

Idaho National Engineering Laboratory
Operated by the U.S. Department of Energy

Prickett and Lonnquist Aquifer Simulation Program For the Apple II Minicomputer

Laurence C. Hull

February 1983

Printed in the United States of America

Available from
National Technical Information Service
U.S. Department of Commerce

5285 Port Royal Road Springfield, VA 22161
NTIS Price Codes: Printed Copy A02
Microfiche A01

DISCLAIMER

This book was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof

PRICKETT AND LONNQUIST AQUIFER SIMULATION PROGRAM FOR THE APPLE II MINICOMPUTER

Laurence C. Hull

Published February 1983

Geosciences Branch Earth and Life Sciences Office EG\&G Idaho, Inc.

ABSTRACT

The Prickett and Lonnquist two-dimensional groundwater model has beer programmed for the Apple It minicomputer. Both leaky and nonleaky confined aquifers can be simulated. The model was adapted from the FORTRAN version of Prickett and Lonmquist. In the configuration presented here, the program requires 64 K bits of of memory. Because of the large number of arrays used in the program, and memory limitations of the Apple ll, the maximum grid size that can be used is 20 rows by 20 columns. Input to the program is interactive, with prompting by the computer. Output consists of predicted head values at the row-columintersections (nodes).

CONTENTS

ABSIRACI ii
INTRODUCTION 1
NUMERICAL MODEL. 2
VIRHACATION 4
PROGRAM USE 10
RFIIERENCIS 12
APPENDIX $\triangle \cdots$ EXAMPIE PROORAM OUTPUT 13
APPENDIX B--PROGRAM IISIING 19

PRICKETT AND LONNQUIST
 AQUIFER SIMULATION PROGRAM FOR THE APPLE II MINICOMPUTER

INTRODUCTION

This report summarizes the use of the Prickett and 1.onncuist two-dimensional groundwater model, which has been programmed for the Apple II minicomputer. Both leaky and nonleaky confined aquifers can be simulated. The model was adapted from the fORTRAN version of Prickett and I. onncquist. ${ }^{1}$ Additional information on the model and some advice on its use can be found in Reference 1 . In the configuration presented here, the program requires 64 K bits of memory. Because of the large number of arrays used in the program, and memory limitations of the Apple [I, the maximum
grid size that can be used is 20 rows by 20 columns. Input to the program is interactive, with prompting by the computer. Output consists of predicted head values at the row-column intersections (nodes).

Funding for this project was provided by the L.ow-to-Moderate Temperature Reservoir Engineering Program, Department of Energy, supervised at EGi\&G ldaho by Max R. Dolenc. Steve A. Mizell of the Geosciences Branch, EG\& provided assistance in adapting the program to the Apple II minicomputer.

NUMERICAL MODEL

On a microscopic scale, flow in a porous medium occurs along tortuous paths through various pore spaces. The direction and velocity of flow through each pore car be different. For a homogeneous medium, if direction and velocity are averaged over increasing numbers of pores (that is, over a larger volume of aquifer), a stable estimate of mean flow direction and velocity will be obtained once a certain minimum aquifer volume is excecded. ${ }^{2}$ This minimum aquifer volume is termed the representative elementary volume (REV). The minimutn size of the REV will depend on the size, shape, onientation, and packing of grains. There will be a maximum REV in nonhomogeneous aquifers, where aquifer characteristics change spatially. The node spacing in a finite difference model must be selected so that aquifer characteristics are adequately represented. In this adaptation of the Prickett and lommuist model, the limited number of nodes requires a very coarse grid spacing when large areas are to be simulated. Thus, only major nonhomogeneities in aquifer properties can be represented. Also, because the model is a horizontal iwo dimensional model, vertical differences in aquifer characteristics are averaged into a single aquifer parameter.

The equations used in the numerical simulation are based on the principle of conservation of mass. The mass of water leaving a nodal volume must be equal to the amount of water entering, plus or minus any changes in storage, ptus or minus any external additions or subtractions of water (such as pumpage). This can be expressed by Equation (1), with subscripts referenced to Figure 1.
$Q_{1}+Q_{3}=Q_{2}+Q_{4}+Q_{S}=Q_{p}$
where

$$
\begin{aligned}
& Q_{1}+Q_{3}=\text { inflow to nodal volume } \\
& Q_{2}+Q_{4}=\text { outflow from nodal volume } \\
& Q_{S} \quad=\text { addition to or subtraction } \\
& \text { from storage } \\
& \mathrm{Q}_{\mathrm{p}} \quad=\text { other changes in water } \\
& \text { volume, such as pumpage } \\
& (-) \text { or injection (}+ \text {). }
\end{aligned}
$$

Figure 1. Finite difierence grid showing flow volume relations.

