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SHALO--A SIMPLE THEORETICAL DESCRIPTION OF DRAINAGE FLOW 

by 

Burton E. Freeman, Cecil G. Davis, and Susan S. Bunker 

I. INTRODUCTION 

ABSTRACT 

A model for drainage flow has been de­
veloped using shallow fluid theory and con­
siderations of entrainment of overlying air 
and surface drag. Using explicit differencing 
techniques, we have produced a code and ap­
plied it to the nocturnal drainage flows in 
the complex valleys of the geysers geothermal 
area of northern California. 

The drainage flow problem has several physically simple, yet compu­

tationally difficult, effects. The process, by definition, is dominated by 

terrain. Fluid displacements are large compared to terrain features; entrain­

ment of overlying air is significant; pressure forces (through buoyancy terms) 

dominate the motion; and thermodynamic processes are responsible for these 

forces. Computationally, a mixed system consisting of Lagrangian-in-vertical 

and Eulerian-in-horizontal coordinates is advantageous. The validity of the 

hydrostatic approximation simplifies the problem. 

The shallow fluid approximation has been used extensively for oceanic 

applications (estuaries, coastal upwelling, and gravity surges) and for meteor­

ology (mountain waves, frontal behavior, and boundary-layer flow) but has not 

been applied to the drainage flow problem explicitly. The boundary layer 

1 . t . 1 ,2 h b 1" t d b th 1 t t . 1 t t . app lca lons ave een lml e ecause ey neg ec ver lca s ruc ure ln 

the entire boundary layer and omit several relevant physical processes. 

Recently, the physical effects have been given attention3 and the drainage 

flow application of this approximation is particularly favorable. In 
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addition, the mathematical problem of frontal motion may be alleviated by the 

inclusion of entrainment. Consequently, the formulation described below, when 

applied to drainage flow, may have several advantages not evident in previous 

meteorological applications of the shallow fluid approximation. 

A generalization of the shallow fluid approximation developed for appli­

cation to drainage flows is reported below. A single fluid layer having 

variable depth and density as a function of position and time describes the 

average behavior of the flow yet retains a substantial degree of ease of formu­

lation and computational economy. In exchange, all details of the layer sub­

structure are lost, such as profiles of velocity, temperature, etc. The 

single-layer shallow fluid formulation has the following characteristics: 

2 

(1) layer thickness varies with position and time over complex terrain. 

(2) additional variables associated with the layer are the velocity, 

potential temperature, and pollutant concentration. 

(3) entrainment of overlying air and surface drag accelerate the flow. 

(4) density changes are driven by a rudimentary energy budget calcu­

lation in which terrestrial radiation cooling is the most important 

term. 

(5) an explicit difference formulation is feasible because the flow 

speed and the gravity wave phase speed are small. 



II. DERIVATION OF EQUATIONS 

The model is based on Fig. 1, which shows two layers. 

p',B',P',U,V 

Fig. 1. Description of shallow fluid model. 

The layer adjoining the terrain with thickness n - h is the drainage layer. 

The "primed" layer with thickness n' - n is used for calculating the pressure 

forces; we assume Vn~ = 0 and e~ = constant, where 

v = i _0_ + 
ox 

A 

j _0 
oy 

is the horizontal gradient operator. Within the drainage layer, the velocity 

components u and v, the density P, the temperature 8, and the pressure Pare 

also functions of (x, y, t). We assume that the pressure Ps on the surface n 

serves as the large-scale force giving rise to the geostrophic wind. 

