interface
between these nodes is denoted as A, . The distance d, ,,
between nodal point n and the interface between nodes
n and m is measured along a line perpendicular to that
surface (Fig. 1). The numerical method used as well as
the algorithm developed for the program are such that node
n can be connected to any number of nodes desired by
the user.

Equation (3) can be immediately applied to the solution
of the energy balance for node n once we have defined
the normal component of the temperature gradient vector
and the effective conductivity over the surface subsection
m.

Determining the normal component of the temperature
gradient vector would be conceptually easy if we had some
idea of the temperature variation within the nodes. Since
the temperature distribution within the nodes is represented
only by an average value, this is not possible. We therefore
assume that the normal component of the temperature
gradient vector is equal to the temperature difference be-
tween the nodes divided by the distance between the
geometric centers of the nodes (or some other distance if
more appropriate), where we define the distance as the
sum of the two normal distances from the geometric centers
of the nodes to the interface. While this may seem a gross
simplification, it is clear that as the nodes become smaller
and smaller, this approximation approaches the mathemat-
ically correct solution. The advantage of this approach is
the fact that the numerical method used in solving the system
of equations of this form is very fast and can solve systems
containing a large number of nodes.

To solve this equation numerically, we must also replace

lypical node connection network and nomencla-
ture.

Figure | |
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Table 1. Nomenclature. Dimensions are mass (M), length (L), time (1), and temperature (T).

R

Symbol Meaning Dimensions
A area L2
c specific heat at constant volume L2g-27-1
C heat capacity MLZt=2T!
d, m distance between nodal point n and interface between nodes n and m L
D, . distance between nodal points nand m (D, ., =d, ., +d, .} L
13 specific (internal) energy L2t2
f fraction of net mass flux rate which is vapor -
F mass flux Mt!
8 acceleration parameter (g > 0) -
g acceleration due to gravity Lt
k thermal (or effective thermal) conductivity ML T
K intrinsic permeability L2
m mass M
M mobility M-t L3t
A outward directed normal to surface -
P fluid pressure ML t72
q energy flux across surface MLZ =3
Q energy injection rate from sources within node (or volume V) MLZ 3
R relative permeability -
S mass injection rate per unit volume from sources within node (or volume V) ML-3 !
t time t
T temperature T
T average temperature T
v Darcy fluid velocity Lt-?
v volume L3
Zz sum of transductances ML2 =3 T!
Bom direction cosine between the normal from node nto m and the gravitational acceleration vector -
€ energy content of volume V ML2 t2
(] interpolation factor (0.5 = 8 = 1.0) -
A weighting factor (0.5 = X = 1.0 -
I viscosity ML=t !
p density ML~3
¢ porosity -
Q transductance ML2t3T!
(V1) normal component of the temperature gradient vector over the surface subsection m TL!
() lumped parameter arbitrary
Subscripts
c convective
down at downstream node
e fluid-solid mixture
ex explicit
f fluid
/ liquid
m at node (or surface subsection) m
n at node (or time step) n
n,m at interface between nodes nand m
s solid :
up at upstream node
v vapor
Superscripts
a at surface A
! liquid
D iteration number
v vapor

the infinitely small time change at with a finite time change
or time-step Af. We can now write the difference equation
form of Equation (3):

AT A, .k —
v" . ¢ . " — ERGIRANTNG ) (T _ T . ) (4)
b At g D

]

n.m

Here we have put a bar over T, and T, because, for the
maximum accuracy, they must be values of the temperatures
between those at the beginning and at the end of the time
step. If we know the exact form of the temperature change
during the time step, this intermediate value can be selected

so that it exactly equals the time integrated average of the
temperature over the time step. If this could be done with
complete accuracy, absolutely no error would be introduced
by the time step procedure. Unfortunately, however, we
can only estimate what the form of the temperature change
is. But for sufficiently small time steps, little error should
be introduced. One of the important sophistications of the
numerical procedure used is the manner in which it estimates
the average temperature for the time step. The average
temperature for each node, then, can be written as

T,=T,+8AT, (5)
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where T, is the temperature at the beginning of the time

step, AT, is the change in temperature during the time step,

and 9 is a value between 0.5 and 1.0. The value of 0 is
determined every time step and is the same for all nodes
for that time step.