For flow in the aquifer, Q_{1} through Q_{4}, Darcy's law can be used to calculate the flow volumes. Darcy's law states that the discharge through a unit width of aquifer is related to the ability of the aquifer to transmit water (the transmissivity, 1), and the change in head with distance.
$Q=\mathrm{I} \frac{\partial \mathrm{h}}{\partial \mathrm{x}} \Delta \mathrm{y}$
where

$$
\begin{aligned}
& \frac{\partial h}{\partial \mathrm{x}}=\begin{array}{l}
\text { head gradient or rate of change of } \\
\\
\Delta y=\text { width } \\
\Delta y \text { with distance }(x)
\end{array} \\
& Q=\text { discharge. }
\end{aligned}
$$

The transmissivity is the amount of water that can be passed through a unit width of agulfer under a unit head gradient. It is related to the hydraulic conductivity (K) by $\mathrm{T}-\mathrm{K} \cdot \mathrm{m}$, where m is aquifer thickness. Therefore, the transmissivity is a vertical average of aquifer permeability, and depends on aquifer thickness.

Using Equation (2) to calculate Q_{1} through Q_{4} in Equation (1) gives the following relationships.

$$
\begin{align*}
& Q_{1}=T_{i-1, j, 2} \cdot \Delta y \cdot \frac{\left(h_{i-1, j^{-h_{i, j}}}\right)}{\Delta x} \tag{3a}\\
& Q_{2}=T_{i, j, 2} \cdot \Delta y \cdot \frac{\left(h_{i, j}-h_{i+1, j}\right)}{\Delta x} \tag{3b}\\
& Q_{3}=T_{i, j+1,1} \cdot \Delta x \cdot \frac{\left(h_{i, j+1}-h_{i, j}\right)}{\Delta y} \tag{3c}\\
& Q_{4}=T_{i, j, 1} \cdot \Delta x \cdot \frac{\left(h_{i, j}-h_{i, j-1}\right)}{\Delta y} \tag{3d}
\end{align*}
$$

'The change in storage $\left(Q_{S}\right)$ is given by the relation

$$
\begin{equation*}
Q_{s}=S \cdot \Delta x \cdot \Delta y \frac{\left(h_{i, j}-h^{\prime}{ }_{i, j}\right)}{\Delta t} \tag{4}
\end{equation*}
$$

where

$$
\begin{aligned}
\mathrm{S} & =\underset{ }{\text { volume }} \text { storage coefficient (volume/ } \\
\mathrm{t} & =\text { time }
\end{aligned}
$$

$h^{\prime}{ }_{i, j}=$ head at node i, j at a previous time given by $\mathrm{t}-\Delta \mathrm{t}$.

External volume changes, such as from pumpage, must be known explicitly. Other Q's are possible, such as from evapotranspiration or leakage. For explanation of how these parameters are added to the model, refer to Reference 1.

Replacing the Q's in Equation (1) with Equations (3a) through (3d) and (4) gives a fintite difference approximation of flow through a porous medium. An equation of the same form exists for each node in the model, and these must be solved simultaneously to determine the head distribution it the aquifer. This series of equations is solved using an iterative alternating direction implicit technique. ${ }^{1}$

VERIFICATION

Results generated by a minerical model must be verified to assure that hey are meaningful. This adaptation of the Prickett and Lomnquist model was verified by comparing numerical solutions from the model with andytical sotutions. The configuration of the model used for verification is shown pictorially in Figure 2 . Table I gives the parameters input to the model. A single pamping
well was placed at the center of a grid of sufficient size to assure that boundary effects would not influence the calculations.

Aralytical solutions for nouleaky conditions were calculated using Fquation (5) and hydrologic parameters given in Table 1.

Figure 2. Schematic of aquifer system used to validate the computer code.

Table 1. Configuration of model for validation runs
\qquad - \qquad
MODEL DESCRIPTION
STEPS 10
COIUMNS 19
ROWS 19
DELTA T 0.385
ERROR 3
DEFAULT PARAMETERS
Transmssviy 1000
SHORACE 5E.04
HEADS 0
PUMPAGE 0
VERT COND 2.7E-04
SOURCX BED 0
GRIDS 1000
variable grid spacings

X SPACING	Y SPACING
10000	10000
7500	7500
5000	5000
3000	3000
1000	1000
500	500
300	300
100	100
100	100
100	100
100	100
300	300
500	500
1000	1000
3000	3000
5090	5000
7500	7500
10000	10000

