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For saturated flow problems it is convenient to
use h as the dependent variable, whereas for prob-
lems including unsaturated flow or problems inclu-
ding system deformation, it is necessary to de-
couple the gravitational and pressure components
of h and use ¥ as the dependent variable. Before
introducing the dependent variable, we shall adopt
Darcy's law in the form (Philip, 1969}

q. = -kvh . )

inserting (4) inte {1} and assuming, on empirical
grounds, that M, is a function only of h, we ob-
tain

dM
w dh . (s)
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The amount of water contained im a finite subre-
gion of volume V is pgiven by

M, = o V.S (6)

We therefore define a term called the *'"fluid mass
capacity" of the subregion [Narasimhan and Wither-

spoon, 1976b]
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Physically, M, represents the amount of fluid mass
that the finite subregion can absorb when the ave-
rage head within the system changes by unity. The
general equation of transient groundwater motion
therefore takes the form

oy B
prV+f b, Khendr = M2 (8)

r

Equation 8 is in an integral form. It is
more customary in the Iiterature to express (8)
in a volume-normalized differential form. Thus,
we shall first define a quantity "specific fluid
mass capacity'' as m, = M. /V, and then divide (8)
by V and let the finite subregion become arbitrar-
ily small to obtain

. gh

PG + div (b, 5311) =m 5 (9)
where divergence is defined by (Sokolnikoff and
Redheffer, 1966)

v 4 = lim fa’r nedr . (9a)
v+0 T

Under conditions when K and m, are strongly
dependent on h, as in the case of unsaturated flow,
it is mathematically more convenient to use mois-
ture content O as the dependent variable instead
of h. Thus, scil physicists often use the govern-
ing differential equation

. a6
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where
D=k dh nd B =ans

Equation 13 is penerally of limited use since it
is applicable only to systems composed of a single
material {Klute, 1572).

For steady-state flow we let dh/9t = 0 and
(8) reduces to Poisson's equation

-
div (pKVh) = -p G (11)

and in the absence of sources or sinks (11} fur-
ther reduces to the Laplace equation

div (QWKVh} =0 (12}

In applying (8) to actual systems, the equa-
tion is appropriately modified to accemmodate the
special dependences of K and Mz on h or to handle
special conditions on the boundary. We will now
proceed to examine the application of {8} to real-
istic systems, starting with the simplest case.

Confined Systems

The simplest system to consider is one in
which the flow region is fully saturated and the
material coefficients K and M. are independent of
time. In such a system, M; is governed only by
the compressibility of water and that of the por-
ous medium. As shown by Domenico (1972, p. 220},
for fully saturated confined systems,

e gh .
e, GV + 1{;w§Vh-ndF = va[a + nR} TR {13}

The quantity Sg; = Y,(a + nB) is often referred to
as specific storage in groundwater hydrology. Many
workers have used (13) for modeling confined
groundwater systems with fixed geometry (e.g. Fay-
ers and Sheldon, 1862; Pinder and Bredehoeft, 1966;
Javandel and Witherspoon, 1968; and Prickett and
Lonnquist, 1971). Equation I3 has also beer ex-
tended by some to include unconfined systems with
the assumption that the position of the water ta-
ble is known and fixed (e.g., Tysen and Weber,
1964; Freeze and Witherspoon, 1966). The source
term in (13) has been used by different workers to
simulate the effects of production wells, leakage
from aguitards and streams, transfer of water to
the atmosphere through evaporation, and infiltra-
tion due to rainfall {e.g., Prickett and Lonn-
quist, 1971).

The chief limitations of {13) are twofold. _
The first is that it ignores flow in the unsatura-
ted zone. Secondly, it assumes & constant value of
85, an assumption which may not be appropriate for
systems experiencing large head changes over pro-
longed periods of time or for systems undergoing
land subsidence. Since soil deformation is related
to stress changes induced by variations in pore
fluid pressure, Equation 13 cannot effectively han-
dle time-dependent changes in Sg unless gravity is
decoupled from fluid pressure and due consideration
is given to the skeletal stress field.

The Free-Surface Approximation

Hydrogeologists and civil engineers often
choose to neglect modeling the unsaturated zone so
as to avoid the computational difficulties inher-
ent in taking inte account the complex dependence
of K and M. en the pressure head ¥. Instead,
using suitable approximating assumptions, the ef-
fect of the unsaturated zone is replaced by an
cquivalent boundary condition.




in the case of steady seepage in an uncon-
fined system, it is often convenicnt to assume
that the flow region is saturated, but that the
exact location of the free surface is unknown,
The mathematical problem then reduces to one of
determining the position of a part of the houndary
of the flow region (free surface} by trial and
crror, using the following boundary constraints

h = §

and . on the free surface, {14}
KVhn = In
= 3

This approach has been employed by Taylor and

Brown {1967), Jeppson {1968), Neuman and Wither-

spoon (1970}, Remson et al. (1971), Cheng and Li

{1973), ¥rance (1974) and others.

In the case of nonsteady flow with a frec
surface, the free surface continuously changes po-
sition. To handle this feature, the simplifying
assumption is made that the water is instantaneous-
ly released from the region through which the free
surface is given by (Bear et al. 1968; Neuman and

Witherspoon, 1971}

h =
and 3E
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b

on the free
surface. (15

In most free-surface problems it is customary to
assume that the saturated porous medium is rigid,
that water is incompressible, and that the satura-
ted flow region obeys the Laplace equation.

An added simplification used by civil engin-
eers 1s the Dupuit (1863) assumption.  That is,
the hydraulic head is constant along any vertical
line in the aquifer, and water moves only horizon-
tally within the saturated zone.

For steady-state flow, the Dupuit assumption
ieads to the well-known Forchcheimer equation

{Prickett, 1975)

2.2 2., 2
R L (16)
3x 3}’
For nonsteady flow in a nonhomogeneous-isotropic
aquifer, the Dupuit assumptions lead to (Prickett,

1975)

3 3h 3 3h, _ 3h
5 (Khz2) + 5;-{Kh 3y " Sy TR (17}
Equation 17 is also known as the Boussinesq equa-
tion and has heen used by Pikul et al. (1974).

In writing (15) it was assumed that water is
instantanecously released from storage in the region
through which the water table is falling. To be
more realistic, Boulton (19547 introduced the con-
cept of delayed yleld from storage to take into
account the slow drainage of water from the unsa-
turated zone. The delayed-drainage concept has
since been examined in detail by Neuman {1972},
Streltsova (1972} and others.