We also have the problem of defining the effective thermal
conductivity, k, ... Without going into detail, it can be shown
(Lasseter and Witherspoon, 1974) that continuity of temper-
ature and energy flux is maintained at the interface if the
effective conductivity is written in terms of the conductivities
of the material in each node as

Dn m dn m dm n
i e (6)
kn.m kn km
where
D = dn.m + dm.ll'

n, n

We can now rewrite Equation (4) as

AT

vu PuCy
At

Au m kll m
= 2 —‘D—[(Tm_ Tu) +9(AT,"—‘AT")]' (7)

m w,n

The first term in the brackets of Equation (7) is the “‘explicit”’
part, since these values are known at the beginning of the
time step. The second term is the ‘‘implicit’’ part since
it contains the temperature changes for which we are solving.

For a system of n nodes, we have a system of n equations
like Equation (7) to solve. The SHAFT program, like the
TRUMP program on which it is based (Edwards, 1972),
uses an iterative technique to solve these equations. We
first rewrite Equation (7) for simplicity as

0At
AT, = AT, o+ > Q, BT, ~AT,) ()
- .

n
" m

where
Co=pucaVa
At
ATH ex = - Qll m{Tm - Tll}
' Cll ; '
Qn.m = Au.mkn.nl/Dn.m‘

Defining Z, = %, Q, ., we can solve Equation (8) for AT :

0 At
AT!I ex + QH mATm
' Cll ; '
AT, = &)
0 At
l+—2Z,

n

This iterative procedure was first derived by Evans
Brousseau, and Keirstead (1954) and is called an acceleration
method: it is similar to, but different from, the successive
over-relaxation method often used. To implement this
technique, we substitute in the left side of Equation (8)
AT, = AT*Y and in the right side we substitute AT,
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=+ g)AT¢ " — g AT and AT, = AT, where g is
the_agceleration, parameter (g > 0), and p is the iterali
number in the superscript. Making these substitutions’
Equation (8) can be rewritten:

AT®*D = AT

nex

oAt
+—(Sa,,.aT®
C < n,

" m

- (l + g) ZnATStp+” + anATflm> (10)

We can then solve Equation (10) for AT, at the p + 1
iteration in terms of AT, and AT, at the p iteration:
ATflp»LI)

0AtL
+— <Z Q,,ATE + gZ..ATS:’))

n

AT

nex

L+ )(-)AtZ
+ +g8)— 4L,
c

n

(1

The iteration procedure would begin with an estimate
of the temperature changes in each of the nodes which
we will call the *‘zeroth™ iteration. We then compute the
values at the first iteration using Equation (11) and the
zeroth iteration values, and so on. The iteration procedure
is stopped when the maximum change in temperature be-
tween successive iterations is less than some prescribed
value.

The stability and convergence for this iterative procedure
are discussed by Lasseter (1975). For this difference equation
as well as those to be developed describing multiphase
convective heat and mass transfer, stability and convergence
are guaranteed regardless of node size and shape and of
the contrast in material properties between nodes.

This is the basic numerical method that will be used in
solving the more complete energy and mass transport equa-
tions to be discussed in the following sections. The advan-
tages of this method are discussed in detail by Edwards
(1972) and Lasseter (1975).

The Internal Energy Equation

Numerous authors have developed the form of the internal
energy equation appropriate for convective and conductive
energy transport in porous media. Rather than reproduce
one of these more rigorous derivations, we prefer to present
a derivation which is simpler and more ‘‘physical’” than
most. In the succeeding discussion we will refer to the
internal energy simply as energy.

The energy equation is a simple balance equation. It can
best be described by considering a small volume V. The
energy equation keeps track of the energy content of V
and the fluxes of energy in and out of V. In words, it
can be written:

. . ¥
the time rate-of-—l the flu ~ of energy energy sources
change of energyl = lin and out of V |+ Jwithin V

inV
Y .

The corresponding mmathematical equation is written:

]
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Je
~*=—§ q-ida+ Q (12)
at A R

where € is the energy content of V, q is the flux of energy
in units of energy per unit area per unit time across the
surface A of the volume V, i is the unit vector normal
to A in the outward direction from V, and Q is the energy
injection rate from sources within V.

For a porous medium, we will consider a volume V which
contains fluid, designated by the subscript f, and solid,
designated by the subscript s. Properties of the fluid-solid
mixture will be designated by the subscript, e.

The energy content of the volume is then given by

e, =mE+mE, (13)

where m is the mass and E is the energy per unit mass.

