A STUDY OF THE
TECHNICAL AND ECONOMIC FEASIBILITY
OF USING
gEOTHERMAL WATER IN THE
DAIRY INDUSTRY

prepared by
 THE UTAH STATE UNIVERSITY FOUNDATION
 for
 THE ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION

under
Contract No. E(10-1)-1604
submitted
1 November 1976

Idaho National Engineering Lab Idaho Falls, Idaho

This study conducted by:
Steven L. Folkman
J. Clair Batty

David A. Bell
C. Anthon Ernstrom

TABLE OF CONTENTS
Page
List of figures iii
LIST OF TABLES v
SECTION ONE - INTRODUCTION. 1-1
1.1. Objectives. 1-1
1.2 Scope of work 1-1
1.3 Procedure 1-2
1.4 Explanatory comments 1-3
SECTION TWO - BRIEF OVERV̇IEW OF RESULTS 2-1
2.1 Potential for energy savings. 2-1
2.2 Technical limitations 2-2
2.3 Economic limitations. 2-3
2.4 Conclusions and recommendations 2-15
SECTION THREE - ENERGY USE IN THE DAIRY INDUSTRY 3-1
3.1 Plant location and production levels. 3-1
3.2 Energy inputs 3-1
3.3 Relationship of processing energy to other energy inputs. 3-11
3.4 Dairy processors currently using geothermal energy. 3-18
SECTION FOUR - ECONOMIC MODEL 4-1
4.1 Model 1 4-1
4.2 Mode1 2 4-2
SECTION FIVE - PRODUCTS SECTION 5-1
5.1 Fluid milk production 5-2
5.2 Cheddar cheese production 5-11
5.3 Cottage cheese production 5-22
5.4 Sour cream production 5-33
5.5 Cream cheese production 5-41
5.6 Cultured milk production. 5-50
5.7 Dried whey production 5-57
5.8 Butter production 5-63
5.9 Dried milk production 5-72
5.10 Instantized dried milk production 5-80
5.11 Dried buttermilk production 5-86
5.12 Evaporated milk production 5-93

TABLE OF CONTENTS continued
Page
5.13 Ice cream production. 5-100
5.14 Process cheese production 5-109
5.15 Comparison of calculated energy inputs with survey data 5-116
SECTION SIX - ENERGY CALCULATIONS 6-1
6.1 Pumping 6-5
6.2 Clarification 6-7
6.3 Separation. 6-9
6.4 Homogenization. 6-11
6.5 CIP pumps 6-13
6.6 Double effect evaporator. 6-15
6.7 Spray drying. 6-17
6.8 Air compressor. 6-18
6.9 Cold storage room fans 6-20
6.10 Heating and air conditioning fans 6-22
6.11 Boiler fan. 6-24
6.12 Evaporative cooling tower 6-26
6.13 Lights and miscellaneous motors 6-29
6.14 Miscellaneous electrical energy costs 6-31
6.15 CIP cleaning costs 6-34
6.16 Manual cleaning costs 6-36
6.17 Double effect evaporator. 6-38
6.18 Heating the plant 6-40
6.19 Product heating 6-42
6.20 Steam line losses 6-45
6.21 Miscellaneous steam energy costs 6-51
6.22 Cold storage rooms 6-53
6.23 Air conditioning 6-78
6.24 Product cooling 6-84
6.25 Cooling line Iosses 6-88
6.26 Miscellaneous refrigeration energy costs 6-90
6.27 Spray drying 6-92
6.28 Miscellaneous energy calculations 6-93
SECTION 7 - COPY OF SURVEY QUESTIONNAIRE. 7-1
SECTION 8 - LOCATTONS AND PRODUCTION LEVELS OF DAIRY PLANTS IN 8-1 CALIFORNIA, IDAHO, NEVADA, OREGON, AND UTAH
SECTION 9 - REFERENCES. 9-1

LIST OF FIGURES

Figure Page
2-2a. Typical heating and cooling loads in a fluid milk plant processing 105,000 gallons per week $2-4$
2-2b. Typical heating and cooling loads in a cheddar cheese plant which produces $80,000 \mathrm{lbs}$ of cheese per week $2-5$2-2c. Typical heating and cooling loads in a dried milk andbutter plant which produces $26,300 \mathrm{lbs}$ of powder and11,222 lbs of butter each day. 2-6
2-2d. Typical heating and cooling loads in an ice cream plant which produces 19,000 gallons of ice cream per week. . . . 2-7
2-2e. Typical heating and cooling loads in an evaporated milk plant which produces one million pounds of evaporated milk per week 2-8
2-2f. Typical heating and cooling loads in a processed cheese plant which produces 280,000 . 1bs of cheese each day 2-9
$2-2 g$. Water flow rates required for each $10^{6} \mathrm{BTU} / \mathrm{hr}$ of energyextracted from geothermal water due to condensing steam.$10^{6} \mathrm{BTU} / \mathrm{hr}$ could be provided by the 15.7 GPM flow rate . . 2-10
2-3a. Justifiable geothermal heating investment as a functionof annual production levels for various dairy products.(Energy costs are assumed to increase 5% per year overa 20 year investment period) 2-12
2-3b. Justifiable investment versus production leve1 for dairyplants converting to geothermal energy for cooling.(Energy costs are assumed to increase 5% per year over a20 year investment period) 2-123-1a. Location of dairy plants handling more than 500,000 1bsof milk per week in a five-state area. 3-3
3-1b. Location of warm springs in the United States (from reference 18) . 3-4
3-3a. On farm energy inputs to milk production 3-12
3-3b. Energy inputs to the distribution of fluid milk 3-13
5-1a. Flow chart showing the production of fluid milk 5-4

LIST OF FIGURES continued

Figure Page
5-1b. Fluid milk plant layout as given by Tracy. 5-10
5-2a. Flow chart showing cheddar cheese production 5-14
5-2b. Cheddar cheese plant layout as given by Tracy. $5-21$
5-3a. Flow chart showing cottage cheese production 5-24
5-3b. Cottage cheese plant layout as given by Tracy 5-31
5-4a. Flow chart showing sour cream production 5-34
5-5a. Flow chart showing cream cheese production 5-43
5-6a. Flow chart showing cultured milk production. 5-51
5-7a. Flow chart showing dried whey production 5-58
5-8a. Flow chart showing butter production 5-65
5-8b. Butter and dried milk plant layout as given by Tracy 5-70
5-9a. Flow chart showing low-heat dried milk production. $5-73$
5-10a. Flow chart showing instantized milk production 5-81
5-11a. Flow chart showing dried buttermilk production $5-87$
5-12a. Flow chart showing evaporated milk production. $5-94$
5-13a. Flow chart showing ice cream production 5-101
5-13b. Ice cream plant layout as given by Tracy 5-108
5-14a. Flow chart showing processed cheese production 5-110
6-20a. Steam pipe layout in a cheddar cheese plant. 6-46

LIST OF TABLES

Table Page
2-3a. Comparison of energy costs to wholesale prices (dollars). 2-14
3-1a. Production of manufactured dairy products, California, Idaho, Nevada, Oregon, and Utah - 1975 3-2
3-2a. Energy inputs to dairy processing in California 3-5
3-2b. Energy inputs to dairy processing in Idaho 3-6
3-2c. Energy inputs to dairy processing in Nevada. 3-7
3-2d. Energy inputs to dairy processing in Oregon 3-8
3-2e. Energy inputs to dairy processing in Utah. 3-9
3-2f. The total energy inputs to dairy processing in California, Idaho, Nevada, Oregon, and Utah combined 3-10
3-3a. Energy inputs to inplant processing of fluid milk (BTU of fossil fuel equivalent per 1 b of milk) 3-14
3-3b. Use of energy in the manufacture of paper milk cartons (BTU of fossil fuel equivalent per lb of milk produced) 3-14
3-3c. Use of energy in the manufacture of plastic pouch con- tainers for milk (BTU of fossil fuel equivalent per lb of milk produced) 3-15
3-3d. Use of energy in the manufacture of a returnable glass milk bottle (BTU of fossil fuel equivalent per lb of milk produced) 3-15
3-3e. Use of energy in the manufacture of plastic milk bottles (BTU of fossil fuel equivalent per $1 b$ of milk produced). 3-16
3-3f. Summary of total energy inputs into production of fluid milk 3-16
3-3g. Summary of energy inputs to cheddar cheese 3-17
3-3h. Ratios of total societal energy inputs to digestable food energy produced for fluid milk and cheddar cheese 3-17
4-a. Justifiable investments per product in conversion to geo- thermal steam heating system $4-4$

LIST OF TABLES continued

Table Page
4-b. Justifiable investment's per product in utilization of geothermal steam in an absorption refrigeration system 4-5
5-1a. Typical electrical energy use per gallon of fluid milk 5-7
5-1b. Typical steam energy use per gallon of fluid milk $5-7$
5-lc. Uses of refrigeration energy per gallon of fluid milk 5-8
5-1d. Total energy cost per gallon of fluid milk 5-8
5-1e. Maximum process temperature and percent of total heatingenergy consumption in fluid milk production. (Crosshatched represents the maximum temperature range perprocess.). 5-9
5-2a. Typical electrical energy use per pound of cheddar cheese. 5-17
5-2b. Typical steam energy use per pound of cheddar cheese 5-17
5-2c. Uses of refrigeration per pound of cheddar cheese 5-18
5-2d. Total energy cost per pound of cheddar cheese neglecting whey spray drying costs 5-18
5-2e. Total energy cost per pound of cheddar cheese including whey drying costs 5-19
5-2f. Maximum process temperature and percent of total heating consumption in cheddar cheese production neglecting whey drying. (Cross hatching represents the maxinum tempera- ture range per process) $5-20$
5-3a. Typical electrical energy uses per pound of cottage cheese $5-28$
5-3b. Typical steam energy uses per pound of cottage cheese 5-28
5-3c. Uses of refrigeration per pound of cottage cheese. 5-29
5-3d. Total energy cost per pound of cottage cheese neglecting whey spray drying costs 5-29
5-3e. Total energy cost per pound of cottage cheese including whey drying costs. 5-305-3f. Maximum process temperature and percent of total heatingenergy consumption in cottage cheese production neglect-ing whey drying. (Cross hatching represents the maximumtemperature range per process)$5-32$

LIST OF TABLEG continued

Table Page
5-4a. Typical electrical energy uses per pound of sour cream 5-38
5-4b. Typical steam energy uses per pound of sour cream. 5-38
5-4c. Uses of refrigeration per pound of sour cream. 5-39
5-4d. Total energy cost per pound of sour cream. 5-39
5-4e. Maximum process temperature and percent of the total heat-ing energy consumption in sour cream production. (Crosshatching represents the maximum temperature range per pro-cess).$5-40$
5-5a. Typical electrical energy uses per pound of cream cheese. 5-46
5-5b. Typical steam energy uses per pound of cream cheese 5-46
5-5c. Uses of refrigeration. 5-47
5-5d. Total energy cost per pound of cream cheese neglecting whey spray drying costs 5-47
5-5e. Total energy cost per pound of cream cheese including whey drying costs 5-48
5-5f. Maximum process temperature and percent of total heating energy consumption is cream cheese production neglecting whey drying. (Cross hatching represents the maximum temperature range per process) 5-49
5-6a. Typical electrical energy costs per quart of cultured milk 5-54
5-6b. Typical steam energy costs per quart of cultured milk. 5-54
5-6c. Uses of refrigeration. 5-55
5-6d. Total energy cost per quart of cultured milk 5-555-6e. Maximum process temperature and percent of total heatingenergy consumption in cultured milk production. (Crosshatching represents the maximum temperature range perprocess . 5-56
5-7a. Typical electrical energy costs per pound of whey powder 5-60
5-7b. Typical steam energy costs per pound of whey powder 5-60

LIST OF TABLES continued
Table Page
5-7c. Typical uses of refrigeration per pound of whey powder 5-60
5-7d. Direct uses of natural gas energy per pound of whey powder 5-61
5-7e. Total energy cost per pound of whey powder 5-61
5-7f. Maximum process temperature and percent of total heating energy consumption in whey powder production. (Cross hatching represents the maximum temperature range per process) 5-62
5-8a. Typical electrical energy uses per pound of butter 5-68
5-8b. Typical steam energy uses per pound of butter 5-68
5-8c. Typical refrigeration requirements per pound of butter 5-69
5-8d. Total energy cost per pound of butter. 5-69
5-8e. Maximum process temperature andpercent of total heating energy consumption in butter production. (Cross hatching represents the maximum temperature range per process) 5-71
5-9a. Typical electrical energy uses per pound of dry milk 5-76
5-9b. Typical steam energy uses per pound of dry milk. 5-76
5-9c. Typical uses of refrigeration per pound of dry milk. 5-77
5-9d. Typical natural gas energy requirement per pound of dairy milk powder 5-77
5-9e. Total energy cost per pound of dry milk 5-78
5-9f. Maximum process temperature and percent of total heating energy consumption in dried milk production. (Cross hatch- ing represents the maximum temperature range per process). 5-79
5-10a. Typical electrical energy uses per pound of instantized milk powder 5-83
5-10b. Typical steam energy uses per pound of instantized milk powder 5-83
5-10c. Uses of refrigeration per pound of instantized milk powder 5-83

LIST OF TABLES continued

Table Page
5-10d. Total energy cost per pound of instantized milk powder 5-84
5-10e. Maximum process temperature and percent of total heating energy consumption in instantized milk production. (Cross hatching represents the maximum temperature range per process) 5-85
5-11a. Typical electrical energy uses per pound of dried butter- milk powder. 5-90
5-11b. Typical steam energy uses per pound of buttermilk powder 5-90
5-11c. Uses of refrigeration per pound of dried buttermilk powder 5-91
5-1ld. Natural gas energy costs per pound of dried buttermilk powder 5-91
5-1le. Total energy çost per pound of dried buttermilk powder 5-92
5-12a. Typical electrical energy uses per pound of evaporated milk 5-97
5-12b. Typical steam energy uses per pound of evaporated milk 5-97
5-12c. Uses of refrigeration per pound of evaporated milk 5-98
5-12d. Total energy cost per pound of evaporated milk 5-98
5-12e. Maximum process temperature and percent of total heating energy consumption in evaporated milk production. (Cross hatching represents the maximum temperature range per process) 5-99
5-13a. Typical electrical energy costs per gallon of ice cream. 5-105
5-13b. Typical steam energy costs per gallon of ice cream 5-105
5-13c. Uses of refrigeration. 5-106
5-13d. Total energy cost per gallon of ice cream. 5-106
5-13e. Maximum process temperature and percent of total heatingenergy consumption in ice cream production. (Cross hatch-ing represents the maximum temperature range per process).5-1075-14a. Typical electrical energy costs per pound of processedcheese5-113

LIST OF TABLES continued

Table Page
5-14b. Typical steam energy costs per pound of processed cheese. 5-113
5-14c. Uses of refrigeration. 5-114
5-14d. Total energy cost per pound of processed cheese. 5-114
5-14e. Maximum process temperature and percent of total heating energy consumption in processed cheese production. (Cross hatching represents the maximum temperature range per process) 5-115
5-15. Comparison of energy requirements for dairy products from survey information and from calculated values 5-117
6-1a. Energy requirements for pumping. 6-6
6-2a. Energy requirements for clarification. 6-8
6-3a. Energy requirements for separation 6-10
6-4a. Energy requirements for homogenization $6-12$
6-5a. Energy requirements for CIP pumps 6-14
6-6a. Electrical energy requirements for a double effect evaporator 6-16
6-7a. Electrical energy requirements of spray drying 6-17
6-8a. Electrical energy requirements for air compressors 6-19
6-9a. Electrical energy requirements for cold room fans $6-21$
6-10a. Electrical energy requirements for air circulation fans 6-23
6-11a. Electrical energy requirements for the boiler fan. 6-25
6-12a. Electrical energy requirements for cooling tower fans 6-28
6-13a. Electrical energy requirements for lights and miscellaneous motors 6-30
6-15a. Steam energy requirements for CIP cleaning $6-35$
6-16a. Steam energy requirements for manual cleaning. 6-37
6-17a. Steam energy requirements for a double effect evaporator 6-30

LIST OF TABLES continued

Table Page
6-18a. Steam energy requirements to heat the plant 6-41
6-19a. Steam energy requirements for product heating. 6-43
6-20a. Steam energy requirements from steam line losses 6-50
6-23a. Air conditioning loads per unit production 6-83
6-24a. Product cooling unit loads 6-85
6-25a. Cooling line loss unit loads 6-89
8-1a. Dairy processing plants in California 8-2
8-1b. Dairy processing plants in Idaho 8-27
8-1c. Dairy processing plants in Oregon. 8-32
8-1d. Dairy processing plants in Nevada. 8-36
8-1e. Dairy processing plants in Utah 8-37

INTRODUCTION

1.1 Objectives

This study was initiated to determine (a) the amount and type of energy used in the dairy industry, and (b) technical and economic limitations to the utilization of geothermal energy in the dairy industry.