Sdaturated-Unsaturated Flow

More realistic than the frec-surface approxi-
mation is a groundwater flow wmodel, which simul-

ranepusly considers flow in the saturated as well
as the unsaturated zones. In general, saturated-
unsaturated flow invelves the consideration of two
phases: water and air. A rigorous modeling of
saturated-unsaturated flow should therefore in-
volve setting up two mass conservation equations,
one for water and one for air (Morel Sevtoux,
1973). However, the model is usually simplified
with the assumption that the air phase is contin-
wus in the porous medium, and is at atmespheric
pressure, thereby neglecting the mass-conservation
equation for air.

The saturated-unsaturated flow equation dif-
fers from (13) in two respects., First, K is a
strong function of ¥ in the unsaturated zone, and
second, it includes a desaturation ceefficient,
d$/dy¢ in the fluid mass capacity term. Thus the
saturated-unsaturated flow equation becomes
(Freeze, 1971)

&
Py, GV +f pwgvh'nd

r
= V[pw S(a + nB)y + p N g%ﬂ %%— {18)

in which K as well as 35/3y are strong functions
of ¥, characterized by hysteresis. Equation 18 is
inherently nonlinear due to the variability of

the material coefficients with ¥, It is often
customary to assume that n is constant in the un-
saturated zone and that 5, = (a + nB) 1s constant
in the saturated zone. Then, neglecting small
changes in p,,, we obtain the simple relation (Neu-
man, 1973b)

o) g Gopian s B s

Equation I8 is sometimes further simplified (Vau-
clin et al., 1975) by assuming that the saturated
zone 1s incompressible. Thus

GV +f§V(z + ¢)endl = VC 52 . (20)
T

Consideration of unsaturated flow leads to
some special boundary conditions invelving the
secpage face and the atmospheric boundaries. The
seepage face is a boundary on which (Cooley, 1971;
Neuman, 1973b; Narasimhan, 1975; Vauclin et al.,
1975) ¢ = Q0 and further, the flux along the outer
normal te the seepage face, KV(z + y)-# > 0,
meaning that flux can only leave the system across

a seepage face.

Water can be lost from an unsaturated soil
to the atmosphere either by evaporation or by
evapotranspiration {Neuman, ct al., 1975). The
maximum amount of water that the atmosphere can
remove from the soil is equal to the sum of poten-
tial evaporation and potential evapotranspiration,
which must be determined from micrometeoroclogical
data. In addition, there also eoxist lower limits
for the pressure heads that can develop either at
the dry soil surface or at plant roots. The soil
atmosphere boundary is therefore neither a pre-
scribed potential boundary not a prescribed flux
boundary, but is ovne on which an upper bound for
flux and a lower bound for potential are prescribed
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An infiltration boundary is another boundary
of interest. If the rate of infiltration at the
surface exceeds the ability of the soil to trans-
mit water, as determined by 1its saturated permea-
bility, then part of the surface addition must be
lost as runoff. Thus, an infiltration boundary
has an upper limit for boundary flux.

The saturated-unsaturated models described
above are of considerable practical use in repre-
senting materials of moderate to high saturation.
However, the deficiency of these models (Equations
18-26) lies in the fact that they do not give due
consideration to the mechanics of soil deformation,

Deforming Porous Media

Accurate modeling of soil deformation is im-
portant from the viewpoint of land subsidence due
to proundwater withdrawal, as well as for consi-
derations of long-range groundwater management.
Experience with the behavior of unconsolidated
s50ils suggests that soil properties such as com-
pressibility and permeability may undergo nonre-
versible changes with time due to the nonelastic
response of the soil to changes in loading (Gam-
bolati and Freeze, 1973; Helm, 1974). As a result,
both K and ¢ in (13) become nonlinear coefficients.
These nonlinearities are governed by the distribu-
tion of skeletal stresses in the scil and hence,
in order to duly account for these nonlinearities,
one must incorporate the stress field inte the
governing equation. In considering soil deforma-
tien in regional groundwater systems, the changes
in regicnal tectonic stresses are generally ig-
nored and the total stress on the system is assumed
invariant in time. However, due to changes in pore
fluid pressure caused by water movement, the ske-
letal stresses change with time causing soil defor-
mation. The primary conceptual necessity in mo-
deling deformatien is therefore a relation between
pore fiuid pressure and skeletal stress.

Soil deformation is generally a three-dimen-
sional phenomenon and a rigorous sclutien of the
problem should consider seolution of two indepen-
dent governing equations -- one for fluid flow and
another for stress-strain behavior, which are cou-
pled through a criterion that assures compatibi-
1ity of volume change (see for example, Sandhu and
Wilson, 196%). However, in regional groundwater
modeling, the consideration of the general stress-
strain equation is usually aveided on grounds of
effort and economy. Instead, making use of the
basic concept of one-dimensional comsolidation
theory of Terzaghi, soil deformation is handled in
an approximate fashion with the help of a single
fiuid-flow equation. The one-dimensional consoli-
dation theory has been used for modeling ground-
water systems by Gambolati and Freeze (1973), Helm
(1975) and Narasimhan (1975).

The one-dimensional theory of deformation is
ideally suited for systems in which lateral strains
are negligible and all the deformation occurs in
the vertical direction. Fundamental to this theo-
ry are the concepts of effective stress, g' and
its relation to pore water pressure given by

gl = ¢ - Yo Y. {21)

However, some petroleum engincers {Robinson and
Holland, 1970) believe that only part of the pore
water pressure (the concept of boundary porosity}
may influence o', Similar ideas have also been
expressed by Bishop {1959) and Mchurdie and Day
f1960) in attempting to relate negative pore pres-
sure and effective stress in the unsaturated zone,
Thus,

ol =g -xr ¥, 0:<xc<1 . (22)
The parameter X can especially be a function of
in the unsaturated zone. Assuming o = constant and
¥ = x{¥), we obtain

da!
- rralialiali A G (23)
where 49 v
x' = [x+v 9 (24)
ay’