For convenience, we will assume that the volume V
expands and contracts with the solid ‘‘skeleton” of the
porous media. Thus the solid mass is always the same since
no mass moves across the surface of the volume. The fluid
mass will, in general, change with time as the fluid flows
in and out of the volume.

The energy balance, Equation (12) can then be written:

dm, dE, dE
+omy——+ mg = — q-fida+ Q. (14)
dt dt dt A

!

The energy flux, q, consists of the conduction and con-
vection components, which for a single-phase fluid can be
written:

q=F3Ef — k&(VT)¢ (15)

where F¢ is the mass flux of fluid across the surface A,
kg is the effective thermal conductivity of the fluid-solid
matrix evaluated at A, (VT)¢ is the temperature gradient
in the matrix at A (we assume the fluid and solid are in
thermal equilibrium), and E¢ is the energy of the fluid
crossing A.

For completeness a compressible work term (reversible
conversion of internal energy to kinetic energy) and a viscous
dissipation term (irreversible conversion of kinetic energy
to internal energy by frictional forces at the fluid-solid
interfaces) should be included in the balance equation. Even
though these terms could be added to the program, at the
present time, they have been neglected because it is believed
these phenomena are probably not important in most geo-
thermal reservoir systems.

We can now rewrite the first term on the left-hand side
of Equatipn (14) as:

dmy;
= E F¢-fda + E SV (16)
dt
A
where S is the mass injection rate, per unit volume, from
sources within V. Substituting Equations (15) and (16) into
(14), we have:

cIE, dE )
Vip,— +m, 2= {Ef— Ef} Ff- i da
Todt dt A ’
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+3§ LSV da+ Q- ESV. ()

A

Note that if the system is deforming, the volume of fluid
originally within the volume V may be changing with time.
Thus, V,must be specified as a function of time, pressure,
and/or temperature.

Difference Form of Energy Equation

Before writing the difference form of the energy equation,
several points should be discussed. It is obvious that Equa-
tion (17) consists of several unknowns: E, E,F,T, and
p It is assumed that the conductivity, k,, and the source
terms, Q and S, are defined. For a two-phase homogeneous
fluid, one can show that the thermodynamic state of the
fluid can be uniquely defined in terms of its internal energy
and density. Temperature and pressure do not uniquely
define the fluid state since, during phase change, these two
variables may be constant while the fluid energy is changing.
We could also solve the two equations in terms of internal
energy and pressure, but in order to guarantee strict con-
servation of mass, we solve the flow equation in terms
of density rather than pressure.

We will assume that the solid and fluid are in thermody-
namic equilibrium; that is, in each node we assume that
they are at the same temperature and pressure. Knowing
the temperature of the fluid will tell us the energy of the
solid. We can therefore define the solid energy as a function
of the fluid energy and density. Thus we can write

dE, oE, dE, dp | dE;
= + - (18)
dt aE,/, ¥ /g dE; | dt
We evaluate dp/dE; from computed values of the time
derivatives:

d dp/dt
e _ de/dt. (19)

dE, dE/dt

In deriving the difference equations, a similar situation
arises in the evaluation of AT and AP in terms of our
dependent variables E and p. We can write AT for example

as

aT aT dp dT
AT = [(———) + (——) ———]AE,z—————AEf. (20)
BEI , dp g dE! dE,

In deriving the finite difference form of the energy
equation, we will use “‘upwind’’ differencing in the convec-
tive transport term to determine the interface energy. That
is, the interface energy is not determined by a spatial
interpolation of the energies of the two adjacent nodes,
but is ‘‘weighted”’ in the direction from which the fluid
crossing that interface is coming. This weighting is intuitively
correct as well as being required for numerical stability.
Thus the energy of the fluid at the interface between nodes
n and m is written:

3 :AE|Jp+(l_}\)E<I()W|1 (21)

o

where E, is the energy of the upsiream node, Ey,,, is




the energy of the downstream node, and A is the weighting
factor and must be between 0.5 and 1.0.