1.2 Scope of work

The following tasks were undertaken to achieve the stated objectives:

1. Prepare a map and legend showing locations, volume of production, current energy sources and energy consumption of dairy processing plants (> 500,000 $\# \mathrm{milk} /$ week) in Idaho, Oregon, Nevada, Utah, and California.
2. Identify dairy processing plants where geothermal energy is currently being utilized.
3. Assemble a complete bibliography and as far as possible a library collection of publications dealing with energy usage in the dairy industry.
4. Prepare material and energy flow diagrams for the processing of each of the major dairy industry products. These flow diagrams would specify mass or volume flow rates, resources utilized per unit product, types of energy used in each step, and relevant pressure or temperature levels at each step.
5. Identify specific areas where geothermal energy could or could not be utilized for technical reasons.
6. Conduct a cost effectiveness study of geothermal energy utilization in the dairy industry using economic models based on best available information. Factors such as present and projected energy costs, transportation costs, and capital investment would be taken into account.
7. Prepare a final report.

1.3 Procedure

Pertinent literature dealing with the dairy industry was identified and reviewed. Representative dairy processing plants were visited and energy flows monitored where possible. A survey requesting production level and energy use information was prepared and mailed to over 400 dairy processors. Detailed material and energy flow charts were prepared for the following products:

1. Fluid milk
2. Cheddar cheese
3. Cottage cheese
4. Sour cream
5. Cream cheese
6. Cultured milk
7. Dried whey powder
8. Butter
9. Dried milk
10. Instantized dry milk
11. Dried buttermilk
12. Evaporated milk
13. Ice cream
14. Processed cheese

An economic analysis was made to determine the capital investment which could be justified in replacing conventional energy sources with geothermal

1.4 Explanatory comments

Dairy processing is extraordinarily competitive, often operating on relatively thin margins of profit. Company management tend to assume a rather protective stance regarding production levels and techniques. Production level-data, för individual plants, are collected by state agencies with the understanding that the data would be released only in aggregate form. Thus, while state-wide production levels of a given dairy product such as cheddar cheese are readily available, it is much more difficult to obtain production data for individual plants.

Another difficulty is in identifying actual energy requirements for a given plant. Plant operators usually are able to monitor total plant energy requirements and inputs to major pieces of equipment but are not prepared to determine the energy requirements for individual processes. Surprisingly, very few reports on energy in dairy processing have been reported in the general literature. These factors combined to necessitate a rather lengthy detailed energy use analysis for each of the many processes involved. in order to achieve the desired objectives of the study.

We suggest that this study represents a pioneering effort to establish a truly comprehensive analysis in this important area. The bulk of the report, therefore, deals with Task 4 which is to provide a detailed description of material and energy flows in each process. Procedures,
temperatures, pressures, and energy cost data are identified only for representative dairy products. A number of product varieties are lumped into a single category to keep the study within realistic limits. For example, three major types of aged cheese, i.e., cheddar, Italian, and Swiss have similar production procedures although there is variation in the cooking temepratures, aging time, and cheese yield. The net difference in energy requirements is small. Whole milk, lowfat milk, chocolate milk, and half-and-half are subjected to approximately the same processing procedures and are categorized in this report as fluid milk.

It should perhaps be noted that there are significant variations in specific processes. For example, electrical energy inputs to skim milk are about 20% less than to whole milk because skim milk is not homogenized. Similarly, the electrical requirements for yogurt exceed that of cultured milk by about 20% for the same reason. Processed cheese production procedures are similar to those of cheese food or cheese spread but the cooking temperatures vary slightly. Steam requirements for process cheese appear to be 5 to 10% less than for cheese spread. With these and other similar simplifications all the major dairy products manufactured in the Intermountain area can be classified into the fourteen product groups mentioned in the procedures section.

Of the 400 questionnaires regarding production and energy use, which were sent to dairy processors, only 36 were completed and returned. The information returned, while not statistically sufficient, did provide valuable information and a basis for comparison with the figures arrived at by analysis. We believe the energy use numbers generated in the
analysis section of the report tend to be conservative. Recognizing that there is wide variation in the efficiency of energy use from plant to plant, such comparisons as were possible, generally indicated a somewhat greater energy use than the calculated value. It also is observed that the units in this report are those typical to the dairy industry. The metrication process, while underway in the industry, is not moving rapidly. The familiar engineering units are used in this report.

Section 2

OVERVIEW OF RESULTS

2.1 Potential for energy savings

Two questions of major importance, which this study attempted to address, are: (1) "How much energy is utilized by the dairy industry in California, Oregon, Utah, Idaho, and Nevada?". and (2) "If a major effort were devoted to utilize geothermal energy in the dairy industry of this 5-state area, would the resultant reduction in the use of fossil fuels be significant?"

The data presented in Section 3 indicate that approximately $7.1 \times 10^{12} \mathrm{BTU} /$ year are expended in dairy processing in the 5 -state area. This figure is expressed in fossil fuel equivalent and includes 63% thermal heating, 17% refrigeration, and 20% other electrical:

If there were a 100% conversion of thermal heating and refrigeration to geothermal energy, the potential for energy savings in the 5-state study area would be equivalent to about 1 million barrels of oil per year. Of course, the conversion to geothermal under even the most optimistic scenario would be only a fraction of this amount.

Also, it is pointed out in Section 3.3 that processing energy represents only about 4% of the total societal energy inputs to fluid milk and about 27.0% of the total societal energy inputs to cheddar cheese. For fluid milk and cheddar cheese, the societal fossil fuel energy inputs amount to about 5 times the digestable energy produced. This may be compared to a product such as canned corn for which the ratio of energy input to output is 141020 . Thus, in terms of simple energy input/output
ratios the dairy industry appears to be in a relatively favorable position as compared with many other segments of the processed food industry.

2.2 Technical 1imitations

The maximum temperature to which a product is heated in most dairy processing operations is $205^{\circ} \mathrm{F}$. The only exceptions are sterilizzation of canned evaporated milk at $245^{\circ} \mathrm{F}$ and spray drying where the temperature of the air introduced into the drier ranges from $200^{\circ} \mathrm{F}$ to $500^{\circ} \mathrm{F}$. Equipment for the production of fluid milk, cheese and ice cream, generally requires $10 \mathrm{psig}\left(240^{\circ} \mathrm{F}\right)$ to $20 \mathrm{psig}\left(260^{\circ} \mathrm{F}\right)$ steam. Very few, if any, dairy processors operate their boilers at greater than 100 psig ($338^{\circ} \mathrm{F}$). Most spray driers, as presently designed, can utilize air temperatures less than $300^{\circ} \mathrm{F}$.

Utilization of geothermal energy in the dairy industry faces the same technological barrier as other process industries, namely, the development of appropriate heat transfer equipment. The corrosive nature of many geothermal waters requires a innovative approach to heat exchanger design. Low temperature differences combined with secondary loop requirements for contamination protection, present challenging design problems.

Figures $2-2$ a through $2-2 f$ show typical cooling and heating loads. The values were derived by applying the energy valued from Section 5 to assumed operating schedules. The derived loads are felt to be conservative values. The heating loads are the steam and natural gas loads in fossil fuel equivalent. The refrigeration load is given as the tons of cooling needed. We estimate that 37.5 tons of refrigeration may be provided by $10^{\circ} \mathrm{BTU} / \mathrm{hr}$ of $300^{\circ} \mathrm{F}$ steam through an absorption refrigeration
system. The geothermal water flow rates needed for a given load were calculated. It was assumed that $430^{\circ} \mathrm{F}$ geothermal water is brought to the surface under 350 psia pressure and then allowed to flash to $300^{\circ} \mathrm{F}$ saturated steam. This is demonstrated in Figure $2-2 \mathrm{~g}$ which shows the flow rates required for each million $B T U / h r$ of energy extracted from the water. Greater efficiency in the use of geothermal water can be made by using the lower temperature liquid water for heating purposes before reinjecting it into the ground. If the water temperature is reduced to $150^{\circ} \mathrm{F}$, an additional $10^{6} \mathrm{BTU} / \mathrm{hr}$ is provided. However, a system producing steam would fit into existing dairy plants without major modification of the dairy plant equipment. The results indicate a hot water flow of 15.7 GPM is needed per million BTU/hr of heating load if only the steam at $300^{\circ} \mathrm{F}$ is utilized. For example, for a dried milk plant producing about 9.6 million pounds of powder per year (a very typical production size) we calculate a peak heating load of 20 million BTU/hr. This would require a geothermal water flow rate of 314 GPM (or 157 GPM if hot water is utilized as explained above). The cooling and refrigeration requirements for that same plant would require an additional flow rate of

16 GPM.

2.3 Economic 1imitations

The economic analysis is described in detail in Section 4. Briefly, the approach was to consider three scenerios. The first scenerio assumes fuel costs remain near present levels. The second scenerio assumes fuel costs increase at the rate of 5% per year (14 year doubling time) for an assumed equipment life of 20 years while the chird assumes an increase

Figure 2-2a. Typical Heating and Cooling loads in a Fluid Milk Plant processing 105,000 gallons per week.

Figure 2 - 2 . Typical heating and cooling loads in a cheddar cheese plant which produces $80,000 \mathrm{lbs}$ of cheese per week.

Figure 2-2c. Typical heating and cooling loads in a dried milk and butter plant which produces $26,3001 \mathrm{bs}$ of powder and $11,2221 \mathrm{bs}$ of butter each day.

Figure $2-2$ ' , Typical heating and cooling loads in an evaporated milk plant which produces one million pounds of evaporated milk per week.

Figure 2-2f. Typical heating and cooling loads in a processed cheese plant which produces 280,000 lbs of cheese each day.

988 1bs. sat. Liquid/hr at $200^{\circ} \mathrm{F}$

For Reinjection

Figure $2-2 g$. Water flow rates required for each $10^{6} \mathrm{Btu} / \mathrm{hr}$ of energy extracted from geothermal water due to condensing steam. By reducing the 1 iquid temperature to $150^{\circ} \mathrm{F}$ an additional 10^{6} Btu/hr could be provided by the 15.7 GPM flow rate.
of 10% per year (7 years doubling time) over the 20 year period. The justifiable investment was defined simply as the present value of the expected fuel costs during the 20 year life of the equipment with interest on borrowed capitol of 10%. Figures $2-3 a$ and $2-3 b$ summarize the results for a few selected products the second scenerio. By selecting the dairy product and the annual production Figure $2-3$ a gives an estimated justifiable investment for replacing conventional heating with geothermal sources. Similarly, Figure $2-3 b$ provides an estimate for the justifiable investment for replacing conventional refrigeration units with absorption system ssing geothermal water. The figures also indicate the range of production levels for individual plants located within the 5-state study area. It may be observed that whenever drying operations are involved, as in dried milk or whey, that rather sizeable investments are justified. For products such as process cheese the justifiable investment level is not nearly so great.

Additional perspective may be obtained from Table 2-3a which gives the fraction of the total product price represented by energy costs at present fuel prices.

The data presented here causes us to conclude that the conversion of dairy processing plants to geothermal energy sources will be economically feasible only for a relatively few products. With such a small fraction of the total product cost attributable to process energy the requisite incentive for seeking energy from geothermal sources may be a total nonavailability of conventional alternatives.

Justifiable Investment in Millions of Dollars

Figure 2-3a. Justifiable geothermal heating investment as a function of annual production levels for various dairy products. (Energy costs are assumed to increase 5% per year over a 20 year investment period.)

Figure $2-3 b$. Justifiable investment versus production level for dairy plants converting to geothermal energy for cooling. (Energy costs are assumed to increase 5% per year over a 20 year investment period.)

Table 2-3a. Comparison of energy costs to wholesale prices (dollars).

Product	Approximate Wholesale Price per unit	Steam Cost per unit	Total Energy Cost per unit	Steam Cost Wholesale Price	Total Energy Costs
Fluid Milk	$1.00 / \mathrm{gal}$.0017	.0052	.0017	.0052
Cheddar Cheese	$1.50 / 1 \mathrm{~b}$.0031	.0070	.0021	.0050
Whey Powder	$.06 / 1 \mathrm{~b}$.0074	.0137	.123	.228
Cottage Cheese	$.40 / 1 \mathrm{~b}$.00115	.00227	.0029	.0057
Sour Cream	$.80 / 1 \mathrm{~b}$.00036	.00110	.0005	.0014
Cu1tured Milk	$1.20 / \mathrm{gal}$.00072	.00158	.0006	.0013
Cream Cheese	$1.00 / 1 \mathrm{~b}$.0015	.0023	.0015	.0023
Dried Milk	$.60 / 1 \mathrm{~b}$.0083	.0106	.0138	.0177
Instantized Milk	$.90 / 1 \mathrm{~b}$.00087	.0013	.0010	.0041
Butter	$1.00 / 1 \mathrm{~b}$.00082	.00168	.0008	.0017
Ice Cream	$1.80 / \mathrm{gal}$.0043	.0205	.0024	.0114
Evaporated Milk	$.35 / 1 \mathrm{~b}$.00112	.00170	.0032	.0049
Processed Cheese	$1.40 / 1 \mathrm{~b}$.00039	.00118	.0003	.0008
Dried Buttermilk	$.60 / 1 \mathrm{~b}$.0083	.0109	.0138	.0182

2.4 Conclusions and recommendations

This study has led to the following conclusions:

1. Energy consumption by the dairy processing industry in the 5-state area is essentially insignificant on a national scale. A potential annual energy savings of 1 million barrels of oil energy equivalent represents only about $1 / 6000$ th of the total oil consumption in the United States.
2. Whey drying in the study area consumes the equivalent of about 1.7 billion cubic ft of natural gas per year. This amount of gas would provide heat for approximately 11:000 homes in a climate such as northern Utah.
3. The greatest potential for using geothermal energy in dairy processing lies in the energy intensive drying operations. It should be noted, however, that alternative processes such as ultrafiltration and reverse osmosis techniques for obtaining whey solids are rapidly being developed and implemented. Such processes may render geothermal drying economically noncompetitive.
4. The potential for geothermal energy substitution in processes other than drying appears substantially less attractive. The economic incentive is missing from products such as milk, cheese, butter, and ice cream where processing energy costs represent less than 1% of the wholesale price.
5. Λ strong incentive for utilizing geothermal energy in dairy processing may be provided if no viable alternatives are developed. Most drying operations utilize natural gas on
an interruptible service basis. If natural gas and natural gas liquids become unavailable, considerable equipment modification will be necessary to adapt to alternate fuels such as coal.