IOCATIONS OF PUMPING WELIS

PUNPAGE

COLUMN
ROW
100000
10
10

$$
\begin{equation*}
s=\frac{2.3 \mathrm{Q}}{4 \pi \mathrm{~T}} \log \frac{2.25 \mathrm{Tt}}{\mathrm{r}^{2} \mathrm{~S}} \tag{5}
\end{equation*}
$$

where

$$
\begin{aligned}
\mathrm{s} & =\text { drawdown } \\
\mathrm{Q} & =\text { discharge of pumped well } \\
\mathrm{T} & =\text { transmissivity } \\
\mathrm{t} & =\text { time } \\
\mathrm{r} & =\text { distance from pumped well } \\
\mathrm{S} & =\text { storage coefficient. }
\end{aligned}
$$

The drawdown as a lunction of distance from the pumped well after 10 days of pumping is shown in Figure 3. Equation (5) is applicable to a limited range of times and distances. At a given distance from the pumped well, there is a minimum time that must pass before the assumptions inherent in Equation (5) are valid. For nonleaky artesian conditions, this time is given by the relation

$$
\begin{equation*}
\mathrm{t}=\frac{12.533 \mathrm{r}^{2} \mathrm{~S}}{\mathrm{~T}} \tag{6}
\end{equation*}
$$

where

$$
t=\text { days }
$$

$$
r=\text { feet }
$$

$$
\mathrm{T}=\mathrm{rt}^{2} / \mathrm{day}
$$

$$
\mathrm{S}=\mathrm{a} \text { fraction }
$$

and where the indicated units must be used for consistency with the constant in the equation. For a time of 10 days, simulated drawdowns beyond 1263 ft will not be strictly comparable to values given by fiquation (5). For greater distances and leaky artesian conditions, analytical solutions were obtained using the Theis equation, as described by I.ohmarn. ${ }^{3}$

Comparison of drawdowns from the andytical and numerical solution methods for both time and distance drawdown (Tables 2 and 3) show

Figure 3. Plot of distance versus drawdown for aonlcaky aquifer simulation after a time of 10 days.
reasonable agrement. Using straight-line plots for nonleaky conditions (Figure 3) atd type-curve matching for leaky conditions (Figure 4), aquifer parameters were estimated from output of the rumerical simulations. For nonleaky conditions, transmissivity was calculated from Figure 3 and the equation

$$
\begin{equation*}
\mathrm{T}=-\frac{2.3 \mathrm{Q}}{2 \pi(\Delta \mathrm{~S} / \Delta \log \mathrm{r})} \tag{7}
\end{equation*}
$$

and storage from
$S=2.25 \mathrm{~T}\left(\frac{1}{\mathrm{r}_{0}^{2}}\right)$.

For leaky conditions, the points in Figure 4 were matched to type curves given by Lohman. ${ }^{3}$ Parts of the curves for $v-0.02$ and $v=0.05$ are shown. From this it was concluded that 0.03 was the best estimate for v. The match point was selceted and the values shown in Figure 4 used to calculate aquifer parameters using
$T=\frac{Q}{4 \pi s} W(u, r / b)$
for transmissivity and
$S=4 T\left(\frac{1 / r^{2}}{1 / U}\right)$

Table 2. Comparison of analytical and numerical values for time-drawdown at a distance of 100 ft

Time (d)	Dawdown (It)		$\begin{gathered} \text { Diflerenceat } \\ (0 / 0) \\ \hline \end{gathered}$
	Analyical	Numerical	
Nonleaky			
2.9	-56.9	-56.4	1.0
3.8	-59.2	-58.9	0.6
5.0	-61.3	-61.3	0.0
6.4	-63.3	-63.7	-0.7
8.0	-65.1	-66.0	-1.5
10.0	-66.9	-68.2	-2.0
Leaky			
1.4	-46.2	-46.0	0.4
2.3	-47.6	-47.9	-0.6
3.6	-48.4	-48.9	-1.0
5.5	-48.7	-49.3	-1.3
8.2	-48.8	-49.5	-1.4
10.0	-48.8	-49.5	-1.5

a. Percentage difference is defined as:
$\frac{\text { Analytical - Numerical }}{\text { Analytical }} \cdot 100$.