‘the principal task ia applying {8) to a de-
formable porous medium is to evaluate the quantity
dVy / dh occurring in the fluid mass capacity term
on the right hand side of (7}. Since h =z + ¢
and since beth z and { may vary with time in a de-
formable porous medium, it is advantageous to make
the reasonable assumption that z does not vary ap-
preciably in any given intsrval of time and hence
can be handled as a temporal step function. Then,
in the light of (24) we can write

d(VV) . d(vv] _ d(vvj ot _ d(vv) (25)

dh ¥ o7 b XYy o7
Another point to remember here is that Darcy's law
describes the velocity of water relative to the
velocity of grains (e.g. Philip, 1968). The de-
pendence of Darcy's law on grain velocity as. well
as the fact that the elemental volume itself va-
ries with time, requires a precise definition of
the nature of the volume element for which the
conservation equation is written and the reference
coordinate system. These questions have been ex-
amined by Cooper (1966), Smiles and Rosenthal
{1968}, Philip (1969}, Verruijt (1969}, Gambolati
(1973a,b), Cooley (1975) and others., Essentially,
the problem can be approached in two different
ways: (a) the Eulerian approach using a fixed co-
ordinate system, in which the bulk volume of the
elemental volume is constant in time; or (b} the
Lagrangian appreach using a material coordinate
system, in which the elemental volume has constant
volume of soil particles, and in which the soil
particles remain at rest. Jacob's {(1950) classi--
cal development of the equation of groundwater
flow, as pointed out by De Wiest (1869), related
to a hybrid elemental volume, which was treated
in a Bulerian fashion in the space domain and in a
Lagrangian fashion in the time domain.

According to Gambolati (1873b), thelone~dimen—
sional flow equation for a fixed element in fixed
coordinates should read

2
k—wg—g (e %ﬁ— §)/(1 + ap)] + nB) -

-

3 3 K& ,3p, 2 3
{§§+vg§§ -Y—w(glz’-J - 2ks 2 . (26)




Buring the mid-1960s, structural engincers
devoted much of their time to the development of
an integral method which, unlike the IFDM, would
be capable of handling general tensorial proper-
ties with great facility, in addition to handling
complex geometry. Their efforts led to the devel-
opmeitt of an integral methed which is now widely
known as the Finite Element Method (FiEM), As can
be seen from Figs. 2c and 2d, one of the differ-
ences between the IFDM and FEM is that in the for-
mer the subdomain is explicitly defined and in the
latter, it is a weighted fraction of a larper do-
main made up of triangles.

Although the early FIM equations werc devel-
oped from physical considerations {Winslow, 1966,
Wilson, 1968), later workers have developed FEM
equations using a variety of mathematical tech-
niques such as variational principles {Javandel
and Witherspoon, 1968}, the Galerkin Method (Zien-
kiewicz and Parekh, 1870; Pinder and Frind, 197Z;
Meuman, 1873k) or by the Method of Weighted Resi-
duals (Finlayson, 1972)., It was pointcd out by
Finlayson and Seriven (1967) that from a computa-
tional viewpoint the Galerkin approach forms the
most direct method of formulating the FEM cqua-
tions. The Galerkin procedure, which is a type of
the weighted residual method, essentially consists
of the following,

XBL 764-2823

Discretization of flow region inte a
system of finite elements, eo.

Fig. 3.

The flow regilon is first discretized into a
system of triangles as in Fip. 3. More general
shapes such as quadrilaterals can be used with
equal ease, and we are considering triangles only
for simplicity. Within the flow region let the
dependent variable h vary by the linear relation

m=1,2,3 ... N
ho=h' = £ (x.}h {t], (39)
meen i=1,2,3

where the repetition of the subscript m impliecs
summation. ‘the function £ (x;) is called a basls
function, defined in such a way that £,(x;) = 1 at
nodal point m and zere at all other nedal points,

The guantities h_(t) are undetermined cocfficients,

In the case of the triangular elements of Fig. 3,
E£m varies linearly over all the elements which ha
have m as a corner point. We now substitute (39)
for ¢ into (31}, multiply the PDE by the weighting
function £n {the Galerkin weighting functien) and
integrate over the entire flow rogion to obtain
{Pinder and Frind, 1972}

38 h

m m _

> u/” E[VKVE b m -t T dV = 0
=]
e v

(403

Equation 40 implies that there are N basis func-
tions and it has been shown by Forray (1968} that
N-+® h*'-+ h, Next, Green's first identity (So-
kotnikoff and Redheffer, 1966) is applied to (40)
to eliminate the second derivative and (40) re-
duces to

(41}

The surface integral in (41} is nonzerce only when
the surface of integration coincides with the ex-
ternal surface of the flow region, and then it is
prescribed and known. The task of the FEM is

therefore to ovaluate the two volume integrals in

{41).

Although the general form of the Galerkin
formulation is well established, some workers
fe.g. Neuman, 1973b) have found that the substitu-

tion of h' = Eph, into the time derivative in (40), o

which gives rise to the so-called consistent mass
matrix (Fujii, 1973}, may lead to difficulties of
convergence or oscillatory sclutions.
has shown on theoretical prounds that under cer-
tain conditions, the numerical solution of (41)
can violate the Maximum Principle, which states

that in the absence of sources or sinks, the maxi- ~

mum potential can occur at the initial time or on
the boundary. Narasimhan (1976) found that the
numerical solution of (41) may not assure local
mass balance although global mass balance may
still be prescrved.
Narasimhan {1976) restrict the application of the
approximation {39} strictly to the space domain
{which gives rise to the so-called lumped mass ma-
trix} and write

an’!
VE =KVE h dv + mE = dVv
¢ n<s"’mmn e ¢’n 3t
c v v

_[ Engvgmwm *nd =0

I,(..

Fujii (1973)"

For these reasons, Neuman and

(42) -
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in which h is the mean value of potential over
the subdomain associated with nodal point n.

At this point it is appropriate to ocutline
some of the special advantapges of the FEM, By
introducing a surface h = £.h, for the variation
of potential over an clemental region, the FEM
achieves a general and powerful methed of evalua-
ting gradients, which results in three important
advantages: (a) it is very convenitent in handling
arbitrary tensorial quantities such as stress,
anisotropy, and dispersion; (b} it is poussible to
fit higher-order surfaces to the variation of po-
tentials over an elemental region, thereby greatly
enhancing the accuracy of evaluating spacial de-
rivatives; and {c) it is possible to approximate
complex geometries efficiently by appropriate
choice of elemental blocks.

The concept of isoparametric elements is a
powerful recent extension of the FEM (Zienkiewicz,
1971; Ergatoudis et al., 1968; Pinder and Frind,
1872}. nNotc that the spatial function £ (x;]) is
sufficiently general in nature as to admit of
first, second or higher degree algebraic functions.
Tsoparametric elements arc constructed by letting
fn be an appropriate higher-order form and making
use of curvilinear coordinate transformations.