Recommendations resulting from this preliminary study are:

1. Technical and economic feasibility of utilizing geothermal energy in dairy processing be evaluated further particularly where drying operations are involved.
2. Specific geothermal sites be evaluated for temperature, water quality and quantity and proximity to existing dairy plants.
3. Cooperation of plant management be secured in preparing and evaluating a specific design for heat exchange equipment to replace or supplement conventional fossil fuel fired plant operations.
4. If the design evaluation results are faborable, negotiate with plant management regarding a demonstration project.

Section 3

ENERGY USE IN THE DAIRY INDUSTRY

3.1 Plant location and production levels

There are more than 500 dairy processors located in the 5-state area of California, Utah, Idaho, Oregon, and Nevada. Production levels are not easily determined for individual plants, however, we have categorized them as handling less than $500,000 \mathrm{lbs}$ of milk per week; between 500,000 Ibs and $1,000,000 \mathrm{lbs}$ of milk per week; and more than $1,000,000 \mathrm{lbs}$ of milk per week as shown in Section 8. Because processed cheese and ice cream plants do not necessarily handle raw milk, care must be taken in interpretation. Also shown in Table 3-1a are state production totals for the states in question. Figure 3-1a indicates the location of larger dairy plants in those states while Figure $3-1 b$ gives the locations of warm springs in the west. The proximity of the surface manifestations of geothermal energy to the present locations of dairy plants is rather striking on this scale map.

3.2 Energy inputs

It was not possible to directly determine the energy inputs to dairy processing in California, Utah, Idaho, Oregon, and Nevada. We, therefore, determined the total production levels of various dairy products for each state as indicated previously. We then multiplied those production levels by the appropriate energy use factor as calculated in Section 6 of this report. We believe that the results as shown in Tables $3-2 a, b, c, d, e$, and f present a reasonably accurate picture.

Table 3- 1a Production of manufactured dairy products, California, Idaho, Nevada, Oregon, and Utah - 1975*.

Product	Unit	California	Idaho	Nevada	Oregon	Utah	Total
Butter	1 bs	136	13		12	7	168
Cheese	1 bs	93	75		23	58	249
Cottage Cheese	1bs	145	5		15	9	172
Evaporated and Condensed Milk	1 bs	256					256
Dried Products	1 bs	159	18			21	198
Frozen Products	gals	126	5		12	10	153
A11 Mfg. Products:							
Whole Milk Equivalent	1 bs	5,180	1,073	25	613	768	7,659
Skim Milk Equivalent	1 bs	2,681	228	5	153	60	3,127

*

Data are not included when less than three plants reported, or when individual plant operations might be disclosed.

Figure 3-la. Location of dairy plants handing more than $500,000 \mathrm{lbs}$ of milk per wock in a five-state area.

Figure 3-1b. Location of warm springs in the United States (from reference 18).

Table 3-2a. Energy inputs to dairy processing in California.

Product	Annual Production (106 1bs)	$\begin{gathered} \text { Heating } \\ 10^{9} \text { BTU† } \end{gathered}$	Refrigeration $10^{9} \mathrm{BTU} \dagger$	$\begin{gathered} \text { Other } \\ \text { E1ectrical } \\ 10^{9} \mathrm{BTU}+ \end{gathered}$
Butter	136	100	36	12
Cheese	93	260	42	110
Cottage Cheese	145	150	28	39
Evap. and Cond. Milk	256	260	28	34
Dried Products*	159	1400	61	120
Frozen Products**	126	490	370	460
Fluid Milk Products***	2992	800	370	260
TOTAL		3460	935	1035

*Dried products includes dried milk, instantized dried milk, and dried whey.
***rozen products includes ice cream, sherbet, ice milk, and novelties. ${ }^{* *}$ Fluid milk products includes whole, lowfat, and skim milk, cultured milk, sour cream, and yogurt.
tenergy is expressed in fossil fuel equivalent.

Table 3-2b. Energy inputs to dairy processing in Idaho.

Product	$\begin{gathered} \text { Annual } \\ \text { Production } \\ \left(10^{6} \mathrm{lbs}\right) \end{gathered}$	$\begin{aligned} & \text { Heating } \\ & 10^{9} \text { BTU } \dagger \end{aligned}$	$\begin{gathered} \text { Refrigeration } \\ 10^{9} \text { BTU } \dagger \end{gathered}$	Other Electrical $10^{9} \mathrm{BTU} \dagger$
Butter	13	10	3	1
Cheese	75	210	34	86
Cottage Cheese	5	5	1	1
Evap. and Cond. Milk	---	---	---	---
Dried Products*	18	160	7	13
Frozen Products**	5	19	15	18
Fluid Milk Products***	234	63	29	20
TOTAL		467	89	139
* Dried products includes dried milk, instantized dried milk, and dried whey. Frozen products includes ice cream, sherbet, ice milk and novelties. *** Fluid milk products includes whole, lowfat, and skim milk, cultured milk, sour cream, and yogurt. $\dagger_{\text {Energy }}$ is expressed in fossil fuel equivalent.				

Table 3－2c．Energy inputs to dairy processing in Nevada．

Product	$\begin{aligned} & \text { Annual } \\ & \text { Production } \\ & \left(10^{6} \mathrm{lbs}\right) \end{aligned}$	$\begin{gathered} \text { Heating } \\ 10^{9} \text { BTU } \dagger \end{gathered}$	Refrigeration $10^{9} \mathrm{BTU} \dagger$	$\begin{gathered} \text { Other } \\ \text { Electrical } \\ 10^{9} \text { BTU } \end{gathered}$
Butter	－－－	－－－	－－－	－－－
Cheese	－－－	－－－	－－－	－－－
Cottage Cheese	－－－	－－－	－－－	－－－
Evap．and Cond．Milk	－－－	－－－	－－－	－－－
Dried Products＊	－－－	－－－	－－－	－－－
Frozen Products＊＊	－－－	－－－	－－－	－－－－
Fluid Milk Products ${ }^{\text {i }}$＊＊	137	37	17	12
total		37	17	12
＊ Dried Products incl whey． Frozen products inc ＊が Fluid milk products sour cream，and yog ${ }^{\dagger}$ Energy is expressed	es dried mi des ice cre ncludes who t． n fossil fuel	instant sherbet lowfat， equivale	d dried milk， ce milk，and d skim milk，	dried lties． ured milk，

Table 3-2d. Energy inputs to dairy processing in Oregon,

Product	Annual Production (106 1bs)	$\begin{gathered} \text { Heating } \\ 10^{9} \text { BTU } \end{gathered}$	$\begin{gathered} \text { Refrigeration } \\ 10^{9} \text { BTU } \dagger \end{gathered}$	$\begin{gathered} \text { Other } \\ \text { Electrical } \\ 10^{9} \mathrm{BTU} \dagger \end{gathered}$
Butter	12	9	3	1
Cheese	23	64	10	26
Cottage Cheese	15	16	3	4
Evap. and Cond. Milk	---	---	---	---
Dried Products*	---	---	---	---
Frozen Products**	12	46	35	44
Fluid Milk Products***	224	60	28	19
'rotal		195	79	94
* Dried products includes dried milk, instantized dried milk, and dried whey. ** Frozen products include ice cream, sherbet, ice milk, and novelties. *** Fluid milk products includes whole, lowfat, and skim milk, cultured milk, sour cream, and yogurt. ${ }^{\dagger}$ Energy is expressed in fossil fuel equivalent.				

Table 3-2e. Energy inputs to dairy processing in Utah.

Product	Annual Production ($10^{6} \mathrm{lbs}$)	Heating 10^{9} BTU \dagger	$\begin{aligned} & \text { Refrigeration } \\ & 100^{9} \mathrm{BTU} \dagger \end{aligned}$	Other Electrical $10^{9} \mathrm{BTU}+$
Butter	7	5	2	1
Cheese	58	160	26	67
Cottage Cheese	9	9	2	2
Evap. and Cond. Milk	---	---	\cdots	---
Dried Products*	21	180	8	15
Frozen Products**	10	39	29	37
Fluid Milk Products***	91	24	11	8
TOTAL		417	78	130
* Dried products inclu whey. ** Frozen products incl ※ヶ\% Fluid milk products sour cream, and yogu tenergy is expressed	es dried mi de ice crea ncludes who t. fossil fu	instant sherbet, lowfat, equivale	d dried milk, e milk, and no d skim milk,	dried ties. ured milk

Table 3-2f. The total energy inputs to dairy processing in California, Idaho, Nevada, Oregon, and Utah combined.

Product	Annual Production ($10^{6} \mathrm{lbs}$)	$\begin{gathered} \text { Heating } \\ 10^{9} \mathrm{BTU} \dagger \end{gathered}$	$\begin{gathered} \text { Refrigeration } \\ 10^{9} \cdot \text { BTU }^{+} \end{gathered}$	Other Electrical $10^{9} \mathrm{BTU} \dagger$
Butter	168	120	44	15
Cheese	249	690	110	290
Cottage Cheese	172	180	34	48
Evap. and Cond. Milk	256	260	23	34
Dried Products*	198	1700	76	140
Frozen Products**	153	590	450	560
Fluid Milk Products***	3678	990	450	320
TOTAL		4530	1192	1407
* Dried products includes dried milk, instantized dried milk, and dried whey. ** Frozen products includes ice cream, sherget, ice milk, and novelties. *** Fluid milk products includes whole, lowfat, and skim milk, cultured milk, sour cream, and yogurt. †Energy is expressed in fossil fuel equivalent.				

The total of 7.1 trillion BTU which we estimate is expanded annual1y in dairy processing plants of Utah, Idaho, California, Oregon, and Nevada compares with 140 trillion BTU devoted to dairy processing nationwide as reported by the Census of Manufactures. The raw milk production level from these 5 states is 12% of the total raw milk production in the nation. This comparison provides additional evidence that while our energy use numbers are reasonable they tend to be conservative. The basic conclusions of the report, however, would not be changed by a doubling of the calculated energy requirements.

3.3 Relationship of processing energy to

 other energy inputsIt is of interest to examine not only the energy inputs to processing of dairy products but also the inputs to production, transportation packaging, distribution, and consumption. These various inputs are summarized for fluid milk and cheddar cheese in Tables 3-3a through 3-3h and Figures 3-3a and 3-3b.

According to the results of this study, energy inputs to processing comprise only about 5% of the total societal energy inputs required to bring fluid milk to the consumer's table. This strongly suggests that other sectors of the dairy industry need to be closely examined for possible ways of reducing fossil energy inputs. The purpose of the information included in the following figures and tables is to help place In perspective the processing energy requirements and the potential for energy savings by geothermal substitution.

Figure 3-3b. Energy Inputs to the Distribution of Fluid Milk

Table 3-3a Energy Inputs to Inplant Processing of Fluid Milk (BTU of Fossil Fuel Equivalent per 1 b of Milk)
$\frac{B T U}{1 b}$
Cooling 73
Homogenization 33
Pasteurization 26
Cleaning 82
Lighting and Heating 137
Total 351
Table 3-3b Use of Energy in the Manufacture of Paper Milk Cartons (BTU of fossil fuel Equivalent per $1 b$ of milk produced)
BTU
Acquisition of Raw Material 79
Manufacture of Paper 533
Transportation to Manufacturer 11
Manufacture of Container 25
Handles for the Container 52
Transportation to Milk Processor 11
Transportation to Home 9
Collection 5
Disposal $\frac{5}{730}$

Table 3-3c Use of Energy in the Manufacture of Plastic Pouch Containers
for Milk (BTU of fossil fuel equivalent per lb of milk produced)
$\frac{\mathrm{BTU}}{1 \mathrm{~b}}$
Acquisition of Raw Materials
Transportation to Manufacturer 4.0
Manufacture of Containers 23.4
Transportation to Milk Processor 2.0
Transportation to Home 1.3
Collection 0.4
Disposal
Total
0.7
259.3

Table 3-3d Use of Energy in the Manufacture of a Returnable Glass Milk Bottle (BTU of fossil fuel equivalent per 1 b of milk produced)

	$\frac{B T U}{1 b}$
Acquisition of Raw Material	14.0
Shipping Raw Material	1.8
Manufacture of Glass	109.1
Transportation to Milk Processor	1.3
Bottle Washing	37.8
Collection and disposal	3.8
Total	167.8

Table 3-3e Use of Energy in the Manufacture of Plastic Milk Bottles (BTU of fossil fuel equivalent per 1 b of milk produced)

Table $3-3 \mathrm{~g}$ Summary of Energy Inputs to Cheddar Cheese

3.4 Dairy processors currently using geothermal energy

We carefully checked with many of our extensive contacts through the dairy industry and were able to identify only one processor currently utilizing geothermal energy. Medo-Bell Dairy in Klamath Falls, Oregon, is that processor.

Section 4

ECONOMIC MODEL

The purpose of the economic part of this study was to ascertain the feasibility of converting an operational plant to a geothermal dependent system on the basis of present fuel expenditures for steam production.

4.1. Mode1 1

The first model implemented was based on the assumption that there would be no apprectable increase in cost of fuel over the next twenty years or that due to technological changes the annual cost per 10^{5} units produced would remain relatively constant. The justifiable investment to be ammortized over a period of N years at an interest rate of i percent is given by the equation,

$$
C \times P V a=I V,
$$

where

$$
\begin{aligned}
C= & \text { present cost per } 10^{5} \text { units produced } \\
\text { PVa }= & \text { present value of } \$ 1.00 \text { paid annually for } \\
& \mathrm{N} \text { years at } i \text { percent interest, or } \\
& =\frac{1-\frac{1}{(1+i)^{N}}}{i} \\
i= & \text { interest or borrowed capital } \\
I V= & \text { justifiable investment }
\end{aligned}
$$

The probability that costs will remain constant is very small and unrealistic. Therefore, a second model that accounts for an annual percent increase in the cost of fuel was devised.
4.2 Mode1 2

This model is based on the assumption that fuel costs will increase at either five or ten percent per year for the next twenty years.

The justifiable investment is given by the equation,

$$
\sum_{n=1}^{N} C_{n} \times P V_{n}=I V
$$

where

$$
\begin{aligned}
C_{n}= & C= \\
& \text { initial or present cost per } 10^{5} \text { units produced } \\
& \text { over a period of } N \text { years with } C_{n}=C_{n-1}+ \\
& {\left[C_{n-1} \times \text { I when } n>1, \text { with } I=\right.\text { annual increase }} \\
& \text { in fuel costs. }
\end{aligned}
$$

$$
P V_{n}=\frac{1-\frac{1}{(1+i)^{n}}}{i}
$$

where
$i=$ the interest rate on borrowed capital
$\mathrm{n}=$ the year in question

IV = justifiable investment

The assumption that fuel costs increase annually at 5% or 10% increases the justifiable investment obtained using model one approximately 1.5 and 2 times respectively.

Tables $4 a$ and $4 b$ are the summation of the results of the application of both models per dairy product. Each product is identiffed and each unit of measure specified in the adjacent column. A cost column identifies the present cost per 10^{5} unit produced. Adjacent to the cost column are the justifiable investments based on assumptions of constant fuel costs, $5 \% / \mathrm{yr}$ increase and $10 \% /$ yr increase in fuel costs. Table 4 a deals with the conversion of the heating system to geothermal energy while Table 4b addresses the
conversion of the refrigeration. Interest on borrowed capital was assumed to be 10% per annum.

Table 4-a. Justifiable investments per product in conversion to geothermal steam heating system.