Consequently, we allow VP i O. 
s 

To calculate the pressure forces on the n - h layer, the hydrostatic 

relation is used: 

dZ 
-gp 

~ 

where Z is the altitude and g is the acceleration from gravity. To account 

for the density gradient in the layers caused by compressibility, the equation 
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of state, P = pRT, and the adiabatic relation, T = e(P/Po)s (where s = R/C p = 
0.286), are used to reformulate the hydrostatic relation, 

= 
_R_ (1) 

Assuming for the pressure calculation that e and e~ are independent of Z (or 

P) and solving for P, 

(2) 

The force F on a unit area of the layer is 

F = p(Z = n) V'n - P (Z i n 
= h) V'h - V' 

h 
PdZ (3) 

After some algebraic reduction, the following expression for the force is 

obtained 

(4) 

where 

~ 

M n - n 
+ R e~ and 

For small layer thicknesses, the coefficient of the first terms is propor­

tional to the drainage layer thickness n - h, whereas the coefficient of the 

temperature gradient term is proportional to the square of the drainage layer 

thickness. The terms in Eq. (4) are interpreted as follows: 

4 

(1) the term proportional to V'n is the buoyancy force containing a factor 

1 - e/e~ for reduced gravity. 



(2) the term proportional to VP is the large-scale pressure (or geostro­
s 

phic) force. 

(3) the VB term is due to horizontal density gradients arising from dif­

ferential heating or entrainment. 

The terms have been compared and checked against the simpler case of 

constant density layers. There is no term containing Vh because it is not the 

terrain that causes the acceleration (a flat-surfaced lake is in an equili­

brium configuration) but the sloping surface and horizontal density gradients. 

Schematically, the other terms entering the equations of motion are 

(1) the terrain drag force FD = - pCDlul~, where CD is a drag coefficient 

that may depend on surface roughness, flow speed, and temperature 

difference between ground and air, and ~ is the layer velocity; 

(2) the Coriolis force FC = - p(n-h) R x Q, where ~ is twice the angular 

rotation vector of the Earth; 
• 

(3) the momentum entrainment m.!J.., where .!J.. is the "primed" layer velocity 

and the mass entrainment rate depends on relative velocity and 

density of the two layers and on the lower layer thickness; and 

(4) lateral diffusion FA = o(u.), where the operator 
2 l.l 1 

o = p(n - h) D ~ and D is the lateral diffusion coefficient. 
aX

j 
Using the above quantities, the governing equations for the drainage 

layer can now be written. Each equation pertains to a property (mass, momen­

tum, etc.) of the drainage layer as a whole. 

ap(n h) a 
..::...J:. .... a"'"'t--"" + -a- pU. (n 

xi 1 
h) = m 

where the overbar indicates an average of the quantity over the height in­

terval n - h. This equation determines the rate of change of mass in each x, 

y cell caused by flow to adjacent cells and entrainment. The averaging is dis­

cussed below. 
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Momentum 

a pu. (n - h) a 
1 pU.U.(n - h) m Ui + F + FD + FC + O(ui ) (6) 

at + = i aX j 1 J 

This equation determines the velocity components when the mass is known. The 

effects accounted for are entrainment, pressure forces, terrain drag, Coriolis 

force, and lateral diffusion, as well as advection. 

Potential Temperature 

ap8Cn 
at 

• 

h) a 
+ -,,- pu.e(n - h) 

aX i 1 

• 
'.. H = me + -- + o(e) 

Cp 

where H is the net radiation source term for the layer (principally nocturnal 

cooling by IR flux) and Cp is the specific heat at constant pressure for air. 

The additional effects included are advection, entrainment, and lateral dif­

fusion. 

Pollutant Concentration 

aosCn
t
- h) + ~ pu.s(n _ h) = ~ s" + S + 0 (s) 

a aX. 1 
1 

(8 ) 

where sand s" are the pollutant mixing ratios in the drainage and upper . 
layers and S is the source rate term accounting for point or distributed 

sources of a pollutant. The background mixing ratio is assumed to be 

constant. In addition, Eq. (8) includes advection and lateral diffusion. 

Each of the equations, Eqs. (5)-(8), contains vertically averaged terms 

to account for the possibility that there may be vertical gradients. A particu­

larly strong gradient of velocity is expected because it must vanish at the 

surface. At best, the effect of profiles can only be taken into account in an 

inexact way. We assume that each quantity has a fixed profile as a fUnction 

of height scaled to the layer thickness; that is, 

z 
n - h 
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where ~o = ~(Z = n - h) and f~ does not depend on horizontal position or time. 