The remarkable feature of the isoparametric ele-
ments is that the higher-order approximation not
only defines the spatial variation of the depend-
ent variable more accurately, but also enables the
handling of curved geometries. In two dimensions, -
isoparametric elements arc curvilinear quadrilat-
erals, while in three dimensions they may be curvi-
linecar parallelipeds. Iscoparametric elements may
be guadratic or cubic, depending on whether £, is
of second or third degree. The nature of the iso-
parametric elements is such that a higher-order
element need not necessarily be more accurate than
a lower-order element {(Emery and Carson, 1971}.
Superparametric and subparametric elements are
sometimes used when the variation of potential and
the boundary shapes of the clements are to be ap-
proximated to different orders of accuracy. Some
workers, especially in the field of petroleum
engineering, tend to use the power of {39) only

for achieving a higher-order approximation for the
spatial variation of potential and not for handling
curvilinear boundaries. 1In this approach,the
higher-order approximations are used in conjunc-
tion with an orthogonal, rectangular grid of mesh
points.

It was mentioned earlier that the IFDM is
hased on surface integration, while the FEM is
baused on the evazluation of volume integrals. In
the case of the simple triangular elements shown
in Fig. 3, the equivalence between volume integra-
tion and surface integration can easily be recog-
nized (Narasimhan, 1975}, leading to an under-
standinpg of the conceptual similarities between
the two schemes. When the higher-order isopara-
metric e¢lements are employed, the FUM makes use of
selected quadrature peoints within the element at
which the integruals are numerically evaluated.

The Equation Matrices

In the previous section 1t was shown that the
mverning equations for the FUOM and the IFDM are

given by {31} and {29), respectively. The FEM, on
the other hand, lends itself to two forms: a con-
sistent mass matrix form (44) as well as a lumped
mass matrix form {43). Of these, (31}, (29} and
(42} all lead to a matrix (Type 1), while (41}
leads to a nondiagonal fluid mass capacity matrix

{(Type 2}. These two systems of equations may bhe
written:

Type 1 fal{h} + [D*}{h} = {qQ} (43}
Type 2 {A]J{h} + [DI{R} = {Q} . (443

Each row in the above systems of cquations repre-
sents the evaluation of mass balance f{or one nodal
point of interest in the system. The matrix [A]
is a conductance matrix (or "stiffness” matrix as
it is often called), which summarizes the coeffi-
cients determining mass transfer between connected
mass balance subdomains. It is a symmetric,
sparse, and usually diagonal matrix. {D*] and [D}
are matrices of fluid mass capacity, with the as~
terisk in (43) denoting the fact that the nondia-
gonal terms in the matrix are zero and {Q} is a
vector of known source terms. An examination of
(44} will also show that the mass balance ecquation
for a given nodal peint (a certain row in the sys-
tem} also contains the time derivatives of the
neighboring nodal points, while in (43) the evalu-
ation of mass balance for a piven nadal point con-
tains only its own time derivative. As a conse-
quence, (44} not only requires more computcer stor-
age but also involves more computational opera-
tions. Note that the various methods (FDM, IFDM,
FEM} differ primarily in the techniques employed
in assembling the various components of the matri-
ces, and it is these techniques which endow the
different methods with their special advantages
for selected situations.

S0 far, the comparisons between the differ-
ent methods have been made on conceptual grounds.
In a recent work Wang and Anderson {1976) examined
the algebraic squations for the Laplace equation
derived for FDM and FEM and found that in several
cases, the same set of algebraic equatrions are
generated in more than one way and that the choice
of the element shape and basis functions in the

'FEM is analogous to the cheice of integration rule

in the FDM.

Once the appropriate system of equations (43)
or {44) is chosen, the solution strategy is to
choose an appropriate time interval At, solve for
{h} using the known initial condition at to, ad-
vance to the next time level t, + At, and repeat
the process once again. Note that since h changes
continuously during At, it is nccessary to use ap-
propriate mean values of {h} = {h} in the systems
of equations before a solution can be attempted.

Substitution of {h} = {h°} (where the super-
seript ° denotes the known initial values) in (43)
leads to a set of equations inwhich 21l quantities
are known except the unknown time derivatives {hl,
which can now be computed explicitly. These equa-
tions are summarized by Eguations 1, 2, and 3 in
TFable I. On the other hand, no such explicit
computations are pessible in the case of (44) in
which the time derivatives of neighboring nodes
arc part of the mass balance equation for a given
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Table 1. Summary of Numerical Equations
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Inverse Modeling of Alluvial
Aquifer North of Strashourg,
France

Emsellem and
deMarsily
(1871)

10.

On the basis of the parallel pattern of water
divides and valleys in parts of Central Alberta
(Fig. 4}, and on the basis of inferred differences
in permeability contrasts between geologic forma-
tions of the area, Toth (1962} considered indivi-
dual, small drainage basins to be separate units
of the groundwater flow regime. If one assumes
that the phreatic surface is fixed and known, then
the distributicn of hydraulic head in the basin
can be found by sclving the Laplace equation under
appropriate boundary conditions. Using the tech-
nique of separation of variables, Toth generated
the two-dimensicnal profile shown in Fig. 5 that
shows the division of flow across two adjacent
valley sides., Simulations such as these helped
Toth te recognize that in a typical groundwater
basin one could mathematically distinguish between
recharge areas {regions of predominantly downward
eroundwater motion) and discharge areas (regions of
predominantly upward groundwater motion), separated
by a median line. He also demonstrated how an un-
even physiography or heterogeneity of material
properties could lead to subgroundwater systems on
different scales (local, intermediate, and region-
al) in a single groundwater basin.

Perhaps the most important contribution of
Toth's investigation was that it provided a formal
framework for defining a proundwater basin and its
anatomy. Such a framework is of vital interest
not only in studying the movement of groundwater
but also in interpreting the evolution of the geo-
chemistry of groundwater (Chebotarev, 1955; Davis
et-al., 1959%; Back, 1966).

Freeze and Witherspoon {1968} chose to use
the finite difference approach of selving the La-
place equation and were thereby able to simulate
far more complex basins than those simulated by
Toth. In validating their numerical model,

Freeze and Witherspoon modeled the two-dimensional
steady-state flow pattern in the Gravelbourg aqui-
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Parallelism of creeks in Central Alberta
(Toth, 1962).

Fig. 4.

fer, Saskatchewan, Canpada, the hydrogeolopy of
which had been extensively studied earlier. The
results of their simulation are shown in Fig. 6.
Their model not only considered the permeability
contrasts between various units but also took into
account & 20-to-1 anisotropy in certain layers.