Product	Units of Measure	```Typical Annual production range (10```	cost per 10^{5} units produced	$\begin{gathered} \text { Investment } / 10^{5} \\ \text { units/yr. } \\ \text { present } \\ \text { fuel cost } \end{gathered}$	$\begin{gathered} \text { Investment/ } 10^{5} \\ \text { units/yr. } \\ 5 \% / \mathrm{yr} \text { fuel } \\ \text { cost rise } \end{gathered}$	$\begin{gathered} \text { Investment } / 10^{5} \\ \text { units/yr. } \\ 10 \% / \text { yr fuel } \\ \text { cost rise. } \end{gathered}$
fluid milk	gal	$3.0-276.0$	170.00	1450.00	2060.00	3090.00
cheddar cheese w/o whey drying	Ib	$3.0-250.0$	310.00	2640.00	3750.00	5635.00
whey powder	Ib	$15.0-150$	1070.00	9110.00	12960.00	19450.00
cottage cheese w/o whey drying	1b	$8.0-21.0$	120.00	1030.00	1450.00	2180.00
sour criam	1 b	$2.0-25.0$	36.00	310.00	440.00	655.00
cultured milk	$q \mathrm{t}$	$0.2-36.0$	72.00	630.00	870.00	1310.00
cream cheese w/o whey drying	1b	$0.3-10.0$	150.00	1280.00	1820.00	2725.00
dried milk	1 b	$75.0-180.0$	830.00	7070.00	10050.00	15100.00
instantized milk	16	$12.0-60.0$	87.00	740.00	1050.00	1580.00
butter	16	$0.7-55.0$	82.00	700.00	990.00	1490.00
ice cream	gal	$0.1-120.0$	430.00	3660.00	5210.00	7820.00
evaporated milk	1 b	$20.0-1100.0$	112.00	950.00	1360.00	2040.00
processed cheese	1 b	100.0-6000.0	39.00	330.00	470.00	710.00
dried buctermilk	Ib	$0.6-6.0$	830.00	7070.00	10050.00	15100.00

Table 4-b. Justifiable investments per product in utilization of geothermal steam in an absorption refrigeration system.

Product	Units of Measure	Typical Annual production range (10^{5} units)	cost per 10^{5} units produced	$\begin{gathered} \text { Investment } / 10^{5} \\ \text { units/yr. } \\ \text { present } \\ \text { fuel cost } \end{gathered}$	$\begin{gathered} \text { Investment } / 10^{5} \\ \text { units/yr. } \\ 5 \% / \mathrm{yr} \text { fuel } \\ \text { cost rise } \end{gathered}$	$\begin{gathered} \text { Investment } / 10^{5} \\ \text { units/yr. } \\ \text { 10\%/yr fuel } \\ \text { cost rise } \end{gathered}$
fluid milk	gal	3.0-276.0	150.00	1280.00	1820.00	2730.00
cheddar cheese w/o whey drying	1 b	3.0-250.0	110.00	940:00	1330.00	2000.00
whey powder	1 b	15.0-150.0	150.00	1280.00	1820.00	2730.00
cottage cheese w/o whey drying	lb	8.0-21.0	47.00	400.00	570.00	850.00
sour cream	1 b	2.0-25.0	48.00	410.00	580.00	870.00
cultured milk	$q \mathrm{t}$	0.2-36.0	52.00	440.00	630.00	950.00
cream cheese w/o whey drying	1b	0.3-10.0	80.00	680.00	970.00	1450.00
dried milk	1 b	75.0-180.0	30.00	260.00	360.00	550.00
instantized milk	1b	12.0-60.0	10.00	90.00	120.00	180.00^{-}
butter	1 b	0.7-55.0	64.00	540.00	780.00	1160.00
ice cream	gal	0.1-120.0	720.00	6130.00	8720.00	13100.00
evaporated milk	Ib	20.0-1100.0	26.00	220.00	315.00	470.00
processed cheese	1 b	100.0-6000.0	26.00	220.00	315.00	470.00
dried buttermilk	1 b	0.6-6.0	50.00	430.00	610.00	910.00

Section 5

PRODUCTS SECTION

The purpose of this section is to describe the process procedures and production energy requirements of fourteen different dairy products.

A process description, flow chart, and tables of energy inputs to the production of each product are contained in a sub-section for each of the different dairy products. A maximum temperature and percent energy consumption bar graph follows each sub-section's energy input tables. Some of the products, such as butter and ice cream, also have a plant layout description inserted in their respective sub-sections. From these plant layout descriptions square feet of floor space in a typical plant was estimated.

A comparison of the energy requirements of some products tabled in this section versus the average survey values for these products concludes this section.

FLUID MILK PRODUCTION

Description

Raw milk is received intermittantly throughout the day. Upon receipt, milk is cooled as it is pumped to the cold storage tank by a plate heat exchanger to keep the milk temperature at or below $40^{\circ} \mathrm{F}$. The milk is tested while in the storage tank to determine its fat content.

Milk is pumped from the raw storage tank and through a clarifier. The clarifier's purpose is to remove extraneous material. A portion of the milk enters the separator before going to the rar standardizing tanks while the remainder of the milk is fed directly to the standardizing tanl:s. Jnough skim milk is separated so that its combinations with whole milk in the standardizing tanks gives low fat milk at 2.0% butterfat and the whole milk at about 3.5% butterfat. Fxcess cream from the separator is used in other products or sold to other processing plants.

From the raw standardizing tanks the milk is pumped to a balance tank and then through the high temperature short time pasteurizer. In the regeneration section of the pasteurizer the milk is heated from about $38^{\circ} \mathrm{F}$ to $138^{\circ} \mathrm{F}$. The heating media in the repenerator is previously heated milk. A timing pump controls the flow rate in the system. After leaving the pasteurizer the milk flows through the homogenizer whose purpose is to stabilize the cream in the milk. This is accomplished by compressing the milk to $2000-3000 \mathrm{psig}$ and expanding it through a small orifice. Fxpansion in the orifice breaks up the fat globules and produces a $5^{\circ} \mathrm{F}$ temperature rise in the milk. The milk returns to the nasteurlzer to flow through the heating section where the temperature is increased from $143^{\circ} \mathrm{F}$ to $165^{\circ} \mathrm{F}$.

Milk , at the desired pasteurizing temperature. travels through a pipe of sufficient length to give it at least a 15 second holding time. It then enters the flow diversion valve which directs the flow of milk according to temperature. If the milk is below the desired minimum, $\left(161^{\circ} \mathrm{F}\right.$ is the legal minimum) it is diverted back to the balance tank to be recirculated through the system. If the temperature is above the desired minimum, the flow is directed back to the regenerator. In the regenerator the milk loses heat to incoming cold milk, thus reducing its temperature from $165^{\circ} \mathrm{F}$ to $66^{\circ} \mathrm{F}$. The milk then enters the cooling section of the pasteurizer where its temperature is lowered from $66^{\circ} \mathrm{F}$ to $38^{\circ} \mathrm{F}$.

The cooled and pasteurized milk is stored in a tank to await packaging. The milk is fed into fillers which package the milk into paper, glass, or plastic containers. The containers are sealed and placed in the cold storage room until shipment.

Figure 5-1a. Flow chart showing the production of fluid milk.

Energy inputs into fluid milk processing
The energy inputs for fluid milk processing will be based on a plant processing 105,000 gallons of milk per week. ${ }^{11}$ The plant will operate 5 days a week, processing an average of 21,000 gallons per day. Other assumptions made about the plant are:

1. Only fluid milk products will be produced i.e; whole milk, lowfat, skim milk, and chocolate milk.
2. Equal energy jnputs are required to produce each of the above products.
3. Only one-third of the milk entering the plant will be separated.
4. The total air circulation rate for the entire plant is $35,000 \mathrm{CFM}$.
5. The climate of the plant's geographic locale.is similar to the Salt Lake City, Utah area.
6. The following CIP cleaning cycles are needed each processing day 1 - HTST pasteurizer (Acid Wash)

11 - Tanks and milk pipe lines
7-Tanker trucks
19. cycles/day
7. The following, batches of items must be cleaned manually each day.

1 - all filling machines parts
1 - separator and clarifier
1 - automatic valves and positive displacement pumps 3 batches/day
8. Only 25% of the total product is packaged in returnable plass bottles.
9. Four - $1 / 2$ horsepower fans circulate air in the cold storage room.
10. The sizes of the rooms in the plant are:

Eoom	Floor space (ft. ${ }^{2}$)	Volume (ft. ${ }^{3}$)
Processing rooms	5349	74,886
Dry storage rooms	5931	83,034
Offices, lunch, locker and restrooms	6860	68,600
Cold storage room	3200	32,000
Boiler and refrigeration rooms	2440	$34,160:$
Tanker receiving and garage	3409	47,726
Hallways	404	4,040
		27,593

The following tables represent estimates of most of the energy requirements for processing fluid milk. The estimating procedure for each energy requirement is found in the Energy Calculation Section under the Energy Calculation Number given with each energy cost. A layout of the plant showing dimensions and components is located after the energy use tables.
A.W. Farrall estimates 20 lbs . of steam are required per 100 lbs . of milk which translates to about 1700 BTU per gallon. ${ }^{8}$

Table 5-1a. Typical electrical energy use per gallon of fluid milk.

Process		Calculation Number	Energy Use (BTU/gal.)
Pumping Milk	1.01	4.3	1.5
Clarification	2.01	8.6	3.1
Separation	3.01	2.9	1.0
Homogenization	4.01	96.0	34.5
CIP pumps	5.01	10.8	3.9
Air Compressor	8.01	3.5	1.3
Cold Storage Room Fans	9.01	5.4	1.9
Heating and Air Conditioning Fans	10.01	44.7	16.1
Boiler Fan	11.01	23.1	8.3
Cooling Tower Fans	12.01	7.8	2.8
Lights and Misc. Motors	13.01	71.2	25.6

Table 5-1b. Typical steam energy use per gallon of fluid milk.

Process	Calculation Number	Fnergy Use (BTU/gal.)	$\%$
Cleaning - CIP	15.01	561	44.6
Cleaning - Manual	16.01	27	2.2
Heating the Plant	18.01	229	18.2
Product Heating	19.01	189	15.0
Steam Line Losses	20.01	189	15.0
Bottle washing		21.01	62

Table 5-1c. Uses of refrigeration energy per gallon of fluid milk.

Uses of Refrigeration	Calculation Number	Cooling Required (BTU/gal)	$\%$ Total
Cold Storage Room	22.01	143	26.3
Air Conditioning	23.01	41	7.5
Product Cooling	24.01	293	53.8
Cooling Line Losses	25.01	67	12.4

With a coefficient of performance of 2.86 for the refigeration system as defined in Energy Calculation No. 28.02, the electrical energy needed to deliver the above cooling load is:

$$
\frac{\left(544 \frac{\mathrm{BTU}}{\mathrm{gal} \mathrm{milk}}\right)}{(2.86)}=190 \frac{\mathrm{BTU}}{\mathrm{gal} \mathrm{milk}}
$$

Table 5-1d. Total energy cost per gallon of fluid milk.

Type of Energy	Energy Used $\frac{\mathrm{BTU}}{\mathrm{gal} \mathrm{milk}}$	$\begin{aligned} & \text { Unit Price } \\ & \frac{\$}{10^{6} \mathrm{BTU}} \end{aligned}$	$\begin{gathered} \text { Cost } \\ \frac{\$ \mathrm{mal} \mathrm{milk}}{} \end{gathered}$	Fossil Fue1 Equivalent* $\frac{\mathrm{BTU}}{\mathrm{gal} \mathrm{milk}}$
Electrical				
1. Lights and Motors	278	7.32	0.0020	834
2. Refrigeration	209	7.32	0.0015	627
Steam	1257	1.33	0.0017	1508
		Total	0.0052	2969

Table 5-le. Maximum process temperature and percent of total heating energy consumption in fluid milk production. (Cross hatched represents the maximum temperature range per process.)

Figure 5-1b. Fluid milk plant Iayout as given by Tracyll

Section 5-2
CHEDDAR CHEESE PRODUCTION

Description

Cheddar cheese production starts with the delivery of raw milk. As the milk is received it is pumped to a weigh tank and then to the raw storage tank via a plate cooler. The milk must be maintained at or below 40° F during the storage stage. This may be accomplished via a plate exchanger or by refrigeration of the storage tank.

The milk is clarified on its way to the balance tank of the HTST pasteurizer. The milk enters the pasteurizer at $38^{\circ} \mathrm{F}$, and leaves the regeneration section of the pasteurizer at $110^{\circ} \mathrm{F}$, having been warmed by previously pasteurized milk. It then flows through the timing pump to the heating section and holding tubes of the pasteurizer. If the temperature of the milk is below the desired minimum pasteurizing temperature when it reaches the flow diversion valve, it is diverted back to the balance tank. If the temperature is above the desired minimum (16$]^{\circ} \mathrm{F}$ is the legal minimum), the milk returns back to the regenerator to be cooled to approximately $90^{\circ} \mathrm{F}$. The milk next enters the cooling section of the pasteurizer where its temperature is lowered to $88^{\circ} \mathrm{F}$ through the use of culinary water as a heat sink.

Once the milk has heen pasteurized it fs pumped to a cheese vat where color and starter are mixed with the incoming milk. Starter, a bacterial culture, makes up 1% to 2% of the total mass of the mixture. Three ounces of rennet, a milk coaculating enzyme, diluted with a half gallon of chlorinated water is added for every 1000 pounds of milk in the vat. The rennet and starter are mixed uniformly throughout the vat by a paddle asfitator which
operates for 2-3 minutes, after which the paddles are immediately removed and the milk is allowed to coarulate.

About 20 to 25 minutes after adding the rennet, the curd is cut into $1 / 4$ inch cubes using curd knives consisting of piano wire stretched across a rectangular frame. About 20 minutes after cutting the curd, the paddles are replaced in the agitator to stir the curd and help with the expulsion of whey. Steam is admitted to the jacketed vat and the temperature of the curd is slowly raised from $88^{\circ} \mathrm{F}$ to $102^{\circ} \mathrm{F}$ at a rate of $2^{\circ} \mathrm{F}$ per 5 minutes.

About one hour after cutting the curd, an acidity test is run on the whey. If the acidity has reached 0.13 to 0.15 per cent (expressed as lactic acid), then half of the whey is withdrawn from the curd. The curd is again agitated for 5 minutes and the remaining whey is allowed to drain. During the draining of the whey, the curd is pushed to the sides of the vat to form a narrow trench down the center.

The cheddaring process begins after the curd is matted together forming long slabs of cheese. The curd is cut manually into slabs about 18 inches long and 2 inches wide. The slabs are flipped over several times and then stacked on each other to help with further expulsion of whey. The cheddaring process is continued until the whey from the cheese reaches 0.50 to 0.60 percent acidity.

The curd blocks are fed into a curd mill which slices them. Salt is added at the rate of 4 pounds per 1000 pounds of milk processed. The curd is mixed to evenly dissolve the salt and is dumped into hoops lined with cloth or paper bandages. The filled hoops are transferred to the curd press and pressurized to force the whey from the cheese.

The pressure is released after 30 minutes to allow "dressing" or pulling the bandages tight around the cheese. Then the pressure is reapplied and left overnight.

The following morning, the hoops are removed and the cheese is placed in the drying room for 48 hours.

After the drying process is completed the cheese is either dipped in paraffin or sealed in a paraffin coated paper wrapper via a heated press and packed in cardboard boxes which are moved to a $40^{\circ} \mathrm{F}$ cold storage room for curing.

The length of the curing period is dependent upon the type of cheese desired. Mild cheddar flavor requires 2 to 3 months storage. Six months in a $50^{\circ} \mathrm{F}$ storage room is required for sharp flavor.

Starter making can be a lengthy procedure and will not be described completely herc. However, from an energy standpoint, the making of bulk starter is of interest. The bulk starter is made from special dried starter media. The media is mixed with water and heated from $70^{\circ} \mathrm{F}$ to $190^{\circ} \mathrm{F}$ destroying most of the microorganisms in it, and then cooled back to $70^{\circ} \mathrm{F}$. The media is innoculated with a mother culture and incubated for 12 hours. It is then cooled to $40^{\circ} \mathrm{F}$ to await addition to the cheese milk.

Figure 5-2a. Flow chart showing cheddar chcese production.