Table 3. Comparison of analytical and numerical values for distance-drawdown at a time of 10 days

$\begin{gathered} \text { Distance } \\ (\mathrm{ft}) \\ \hline \end{gathered}$			
	Analytical	Numerical	$\begin{gathered} \text { Difference } \\ (\%) \\ \hline \end{gathered}$
Nonleaky			
20.8	-91.8	-93.3	-1.5
100	-68.9	-68.2	-2.1
141	-61.4	-61.5	-0.1
200	-55.8	-56.8	-1.7
283	-50.3	-51.1	-1.4
500	-41.3	-41.5	-0.6
207	-.35.8	-35.6	0.5
1000	-30.3	-29.8	1.5
1.caky			
20.8	.73.8	-74.5	-0.9
100	-49.0	49.5	-1.2
141	-43.6	-42.8	1.8
200	-38.6	-38.2	1.1
283	-32.3	-. 32.6	-0.8
500	-24.0	-23.5	2.0
207	-18.9	-18.2	3.7
1000	-14.2	-13.2	7.0

Figure 4. Comparison of simulated drawdown data at a dislance of 200 ft to the type curve for leaky antesian aquifers.
for storage. leakage was calculated from
$K^{\prime} / b^{\prime}=4 \mathrm{~T} \frac{\mathrm{v}^{2}}{\mathrm{r}^{2}}$.

Input and estimated values for transmissivity (T), storage (S), and vertical hydraulic conductivity ($\mathrm{K}^{\prime} / \mathrm{b}$ ') are shown in 'rable 4 . The parameters calculated from the numerical solutions show very
close agreement to transmissivity, storage coefficient, and leakage initially input to the model.

Simulation runs produce reasonably accurate head distributions. Two factors that probably contribute to the observed discrepancies are problems in sealing aquifer coefficients for variable grid spacings, and numerically approximating the solution to analytical equations, Because of the relatively small grid size possible with the minicomputer, the model is best used for simulations of small areas.

Table 4. Comparison of hydrologic parameters ${ }^{\text {a }}$

	Leaky				Nonleaky $\begin{aligned} & \\ & \\ &\end{aligned}$
	$\begin{gathered} \mathrm{T} \\ \left(\mathrm{ft}^{2} / \mathrm{d}\right) \end{gathered}$	S	$\begin{aligned} & \mathrm{K}^{\prime} / \mathrm{b} \\ & \left(\mathrm{~d}^{-1}\right) \end{aligned}$	$\underset{\left(\mathrm{ft}^{2} / \mathrm{d}\right)}{\mathrm{T}}$	
Model parameter	1000	$5 \cdot 10^{-4}$	$2.7 \cdot 10^{-4}$	1000	$5 \cdot 10^{-4}$
Numerical solution	1190	$4.8 \cdot 10^{-4}$	$1 . \therefore \cdot 10^{-4}$	1006	$4.8 \cdot 10^{-4}$

a. Analyses for leaky conditions were performed by type-curve matching and for nonleaky conditions by the straight-line method.

PROGRAM USE

lmput to the model is in two stages. The first stage is for input of model parameters and default hydrologic parameters. Default hydrologic parameters are assigned to each node, so that all nodes have equal values of transmissivity, storage, etc. The second stage of input is for modifying individual parameters for a node or for subareas within the model, and for changing the grid spacing.

The units must be internaliy consistent for proper use. Unit combinations of gal/day/ft, $\mathrm{ft}^{3} /$ day $/ \mathrm{ft}, \mathrm{m}^{3} / \mathrm{s} / \mathrm{m}$, are all equally valid. For example, if transmissivity is given in $\mathrm{m}^{2} / \mathrm{s}$, the time increment must be in seconds and heads in meters. Input variables in the following list are labeled as to the unit combinations. The letters symbolize: t-time (min, d); L-lengtl: (ft, m); v -volume (gal, $\mathrm{ft}^{3}, \mathrm{~m}^{3}$).

The input variables, in order of appearance are:

1. Number of steps-The number of time steps that are simulated by the model. The time duration modeled is a function of the time increment and the number of steps. At least six time steps should precede the time period for which head values are desired. Large numbers of steps will require large amounts of time; simulation of a 19 x 19 grid required $0.5 \mathrm{~h}_{1}$ of real time per time step.
2. Time increment ($\Delta \mathrm{t}$)-The time increment increases by a factor of 1.2 with each time step. This results in more stable solutions for early time steps and still allows later time steps to simulate longer time periods.
3. Error check (L.)-The maximum permissible error for testing convergence. To calculate this value, use:

$$
\text { lirror }=(Q \cdot \Delta t) /(10 \cdot S \cdot \Delta x \cdot \Delta y)
$$

where

$$
\left.\begin{array}{rl}
\mathrm{Q}= & \text { well discharge summed over all } \\
& \text { nodes }
\end{array}\right] \begin{aligned}
& \Delta \mathrm{t}=\mathrm{time} \text { increment }
\end{aligned}
$$

$$
\left.\begin{array}{rl}
S= & \text { storage coefficient } \\
\Delta x= & \text { geometric mean of largest and } \\
& \text { smallest } x \text { grid spacing }
\end{array}\right\}
$$