As can be seen from Fig. 6, the model was success-
ful in simulating the hydrodynamics of the natural
system with reasonable accuracy and effort. In an
earlier work Freeze (1967) applied the finite-
difference approach to simulate a three-dimensional
field example as shown in Fig. 7.
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Fig. 5, BSteady-state flow pattern, a local flow system, and the effect of a highly

permeable body across two adjacent valley sides in Central Alberta, Canada

{Toth, 1962).
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Fig. 7. A recharge-discharge map from a three-dimensional field example,
Good Spirit Lake drainage basin, Saskatchewan, Canada (Freeze
and Witherspoon, 1968),
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Geclogic map of Musquodoboit Harbour area, Nova Scotia, Canada

{Pinder and Bredehoeft, 1968).

While Freeze and Witherspoon (1968) restricted
their analysis to the steady-state situation, Pin-
der and Bredehveft (1968) developed an implicit
finite-difference model for simulating the dynamics
of flow in a groundwater basin., They applied their
model in evaluating the adequacy of an aquifer at
the village of Musquodoboit Harbour, Nova Scotia,
Canada {Fig. 8) as a source of water suppiy. As a
first step in their investigation, Pinder and
Bredehoeft had to estimate the distribution of
aquifer parameters, To this end, they progressive-
ly modified the distribution of the parameters in
the digital medel until the model accurately sim-
ulated known pump-test data, Using the modified
transmissibility matrix (Fig. 9}, they went on to
simulate the effects of a preduction well contin-
ucusly producing at a rate of 0.963 cfs. (Fig., 10).
The simulation led them to conclude that the aqui-
fer would provide an adeguate water supply to the
village of Musquodoboit. As a check on the digi-
tal model, an electrical analog of the aquifer was
also constructed and favorable comparisons were
obtained between the two models.

Prickett and Lonnquist {1971) applied the
finite-difference technique to model the Cambrian-
Ordovician aquifer in northeastern Illincis. This
case history is of considerable interest in that
the spatial as well as the temporal scales chosen
for modeling arc very large. The model was used

to simulate an area of approximately 24,000 square
miles over a time period of 130 years.

The Cambrian-~-Ordovician aquifer, which is
about 1000 ft thick, can be vertically divided into
4 hydraulically connected subunits, with the trans-
missivity decreasing from about 17,000 gdp/ft to-
wards the top to almost zer towardsthe bottom
{Fig. 11). The aquifer is under leaky artesian.
conditions and, in the northern parts of the simu-
lated area, receives small quantities of recharge
from the younger Silurian rocks or glacial drift
through intervening shale formations of relatively
low permeability.

The Cambrian-Ordovician aquifer has been un-
der intensive development since 1864 and the with-
drawal has increased from about 200,000 gpd in
1864 to about 52,4 million gpd in 1960, Due to
heavy pumpage, the piezcometric surface had de-
clined by as much as 600 ft in some parts of north-
eastern Illinedis (Fig. 12}. This excessive draw-
down in the piezometric head has now converted
the artesian aquifer to water-table conditions in
some parts of the Chicago region.

The purpose of the Prickett-Lonnquist model
was to predict the response of the Cambrian-
Ordovician aquifer over a 130-year period from
1864-1995, using projected pumpage estimates in-
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adjusted on the basis of test-well logs and numerical simulation

Modified transmissibility matrix of the Musguodoboit aquifer
(Pinder and Bredehoeft, 19G8).

Fig. 9.

as determined by the numerical model (Pinder and Bredehoeft, 1968).

PiezometTic surface after 206.65 days of pumping at 0.963 cfs,

Fig. 10.
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' creasing to 145 million gpd in 1995. This model
EPTH BELDW TOF OF AQUIFER, feat . . n .
is a nonlinear model in that one can simulate 2
} prescribed variation of pumpage with time (Fig.
T *"”"'fﬂ“"'ﬂ’/:JJﬁoquun 13) as well as the decrease in transmissivity as
! a function of saturated thickness, when the aqui-
fer undergoes dewatering. The artesian coeffi-
cient of storage was cestimated ta be § x 10-4,
while a specific storage of 5 x 107 £ft-1 was used
for the dewatering aquifer. Reasonable agreement
between the model and the observed data for the

Rttt o period 1864-1958 can be seen in Fig. 12. The com-
puted total declines in water level at the end of

[[e0] BM EDD A 200 1]

]
4950 gpd/ft
]

WATER TABLE  ARTESJAN

1995 are shown in Fig. 14.
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Piezometrie declines in Cambrian-Ordovician aquifer, 1864-1958: comparison

Fig. 12.
of field and numerical results (Prickett and Lonnquist, 1971).

The interaction of the shallow groundwater
system with surface water bodies through the un-
saturated zone is often of interest to engineers
concerned with water-balance studies related to
watersheds. Stephenson and Freeze (1974) applied

GALESVILLE  TatupEL oy PLATTZVILLE TOP OF AQUIFER the unsaturated-saturated flow finite-difference
XBL 76114770 model of Freeze (1971} to study runoff-generation
mechanisms in an experimental watershed in Reymolds
11, Transmissivity variation of units of et e msaturatod. Flow contxibutions to strean
Cambrian-Ordovician aquifer in Chicago discharge and to use the model as an aid in inter-
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Boundary and initial conditions, simula-
tion of Reynolds Creck, Idzho (Stephenson
and Freeze, 1974).

The geelogic profile at the site along w@th
the disposition of field instrumentation 1s given
in Fig. 15. The simulation problem was one of
solving the parabolic nonlinear differential egua-
tipon subject to t
tions shown in Fig. 16,

he initial and boundary condi-
The flow regiom co

ntalned
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Fig. 18, Calibrated steady-state flow system for
XL 7611.4767 April 5, 1971, Reynolds Creek, Idaho

Fig. 17. Finite difference network for the Roy- (Stephenson and Freeze, 1974),

nolds Creek basin, Idaho (Stephenson and
Freeze, 1974).
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Calibrated transient flow system for April 5 to July 13, 1871,

Fig. 19.
Reynolds Creek, Idahe (Stephensen and Freeze, 1874).

difference network used in the simulation is shown

three materials (fractured basalt, altered basalt,
in Fig. 17.

and seil) with saturated permeabilities varying

from 3.8 x 10-% to 15 x 10-4 dm/sec. K and _
varied with in the unsaturated zone, and soil The primary task of Stephenson and Frecze was

compressibility was neglected due to its relative to calibrate the model by adjusting the input
unimportance in near-surface systewms. The finite- paramcters and hboundary conditions as weil as the
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De Groeve, Netherlands (Feddes et al.,
1875).

geological configuration, using trial and error
methods, The idea was to obtain a good fit with
ohserved field data such as water table elevations,
vertical hydraulic gradients at piezometer sites,
the stream-flow hydrograph, pressure heads, and
moisture contents. The calibrated steady-state
system, which formed the initial conditions for
the transient model, 1s shown in Fig. 18. The
results of the transient simulation at the end of
100 days arc presented in Fig. 19. This transient
simulation was also effectively a calibration runm,
in that the saturated permeabilities of the three
formations, as well as the inflow function over
the inflow boundary, were adjusted to obtain the
best match with field observations.