To guarantee stability, the change in the interface energy
must be equal to the change in the energy of the upstream
node, AE, , = AE, . )

With these points in mind, and dropping the subscript
f. we can write the difference form of the single-phase
energy equation as

dE\ AE, »
Vipt+tm,——| — (22)
dE /, At

= E {[AEUP + (1 - x)EdO\VI'I - EH] FII.I"

All m
Ky (T

nont m

- Tn)} + Qn - Ensu Vn

nom

+ e z [AEUP Fll."l

m

A n.on dTm dTﬂ
+ ; k" m A Em - A Ell
Du.m ' dEm dEu

where E, is the fluid energy of node n, F, , is the fluid
flow rate between the nodes m and n (positive if into n),
A, . is the area connecting nodes m and n, D, . is the
distance between nodal points nand m, T is the temperature
of node n, p,,, is the density of the fluid crossing the
boundary between nodes m and n, Q, is the energy injection
rate into node n, and S, is the mass injection rate, per
unit volume, into node n.

To derive the difference form of the two-phase energy
equation, we need only recognize that the convective trans-
port term in Equation (15) must be replaced by two terms
describing the convective transport of liquid and vapor.
Defining the convective transport term as q ., the two-phase
convective transport term can be written:

q.=F¢E +FE =[E+(E,— E)f]F; (23)

where F¢ is the mass flux rate of vapor in units of mass
per unit area per unit time, F¢ is the mass flux rate of
liquid, E, is the internal energy of the vapor, E, is the
internal energy of the liquid, F{ is the net mass flux rate
of fluid, and f is the fraction of the net mass flux rate
of fluid which is vapor.

Note that if the liquid and vapor are moving in opposite
directions, the vapor fraction, f, need not be positive nor
must its magnitude be less than one. The two-phase energy
equation can then be written:

dES> AE,

Vep+mg —_— 24)
< P dE At

= z {[Elll.m + (E:;m - Elll.m)fn.m - Eu] Fu.m

A
+ -ﬂkﬂ‘l" (Tﬂl - Tll)} + Qll - E"S" V"

nom

0y [AEUP F,.

m

A n.m dT"l dT'I
+ - k nont A El" - A E" .
D "\ dE,, dE,

nom

" Here we have approximated the change in the vapor
fraction of the flux in terms of the change in the vapor
fraction of the upstream node. This is only an approximation,
but we feel it is acceptable for a number of reasons. First
of all, the time steps for energy are typically much smaller
than the energy time constants, so that the implicit correction
represented by this term is very small, Secondly, this
assumption says physically that the change in the fraction
of vapor crossing the interface is approximated by the change
in the upstream node which seems reasonable. A final
pragmatic argument is that stability can be guaranteed only
if the change in the interface energy is weighted towards
the upstream node.

The Flow Equation

The flow equation will be developed by combining the
conservation-of-mass equation, often termed the continuity
equation, with the conservation-of-momentum equation
which, in porous media, is given by Darcy’s law.

The conservation of mass is given by

d
;((bp): = Vpv+S (25)

where ¢ is the porosity, p is the fluid density, v is the
Darcy velocity of the fluid, and S is the mass injection

rate per unit volume.

The conservation of momentum is given by Darcy’s law .
which in effect assumes that the momentum of the fluid
can be ignored. Darcy’s law is then only a force balance.

It is given as

K
v=—-—(VP-pg) (26)
i

where Kis the intrinsic permeability, w is the fluid viscosity,
P is the fluid pressure, and g is the acceleration due to

gravity.
Equation (26) can be substituted into (25), yielding

a K
—(dp) = V- [— (VP- pg)} + 8. 27
at i

Integrating this equation over the volume, we have

a
J [—(dﬂ))] dv
v Lat
K
:é [—P(VP—Pg)'ﬁJ da+f S dv. (28)
A B v

If we assume that the left-hand side of Equation (28)
can be represented by an arerage valfc times the region
volume, and the right-hand side can be represented by an
- m surface subsections, we

average value over each of
have J

[




v[a( J [K (VP —pg) J A+ SV. (29
—(p) | = — —pg)- i L+ SV,
o bp Z Mp pg)- i

For a two-phase fluid, we have separate Darcy equations
for vapor and liquid. The mobilities of each phase are highly

nonlinear.
Darcy’s law for each phase is given by

v,=-M[VP-p g] (30)
v,;=—-M[VP-p.] a3n

where the mobilities are defined as:

K

M, =—R, (32)
[
K

M= —R, (33
My

where R is the vapor relative permeability and R, is the
liquid relative permeability.

In general, the intrinsic permeability for each phase is
the same, but this is not an essential assumption for the
derivation or solution method.