We can now write Eqs. (5)-(8) as functions of ~ by including averaging o 
factors: 

~ - n - h , where f~ (9) 

where a is a scaled height variable. For example, the mass equation becomes 

f 
p 

a Po u°l..(n - h) = m ax. l. 

where fp and f are constants determined from Eq. (9) and the asssumed pu 
a-dependence of p and u .. The remaining equations can be derived similarly. l. 
The profile coefficients are to be chosen either from data or simple theory; 

SIGMET calculations 4 of profiles can also be used as a data source. Using the 

above relationships, we can form the average of any combination of quantities 

and express it in terms of convenient quantities for numerical evaluation. 

For example, the momentum flux term can be written 

f pu 

where we assume that the profiles of the two velocity components are the same. 

In preliminary calculations we have chosen f (a) = a 1
/ 7, which approximately u __ 

describes a neutral boundary layer. With this representation f = 7/8 
u 

and fu 2 = 7/9. More accurate boundary profiles are expected to affect the 

calculations weakly. 

Entrainment is a turbulent mixing process at a shear layer. The drainage 

layer is defined by an inflection point in the vertical temperature profile 

(Fig. 2). 
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t 
Z7J 

8--
Fig. 2. Description of drainage layer. 

The layer also exhibits wind shear across the temperature inflection. The 

layer becomes thicker as the cold front diffuses into the warmer air of the 

upper layer by turbulent entrainment. We estimate the rate of diffusion using 

a constant flux approximation 

dx 
• -.--Q. 
m = P dt 

where Xo = n - hand Dv is the vertical diffusivity caused by turbulent 

mixing. Estimating D from boundary-layer expressions as a function of v . 

(10) 

relative velocity and e - e~, we calculate m for each cell at each cycle for 

use in Eqs. (5)-(8). The simple entrainment prescription of Eq. (10) deserves 
5 6 to be re-examined in the future. Zeman's analyses' of stable boundary 

layers, which take into account field data, laboratory experiments, and 

second-order closure modeling, may provide an improved formulation. 

III. NUMERICAL FORMULATION AND CALCULATIONS 

The drainage flow equations, Eqs. (5)-(8), have been programmed as an 

explicit difference equation system. The equations are evaluated in conser­

vative form on a staggered grid of points. The equations are conditionally 

stable with the time interval limited by convective, diffusive, and gravity 

wave inequalities. 

The equations are solved sequentially, taking into account all terms of 

each equation before proceeding to the next equation. Advection in the hori­

zontal directions is calculated using the Crowley second-order method with 
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doner cell flux limiter. The equations are otherwise second order in space 

and first order in time. Horizontal diffusion and vertical entrainment are 

based on empirical boundary-layer turbulent diffusion coefficients, which are 

a function of wind speed and stability class. 

IV. ONE-DIMENSIONAL DRAINAGE FLOW CALCULATIONS 

The formulation of Sec. II has been incorporated into the SHALO drainage 

flow computer code and several calculations have been carried out on the 

Los Alamos computers. In this section we describe the time-dependent flows 

in one horizontal dimension; this description verifies the formulation and 

displays various properties of the flow. 

The drainage flow formulation is a generalization of the shallow fluid 

approximation, which can be recovered as a limiting case. We have taken 

advantage of this property to verify that previously obtained results can be 

duplicated with the appropriately modified SHALO code. A careful analytical 

and numerical investigation of flow over an isolated obstacle was performed by 

Houghton and Kasahara. 7 They identify several regimes, defined by the Froude 

number of the initial flow and the height of the obstacle, within which the 

character of the flow changes. We have duplicated their results by modifying 

SHALO (1) to eliminate the temperature calculation and (2) to simulate an in­

compressible atmosphere by selecting the layer thicknesses to be a very small 

fraction of the atmospheric scale height. The test problems, which include 

subcritical and supercritical flow over the peak, as well as cases containing 

hydraulic jumps upstream and downstream of the peak, are contained in the 

Appendix. 