It can be seen in Fig, 19 that the calibrated
maodel agrecs reasonably well with the field obser-
vations of subsurface comtributions to stream flow
and the water levels obscrved in piczometers.
Whether the calibrated model can indeed be consi-
dered validated is difficult to assess. [For ex-
ample, if this medel can accurately predict the
check parameters for a subsequent snowmelt period,
one could consider that the model is indeed vali-
dated. However, difficulties in obtaining relia-
ble field data on the inflow function across the
inflow boundary and the sensitivity of the model
response to the inflow function, are bound to
thwart such a validation procedure. As the auth-
ors themselves point out, the value of this case
history lies in the recognition that the principal
role of this type of mathematical model is to help
define more clearly the various mechanisms within
the hydrologic cycle so that simpler hydrologic

response models can be mere firmly based on reality

An important c¢lass of problems related to
shallow groundwater systems is that of simulating
plant root-soil interactions. Feddes ct al.
{1975) used the finite-element method to simulate
cvapotranspiration in an agricultural field in
e Groeve, Netherlands. The field in question is
covered by peaty soil with an average thickness of
about 1.4 m and is underlain by about 10 m of
sandy soil. The sandy soil in turn is separated
from a deeper aquifer by a 2 m aquitard cf clayey
s0il. The deeper aguifer is intermittently pumped
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Fig. 21. Time dependence of boundary conditions,
Be Groeve finite-clement simulation
{(Feddes et al., 1975}.

by means of domestic wells outside the area of
interest. The field is traversed by scveral un-
lined irrigation ditches where water levels can be
controlled at will,

Nue to symmetry, only one half of the region
between two ditches need by considered and a
cross section, together with the FEM network, is
shown in Fig. 20. The peat and sand layers were
assumed to be anisotropic with horizontal permea-
bility ten times the vertical, The root zone is
assumed to increase from an initial depth of 40 cm
ta 50 cm at the end of 168 hours. The water level
in the ditch is assumed to be the same as the ini-.
tial depth of the water table, 74 cm below ground
level, and initially the system is assumed to be
hydrostatic. The time-dependent hydraulic-head
variation in the pumped aguifer as well as the
maximum possible rates of soil evaporation and
plant transpiration are illustrated in Fig. 21.
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Computed houndary fluxes, De Groeve
finite-element simulation (Feddes et al.,

1975} .

Fig. 22,
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Fig, 23. Distribution of hydraulic head after 336 hours, De Groeve finite-element
simulation {Feddes et al., 1975).

The dynamic numerical similation extended over a
period of 335 hours, Tine steps varied from an
initial value of 1 hour to 48 heurs. Figure 22
shows results for the cumulative fluid fluxes
leaving or entering the system due to cvapotrans-
poration, ditch infiltration, and leakage to the
underlying pumped aquifer, The distribution of
hydraulic heads in the system at the end of 336
hours is shown in Fig. 23, The inset in this fip-
ure shows how local upward and downward zones of
water movement exist in the uppermost part of the
system, and are controlled by evaporation and root

extraction,
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Fig., 24. Extent and magnitude of pbserved land
subsidence, San Joaquin Valley,
California (Helm, 1975},

The principal phenomenon of interest in the
case histories presented so far has been the move-
ment of water. When hydrogeologists are concerned
with the problem of land subsidence due to ground-
water cxtraction, the main phenomenon of interest
becomes the movement of the soil skeleton, rather
than the movement of water. Helm (1374, 197%)
successfully simulated the land subsidence ob-
served at Pixley, California, using the one-dimen-
sionial consolidation theory of Terzaghi (1925).
The geopraphic location of the Pixley site and the
extent and magnitude of subsidence in the San
Joaquin Valley are shown in Fig. 24. The com-
pacting proundwater hody at Pixley consists of a
sequence of Intercalated sands (aquifers) and clays
{aquitards} between depths of 355 and 760 ft.
Water-level changes in the hydraulically intercon-
nected, highly permeable aguifers are essentially
the same and have been systematically observed
over two decades by the U.S5, Geolopical Survey.
These water-level changes form the boundary condi-
tions controlling drainage {(and the consequent
conmpaction) of the aquitards. In addition, since
1959, the compaction of the entire system, down to
760 ft, has been monitored by means of extenso-
meters.  The time-dependent changes in water lev-
els (applied stress at the aquitard interface) and
the observed compaction are shown in Fig. 25.

In using a finite-difference model, Helm
{1575) assumed that almost all the observed com-
paction was taking place in the clay and that the
clay possessed nonreversible compaction properties.
‘The aquitard parameters, which were constant with
time were as follows: permeability = 3 x 10-3
ft/year; recoverable specific storage = 4.6 x
10-6 £t~! and nonrecoverable specific storage =
2.3 x 1074 ft7l . As is obvieus from Fig. 25, the
similation problem is one of modeling a cyclie
boundary condition in cenjunction with nonrever-
sible material properties. A comparison of the
obsorved and computed compaction at Fixley is shown
in Fig. 26, and it is seen that the agreement bhe-
tween the two is reasonably good considering the
complexity of the real system,
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(Helm, 1575).

The historic city of Venice provides another case
history for simulating land subsidence {Gambolati
and Freeze, 1973; Gambolati et al., 1974). The
city has been sinking at an alarming rate (10 cm
during 1952-1969) in recent years mainly due to
heavy groundwater withdrawals in the Merghera in-
dustrial area about 10 km to the west. The pur-
pose of the mathematical simulation was to corre-
late subsidence and groundwater withdrawal from
past data and then to investigate how the adverse
effects of pround settlement could be halted

by various programs of modified groundwater manage

management.