The corresponding mass fluxes are

F,=pv,=-Mp (VP-p.g) (34)
Fi=pyv;==Mp(VP-p,g). (35)

The total flux is

F = F‘, + F‘ = = (M‘.Pv + M,P,)VP
+(M,pl+ Mphg. (36)

We will substitute this fluid flux for pv in Equation (25).
We can justify doing this rather than writing separate mass
conservation equations for each phase because the total
amount of each phase is not being conserved, but only
the total amount of fluid. We must, however, know what
fraction of the flux is vapor to properly compute the
conservation of energy as we have shown. We are implicitly
assuming that the two phases are in thermodynamic equilib-
rium. This means that the characteristic time for the equilib-
rium process between phases in a given node is small
compared to the typical time step used in modelling the
system numerically. We feel intuitively that this charac-
teristic time is small, but this assumption may perhaps be
incorrect under some conditions.

Following the suggestion of S. K. Garg (personal comm.,
1974), we can write a combined form of the fluid flow
equation:

F=—(Mp)*VP+ (Mp*)*g (37)

where (Mp)* = M,p, + M,p,and (Mp®)* = M p2+ M,pl
The two-phase flow equation corresponding to the single-
phase flow Equation (29) can therefore be written:

a
V=@ | =S [(Mp)*VP-i
[m (d)p:' > [(Mp A

m

- (Mp)*g-it] A _+ SV. (38)
g m n
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Difference Form of Flow Equation

Both the one- and two-phase flow equations can be written
inthe form of the-two-phase flow equation given as Equation
(38). Using the general numerical method developed in the
section above, we can write the corresponding difference
equation for Equation (38) as

3 A
(cb +pi> V,'*BL

ap At
P, - P,
= z All."l (Mp)’lkl m
m : Dll."l
- (Mpz):.mBn.mgj' + Sn vn (39)

where B, . is the direction cosine between the normal from

node n to m and the gravitational acceleration vector.
The complete difference equation can now be written:

P A
(d) + pi) V., P
. At

P"l - Pll .
- E All, n (Mp),li:."l _B—_ - (Mp Z)I.MBII.I"g

d"‘l n (Mp):lkln 8P"
0> A, {[X = - ~——_] Ap, (40)

m Dll. m D n.m ap n
dll m (Mp) ITHI aPln
+ XN."I - + —_— Ap m + Sn VII
Dll. m D n.m ap n

where

<6(Mp)*> <Pm - Pn>
Xll m =
' ap n.m Dll. m

d(Mp?)*
- B n,m 4
ap Hnm

D, wm(Mp): (Mp)},

(Mp):."l =
du.m(Mp)Tn + dm,n(MP),T
rorye = MOE O, ¢ (M (M)
p H,m = .
‘ d,m(Mp)y +d,,  (Mp);

The values of (Mp)* —and (Mp?)}  have been derived
in terms of the values in nodes n and m in order to guarantee
the continuity of fluid flux and pressure at the interface.
We have now developed the flow difference equation
which is solved together with the energy difference equation

by the SHAFT program.

EXAMPLES OF RESULTS

To illustrate some capabilities of the SHAFT program,
preliminary results from two two-phase geothermal reservoir
simulations will be given. Examples of one-phase problems
solved by use of an earlier version of SHAFT have already
been discussed by Lasseter and Witherspoon (1974). The
results described here demonstrate the application of the
program to liquid-dominated and vapor-dominated geother-
mal systems. While these examples are similar in some
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Table 2.  Assumed reservoir properties.
Porosity 02 ...
Permeability ' 5.0 millidarcies

0.65 J/m-°C-sec
2.18 J/m-°C-sec
1000 J/kg-°C
2.5 g/cm?

Fluid conductivity
Solid conductivity
Solid heat capacity
Solid density

respects to existing geothermal systems, they are intended
primarily as demonstrations of the program’s capabilities
and no attempt has been made to model actual field behavior.

Liquid-Dominated System

For a liquid-dominated system, we have selected an
axisymmetric model 2000 m high and 5000 m in radius. The
zoning consists of 10 evenly spaced vertical nodes and 25
evenly spaced horizontal nodes. Hot water at a temperature
of 250°C is upwelling into the bottom node on the axis
at a rate of 100 tons per day. The bottom boundary is
otherwise a no-flow boundary held at a constant temperature
of 100°C. The top boundary is permeable and adiabatic with
the pressure at the boundary being held at 1 kg/cm?. The
other boundaries have no flow of heat or fluid across them.
The constant material properties are given in Table 2. Input
tables give the internal energy, density, viscosity, and phase
of the fluid as a function of temperature and pressure.
Relative permeability values are tabulated as a function of
volumetric vapor saturation.