Although the above problems check some of the terms of SHALO and contain 

interesting flow features, they do not display the characteristics of greatest 

relev~nce to drainage flow over complex terrain. To illustrate some of these 

properties, several additional flow calculations having one horizontal dimen­

sion have been carried out. In one set of calculations, which are not illus­

trated here, drainage layers from adjacent parallel ridges progressively 

filled the intervening valley. Over the ridges the layer thickness was great­

ly decreased by the divergent flow, whereas in the valley hydraulic jumps 

formed to decelerate the down-slope flow. 

V. TWO-DIMENSIONAL DRAINAGE FLOW CALCULATIONS 

In the more realistic topography of complex terrain regions, we expect 

that several features of the flow will be exhibited, such as the joining of 
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flows from several canyons and the pooling of the flow in valleys, in addition 

to those features of down-slope flow and hydraulic jumps shown by the simpler 

topography. The Coriolis force is also expected to modify the flow to some 

extent. Our initial application of SHALO to the geysers area of northern 

California (Fig. 3) was conducted to gain some insight into the drainage flow 

physics. We used the results from the September 1980 ASCOT measurements8 

program for this purpose. A test problem was run with a 45 x 28 cell grid 

(Fig. 3) with each cell 190 m on a side. The dimensions of the entire grid 

were 8.4 x 5.1 km. The terrain elevation varied from 361 to 1439 m. The 

simulation started at 6 p.m. (1800) and terminated at midnight (2400). The 

development of pooling near Anderson Springs (slice 1) and the coalesced flow 

through the region near Diamond D Ranch (slice 2) are shown in Figs. 4 and 5, 

respectively. By 2400 hours the pooled layers, showing as three peaks in Fig. 