The city of Venice is underlain down to about
330 m by a system of sands and silts with inter-
bedded clays (Fig. 27). Although the material

properties of these materials are locally known
from laboratory data, their regional properties
are not known with any degree of certainty. Due
to the sparseness of available field data and the
axisymmetric nature of the proposed model, the
authors chose to use a dual simulator. This con-
sisted of a finite-element hydrologic model for
computing head changes in the aquifers as a func-
tion of time and a one-dimensional finite-differ-
ence subsidence model for the aquitards, in which
the calculated head changes in the aquifeis would
constitute the boundary conditions. In the hydro-
logic model, the flow region was divided inte a
sequence of five aquifers and from intervening
aquitards while, in the subsidence model, the ver-
tical column was divided into 20 aguitards. The
behavior of the subsidence model is very similar
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to that of Helm (1974, 18975} in using the Terzaghi
theory and in providing for nenrecoverable com-
pressibility coefficients.

The first task in the simulation was to cali-
brate the hydrologic model. The calibration pro-
cedure was essentially one of trial and error.

The following range of parameters was investigated:
for the aguifers, permeability 3.2 x 10-3 to

1.6 x 10-% cm/sec, compressibility 1 x 1074 em?/kg;
for the aguitards, permeability 1 x 1076 to

1.6 x 1072 cm/sec, compressibility 1.5 x 10-3 to

3 x 10-3 cm?/kg. A comparison of the computed

4th & S5th MIFERS

Il AGLFER

2nd B 3rd AXWERS

XBL 76114758

Comparison of observed and computed piez-
ometric head changes at Venice. Dashed
lines represent head changes selely due
to Marghera pumping. Triangles represent
observed valuces (Gambolatl et al., 19743 .

Fig. 28.
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Geologic cross section from west to cast of the Venice lagoon

piezometric head declines in the aquifers and the
computed subsidence with the historical records
up to 1970 is shown in Figs. 28 and 29. Using
these calibrated values, the subsidence in Venice
was predicted for several future pumping schedules
as shown in Fig. 30. The results of the predic-
tion indicated that if the pumping rates are kept
constant at present values, a further 3 cm subsi-
dence could be expected to occur in the Future.
Subsidence could be arrested by reducing the Mer-
ghera withdrawal by 25% along with shutting down
pumping of the Tronchetto well. Cessation of all
pumping would provide a modest rebound of 2 cm.

'5 T ¥ T

10} 4
= E
E
8 a E
[ o ﬁ

o 4
5 - 2
N N
0 ' ! ul
1930 40 50 60 70
YEAR

XEL 717 4759

Computed subsidence at Venice using two
different calibration parameters
{Gambolati et al., 1974].

Fig, 29.
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Predicted subsidence for Venlee for
several future pumping schedules
{Gambolati et al., 1874).

Fig. 30,

The next case history to be discussed per-
tains to the usc of statistical techniques to es-
tablish the spatial variation of material proper-
ties in an alluvial basin with meager borehole
data. Lippmann (1973} chose this approach to mo-
del the Mocho subbasin of the Livermore Valley,
California {Fig. 31}. The two-dimensional ground-
water systom simulated was approximately 10,000 ft
long and 200 ft thick and was ldealized as com-
prised of 2 materials: a high-permeability mater-
ial (material 1} containing sand, gravel, boulder,
and associated sediments, and a low-permeability
material (material 2) containing clay, sandy clay
and other clayey sediments. In all, electrical
and lithological data were available from the six
boreholes distributed over the system. Because
the alluvial scdiments have been deposited by mean-
dering streams, correlation of adjacent borehole
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Groundwatoer subbasins of the Livermore
vatley, California {after Lippmann, 1974].

Fig. 31.
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sequences is almest impossible.

In order to achiecve a steady-state hydrologic
simulation of the basin, Lippmann wanted to com-
pute a statistically equivalent hydraulic conducti-
vity of the system, which, when miltiplied by the
prevalent hydraulic gradient, would pass the same
flux across a unit area as that of the prototype,
The calculation of the equivalent hydraulic conduc-
tivity was to be dene in two steps. The first
step was to set up a statlstical "Poisson-line'
model of the hetcrogeneous system {Fig. 32) using
the probability distribution determined by a Markov
chain process of anulyzing repetitions at 2-ft
intervals as observed in the boreholes. In the
second stage, the heterogeneous flow region repre-
sented by the Poisson line model was solved for the
Laplace cquation using simple prescribed boundary
conditions,

The FEM analysis for potentisl consisted in
matching different-sized networks to the simulated
sections. It was found that as the shapes of the
¢lements were changed from squares to rectangles
with elongations as much as 1 x 50, the computed
flow rates increased. In the absence of appro-
priate accuracy estimates for the FEM when applied
to complex geometries and strong permeability con-
trasts, it is obvious that the calculated cffec-
tive hydraulic condudtivity is subject to certain
model-induced uncertainties. The results obtained
from two different FEM meshes are presented in

Table TI.

The last casc history that we shall consider
is the application of the inverse method by
Emsellem and DeMarsily (1871} to the estimation of
transmissivity distribution in an alluvial aquifer
of the Rhine River Valley, north of Strasbourgh,
France. In their parameter identification work,
Emsellem and DeMarsily use multiple-objective cri-
teria, instead of minimizing a single-error cri-
terien. Their first objective is to minimize a
functional of the residual errors (calibration er-
rors) in a direct formulation of the inversc prob-
lem. Their second objcctive is a criterion for
the physical plausibility of the possible solu-
tions. The plausibility criterion used by the
authors is that the solution remain uniform (or
flat) over the entire flow region. Their approach
is to gradually decrease the calibration crror by
relaxing a certain measure of uniformity until the
point is reached when further relaxation of this
measure does not cause any substantial reduction
in the value of the error functional (Neuman,

1975a) .

To test the validity of their method, Emsel-
tem and DeMarsily (1971} first computed the trans-
missivity distributien in the agquifer by the in-
verse method, using for input data the known
steady-state pieozometric head distribution over
the arca of study. Their results are shown in
Fig. 33, Using the transmissivity distribution so
caleculated, they went on to Tecalculate the steudy-
state head distribution over the same basin. A
comparison of the computed and observed piezomet-
ric heads is shown in Pig. 34. The hatching in
the figure represents the difference between compu
computed and observed values and is thus an indi-
cation of the calibration error.