Units must be consistent to give error in units of length.
4. Number of columns--mast be ≤ 20.
5. Number of rows-must be <20.
6. Transmissivity, (v/t/L) or ($\mathrm{L}^{2 / t) \text {-The }}$ volume of water transported through unit width of aquifer, per unit time, under unit hydraulic gradient. The program automatically compensates for variable grid spacings. Same value is used for both x and y directions.
7. Storage, (ratio) or $\left(v / L^{3}\right)$.... The storage coefficient with units depending on the volume measurement system. If volume is measured as L^{3}, then the ratio storage coefficient is used. If volume is measured as v (liters, gal) then the storage coefficient must be multiplied by the conversion factor for v to J^{3}. For example, $7.48 \mathrm{gal} / \mathrm{ft}^{3}$ or 1000 liters $/ \mathrm{m}^{3}$. The effects of grid spacing are taken into account by the model.
8. Heads (L)-The elevation of the piezonetric surface for the confined aquifer relative to some arbitrary datum.
9. Pumpage, ($\mathrm{v} / 1$) or ($\mathrm{L}^{3 / t}$)-Discharge from $(+)$ or recharge to (-) a node. The rate is held constant throughout all time steps.
10. Girid spacing (1.)… Default distance between nodes if alf distances are equal.
11. Vertical conductivity, $\left(\mathrm{v} / \mathrm{t} / \mathrm{L}^{3}\right)$ or $(1 / \mathrm{t})$ Volume of water transported through unit area of confining bed, per unit time, under unit head differential divided by the thickness of the confining bed. The model
takes care of determining the volume of leakage by adjusting for the grid spacing.
12. Source bed heads (L). The elevation of water in the source bed, for leaky conditions, relative to the same datum as the piezometric surface.

The second stage of input to the model allows modification of the default parameters. The possible changes are listed on the screen, and the selection made by number. When no further changes are desired, exit by typing zero. Modificafions to hydrologic parameters can be made either to a range of nodes, or to a series of individual nodes. By changing hydrologic parameter values for certain nodes, recharge boundaries, constant head boundaries, or highly transmissive fault zones can be simulated.

The final alteration that can be made is to change the grid spacing. This is done by entering the distance between adjacent nodes, not the width of the nodal areas. The program will then adjust the hydrologic parameters for the different grid sice. More detail can be obtained by placing smaller grids near pumping wells and other areas where heads are changing rapidly.

For extensive hydrologic variables (storage, vertical conductivity), the nodal areas are calculated using arithnetic means. For intensive hydrologic variables (trannmissivity), the adjusted nodal values are calculated using hamonic meatus. ${ }^{4}$

For equidimensional grids, the number of nodes increases as the square of the number of rows (or columns), and so the time required for simulation runs increases greatly with increasing grid size. A simalation of a 19×19 grid, for verification purposes, required about 4 h for 10 time steps.

Appendix A is an example of the output from a short simulation run of a 5×5 grid. The first page is a printoul of the default parameters. If variable grid spacings or pumping wells are added, these are also printed out. Nonleaky conditions can be simulated by setting the vertical conductivity to zero. A listing of the hydrologic parameters for the nodes, corrected for grid spacing, can be obtained as an option, The remaining output consists of head values at the nodes for each time step.

Appendix B contains a listing of the program.

REFERENCES

1. T. A. Prickett and C. . . Lonnquist, Setected Digifal Computer Techniques for Ground-Water Resource Evaluation, Minois State Water Survey Bulleta 55, Urbana, Illinois, 1971.
2. J. Bear, Dynamies of Lhuds in Porous Medit, New York: American Elsevier Publishing Co., 1972.
3. S. W. L.ohman, Grothd-Water Hydrahics, U.S. Geological Survey Professional laper 708, 1972.
4. P. C. Trescott, G. F. Pinder, S. P. I arson, Finite-Difference Morlelfor Aruifer Simulation in Two Dimensions with Resthls of Nimerical Experiments, Techniques of Water-Resources Investigations of the (i.S. Geological Survey, Book 7, Chapter C1, 1976.