Energy Inputs Into Cheddar Cheese Production

The energy inputs for cheddar cheese production will be based on a plant processing 800,000 pounds of milk per weak. The plant will operate 6 days a week making 80,000 pounds of cheese each week. The following assumptions will be made about the plant.

1. The processing energy requirements will not include any whey concentrating or drying. However, the total energy use will show two options, one with whey being ignored and the other with whey being dried. The individual energy requirements for drying whey are shown in the Dried Whey Section.
2. Ten pounds of milk will yield one pound of cheese.
3. There is 0.56 pounds of whey powder produced per pound of cheese.
4. Provision will be made to store the cheese 60 days before shipment.
5. Only cheddar cheese will be produced in this plant.
6. The total air circulation rate for the entire plant is 86,500 CFM.
7. The climate of the plant location will be similar to that of the Sa1t Lake City, Utah area,
8. The following GIP cleaning cycles are needed each day
9. - HTST Pasteurizer (Acid Wash)

7 - T'anker trucks
5- III.1k tanks and pipeline systems
13 cycles/day
9. The following batches of items must. be cleaned mamully each day

1 - clarifier and whey separator
1 - curd knives, stirrers, strainers, etc.
3 - soiled cheese hoops
1 - positive displacement pumps and automatic valves
7 - cheese vats
13 batches/day
10. Fight - 1 horsepower fans circulate air in the cold storage room.
11. The sizes of the rooms in the plant are:

Room	Floor space (ft. ${ }^{2}$)	Volume (ft. ${ }^{3}$)
Processing rooms	15,354	245,664
Offices, lunch, locker, and restrooms	4,972	49,720
Dry storage and drying room	3,230	51.680
Starter rooms	1,150	18,544
Cold Storage room	9,440	160,480
Receiving shelter	1,600	25,600
Roiler and refrigeration rooms	3,255	52,080
Hallvays	4,145	66,320

The following tables represent estimates of most of the energy requirements for producing, cheddar cheese. The estimating procedure for each energy requirement is found in the Pnergy Calculation Section under the Fnergy Calculation Number given with each energy cost. A typical cheddar cheese plant layout is found after the energy use tables.

Table 5-2a. Typical electrical energy use per pound of cheddar cheese.

Process	Calculation Number	Energy Use $(\mathrm{BTV} / 1 \mathrm{~b})$	$\ldots \%$
Pumping Milk	1.02	5.0	1.3
Clarification	2.02	10.0	2.6
Whey Separation	3.02	9.0	2.3
CIP Pumps	5.02	11.6	3.0
Air Compressors	8.02	4.6	1.2
Cold Room Fans	9.02	28.5	7.4
Heating and Air Cond: Fans	10.02	144.9	37.8
Boiler Fan	11.02	30.4	7.9
Cooling Tower Fans	12.02	5.6	1.5
Lights and Misc. Motors	13.02	133.5	34.8

Table 5-2b. Typical steam energy use per pound of cheddar cheese:

Process	Calculation Number	Energy Use $(\mathrm{BTU} / 1 \mathrm{~b})$	$\%$
Cleaning - CIP	15.02	611	26.3
Cleaning - Manual	16.02	187	8.1
Heating the Plant	18.02	495	21.3
Product Heating	19.02	684	29.5
Steam Line Losses	20.02	342	14.7

Table 5-2c. Uses of refrigeration per pound of cheddar cheese. 5-18

Process	Calculation Number	Cooling Needed $(\mathrm{BTU} / 1 \mathrm{~b})$	$\%$
Cold Storage Room	22.02	301	70.3
Air Conditioning	23.02	40	9.3
Product Cooling	24.02	66	15.4
Cooling Line Losses	25.02	21	4.9

With a coefficient of performance of 2.86 for the refrigeration system as defined in Energy Calculation No. 28.02, the electrical energy needed to deliver the above cooling load is:

$$
\left(428 \frac{\mathrm{BTU}}{1 \mathrm{chcese}}\right)=150 \frac{\mathrm{BTU}}{2.86}
$$

Table 5-2d. Total energy cost per pound of cheddar cheese neglecting whey spray drying costs.

Type of Energy Used	Energy Used (BTU/lb)	Unit Price* $\frac{\$}{10^{6} \mathrm{BTU}}$	$\begin{gathered} \text { Dollar Cost } \\ \frac{\$}{(1 \mathrm{~b})} \end{gathered}$	Fossil Fuel Equivalent* (BTU/1b)
Electrical				
1. Lights and motors	383	7.32	0.0028	1149
2. Refrigeration	150	7.32	0.0011	450
Steam	2319	1.33	0.0031	2783
Total			0.0070	4382
$*$ Unit prices and fos Calculations Nos. 28.01-2	$\begin{aligned} & \text { ssi1 fuel } \\ & 28.06 . \end{aligned}$	equivalent	ors are def	ed in Energy

Table 5-2e. Total energy cost per pound of cheddar cheese including whey drying costs.

Type of Energy Used	Energy Used ($\mathrm{BTU} / 1 \mathrm{~b}$)	$\begin{aligned} & \text { Unit-Price* } \\ & \frac{\$}{10^{6} \mathrm{BTU}} \end{aligned}$	$\begin{gathered} \text { Do11ar } \operatorname{Cost} \\ \frac{\$}{(1 b)} \end{gathered}$	Fossil Fuel Equivalent* (BTU/1b)
Electrical				
1. Lights and motors	498	7.32	0.0036	1494
2. Refrigeration	268	7.32	0.0020	804
Steam	5440	1.33	0.0072	6528
(for spray drying)				
Total			0.0146	10,563

 temperature range per process.)

[^0]Section 5-3.

COTTAGE CHEESE PRODUCTION

Description

Upon the receipt of raw milk from bulk tankers, it is weighed, cooled and pumped to the raw storage tanks. To start the cheese making process, raw milk from the storage tank is pumped through a clarifier, a tubular preheater, and then a separator. The clarifier removes extraneous material. The tubular preheater increases the milk temperature to $90^{\circ} \mathrm{F}$ to improve the efficiency of separation.

Skim milk from the separator flows to a separate HTST Pasteurizer where It is heated to $151^{\circ} \mathrm{F}$ in the regeneration section and to $162^{\circ} \mathrm{F}$ in the heating section. It is then cooled to $101^{\circ} \mathrm{F}$ in the regeneration section and $88^{\circ} \mathrm{F}$ in the cooling section. This pasteurizer description is similar to the one given in the Cheddar Cheese Section. The 40% fat cream from the separator flows to its own UTST pasteurizer where it is heated to $170^{\circ} \mathrm{F}$ for 15 seconds and then cooled to $38^{\circ} \mathrm{F}$. The cream is pumped to a storage tank to await processing into cottage cheese dressing or other dairy products.

Skim milk coming from the HTST pasteurizer at $89^{\circ} \mathrm{F}$ is pumped to a cheese vat to be mixed with starter and rennet. Fnough starter is added to make up 5% of the total mass added. The mixture is agitated and then allowed to incubate till a plo of 4.7 is attained at which time the coagulum is quite firm and is cut into $1 / 4$ to $1 / 2$ inch cubes. The elapsed time from the adding, of starter to the cutting the curd is about two and a half hours.

The cut curd is allowed to set for 15 minutes. The cook begins when hot water is circulated in a jacket around the vat. This increases the temperature of the vat contents $2{ }^{\circ} \mathrm{F}$ every five minutes. Agitation of the curd is started about 20 minutes after cutting. The cook continues until the temperatures reaches approximately $125^{\circ} \mathrm{F}$ and the curd expels sufficient whey to give it the desired firmness. The cooking process takes about two hours.

After the cook is completed, the hot water in the jacket and the whey is drained. The remaining curd is washed with $70^{\circ} \mathrm{F}$ water to lower the curd temperature to $80^{\circ} \mathrm{F}$ or $85^{\circ} \mathrm{F}$. After the water and curd mixture is agitated, it is drained and a second wash with $60^{\circ} \mathrm{F}$ water is added. A third wash with $34^{\circ} \mathrm{F}$ water is added to lower the curd temperature to about $40^{\circ} \mathrm{F}$.

With the curd still containing the third wash water, the curd-rater mixture is pumped to the draining and creaming vats. The final. wash water is then drained and the desired amount of cottage cheese dressing is added. The dressing and curd are thoroughly mixed before being conveyed to the packaging machines and the cold storage room.

Cottage cheese dressing is made from a mixture of 49% fat cream, whole milk, salt, and stabilizer. The ingrediants are blended together in a vat and heated to 170° for 30 minutes to pasteurize the dressing. At the completion of the heating period, the dressing is homogenized and cooled back to $38^{\circ} \mathrm{F}$. The dressing is then stored to awajt further use.

The total time roquired per vat of cottage cheese is about six hours. The energy intensive procedures in making starter is the same as clescribed in the Cheddar Cheese Section.

Figure 5-3a. Cheddar cheese plant layout as given by Tracy ${ }^{13}$.

Energy Inputs Into Cottage Cheese Production

The energy inputs for cottage cheese production will be based on a plant processing $1,200,000$ pounds of milk per week. ${ }^{13}$ The plant will operate 5 days a week making 219,750 pounds of cottage cheese each week. The following assumptions will be made about the plant.

1. The plant will also produce cream cheese, sour cream, and cultured milk.
2. The weekly consumption and production figures are as follows; 825,500 lbs. of skim milk will be made into 146,500 lbs. of curd which will be combined with 73,250 1bs. of 15% fat dressing made from 50,875 lbs. of whole milk and 22,375 lbs. of 40% cream. This makes $319,750 \mathrm{lbs}$. of cottage cheese.
3. The processing costs will not contain any whey concentrating or drying costs. However, the total energy cost will show two options, one with whey being ignored and the other with whey being dried. The individual costs of drying whey are shown in the Dried Whey Section.
4. There are 0.19 lbs . of whey powder which can be produced per pound of cottage cheese.
5. The total. air circulation rate for the entire plant is 73,500 CFM.
6. The climate where the plant is located is similar to the Salt Lake City, Utah area.
7. The following CTP cleaning cycles are needed each day.

1 - HTST. Pasteurizer (Acid Wash)
4 - Tanker Trucks
8 - Milk tanks and pipeline systems
13 cycles/day
8. The following batches of items must be cleaned daily.

1 - clarifier and separator
2 - shovels, stirrers, etc.
1 - positive displacement pumps and automatic valves

1. - packaging equipment parts

8 - cheese vats
_6 - creaming vats
19 batches/day
9. Six - $1 / 2$ horsepower fans circulate air in the cold storage room.
10. The sizes of the rooms in the plant are:

Room	Floor space (ft. ${ }^{2}$)	Volume (ft. ${ }^{3}$)
Offices, lunch, locker, and restrooms	3544	49,616
Dry Storage	2400	33,600
Processing Roonis	3229	91,990
Cold Storage Room	2800	36,400
lobler and Refrtgeration Rooms	2909	40,726
Culture Rooms	3857	43,370
packaging rooms	2306	27,672
Recciving Shelter	2400	33,600
totals	28,445	356,974

The following tables represent estimates of most of the energy requirements for producing cottage cheese. The estimating procedure for each energy requirement is found in the Energy Calculation Section under the Fnergy Calculation Number given with each energy cost. A plant layout of a cottage cheese, cream cheese, sour cream, and cultured milk producing plant is given after the tables.

Table 5-3a. Typical electrical energy uses per pound of cottage cheese.

Process	Calculation Number	Energy Use (BTU/1b)	\%
Pumping Milk	1.03	2.5	2.8
Clarification	2.03	4.1	4.6
Separation	3.03	4.0	4.5
Homogenization	4.03	3.7	4.1
CIP Pumps	5.03	3.5	3.9
Air Compressor	8.03	1.2	1.3
Cold Storage Room Fans	9.03	2.0	2.2
Heating and Air Cond. Fans	10.03	33.6	37.6
Boiler Fan	11.03	8.3	9.3
Cooling Tower Fan	12.03	2.4	2.7
Lights and Misc. Motors	13.03	24.0	26.9
Total		89.3	100.0

Table 5-3b. Typical steam energy uses per pound of cottage cheese.

Process	Calculation Number	Amount Used (BTU/Ib)	$\%$
Cleaning - CIP	15.03	185	21.5
Cleaning - Manual	16.03	83	9.6
Heating the Plant	18.03	89	10.3
Product Heating	19.03	434	50.3
Steam Line losses	20.03	71	8.2

Table 5-3a. Typical electrical energy uses per pound of cottage cheese.

Process	Calculation Number	Energy Use (BTU/lb)	\%
Pumping Milk	1.03	2.5	2.8
Clarification	2.03	4.1	4.6
Separation	3.03	4.0	4.5
Homogenization	4.03	3.7	4.1
CIP Pumps	5.03	3.5	3.9
Air Compressor	8.03	1.2	1.3
Cold Storage Room Fans	9.03	2.0	2.2
Heating and Air Cond. Fans	10.03	33.6	37.6
Boiler Fan	11.03	8.3	9.3
Cooling Tower Fan	12.03	2.4	2.7
Lights and Misc. Motors	13.03	24.0	26.9
Total		89.3	100.0

Table $5-3 b$. Typical steam energy uses per pound of cottage cheese.

Process	Calculation Number	Amount Used $(\mathrm{BTU} / 1 \mathrm{~b})$	$\%$
Cleaning - CIP	15.03	185	21.5
Cleaning - Manual	18.03	83	9.6
Heating the Plant	19.03	434	10.3
Product Heating	20.03	71	50.3
Steam Line Losses	Total		862

Table 5-3c. Uses of refrigeration per pound of cottage cheese.

Process	Calculation Number	Energy Use (BTU/1b.)	$\%$
Cold Storage Room	22.03	22	12.1
Air Conditioning	23.03	12	6.6
Product Cooling	24.03	121	66.5
Cooling Line Losses	25.03	27	14.8

With a coefficient of performance of 2.86 for the refrigeration system as defined in Energy Calculation No. 28.02, the electrical energy needed to deliver the above cooling load is:

Table 5-3d. Total energy cost per pound of cottage cheese neglecting whey spray drying costs.

Type of Energy Used	Amount Used (BTU/1b)	$\begin{aligned} & \text { Unit Price* } \\ & \frac{S}{10^{6} \mathrm{BTU}} \end{aligned}$	$\begin{aligned} & \text { Dollar Cost } \\ & \frac{\$}{(1 b)} \end{aligned}$	Fossil Fuel Equivalent* (BTU/1b)
Electrical				
1. Lights and motors	S 89	7.32	0.00065	267
2. Refrigeration	64	7.32	0.00047	192
Steam	862	1.33	0.00115	1034
Total			0.00227	1493

Energy Inputs Into Sour Cream Production

The energy inputs for sour cream production will be based on a plant processing $1,200,000$ pounds of milk per week. The plant will operate 5 days a week making 60,000 pounds of sour cream each week. The following assumptions will be made about the plant.

1. The plant will also produce cream cheese, cottage cheese, and cultured milk.
2. Each week, $23,335 \mathrm{lbs}$. of 50% fat cream and $36,665 \mathrm{lbs}$. of whole milk will be combined to make $60,000 \mathrm{lbs}$. of sour cream.
3. The total air circulation rate for this plant is $73,5000 \mathrm{CFM}$.
4. The climate the plant is located in is similar to that of the Salt Lake City, Utah area.
5. Only one CIP cleaning cycle is needed each day because much of the pipelines and tanks holding cream and milk going for sour cream also are used for other products and the cleaning requirements are shared between them. The one cycle is assumed to be an acid wash.
6. The packaging equipment and processing pumps are the only equipment cleaned manually and it all can be cleaned in one batch.
7. Six- $-1 / 2$ horsepower fans circulate air in the cold storage room.

Table 5-3c. Uses of refrigeration per pound of cottage cheese.