Table II. Results pf statistical analysis of
ogic data obtained in using 49 x 49 and
m- 16 x 400 finite element meshes,
ucti-
the e -
ame Mesh Mesh
pe. 49 x 49 116 x 400
nduyc -

Proportion of Material } (py)

Sample mean 0.412 0.412
Sample standard deviation g.016 ¢.020

ing
larkov

Kg/ Kp, expressed in percent

pre-
-r the
ATY

Sample mean 36.9 20.5
Sample standard deviation 1.74 3.24
Sample correlation cooffi-
cient between p; and 0.885 0.775
Kg / K)

Flow rate (Q), in gpd/ft

s Sample mean 280 156
‘ed Sample standard deviation 13.1 24.6

ans-

n 50
eady-

A XBL 763-6902
et-

ompu
di- Fig. 32Z. Example of a Poisson-line model with material no. 1 shaded
{Lippmann, 1973}.
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Fig. 33. Distribution of transmissivity over the
computed by the inverse method (Emsellem
and de Marsily, 1971).

CONCLUDING REMARKS

From the survey carried out in this paper,
there is little doubt that numerical modeling is
now established as a very valuable tool in under-
standing groundwater systems. The classical
finite-difference approach continues to enjoy wide
popularity due to its simplicity and its easy ex-
tension to nonlinear as well as multidimensional
problems. The more recent finite-element method
is a powerful technique in handling complex geo-
metry and arbitrary temsorial quantities as well
as providing the option of higher-order approxi-
mations for the dependent variahle in space and
time. Due to limitations of computer storage and
computational effort, some difficulties exist in
applying the FEM to three-dimensional and nonlincar
problems.

In considering the future for numerical model-
ing of regionul proundwater systems, the primary
question concerns the degree of applicability to
actual field situations, It is apparent that the
models are most uscful when cmployed in a deter-
ministic manner to synthesize material properties
and peometry and to predict the time-dependent
response of a glven sysiem. Unfortunately, there
arc some limitations to such applications. Tirst,

Rhine aquifer north of Strasbourg, France,
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Fig. 34,
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Rhine aquifer, north of Strasbourg,
France: comparison of observed heads
with those computed using the transmis-
sivity values determined by the inverse
method. Shaded area is the difference
between the two values [Emsellem and

de Marsily, 1971).

the material properties as applied to porous media
are macreoscoplc averages. These averages, com-
bined with the heterogeneity of grain-size distri-
bution in natural sediments, are fundamentally
statistical in nature and therefore can not really
be represented by deterministic values. Secondly,
the sparsity of samples introduces a statistical
element in the parameters uscd in the regional
model. It is quite apparent that laboratory mea-
surements and other small-scale experiments used
for parameter estimation are inadequate for arriv-
ing at the distribution of material properties
over the global system,

there is thus a significant trend in attempt-
ing to apply inverse methods of parameter estima-
tion and this trend will definitely be pursucd
in the future. The trial and error methods of
parameter cstimation used in many of the case his-
tories described here constitute the intuitive and
simple approach te the inverse problems. The more
sophisticated tochniques of lincar and quadratie
nrogramming seek to achicve a more rational and
efficient method of model parameter estimation.
Much continued activity in the use and improvement
of these techniques can be expected in the futurce.



It should be remembered that the process of
obtaining a solution to a parameter cstimation
problem actually consists of choosing a mest
plausible selution from a class of non-unique sol-
utions. In order that a most reasonable choice be
made, it is imperative that a good knowledge of
the penlogic makeup of the fileld system is forth-
coming., Thus, the mathematical model in itself
does not constitute an effective tool of analysis
unless it complements field obscrvations.

Apart from the ability of predicting the res-
ponse of real systems to various plausible input
functions, and of identifying system parameters,
numerical models have a very special and very
powerful advantage. This results from the fact

NOMENCTATURE

{A] conductance or “stiffness™ mwatrix

a a matrix-fracture coefficient [1]

C specific moisture capacity {1/L]
€. compression index [1]
C, swelling index [1]

' so0il moisturc diffusivity [LZ/T]

distance between nodal points n and m [L]
D] nondiagonal capacity matrix

{B*] diagonal capacity matric

e vyoid ratio (1]
E  potential evaporation [L3/1]
E* potential evapotranspiration [L3/T]
g pravitational comnstant [L/T2]
6  volumetric rate of fluld generation
per unit volumc [L3/1.51]
h  hydraulic head L]
h'  approximate valuc of h [L]
k absolute permeability or specific
permeahility tensor [L2]
K hydraulic conductivity ot
permeability [L/T]
kg hydraulic cenductivity of fracture {L/T]
k, hydraulic conductivity of skin [L/T]
Lg  fracture length : [L]
m. specific fluid mass capacity [M/LL3]
M. fluid mass capacity of an clement
with volume V TM/L]
My, magnitude of mass transfer into [M]
subdomain n from subdomain m
M, mass of water contained in a volume I}
clement of bulk volume V
n  porosity il]
N a unit outer normal of the surface f1]
segment df’
Hz unit vector parallel tu z axis [1]
p  pore fluid pressure [M/LTZI
d  specific flux fector of Darey {L3/T]

velocity
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that by simutating various hypothetical situations
numerically, one should be able to more clearly
define the actual mechanisms that contrel a given
complex field situation.

Until now, mathematical models have heen
employed principally for predicting groundwatcer
fiow patterns and, to a lesser extent, for pard-
meter estimation. The power of the models, how-
ever, has not heen utilized to study problems re-
lated to the important aspects of groundwater
prospecting, design of data collection networks
and instrumentation. There is little deubt that
numerical models have a lot to offer in regard
to understanding these areas of hydrogeology.

ar vector flux density of water rela- {L3/T}
tive to the solid grains of the
porous medium
{Q}  vector of source terms
ro radius of skin fL]
r, radius of well (L]
S  saturation [1]
sg  specific storage [1/L}
sy specific yield or effective porosity [L1
t  time 1]
v prescribed specific flux [L/T}
Vv bulk volume of a volume clement [LS}
v, volume of solids 11.3]
y volume of voids .3
sig  fracture width [L]
z elevation (L]
o volumetric compressibility of seil [LTS/ME
skeleton (synonymous with my, of
s0il mechanics literature]
B volumetric compressibility of {LTZ/M}
water
¥, specific weight of water {M/L4T2)
' boundary surface of a volume [LE]
element v
8  volumetric molsture content [1}
A weighting factor for backward [t}
differencing
£ elevation of the freesurface above fL]
the base
p,, mass density of water [MXLSI
a total stress on soil skeleton [M/LTE]
g effective stress on soil skeleton [M/1T2)
¥, x' paramcter Telating pore fluid pres- [T]
sure and effective stress
Y pressure head 1]
Wp  air entry value fL]
i, wilting coefficient of root system (L]