APPENDIX A

EXAMPLE PROGRAM OUTPUT

APPENDIX A

EXAMPLE PROGRAM OUTPUT

TEST NON-LEAK゙Y ANUIFER MOREL
HOWEL. IESCRIFTTON
STEFS, 2

IELTA $\mathrm{T}+\ldots \mathrm{I}$
FRROR 8
DEFAUH F FARAHETEFG
TRAN台MSSUTY 10000
STORACE + . 5E-04
HEATS 0
FUHFAGE, . 0
पEFT EONT, 0
SOUECE BEF 0

LOCATEONS OF FUMFTNG WELLS
FlJiffage Colamiv Row
250001
$25000 \quad 2$
$25000 \quad 1 \quad 3$
25000 1 4
230001
5

TKANSMISSIUITTY(C,F: F$)$

ROWS	1
1	10000
2	10000
3	10000
4	10000
5	10000
ROWS	5
1	10000
2	10000
3	10000
4	10000
5	10000

ROWS	1
1	10000
2	10000
3	10000
4	10000
5	10000
ROUS	5
1	10000
2	10000
3	10000
4	10000
5	10000

STORAGE FACTORS

ROWS	1	2	3	4
1	12500	12500	12500	12500
2	12500	12500	12500	12500
3	12500	12500	12500	12500
4	12500	12500	12500	12500
5	12500	12500	12500	1.2500
ROWS	5	6	7	8
1	12500	0	0	0
2	12500	0	0	0
3	12500	0	0	0
4	12500	0	0	0
5	12500	0	0	0

APPENDIX B

 PROGRAM LISTING
APPENDIX B

PROGRAM LISTING


```
        N2ま: GOSUE 450
```



```
        450: FRINT "TRANSNSSUTY..{U/T/L.) ";M1(G): UTAE 10: HTAG 30: INFUT ""
        #H2.& C05UH $50
440 FRTNT "STGKAGE,., "多1(7): VTAE 1J: HTAE 30: TNPUT "";N2$: GOSUK 450:
        FFTNT "HEATG...(L) "tN1(3): UTAB 12: HTAK 30: INFUT ""叔$$ GOSUE 4
        FO
1FO FRINT "PUMFAGE, +(U;T) ";N1(9): UTAE 13; HTAE 30: INFUT "M;N2$: GOSUB
```



```
        2$: 60SUE 450
```



```
    4EO: FRINT "SDURCE HEALIS...(L.) "犃(12): UTAK 16: HTAE 30: INFUT "";
    N2ま: G0SUR 450
```



```
        100
1GO HOME : VTAB 10: HTAE 8: INUERSE ; FRINT "INITIALIZING ARFAYS": NORMAL
1%0 NK=N((4):NR=N1(5):XY = N1(10):S5 = N1(7):HH=N1(8):QQ = N:(9):#TA
        = \1(2):NS = N1(1):ETG = N1(3)!Tt = N1(6):RF=N1(11):FH=N1(12)
200 FOK I = 1 TO NC: FOR J = 1 T0 NK:T{I,J,1) = N((6):T(1,N,2)=N1(6):SF
    (I,J)=SS* XY * XY:HO\I,J) = HH:H(Y,J) = HH:G(I,J) = QR:ILL(I,J) = 0
```



```
210 FOR I = 1 TO NC + 1:X(I)=N1(10): NEXT I: FOR J=1 TO NR + 1:Y(J)=
    M1(10): NEXT J
2%O HOME : UTAK 2: HTAE Z: FRTNT "IO YOU WISH TO CHANGE THE DEFAULT": HJAE
    2: FRINT "UALUES FOR ANY NOLES?": FRINT : FRINT : HTAB 4: FRINT "O..,
    NO CHANGES": F'RIMT \AE( 4)"1...CHANGE HEALIS"
```


320 FRINT ；FRINT TAEK 3 ）＂ENTER MINIMUM ANII MAXIMUM COORMINATES＂：INFUT
 C：INFUT ${ }^{\prime}$ HAX F日U＂；LF：GOTO 360
330 HOME ：FRINT TAB（ 5）＂ENTER O，\quad TO ENL＂：PRINT＂COL；＂；＂ROW，＂；＂UALUE ＂：FRTNT
340 INFUT LCOLF，A2：IF LC $=0$ THEN 220
$3505 \mathrm{C}=\mathrm{LC}: 5 \mathrm{~K}=\mathrm{LF}: \mathrm{KA}=1$
360 ON A．GOTO $370,380,380,400,410,420,430,440$
 N（，K゙R）＝A2：NEXT KF，K゙C：ON R4 GOTO 340，300
3 OO HL＝1：IF A1＝ 3 THEN I $=2$
 F4 6OTO 340,300
 R，がC：ON R4 GOTO 340，300
 $=$ K゙C！GR（NP）＝KR：NEXT KRRsKC：ON F4 GOTO 340， 300
42 FOR KC＝SC TO LE：FOR KR＝SF TO LE：R1（KCOKR）＝A2＊XY＊XY：NEXT K R，NE：ON Fi4 GOTO 340，300
 4 GOTO 340．300
 2：NEXT KK，K゙R，K゙C：ON K4 GOTO 340，300