4, are nearly 60 m deep, in general agreement with observation. In Fig. 5, 

the three peaks have coalesced into an outflow layer peaked at cell 9, as the 

result of the convergence of three valleys. The layer peak centered near cell 

25 in Fig. 5 is due to an unrelated valley. 

~~~~-Cobb Mountain 

0.0 

Fig. 3. Geysers area terrain showing slices 1 and 2. 
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Fig. 4. Depth of drainage flow layer 
at slice 1 for times 1900 
and 2400. The terrain height 
is also included (bottom 
curve). 

Fig. 5. Depth of drainage flow layer 
at slice 2 as in Fig. 3. 
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VI. SUMMARY AND CONCLUSIONS 

An approximate formulation of the problem of nocturnal drainage flow has 

been incorporated into a computer code. This formulation, representing a 

generalization of the shallow fluid approximation, is applicable to complex 

terrain and accounts for many of the salient physical effects exhibited by 

drainage flow. These include the dynamics of the katabatic flow, radiation 

cooling, surface drag, entrainment of the overlying layer, the Coriolis force, 

and interaction with the synoptic flow. Sample calculations have been per­

formed in one and two horizontal dimensions. These calculations exhibit a 

number of interesting qualitative flow features that have been observed, such 

as thinning of the layer over ridges and pooling in valleys. We also found 

hydraulic jumps in the flow. 

The calculation shows qualitatively correct behavior at modest computa­

tional cost. Several processes that are represented parametrically can prob­

ably be tuned by comparison with data. Also, by virtue of the low cost of 

calculations, the model can be applied widely to gain experience in how to 

best use the output. We suggest that a program of additional comparisons with 

data, development of improved parameterizations, and employment of more 

sophisticated graphs is warranted. 

Althou~h the model has these advantages, it also is limited by its lack 

of vertical resolution. The more detailed description afforded by the truly 

three-dimensional model is necessary for a more complete understanding of this 

vertical structure. In addition, comparisons with such calculations will 

indicate the limitations more quantitatively and suggest methods to improve 

the SHALO drainage flow formulation. 
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APPENDIX 

COMPARISON TO THE ANALYTIC AND NUMERICAL RESULTS OF HOUGHTON AND KASAHARA 7 

Tests of the code SHALO were made against asymptotic mathematical 

solutions of the shallow fluid equations: 

and 

.li 
at + .L CpU) = 0 

aX 

for flow over an isolated obstacle (Fig. A-1). 

-------------=---------------------~-

u 

x 

Fig. A-1. Cross section of one-layer model. 

X2 

H(X) = H (1 - --) for 0.0 Ixi c 2 
< a; H(X) = 0 for Ixi > a. 

a 

(A-1) 

(A-2) 
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The results of these mathematical solutions are described in terms of 

F (= U Igh) and M (= H /h ), where H is the height of the crest and h is 
000 c c 0 c 0 

the height of the approaching fluid. 

2.0 

lJ..O 
I 1.6 
>-
I-
U 
o 
...J 
W 
> 

0.4 

JUMPS 

0.. c. 

'-- --------
JUMPS 

NO JUMPS 

°0~-L~0.~2~--0~.4~~~0~.6~L-~0.~8~~~1.0~~~1.2~ 

MOUNTAIN HEIGHT-Me 

Fig. A-2. Classification asymptotic flow conditions. 

The results from the Houghton-Kasahara numerical integration of Eqs. (A-1) and 

(A-2) for case A are shown in Fig. A-3. 

14 

0.6 -

~ 0.4 /!\\ .... 
L.t.J 0.2 f--------.J '---------1 
> 

o 

1.0 f-------_. 

I-

~ 0.5 

/"\ L.t.J 
:z: 

0.0 L-_____ ~'_: --' ... ' -------' 

x -
Fig. A-3. Numerical results for case A. 



The equivalent results from SHALO are shown in Fig. A-4. 

0.6 r----,-----,.----.,.----, 

0.4 

>-
I-
u 
0 

1.5 ...J I W 
> I 0.2 \ 

1.0 V 
0.0 I I I I-

600 800 1000 1200 1400 ::c 
(!) 

X w - ::c 

0.5 

!\ 
I 0.0 '-___ .L..-__ -L--L-'--__ -L-___ --' 

600 800 1000 1200 

X -
Fig. A-4. SHALO results for case A. 

The parameters of these calculations are those of a laboratory experiment by 

Long9: h = 20 em, a = 40 ~X, and ~x = 1.0 em. For case B the 
o 

Houghton-Kasahara results are shown in Fig. A-5 and the SHALO results in Fig. 

A-6. 

1400 
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Fig. A-5. Numerical results for case B. 