Process	Calculation Number	Energy Use (BTU/1b.)	$\%$
Cold Storage Room	22.03	22	12.1
Air Conditioning	23.03	12	6.6
Product Cooling	24.03	121	66.5
Cooling Line Losses	25.03	27	14.8

With a coefficient of performance of 2.86 for the refrigeration system as defined in Energy Calculation No. 28.02, the electrical energy needed to deliver the above cooling load is:

$$
\frac{\left(182 \frac{\mathrm{BTU}}{1 \mathrm{~b}} \frac{\text { cheese }}{2.86}\right)}{}=64 \frac{\mathrm{BTU}}{1 \mathrm{~b} \text { cheese }}
$$

Table 5-3d. Total energy cost per pound of cottage cheese neglecting whey spray drying costs.

Type of Energy Used	Amount Used ($\mathrm{BTU} / 1 \mathrm{~b}$)	$\begin{aligned} & \text { Unit Price* } \\ & \frac{\$}{10^{6} \mathrm{BTU}} \end{aligned}$	$\begin{aligned} & \text { Dollar Cost } \\ & \frac{\$}{(1 \mathrm{~b})} \end{aligned}$	Fossil Fuel Equivalent* (BTU/1b)
Electrical				
1. Lights and motors	- 89	7.32	0.00065	267
2. Refrigeration	64	7.32	0.00047	192
Steam	862	1.33	0.00115	1034
Total			0.00227	1493

*Unit prices and fossil fuel equivalent factors are defined in Energy Calculations Nos. 28.01-28.06.

Table 5-3e. Total energy cost per pound of cottage cheese including whey drying costs.

Type of Energy Used	Amount Used (BTU/Ib)	$\begin{aligned} & \text { Unit Price* } \\ & \$ \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Dol1ar Cost } \\ & \frac{S}{(1 \mathrm{~b})} \end{aligned}$	Fossi1 Fue1 Equivalent* (BTU/1b)
		$\overline{106 \mathrm{BTU}}$		
Electrical				
1. Lights and motors	128	7.32	0.0009	384
2. Refrigeration	104	7.32	0.0008	312
Steam	1921	1.33	0.0026	2305
Natural Gas (for spray drying)	589	1.06	0.0006	589
Total			0.0049	3590

Section 5-4

SOUR CREAM PRODUCTION

Description

Since sour cream production consumes a large amount of cream, it is commonly made in conjunction with a product such as cottage cheese which requires a large volume of skim milk. Therefore this description will assume that the sour cream production procedure is a branch of the cottage cheese production process.

Incoming raw milk is weighed, cooled, and stored until further processing. The processing begins by pumping the stored raw milk through a clarifier to remove extraneous particles. Then after the milk is warmed to $90^{\circ} \mathrm{F}$ in a tubular preheater to improve separator efficiency it is separated into skim milk and 40% fat cream. The skim milk is used in the production of cottage cheese while the 40% cream is pumped through a HTST pasteurizer. In the pasteurizer the cream is heated to $154^{\circ} \mathrm{F}$ in the regeneration section and to $170^{\circ} \mathrm{F}$ in the heating section. After the appropriate holding time, the milk is cooled to $105^{\circ} \mathrm{F}$ and to $38^{\circ} \mathrm{F}$ in the regeneration and cooling sections respectively. The pasteurized cream can now be stored until it is desired to use the cream in the production of sour cream.

The 40% fat cream and raw whole milk are blended together to form an 18% fat cream mix. This cream is heated to $170^{\circ} \mathrm{F}$ and is held for 30 minutes. At the end of the holding period, the cream is homogenized at 3000 psig and then cooled down to $70^{\circ} \mathrm{F}$ by circulating sweet-water in the jacket surrounding the tank holding the cream.

Figure 5-4a. Flow chart showing sour cream production.

Starter is added until it represents 1 to 2 percent of the total mass. The mixture is incubated about 16 hours or until the acidity reached 0.6% (expressed as lactic acid). At this point the curd is broken and the coagulum is cooled to $65^{\circ} \mathrm{F}$ and forced by pumps or air pressure into packaging machines.

The packaged sour cream is placed in the cold storage room to finish cooling to $40^{\circ} \mathrm{F}$.

A detailed description of a high temperature short time pasteurizer and the method of making starter is given in the Cheddar Cheese Section.

Energy Inputs Into Sour Cream Production

The energy inputs for sour cream production will be based on a plant processing $1,200,000$ pounds of milk per week. The plant will operate 5 days a week making 60,000 pounds of sour cream each week. The following assumptions will be made about the plant.

1. The plant will also produce cream cheese, cottage cheese, and cultured milk.
2. Each week, $23,335 \mathrm{lbs}$. of 50% fat cream and $36,665 \mathrm{lbs}$. of whole milk will be combined to make $60,000 \mathrm{lbs}$. of sour cream.
3. The total air circulation rate for this plant is $73,5000 \mathrm{CFM}$.
4. The climate the plant is located in is similar to that of the Salt Lake City, Utah area.
5. Only one CIP cleaning cycle is needed each day because much of the pipelines and tanks holding cream and milk going for sour cream also are used for other products and the cleaning requirements are shared between them. The one cycle is assumed to be an acid wash.
6. The packaging equipment and processing pumps are the only equipment cleaned manually and it all can be cleaned in one batch.
7. Six-1/2 horsepower fans circulate air in the cold storage room.
8. The sizes of the rooms in the plant are:

The following tables represent estimates of most of the energy requirements in producing sour cream. The estimating procedure for each energy use is found in the Energy Calculation Section under the Energy Calculation Number given with each energy cost. A plant layout of a cottage cheese, cream cheese, sour cream, and cultured milk producing plant is shown in the section describing cottage cheese production.

Table 5-4a. Typical electrical energy uses per pound of sour cream.

Process	Calculation Number	Energy Use (BTU/1b.)	\%
Pumping Milk	1.04	0.6	1.7
Clarification	2.04	1.0	2.9
Separation	3.04	0.4	1.1
Homogenization	4.04	11.3	32.3
CIP Pumps	5.04	1.0	2.9
Air Compressor	8.04	0.3	0.9
Cold Storage Room Fans	9.04	2.0	5.7
Heating and Air Conditioning Fans	10.04	8.2	23.4
Boiler Fan	11.04	2.0	5.7
Cooling Tower Fans	12.04	2.4	6.9
Lights and Misc. Motors	13.04	5.8	16.6
Total		35.0	100.0

Table 5-4b. Typical steam energy uses per pound of sour cream.

Process	Calculation Number	Energy Use $($ BTU/Ib.)	$\%$
Cleaning - CIP	15.04	75	27.4
Cleaning - Manual	16.04	16	5.8
Heating the Plant	18.04	22	8.0
Product Heating	19.04	144	52.6
Steam L,ine Losses	20.04	17	6.2

Table 5-4c. Uses of refrigeration per pound of sour cream.

Use of Refrigeration	Calculation Number	Cooling Required (BTU/1b.)	$\%$
Cold Storage Room	22.04	41	22.0
Air Conditioning	23.04	3	1.6
Product Cooling	24.04	118	63.4
Cooling Line Losse,	25.04	24	12.9

With a coefficient of performance of 2.86 for the refrigeration system as defined in Energy Calculation No. 28.02, the electrical energy needed to deliver the above cooling load is:

$$
\frac{\left(186 \frac{\text { BTU }}{\mathrm{lb} \cdot \text { Sour Cream }}\right)}{2.86}=65 \frac{\mathrm{BTU}}{1 \mathrm{~b} \cdot \text { Sour Cream }}
$$

Tab1e 5-4d. 'Total energy cost per pound of sour cream.

Section 5-5

CREAM CHEESE PRODUCTION

Description

Since cream cheese production consumes a large amount of cream, it is commonly made in conjunction with a product such as cottage cheese which consumes a very large volume of skim milk. Also there are several variations in the procedure of making cream cheese. Thus, the procedure presented here will be a branch of a cottage cheese operation, typical of a modern dairy plant.

Incoming raw milk is weighed, cooled, and stored until further processing. The processing begins by pumping the stored raw milk through a clarifier to remove extraneous particles. Then, after the milk is warmed to $90^{\circ} \mathrm{F}$ in a tubular preheater, it is separated into skim milk and 40% fat cream. The skim milk is sent into the cottage cheese production line while the 40% cream is pumped through a HTST pasteurizer. In the pasteurizer the cream is heated to $154^{\circ} \mathrm{F}$ in the regeneration section and to $170^{\circ} \mathrm{F}$ in the heating section. After the appropriate holding time the cream is cooled to $105^{\circ} \mathrm{F}$ and to $38^{\circ} \mathrm{F}$ in the regeneration and cooling sections of the pasteurizer respectively. The pasteurized and cooled cream may now be stored before being processed into cream cheese.

The 40% cream and raw whole milk are mixed together forming a 5% fat cream. This cream is heated to $170^{\circ} \mathrm{F}$ for 30 minutes for pasteurization. It is then cooled to $79^{\circ} \mathrm{F}$ with culinary water and sweet water used as a
heat sink. Starter is added until it represents 1% of the total mass. The mixture is allowed to incubate for 16 hours at $70^{\circ} \mathrm{F}$ or until the coagulum reaches 0.83% acidity (expressed as lactic acid).

The coagulum is broken up by agitation and cooled to $65^{\circ} \mathrm{F}$. It is then slowly pumped through a preheater which raises the temperature to $120^{\circ} \mathrm{F}$ before entering the curd concentrator. Whey is removed in the curd concentrator, and the curd is pumped to a tank to be combined with 40% cream, non-fat dry milk, salt and stabilizer.

The cream cheese mixture is standardized to 33% fat and 45% total solids. The standardized mix is then heated to $150^{\circ} \mathrm{F}$, homogenized at about 3000 psig, packaged, and put in the cold storage roon to cool.

A detailed description of the high temperature short time pasteurizer operation and the method of making starter is given in the Cheddar Cheese section.

Figure 5-5a. Flow chart showing cream cheese production.

Energy Inputs Into Cream Cheese Production

The energy inputs for cream cheese production will be based on a plant processing $1,200,000$ pounds of milk per week. ${ }^{13}$ The plant will operate 5 days a week making 18,000 pounds of cream cheese every week. The following assumptions will be made about the plant.

1. The plant will also produce cottage cheese, sour cream, and cultured milk.
2. Each week, $43,758 \mathrm{lbs}$. of whole milk and 1242 lbs . of 40% cream are combined to make $45,000 \mathrm{lbs}$. of 5% fat cream. The 5% fat cream will yield 5400 lbs . of curd and $39,600 \mathrm{lbs}$. of whey. The curd is combined with $12,600 \mathrm{lbs}$. of 40% cream and small amounts of non-fat dry-milk, salt and stabilizer to form 18,000 bs. of cream cheese every week.
3. The processing energy requirements will not include those for whey concentrating or drying. However, the total energy requirement will show two options, one with whey being ignored and the other with whey being dried. The individual requirement costs for drying whey are shown in the Dried Whey Section.
4. There are 0.14 lbs . of dried whey powder which can be produced per pound of cream cheese.
5. The total air circulation rate for the entire plant is 73,500 CFM.
6. The climate which the plant is located in is similar to that of the Salt Lake City, Utah area.
7. Only 2 CIP cleaning cycles will be needed each day, one of which will be an acid wash. This is because most of the pipelines and tanks used for cream cheese production are also used for other dairy products and the cleaning costs are shared between them.
8. The curd concentrator and the packaging equipment are the only equipment to be cleaned manually and it all can be done in one batch.
9. Six- $1 / 2$ horsepower fans circulate air in the cold storage room.
10. The sizes of the rooms in the plant are:

Room	Floor space (ft. ${ }^{2}$)	Volume (ft. ${ }^{3}$)
Offices, lunch, locker, and restrooms	3544	49,616
Dry Storage	2400	33,600
Processing Rooms	8229	91,990
Cold Storage Room	2800	36,400
Boiler and Refrigeration Rooms	2909	40,726
Culture Rooms	3857	43,370
Packaging Rooms	2306	27,672
Receiving Shelter	2400	33,600

The following tables represent estimates of most of the energy costs of producing cream cheese. The estimating procedure for each energy use is found in the Energy Calculation Section under the Energy Calculation Number given with each energy cost. A plant layout of a cottage cheese, cream cheese, sour cream, and cultured milk producing plant. is shown in the section describing cottage cheese production.

Table 5-5a. Typical electrical energy uses per pound of cream cheesa.

Process	Calculation Number	Amount (BTU/1b)	\%
Pumping Milk	1.05	1.9	1.4
Clarification	2.05	3.2	2.3
Separation	3.05	0.8	0.6
Homogenization	4.05	11.5	8.2
CIP Pumps	5.05	6.6	4.7
Air Compressor	8.05	2.0	1.4
Cold Storage Room Fans	9.05	2.0	1.4
Heating and Air Cond. Fans	10.05	54.7	39.2
Boiler Fan	11.05	13.5	9.7
Cooling Tower Fans	12.05	4.1	2.9
Lights and Misc. Motors	13.05	39.1	28.0
Total		139.4	100.0

Table 5-5b. Typical steam energy uses per pound of cream cheese.

Process	Calculation Number	Amount $(B T U / 1 \mathrm{~b})$	$\%$
Cleaning - CIP	15.05	417	36.6
Cleaning - Manual	16.05	53	4.6
Heating the Plant	18.05	195	11.8
Product Heating	20.05	419	116
Steam Line Losses		1140	100.2

Table 5-5c. Uses of refrigeration.

Uses of Refrigeration	Calculation Number	Cooling Needed (BTU/1b)	$\%$
Cold Storage Room	22.05	117	37.3
Air Conditioning	23.05	20	6.4
Product Cooling .	24.05	144	45.8
Cooling Line Losses	25.05	33	10.5
	Total		314

With a coefficient of performance of 2.86 for the refrigeration system as defined in Energy Calculation No. 28.02, the electrical energy needed to deliver the above cooling load is:

Table 5-5d. Total energy cost per pound of cream chéese neglecting whey spray drying costs.

Type of Energy Used	Amount Used (BTU/1b)	$\begin{aligned} & \text { Unit Price* } \\ & \frac{\$}{10^{6} \mathrm{BTU}} \end{aligned}$	$\begin{gathered} \text { Dollar Cost } \\ \frac{\$}{(1 \mathrm{~b})} \end{gathered}$	Fossil Fuel Equivalent* (BTU/1b)
Electrical				
1. Lights and motors	139	7.32	0.0010	417
2. Refrigeration	110	7.32	0.0008	330
Steam	1140	1.33	0.0015	1368
Total			0.0023	2115

*Unit prices and fossil fuel equivalent factors are defined in Energy Calculations Nos. 28.01-28.06.

Table 5-5e. Total energy cost per pound of cream cheese including whey drying costs.

| Type of Energy UsedAmount
 Used
 $(\mathrm{BTU} / 1 \mathrm{~b})$ | Unit Price*
 $\frac{\mathrm{S}}{10^{6} \mathrm{BTU}}$ | Dollar Cost
 $\frac{\$}{(1 \mathrm{~b})}$ | Fossil Fuel
 Equivalent*
 $($ BTU $/ 1 \mathrm{~b})$ | |
| :--- | :---: | :---: | :---: | :---: | :---: |
| E1ectrical
 1. Lights and motors | 168 | 7.32 | 0.0012 | 504 |
| 2. Refrigeration | 140 | 7.32 | 0.0010 | 420 |
| Steam | 1920 | 1.33 | 0.0026 | 2304 |
| Natural Gas
 (for spray drying) | 434 | 1.06 | 0.0005 | 434 |

Table 5-5f. Maximum process temperature and percent of total heating energy consumption is Cream Cheese production neglecting They Drying. (Cross hatching represents the maximum temperature range per process.)

Section 5-6

CULTURED MILK PRODUCTION

Description

Cultured milk, commonly known as buttermilk, is made from a whole and skim milk blend with a fat content between 1 and 2 percent.