4．0）$I=I+1$＋FETURN
470 EEA SUBROUTTNE TO FRENT DUTFUT ARRAYS
480 FF\＃i：FREANT CHF＊（9）；＂8ON＂
490 FOR 犬゙T $=1$ TO NC STEF 4
 $=$＂今E
5JO HTAF $35:$ FRINT＂COLUAN NUMAEFS＂：FRINT

 550
 1．- T2）>50.0 THEN T1 $=T 1+100$.
550 IHT（IyJ）$=$ INT（T1／100）／100．
560 NEXT JyI
$570 \mathrm{FOR} \mathrm{KI}=1 \mathrm{TO} \mathrm{NF}$

590 MEXT KI
60）FFFINT CHF（12）
6．O NEXT KT
620 FRE O F RETUKN
630 REN ENLI FFRINT ROUTINE


```
        ) / (XY * XY)
730 T(I,J,1)=T(I,J,1)* [&X ( {Y{, + L ))
740 T(I,J,2)=T(I,J,Z) * I{Y / (X{I + 1))
750) NEXT J.S
760 60T0 920
7%0 KEM ENEI FESCALING
780 RE#K FRINT CGEFFYCENT AFRAYS ANII HEAIINGS
790 IF XX: % "" THEN X(I) = UAI_ (XX$)
800 KETURN
810 TFF YY& < > "" THEN Y(J) = VAL. (YY$)
920 RETUNN
830 FR& 1: FRTNT CHR全 (Q);"gON": FOK IT = 1 TB 2; FRINT # FRINT "TRANSMI
    GSIUIFTY(C,R,"自T名")": PRINT
g&O FOR NTT = . TO NC STEF 4: FRINT : FRINT "ROUS",NK,NT + 1,N゙T + 2,K゙T + 3
    : FRINT
85% FOR KI= = TO NK: FRINT KI,G&KT,KI,IT),T{KT + 1,KI,IT),T(KT + 2,KI,IT
        ),丁(<゙T + 3,NI*IT): NEXT KI,NT.IT
860 FRINT : FRINT "STGRAGE FACTORS ": FRINT : FOR KTT = 1 TO NE STEF 4: PRINT
        : FRINT "ROWS",NTMN゙T + 1,NT + 2,NT + 3: FRTNT
870 F-GK K゙I = 1 TO NK: FRINT KI,SF{N゙も,NI),SF\KT + I,NI),SF(KT + 2,KI)ッSF(K
    T + 3.N゙I\! NEXT K゙IgN゙T
890 SUM = 0.0: FOR I = 1 TO NC: FOR J = 1 TO NR:SUM = SUM + RI(I,J): NEXT
    J,It IF SUM = 0.0 THEN 910
85O FRINT : FRINT "UERTICLE CONIECTIUITY "; PRINT : FOR KNT = & TO NC STEP
    4: FRINT : FRINT "ROUS",NT,NT + i,NT + 2,KT + 3: FRINT
```



```
    T + 3,N゙!): NEXT K゙T,KT
910 FRINT CHF舟 (12): FR* 0: G0T0 930
9%O HOME : UTAD E: HTAB 9: FRINT "FRINT OUT ARRAYS F': UTAB 7: HTAB 13: INFUT
    "(Y/N).."矩2क: IF N2$ = "Y" THEN 830
9%0 FFF# 1: FRINT CHR& {9)%"80N": FRINT : FRINT TAB{ 15)TITLE$: FRKNT : PRINT
```



```
    10)"MELTA T,.* "!mTA
940 FRINT TAK( 10)"ERFOK..... ";EIG: PRINT : FRINT TAK( 5)"IEFAULT FAK
    AMEGERS": FRTNT TAB( 10)"TKANSMSSUTY ";TT; FFINT TAK( 10)"STORAGE.,
    . ";55: FRINT TAE( 10)"HEARS..... ";HH: FRINT TAB( 10)"FUMFAGE...
    "!日Q
```



```
950 FRINT TAEK 10)"GFIIIS..... ";XY: IF UN = 1 THEN 1000
970 FRINT : FRINT TAK( 15)"UARIAELE GKIH SFACINGS": FRINT : FRTNT TAK{
    8)"X GFACING"; TAE( 17)"Y SFACING": FRINT
```

```
980 KT = NC: IF NR $ NE THEN KT = NF
950 FOF KL = 2 T0 KKT: FRINT TAR( 10)X(KL); TAB( 25)Y(KLI): NEXT KLL
1000 FRINT ; FRINT TAB{ 15)"LOCATIONS GF FUMPING WELLS"; FRINT : FRINT TAEF
    8)"FU\MFAGE": TAB( 19)"COLUMN", TAE( 25)"ROW": FRINT