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Fig. A-6. SHALO results for case B. 

The boundaries at ±L (L = 1000 ~X) are sufficiently distant from the obstacle 

to delay reflected waves in the solution. From the stationary lee jump 

solution (case C), we compare the Houghton-Kasahara solution (Fig. A-7) with 

our results for the downstream-moving lee jump (Fi~. A-8) 
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Fig. A-7. Numerical results for case C. 

2.0 1.5.--------r------,-------, 

1.5 

1.0 

I-
:x: 

1.0 ~ 
W 
:x: 

0.5 

0.5 

0.0 '--------'-------'--------' 
O.OL-___ -L-L~ ____ _L ____ ~ 

800 1000 1200 1400 800 1000 1200 1400 

x x - --
Fig. A-8. SHALO results for case C. 
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A hydraulic jump of this nature may explain the appearance of rotor clouds in 

the lee of a mountain: these effects do not occur in linearized theories. 

The inferences from these results are that the atmosphere may respond to 

complex terrain in ways that depend on the Froude number of the complex flow. 

By simulating the condition of a hydraulic jump for an isolated obstacle, we 

can expect the code to reveal these conditions properly when the complex 

terrain interacts with the flow. A single layer will not resolve the 

boundary-layer flow, but we should obtain a qualitative understanding of the 

drainage flow in basins or valleys. 

The final case studied (case D) has a large Froude number (F = 1.9) and 
o 

does not contain a hydraulic jump. The Houghton-Kasahara solution (Fig. A-9) 

is compared with the results from SHALO (Fig. A-10). 
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Fig. A-9. Numerical results for case D. 
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Fig. A-l0. SHALO results for case D. 

In the supercritical case (D), we were unable to resolve the flow 

accurately. The effects of a gravity wave in the Houghton-Kasahara 

calculation are visible on the right side, but the boundary-condition effect 

appears different in the SHALO results. More work is needed to resolve these 

differences. 

1400 

19 



REFERENCES 

1. R. L. Lavoie, "A Mesoscale Numerical Model of Lake-Effect Storms," 
J. Atmos. Sci. ~, 1025-1040 (1972). 

2. J. R. Bjorklund and A. G. Tingle, "Study and Investigation of Computer 
Algorithms for the Solution of the Shallow-Fluid Equations as a Means of 
Computing Terrain Influences on Wind Fields," H. E. Cramer, Inc., 
technical report 73-302-01 (1973). 

3. W. Ohmstede, "The Dynamics of Material Layers," Atmospheric Sciences 
Laboratory report ASL-TR-0036 (1979). 

4. C. G. Davis and B. E. Freeman, "Modeling Drainage Flow with SIGMET," 
US/DOE ASCOT report 81-1 (1981). 

5. O. Zeman, "Parameterization of the Dynamics of Stable Boundary Layers and 
Nocturnal Jets," J. Atmos. Sci. 3.Q., 792-804 (1979). 

6. O. Zeman, "The Dynamics and Modeling of Heavier-Than-Air Cold Gas 
Releases," Lawrence Livermore Laboratory report UCRL-15224 (1980). 

7. D. D. Hou~hton and A. Kasahara, "Nonlinear Shallow Fluid Flow Over An 
Isola ted Ridge," Comm. Pure Appl. Math. .,2.1., 1-23 (1968). 

8. P. H. GUdiksen, "ASCOT Data From The 1979 Field-Measurement Program in 
Anderson Creek Valley, California," US/DOE ASCOT report 80-9 (1980). 

9. R. R. Long, "Some Aspects of the Flow of Stratified Fluids II, Experiments 
with a Two-Fluid System," Tellus ~, 97-115 (1954). 

20 



NTIS 
Page Range Price Code Page Range 

001 -025 A02 151 - 175 
026-050 A03 176-200 
051 -075 A04 20 1-225 
076-100 A05 226250 
101 - 125 A06 251275 
126-150 A07 276-300 

·Contact NTIS for a price quote. 

Printed in the United Stales of America 
A vaiiabJe from 

National Technical Information Service 
US Department of Commerce 

5285 PorI Royal Road 
Springfield, VA 22 161 

Microfiche (AO I) 

NTIS NTIS 
Price Code Page Range Price Code 

A08 301 -325 A I4 
A09 326-350 AI5 
AIO 351 -375 AI6 
Al l 376-400 AI7 
AI2 401 425 AI8 
A IJ 426-450 AI9 

NTIS 
Page Range Price Code 

45 1-475 A20 
476500 A21 
50 1-525 A22 
526-550 A23 
551 -575 A24 
576-600 A25 
601 -up' A99 



UNITEO STATES OEPARTMENT OF ENERGY 

P.O . BOX 62 
OAK RIDGE, TENNESSEE 37830 

OFFICIAL BUSINESS 
PENALTY FOR PRIVATE USE. 5300 

POSTAGE AND FEES PAID 

UNITED STAlES 
OEPAATMEHT Of 8'JEAGY 

FS- 1-

UNIVERSITY OF UTAH RESEARCH INSTITUTE 
ATTN PHILLIP M WRIGHT 
EARTH SCIENCE LAB 
420 CHIPETA WAY, SUITE 120 
SALT LAKE CITY, UT 84108 