For simplicity, the problem was started with a uniform

2000 T
A
1500 - 120°C

1000 -

wﬂ

2000

[
930 kg /m3 (®)

I5OO

1000
500

0
2000

Height, m

1500
1000
500+

o]
2000

1500
Producing interval-{
1000 'l

500+

T
2000 3000 4000 5000
Radial distance ,m

0
O 1000

Figure 2. Liquid-dominated system showing (A) temperature
field, (B) density field, (C) mass flux for initial steady state
conditions, and (D) mass flux after 20 years of production.

temperature and pressure everywhere and was allowed to
run until a steady state was reached. This necessitated
running the probiem for approximately one million da
of physical time, which required about 100 seconds of
computer time. The temperature, density, and flow fields
are shown in Figure 2. ‘
Having established the steady-state flow field, field pro-
duction was simulated by withdrawing fluid from the node
on the axis at a depth of 700 m at a daily rate of 100
tons (4167 kg/hr). The flow field under these conditions
after 20 years is shown in Figure 2D. We see that the flow
is no longer moving to the surface as before, but now
directed towards the well. The temperature and density
distributions are not appreciably changed from their initial
values, even after 20 years. It was thought that some pha
change might occur by this time, but this did not happe
Itis possible that witha higher bottom-boundary temperatu
and with finer zones near the well some phase transition
will develop.

Vapor-Dominated System

Tostudy a vapor-dominated system, a model based loosely:
on The Geysers field was selected. The model consists of-
an axisymmetric system 2000 m in radius and 3000 m high.
The zoning consists of 15 evenly spaced nodes in the vertical
direction and 10 nodes in the horizontal direction whos
spacing increases with radius. The same material propertie
as given in Table 1 were used except that the permeabilit
is 1 darcy and the system is almost completely filled wit
steam. The bottom boundary is a no-fluid-flow boundar:

3000 — T T T " T T L——
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2000¢- - E— b
/20 kg/cm2
//
1000 25 4 .
N
—%ﬁ
/-—.\
— 30 240~ _ 45—
€ B 2
- o] 1 i .
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‘gSOOOl’/}’ T i '~(C) T T T (D)
vl v ¢ - -
17ss - -
=
ST - - j
2000 —— - ) lffproducmg injerval
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PPV Yy
LV v vy | 3
{000 ‘” AN -
| S T I B
,/ toe o0 . .
[[/I[IL! R T 1 A A A A
0 - /J.L_J__J
o] 1000 2000 0 1000 # 2000
Radial distanci:,m
Figure 3. Vapor-dominated system . -wing reservoir condi-

tions after 1500 days of productionf ‘A) pressCie field, (B)
temperature field, (C) vapor fluz, (D) liquid flux.
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ixed at a temperature of 250°C. The other boundaries have
o flow of heat or fluid across them. Steam is being
sly one million day, ithdrawn from the three nodes nearest the axis at a depth
out 100 seconds d f 1100 m at a total rate of 3 x 104 ton/day (l.2§ x 10¢
sity, and flow field g/hr). This flow rat.e is probably unreasonably high, but
’ as selected to examine the problem of total system deple-
jon and the effect on a boiling layer of water that was
ssumed to exist in the bottom 200 m of the vertical column.
he system begins at a temperature of 250°C and an average
der these conditionp ¢SS4r® of 35 kg/cm?. Lo

We see that the flo Plots of temperature, pressure., liquid flux, apd vapor
s before, but now ilux after. 'ISOO days of production are sh9wn in Figure
serature and densitt: The boiling at the bo.ttom of the system is clearly seen
ged from their initi rom thfi vector plots (Fig. 3 C and D). As the steam rises,
ught that some phas he liquid moves downward to replace it. The average system
this did not happe emperature decreased to about 225°C and the mean pressure
oundary temperatu f th.e steam column decreased t(? al‘)out 25 kg/cm?. Vapor-
me phase transition ominated sys.tems usually remain isothermal, and we sus-
pect that the input convergence criterion for this problem
Ivas not adequate. We are currently investigating this.

: and was allowed t
d. This necessitate

flow field, field pr
, fluid from the nod
a daily rate of 1
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