1010 FOR I = 1 TO NF; FFINT TAB( 10)O(GC(I)%QK(I)), TAB( 20)GC&I), TAK(
    27 \OR(I): NEXT I
1020 FRINT CHR& (12): FK% 0
10,30 IF NS ? 14 THEN 1040
10.32 X4 = 1:8H = 1: GOTO 1090
1040 IF NS ? 21 THEN 1050
10.42 X4=1:BH=6: G0T0 1090
1050 X4 = 2:BH = 6: GOTO 1090
10,60 REHI
1070 FEM AQUSFER MOLIEL
1090 REM
1090 TIME = O: FOK IS = 1 TO NS:TIME = TIME + IITA
1H00 FOR I = 1 TO NC: FOR J = I TO NR:II = H(I%J) - HO(I,J):HO(I,J)= H(I,
    , ) :F=1+0
11.10 IF ILL(I,J) = 0.0 THEN 1150
120 IF IS > 2 THEN F = 5 / [iL(I,J)
1J30 3F F > 5 THEN F=5
1.40 IF F < O THEN F = 0
1(%) IE{(I,J) = II:H(I,J) = H(I;J) + II * F: NEXT J: NEXT I
II.60 HOME : PRINT "STEF = ";IS\" TIME = "&TIME: FRINT : PRINT "ITER E
    FROK LIMIT"# FRINT
1170 TTEF = 0
1360 E=0.0
1.90 ITEK = TTER + 1
1200 KEM COLUMN CALCULATIONS
```



```
    I.
```



```
    I!TA - G(I,J) + Fi(I,J) * R2(I*J):AA = 0.0:CC = 0.0
1230 IF (J - 1) =0 THEN 1250
```



```
1250 IF {J - NR) = 0 THEN 1270
1260 CC = - T(I,N,1);BE= EB + T(I,J,I)
1270 IF (I - 1) = 0 THEN 1290
```



```
1290 IF (I -NC) = 0 THEN 1310
```



```
13.0W = EB - AA * E{J - 1):E(J) = CC / W:G(J) = (HLH - AA * G(J - 1))/W:
        NEEXT J
IZCXOF=E + ABS (H(I,NK)-G(NR)):H(I,NR)=G{NR):N=NK-1
1330 HA = G(N)-G(N)* H(I,N + 1):E = E + ABS (HA - H(I,N)):H(I,N) = HA:
        N=N-1
1340 IF N > O THEN 1330
13%-70 NEXT II
13SO FEM FOW CALCLLATIONS
1370 FOR JJ= 1 TO NR:J = SJ: IF FN MOLIIS + ITEK) = 1 THEN J = NR - J +
        1
1330 FOR I = 1 TO NC:BR=SF(I,J) / ITAA + FI(I,J):MI= HO(I,J) * SF(IGJ)/
    [!TA - Q(I;J) + F1(I;J) * F2(IyJ):AA = 0.0:CC = 0.0
1390 IF (J - 1) = 0 THEN 1410
```



```
1410 IF (J - NR) =0 THEN }143
1420 nis = [iI + H(I,J + 1)* T(I,N,1):BE= BB + T(I,J,1)
1430 5F (1 - 1) =0 THEN 1450
1440 EB = GE +T(I - 1,N,2):AA= -T(I - 1,N,2)
1450 IF {I - NC} = O THEN 1470
```

```
1460 EE= EF + T{I,J,2):CC = - T(I,J,2)
```



```
1490E=E + AES (H(NC,J) - G(NC)):H(NG,J) = G(NC):N = NC - - 1
1490 HA = G(N)-E(N)*H(N+1,J):E = E + ABS (H(N,J) - HA):H(N,J)= HA:
    N=N-1
1500 IF N > O THEN 1490
IF.10 NEXT JJ: FRINT ITER;" ";E;" "#EIGG IF ITER > 25 THEN 1590
1520 IF E ` GIG THEN 1180
1530 IF ITER & 3 THEN 1180
15.40 IF IS < EH THEN 1560
1FE0 IF INT (1S (X4) * X4 = IS THEN GOSUH 4B0
15.60 TTA = TTA * 1.2t NEXT IS
1570 IS = NS: IF X4 < > 1 THEN GOSUE 480
15%0 G0T0 1610
1590 FRINT ; FRINT TARG 5)"NO CONUERGENCE IN 2S ITERATIONS"
1600 FRTNT TAR( 8)"ERROK = "#E;" LIMIT = ";ETG
16,10 END
```

EG\&G Idaho, Inc.
P.O. Box 1625

Idaho Falls, Idaho 83415