Incoming milk, for cultured milk production, is weighed, cooled and stored until further processing. The processing begins with clarification and separation of the whole milk into skim milk and 40% fat cream. The rav skim milk is belnded with raw whole milk in the proper proportions to give a 1 to 2 percent fat mixture. The cream from the separator is used in the production of other products.

The skim and whole milk mixture is heated in a vat to $190^{\circ} \mathrm{F}$ and held there for 30 minutes to pasteurize the mixture. After the holding time is over the mixture is cooled to $70^{\circ} \mathrm{F}$ with culinary and sweet-water which is circulated in the jacket surrounding the vat. Starter is added until it represents about 1% of the total mass in the vat. The mixture is allowed to incubate for 16 hours at $70^{\circ} \mathrm{F}$ or until an acidity of 0.88% is reached. It is then agitated to break up the coagulum and cooled to $40^{\circ} \mathrm{F}$ by circulating sweet water around the vat. The cultured milk is then packaged and put into the cold storage room until shipment. The energy intensive procedures of starter making are described in the cheddar cheese section.

Figure $5-6 a$. Flow chart showing cultured milk production.

Energy Inputs into Cultured Milk Production

The energy inputs for cultured milk production will be based on a plant processing $1,200,000$ pounds of milk per week. ${ }^{13}$ The plant will operate 5 days a week making 132,000 pounds of cultured milk every week. The following assumptions will be made about the plant.

1. The plant will also produce cottage cheese, cream cheese, and sour cream.
2. The 132,000 pounds of cultured milk produced weekly will be expressed as 61,395 quarts of cultured milk. Thus there is 2.15 pounds of cultured milk per quart.
3. To make $132,000 \mathrm{lbs}$. of cultured milk containing 1% fat requires the consumption of $99,000 \mathrm{lbs}$. of skim milk and $33,000 \mathrm{lbs}$. of whole milk at 4.0\% fat.
4. The air circulation rate for the entire plant is $73,500 \mathrm{CFM}$.
5. The climate of the area the plant is located in is similar to that of the Salt Lake City, Utah area.
6. Two CIP cleaning cycles are needed each day with one being an acid wash. The two cycles will clean most of the pipelines and tanks used for cultured milk production.
7. The milk separator and the packaging equipment are the only equipment to be cleaned manually every day and it all can be done in one batch.
8. Six $-1 / 2$ horsepower fans circulate air in the cold storage room.
9. The sizes of the rooms in the plant are:

Room Flo	F1oor space (ft. ${ }^{2}$)	$\text { Volume (ft: }{ }^{3} \text {) }$
Offices, lunch, locker and restrooms	3544	49,616
Dry Storage	2400	33,600
Processing Rooms	8229	91,990
Cold Storage Room	2800	36,400
Boiller and Refrigeration Rooms	2909	40,726
Culture rooms	3857	43,370
Packaging Rooms	2306	27,672
Receiving Shelter	2400	33,600
TOTALS	28,445	256,974

The The following tables represent estimates of most of the energy requirements for producing cultured milk. The estimating prcedure for each energy use is found in the Energy Calculation Section under the Energy Calculation Number given with each energy cost. A layout of a plant producing cottage cheese, cream cheese, sour cream, and cultured milk is shown in the section describing cottage cheese production.

Table 5-6a. Typical electrical energy costs per quart of cultured milk.

Process	Calculation Number	Energy Use $($ BTU/qt $)$	$\%$
Pumping Milk	1.06	0.9	2.0
Clarification	2.06	2.2	4.8
Separation	3.06	1.6	3.5
CIP Pumps	5.06	1.9	4.2
Air Compressor	8.06	0.6	1.3
Cold Storage Room Fans	9.06	4.3	9.4
Heating and Air Condition Fans	10.06	16.0	35.1
Boiler Fan	11.06	4.0	8.8
Cooling Tower Fans	12.06	2.6	5.7
Lights and Misc. Motors	13.06	11.5	25.2

Table 5-6b. Typical steam energy costs per quart of cultured milk.

Process	Calculation Number	Amount $(\mathrm{BTU} / \mathrm{qt})$	$\%$
Cleaning - CIP	15.06	122	22.7
Cleaning - Manual	16.06	16	3.0
Heating the Plant	18.06	40	7.4
Product Heating	19.06	326	60.6
Steam Line Losses	20.06	34	6.3

Table 5-6c. Uses of refrigeration.

Uses of Refirgeration	Calculation Number	Cooling Needed $(\mathrm{BTU} / \mathrm{qL})$	$\%$
Cold Storage Room	22.06	24	11.8
Air Conditioning	23.06	6	3.0
Product Cooling	24.06	143	70.4
Cooling Line Losses	25.06	30	14.8

With a coefficient of performance of 2.86 for the refrigeraiton system as defined in Energy Calculation No. 28.02, the electrical energy needed to deliver the above cooling load is:

$$
\frac{\left(203 \frac{\mathrm{BTU}}{\mathrm{qt} \cdot \mathrm{cult} \cdot \mathrm{milk}}\right)}{2.86}=71 \frac{\mathrm{BTU}}{\text { qt.cult } \mathrm{milk}}
$$

Table 5-6d. Total energy cost per quart of cultured milk

Type of Energy	Energy Used (BTU/qt.)	$\begin{aligned} & \text { Unit Price* } \\ & \frac{S}{10^{6} \mathrm{BTU}} \end{aligned}$	$\begin{gathered} \text { Dollar Cost } \\ \frac{\$}{q t .} \end{gathered}$	Fossil Fuel Equivalent* (BTU/qt.)
Electrical				
1. Lights and motors	46	7.32	0.00034	138
2. Refrigeration	71	7.32	0.00052	213
Steam	538	1.33	0.00072	646
Total			0.00158	997

Section 5-7

DRIED WHEY PRODUCTION

Description

The first step of whey drying is clarification of the whey to remove curd particles. If the whey is removed from cheese made from whole milk, the whey is separated to remove any remaining fat. The whey is then cooled in a plate cooler to $40^{\circ} \mathrm{F}$ so that it can be stored until enough is present for further processing.

The next step is concentrating the whey in the double effect evaporator. On its way into the evaporator the whey is heated via vapor preheaters and a steam fed preheater to eventually raise the temperature to $165^{\circ} \mathrm{F}$. The 6% solids whey flows through both evaporator effects and comes out as a 40% solids concentrate. It is then cooled to $40^{\circ} \mathrm{F}$ by a plate cooler and stored overnight to allow for crystalization of lactose. The whey concentrate, heated to $165^{\circ} \mathrm{F}$, is fed into a high pressure pump, and spray dried to approximately 3 or $3 \frac{1}{2}$ percent moisture. As the dried whey powder collects, it is bagged and stored to await shipment.

Figure 5-7a. Flow chart showing dried whey production.

Energy Inputs into Dried Whey Production

The energy inputs to dried whey production will contain only those costs directly associated with drying whey. This is because a dairy plant may use some other means to dispose of its whey. Thus, the costs given here are to be combined with cheese production costs in each cheese section to show the total energy costs with a whey drying option. The whey drying costs are based on an equipment set-up capable of producing 43,000 pounds of dried whey poweder per week: The following assumptions will be made about the operation.

1. The additional equipment and space needed for whey drying will not significantly increase the energy costs of heating, lighting, air conditioning, or other indirect energy costs.
2. The whey for drying will contain 6% solids and the finished product wi11 contain 3.5% moisture.
3. There will be six CIP cleaning cycles needed each day to clean the pipelines, tanks, plate coolers, the double effect evaporator, and the spray dryer. Two of the cycles will be acid wash cycles.

The following table represent estimates of most of the energy requirements for producing dried whey. The estimating procedure of each energy use is found in the Energy Calculation Section under the Energy Calculation Number given with each energy cost.

Table 5-7a. Typical electrical energy costs per pound of whey powder.

Process	Calculation Number	Energy Use $($ BTU/lb.	$\%$
Pumping Whey	1.07	3.2	1.5
Clarification of Whey	2.07	16.1	7.8
Double Effect Evaporator	6.07	30.0	14.6
Spray Drier	7.07	117.5	57.2
Cooling Tower Fans	12.07	38.8	18.9

Table $5-7 b$. Typical steam energy costs per pound of whey powder.

Process	Calculation Number	Energy Use ($\mathrm{BTU} / \mathrm{Ib}$.)	\%
Cleaning - CIP	15.07	585	10.5
Double Effect Evaporator	17.07	4708	84.5
Product Heating	19.07	281	5.0
Total		5574	100.0

Table 5-7c. Typical uses of refrigeration per pound of whey powder.

Uses of Refrigeration	Calculation Number	Cooling Needed (BTU/1b)	$\%$
Product Cooling	24.07	603	100.0
	Total.	603	100.0

With a coefficient of performance of 2.86 for the refrigeration system as defined in linergy Calculation No. 28.02, the electrical energy needed to deliver the above cooling load is:

$$
\frac{\left(603 \frac{\text { BTU }}{1 \mathrm{~b} \cdot \text { whey powder }}\right.}{2.86}=211 \frac{\text { BTU }}{1 \mathrm{~b} . \text { whey powder }}
$$

Table 5-7d. Direct uses of natural gas energy per pound of whey powder.

Direct Uses of Natural Gas Energy	Calculation Number	Energy Use (BTU/Ib.)		
Spray Drying	27.07	3102	,	$\%$
:---				

Table 5-7e. Total energy cost per pound of whey powder.

Type of Energy	Energy Used (BTU/1b)	$\begin{gathered} \text { Unit Price* } \\ \frac{\$}{10^{6} \mathrm{BTU}} \end{gathered}$	$\begin{gathered} \text { Dollar Cost } \\ (\$ / 1 \mathrm{~b} .) \end{gathered}$	Fossil Fuel Equivalent* (BTU/1b.)
Electrical				
1. Lights and motors	206	7.32	0.0015	618
2. Refrigeration	211	7.32	0.0015	633
Steam	5574	1.33	0.0074	6689
Natural Gas	3102	1.06	0.0033	3102
Total			0.0137	11,042

Section 5-8

BU'TIER PRODUCTION

Description

Large butter producing plants are very often combined with the production of dried skim milk. This description of butter production is for a butter and dried skim milk processing operation.

As raw milk is received, it is weighed and pumped to a storage tank. Soon afterwards the milk is pumped through a plate heater on its way to the separator. The plate heater increases the milk temperature to $85^{\circ} \mathrm{F}$, which increases the separator efficiency. The heated skim milk coming from the separator is directed back into the plate heat exchanger to warm incoming milk in the regeneration section. The 40% fat cream from the separator is forwarded on to a HTST pasteurizer. In the pasteurizer, the cream is warmed to $142^{\circ} \mathrm{F}$ in the regenerator and to $180^{\circ} \mathrm{F}$, in the heating unit. After the proper holding time the cream is cooled to $123^{\circ} \mathrm{F}$ and to $42^{\circ} \mathrm{F}$ in the regeneration and cooling sections of the pasteurizer respectively. The cream is stored in a refrigerated vat which removes the latent heat caused by a small amount of fat which may slowly solidified.

Churning cream into butter is usually done in batches, although continuous butter makers are available. The cream for churning is first warmed from $40^{\circ} \mathrm{F}$ to about $50^{\circ} \mathrm{F}$ in a tubular preheater. The churn is filled with the warmed 40% fat cream. The cream is churned for about 30 minutes until
butter granules are formed. The buttermilk is drained off and salt is added and worked into the butter for about 20 minutes. At this time a fat test is run and water is added to the butter to standardize the fat content to 80%. After the water has been worked into the butter, the butter is removed from the churn and is packaged. After packaging, the butter is placed in the cold storage room until shipment. It should be noted that some cooling is required during the churning process to remove the latent heat of the solidifying fat.

Figure 5-8a. Flow chart showing butter production.

Energy Inputs into Butter Production

The energy inputs into butter production will be based on a plant processing $1,750,000$ pounds of milk per week. ${ }^{14}$ The plant will operate seven days a week making 11,222 pounds of butter each day. The following assumptions will be made about the plant.

1. The plant will also produce dried skim milk, instantized dried skim milk, and dried buttermilk.
2. To make 11,222 pounes of butter each day requires the consumption. of 22,444 pounds of 40% cream.
3. Each butter batch will contain 11,250 pounds of cream.
4. The air circulation rate for the entire plant is $62,000 \mathrm{CFM}$.
5. The climate of the area surrounding the plant is similar to that of the Salt Lake City, Utah area.
6. The following CIP cleaning cycles are needed each day:

1 - Cream HIST Pasteurizer (Acid Wash)

1 - Plate heat exchanger (Acid Wash)

1 - Tanker Truck

4 - Cream tanks and pipeline systems
7 cycles/day
7. The following batches of items must be cleaned manually each day:

1 - Churn

1 - Separator, butter packaging equipment
1 - Positive displacement pumps and butter handling tools

- 1 - Balance tanks, buttermilk strainer

4 batches/day
8. There are two- $1 / 2$ horsepower fans which circulate air in the cold room.
9. The sizes of the rooms in the plant are:

$\text { ROOM } \quad \text { Floor space (ft. }{ }^{2} \text {) }$		$\text { volume }\left(\mathrm{ft}^{3}\right)$
Offices, lunch, locker, and restrooms	2715	27,150
Processing rooms	3889	54,446
Evaporating and Drying Rooms	3531	60,027
Cold Storage Room	1560	21,840
Powder Storage Room	3022	51,374
Boiler and Refrigeration Rooms	2980	50,660
Receiving Shelter	1440	24,480
Hallways	1016	10,160
TOTALS	20,153	300,137

The following tables represent most of the energy requirements for producing butter. The estimating procedure for each energy requirement is found in the Energy Calculation Section under the Energy Calculation Number given. A layout of a plant producing butter and dried milk products follow the tables.

Table 5-8a. Typical electrical energy uses per pound of butter.

Process	Calculation Number	Energy Use (BTU 1 b$)$	$\%$
Pumping Milk	1.08	1.2	4.0
Separation	3.08	2.0	6.6
CIP Pumps	5.08	7.4	24.6
A,ir Compressor	8.08	0.2	0.7
Cold Storage Room Fans	9.08	3.6	12.0
Heating and Air Cond. Fans	10.08	5.3	17.6
Boiler Fan	11.08	1.5	5.0
Cooling Tower Fans	12.08	3.3	10.9
Lights and Misc. Motors	13.08	3.2	10.6
Churning	14.08	2.4	8.0

Table 5-8b. Typical steam energy uses per pound of butter.

Process	Calculation Number	Energy Use (BTU $/ \mathrm{lb})$	$\%$
Cleaning - CIP	15.08	429	69.4
Cleaning - Manual	16.08	68	11.0
Heating the Plant	19.08	9	1.5
Product Heating	19.08	102	16.5
Steam Line Losses	20.08	10	1.6

Table 5-8c. Typical refrigeration requirements per pound of butter.

| Uses of Refrigeration | Calculation
 Number | Cooling
 Needed
 (BTU/1b) | $\%$ |
| :--- | ---: | :---: | :---: | :---: |
| Cold Storage Room | 22.08 | 65 | 25.9 |
| Air Conditioning | 23.08 | 1 | 0.4 |
| Product Cooling | 24.08 | 154 | 61.4 |
| Cooling Line Losses | 25.08 | 31 | 12.3 |

With a coefficient of performance of 2.86 for the refrigeration system as defined in Energy Calculation No. 28.02, the electrical energy needed to deliver the above cooling load is:

$$
\frac{\left(251 \frac{\text { BTU }}{1 \mathrm{~b} \text { butter }}\right)}{2.86}=88 \frac{\text { BTU }}{1 \mathrm{~b} \cdot \text { butter }}
$$

Table 5-8d. Total energy cost per pound of butter.

Type of Energy En	Energy Use (BTU/1b)	$\begin{aligned} & \text { Unit Price* } \\ & \frac{\$}{10^{6} \mathrm{BTU}} \end{aligned}$	$\begin{aligned} & \text { Dollar Cost } \\ & \frac{\$}{(1 b)} \end{aligned}$	Fossil Fuel Equivalent* (BTU/lb:)
Electrical				
1. Lights and motors	rs 30	7.32	0.00022	90
2: Refrigeration	88	7.32	0.00064	264
Steam	618	1.33	0.00082	742
Total			0.00168	1096

Figure 5-3b. Butter and dried milk plant layout as given by Tracy 14

Preheating for

Separation
Table 5-8e. Maximum process temperature and percent of total heating energy consumption in Butter production. (Cross hatching represents the maximum temperature range per process.)

Section 5-9

DRIED MILK PRODUCTION

Description

As raw milk is received, it is weighed and pumped to a storage tank. The raw milk is then warmed by a plate heat exchanger to $85^{\circ} \mathrm{F}$ and pumped to a separator. Warming the milk increases the separator efficiency. The warm skim milk, after returning to the separator, is cooled in the regeneration and cooling sections to $40^{\circ} \mathrm{F}$. The cool skim milk is stored until the drying operation js ready to begin. The cream from the separator continues on to a butter making operation.

The milk drying operation can be viewed as a continucus operation once it is put into motion. . The first step is pumping the skim milk to a double effect evaporator. The skim milk is fed jnto two preheaters which uses vapor removed from the skim milk in the evaporator to heat the incoming skim milk. In the final stream-fed heater the temperature of the skim milk is raised to either $165^{\circ} \mathrm{F}$ or $195^{\circ} \mathrm{F}$ depending on whether high or low heat powder is desired. The 9% solid skim milk flows through the evaporator and exits as a 40% solids concentrate at $115^{\circ} \mathrm{F}$. The concentrate is rewarmed to $165^{\circ} \mathrm{F}$ and pumped by a high pressure punp to the spray drjer.

The high pressure concentrate is sprayed into a hot air stream in the spray drier which removes all but about 3.0% of the moisture. The aried skim milk then enters a cyclone to separate the air and milk particles after which the skim milk powier is collected and bagged.

Energy Inputs into Dried Milk Production

The energy inputs into dried milk production will be based on a plant processing $1,750,000$ pounds of milk per week. ${ }^{1 / 4}$ The plant will operate seven days a week making 21,150 pounds of dried milk powder per day. The following assumptions will be made ebout the plant.

1. The plant will also produce instantized dried skim milk, butter, and dried buttermilk.
2. To make 21,150 pounds of dried skim milk powder requires the consumption of 227,500 pounds of skim milk.
3. The steam required to concentrate high heat powder is assumed approximately equal to that for low heat.
4. The air circulation rate for the entire plant is 32,000 CFM.
5. The climate of the area surrounaing the plant is similar to that of the Salt Lake City, Utah area.
6. The following CIP cleaning cycles are needed each day:

> 5 - Milk tanks, and pipeline systems
> 8 - Tanker trucks
> 2 - Double effect evaporator (Acid Wash)
> 1 - Spray dryer
> 16 cycles/day
7. The positive displacement pumps and powder packaging parts must be cleaned manually each day in one batch.
8. The sizes of the rooms in the plant are:

Room	Floor space (ft. ${ }^{2}$)	volume (ft. ${ }^{3}$)
Offices, lunch, locker, and restrooms	2715	27,150
Processing rooms	3889	54,446
Evaporating and drying rooms	3531	60,027
Cold Storage Room	1560	21,840
Powder Storage Room	3022	51,374
Boiler and Refrigeration Rooms	2980	50,660
Receiving Shelter	1440	24,480
Hallways	1016	10,160

The following tables represent most of the energy requirements for producing dried milk. The estimating procedure for each energy requirement is found in the Energy Calculation Section under the Energy Calculation Number given with the energy cost. A layout of a plant producing butter and dried milk products is given in the section describing butter production.
table 5-9a. Typical electrical energy uses per pound of dry milk.

Process	Calculation Number	Energy Use (BTU/1b)	$\%$
Pumping Milk	1.09	5.4	1.9
Separation	3.09	10.8	3.9
CIP Pumps	5.09	9.0	3.2
Double Effect Evaporator	6.09	17.3	6.2
Spray Drying	7.09	117.5	42.2
Air Compressor	8.09	2.2	0.8
Heating and Air Cond. Fans	10.09	50.5	18.1
Boiler Fan	11.09	14.7	5.3
Cooling Tower Fan	12.09	20.6	7.4
Lights and Misc. Motors	13.09	30.3	10.9

Table 5-9b. Typical steam energy uses per pound of dry milk.

Steam Energy Use	Calculation Number	Energy Usé (BTU/1b)	$\%$
Cleaning - CIP	15.09	485	12.8
Cleaning - Manual	16.09	9	0.2
Double Effect Evaporator	17.09	2879	75.8
Heating the Plant	18.09	88	2.3
Product Heating	19.09	243	6.4
Steam line Losses;	20.09	92	2.4

Table 5-9c. Typical uses of refrigeration per pound of dry milk.

Uses of Refrigeration	Calculation Number	Cooling Needed (BTU/1b)	$\%$
Air Conditioning	23.09	11	8.5
Product Cooling	24.09	97	74.6
Cooling Line Losses	25.09	22	16.9
	Total		130

With a coefficient of performance of 2.86 for the refrigeration system as defined in Energy Calculation No. 28.02, the electrical energy needed to deliver the above cooling load is:

$$
\frac{\left(130 \frac{\mathrm{BTU}}{1 \mathrm{~b} \text { powder }}\right)}{2.86}=45 \frac{\mathrm{BTU}}{1 \mathrm{~b} \text { powder }}
$$

Table 5-9d. Typical natural gas energy requirement per pound of dry milk powder.

Direct Uses of Natural Gas Energy	Calculation Number	Amount $(\overrightarrow{B T U} / 1 \mathrm{~b})$	$\%$
Spray Drying	27.09	3102	100.0
	Total		3102

Table 5-9e. Total energy cost per pound of dry milk.

Type of Energy	Energy Used (BTU/1b)	$\begin{aligned} & \text { Unit Price* } \\ & \frac{\$}{10^{6} \mathrm{BTU}} \\ & \hline \end{aligned}$	$\begin{gathered} \frac{\text { Dollar Cost }}{\frac{\$}{(1 b)}} \\ \hline \end{gathered}$	Fossil Fuel Equivalent* (BTU/1b)
Electrical				
1. Lights and motors	278	7.32	0.0020	834
2. Refrigeration	45	7.32	0.0003	135
Steam	3796	1.33	0.0050	4555
Natural Gas (for spray drying)	3102	1.06	0.0033	3102
Total			0.0106	8626

Section 5-10

INSTANTIZED DRIED MILK PRODUCTION

Description

Low-heat dried milk which is sold for gousehold consumption can be "instantized" for increased solubility. The instantizing process consists of adding moisture to the dried milk powder and redrying. The moisture content of the powdered milk is increased to about 10% by steam injection and/or a. high pressure water spray. The wet particles are subjected to some form of turbulance where they collide and form clusters. The clusters are redried with hot air, cooled, and then sized to eliminate large agglomerates. After the product is bagged it is ready for shipment.

Energy Inputs into Instantized Milk Production
The energy inputs into instantized milk production will contain only those costs directly associated with the instantizing process. This is because the instantization of dried milk is optional. Thus the total energy cost of obtaining instantized dried milk is derived by adding the dried milk energy costs to the energy costs estimated here. The energy costs will be based on a plant processing $1,750,000$ pounds of milk per week and producing 10,575 pounds of instantized milk per week. ${ }^{14}$ The §ollowing assumptions will be made about the plant.

1. The plant will also produce dried skim milk, dried buttermilk, and butter.
2. No losses will occur in the instantization process. Thus one pound of dried skim milk will be converted to one pound of instantized skim milk.

Figure 5-10a. Flow chart showing instantized milk production.
3. The additional equipment and space needed for the instantizing process will not significantly increase the energy costs of heating, lighting, air. conditioning, or other indirect energy costs.
4. One GIP cleaning cycle will be needed each day to clean the instantizer equipment.

The following tables represent most of the energy requirements for producing the instantizing process. The estimating procedure for each energy requirement is found in the Energy Calculation Section under the Energy Calculation Number given with the energy cost. A layout of a plant producing butter, instantized dried milk, and dried milk products is given in the section describing butter production.

Table 5-10a. Typical electrical energy uses per pound of instantized milk powder.

Process	Calculation Number	Energy Use (BTU/1b)	$\%$
Instantizer	14.10	44.9	100.0
	Total		44.9

Table 5-10b. Typical steam energy uses per pound of instantized milk powder.

Process	Calculation Number	Energy Use $(\mathrm{BTU} / 1 \mathrm{~b})$	$\%$
Instantizer	21.10	595	91.3
Cleaning - CIP	15.10	57	8.7
	Total		652

Table 5-10c. Uses of refrigeration per pound of instantized milk powder.

Uses of Refrigeration	Calculation Number	Cooling Needed (BTU/1b)	$\%$
Instantizer air cooling	26.10	36	100.0
Total		36	100.0

With a coefficient of performance of 2.86 for the refrigeration system as defined in Energy Calculation No. 28.02, the electrical energy needed to deliver the above cooling load is:

$$
\frac{\left(36 \frac{\mathrm{BTU}}{1 \mathrm{~b} \text { powder }}\right)}{2.86}=13 \frac{\mathrm{BTU}}{1 \mathrm{~b} \text { powder }}
$$

Table 5-10d. Total Energy cost per pound of instantized milk powder.

Type of Energy E	Energy Use (BTU/lb)	$\begin{aligned} & \text { Unit Price* } \\ & \frac{\$}{10^{6} \mathrm{BTU}} \end{aligned}$	$\begin{gathered} \text { Dollar Cost } \\ \frac{\$}{(1 b)} \end{gathered}$	Fossil Fuel Equivalent* (BTU/lb)
Electrical				
1. Lights and Motors	3 45	7.32	0.00033	135
2. Refrigeration	13	7.32	0.00010	39
Steam	652	1.33	0.00087	782
Total			0.00130	956
*Unit prices and fossil fuel equivalent factors are defined in EnergyCalculations Nos. $28.01-28.06$.				

Table 5-10e. Maximum process temperature and percent of total heating energy consumption in
Instantized Milk production. (Cross hatching represents the maximum temperature range per process.)

Section 5-11
DRIED BUTTERMILK PRODUCTION

Description

The buttermilk referred to in this description is the fluid expelled during butter making. The buttermilk is filtered as it is drained from the butter. It is then pumped through a plate cooler which lowers the temperature from $50^{\circ} \mathrm{F}$ to $35^{\circ} \mathrm{F}$. The cooled buttermilk is stored until sufficient quantity is gathered to justify further processing. At this point the buttermilk contains about 9.0% solids.

The next step in processing is concentration in a double effect evaporator. The buttermilk is warmed before entering the evaporator by two vapor heaters using vapor removed from buttermilk already in the evaporator as a heat source, and a final heater using steam as a heat source. The buttermilk enters the evaporator at about $165^{\circ} \mathrm{F}$ and leaves at $115^{\circ} \mathrm{F}$ as a 40% solids concentrate. As the concentrate is removed from the evaporator it is reheated again to $165^{\circ} \mathrm{F}$ and compressed by a high pressure pump. The concentrate is spray dried to about 3.0% moisture. The buttermilk powder is collected, bagged and stored until shipment.

Energy Inputs into Dried Buttermilk Production
The energy inputs into dried buttermilk production will be based on a plant processing $1,750,000$ pounds of milk every week. ${ }^{14}$ The plant will operate seven days a week making 1,046 pounds of dried buttermilk per day. The following assumptions will, be made about the plant.

1. The plant will also produce instantized dried milk, dried milk, and butter.
2. To make 1,046 pounds of dried buttermi1k at 3.0% moisture requires the consumption of 11,250 pounds of 9.0% solids buttermilk.
3. The air circulation rate for the entire plant is $62,000 \mathrm{CFM}$.
4. The climate of the area surrounding the plant is similar to that of the Salt Lake City, Utah area.
5. The following CIP cleaning cycles are needed each week:

$$
\begin{aligned}
4 & \text { - Buttermilk tanks and pipeline systems } \\
1 & \text { - Spray Drier } \\
-2 & \text { - Double Effect Evaporator (Acid Wash) } \\
7 & \text { cycles/week }
\end{aligned}
$$

This would translate to about one CIP cleaning cycle per day.
6. The sizes of the rooms in the plant are:

The following tables represent most of the energy requirements for producing dried buttermilk powder. The estimating procedure for each energy requirement is given in the Energy Calculation section under the Energy Calculation Number given with the energy cost. A layout of a plant producing butter, dried buttermilk, and dried milk products is given in the section describing butter production.

Table 5-11a. Typical electrical energy uses per pound of dried buttermilk powder.

Process	Calculation Number	Energy Use $($ BTU/1b $)$	$\%$
Pumping Buttermilk	1.11	3.2	1.1
CIP Pumps	5.11	16.0	5.6
Double Effect Evaporator	6.11	17.3	6.1
Spray Drying	7.11	117.5	41.4
Air Compressor	8.11	0.4	0.1
Heating and Air Cond. Fans	10.11	56.7	20.0
Boiler Fan	11.11	16.6	5.9
Cooling Tower Fan	12.11	21.7	7.7
Lights and Misc. Motors	13.11	34.1	12.0

Table 5-11b. Typical steam energy uses per pound of buttermilk powder.

Process	Calculation Number	Energy Use $(\mathrm{BTU} / 1 \mathrm{~b})$	$\%$
Cleaning - CIP	15.11	578	15.3
Doulbe Effect Evaporator	17.11	2879	76.3
Heating the Plant	18.11	99	2.6
Product Heating	19.11	113	2.0
Steam Line Losses	20.11	103	100.0

Table 5-11c. Uses of refrigeration per pound of dried buttermilk powder.

Uses of Refrigeration	Calculation Number	Cooling Needed (BTU/1b)	$\%$
Air Conditioning	23.11	13	6.2
Product Cooling	24.11	162	77.1
Cooling Line Losses	25.11	35	16.7
	Total		210

With a coefficient of performance of 2.86 for the refrigeration system as defined in Energy Calculation No. 28.02, the electrical energy needed to deliver the above cooling load is:

$$
\frac{\left(210 \frac{\mathrm{BTU}}{1 \mathrm{~b} \text { powder }}\right)}{2.86}=73 \frac{\mathrm{BTU}}{1 \mathrm{~b} \text { powder }}
$$

Table 5-11d. Natural gas energy costs per pound of dried buttermilk powder.

Direct Uses of Natural Gas Energy	Calculation Number	Amount $($ BTU $/ 1 \mathrm{~b})$	$\%$
Spray Drying	27.11	3102	100.0
	Total		3102

Table 5-11c. Uses of refrigeration per pound of dried buttermilk powder. .

Uses of Refrigeration	Calculation Number	Cooling Needed $(\mathrm{BTU} / \mathrm{b})$	$\%$
Alr Conditioning	23.11	13	6.2
Product Cooling	24.11	162	77.1
Cooling Line Losses	25.11	35	16.7
	Total	210	100.0

With a coefficient of performance of 2.86 for the refrigeration system as defined in Energy Calculation No. 28.02 , the electrical energy needed to deliver the above cooling load is:

$$
\frac{\left(210 \frac{\text { BTU }}{1 \mathrm{~b} \text { powder }}\right)}{2.86}=73 \frac{\text { BTU }}{1 \mathrm{~b} \text { powder }}
$$

Table 5-1ld. Natural gas energy costs per pound of dried buttermilk powder.

Direct Uses of Natural Gas Energy	Calculation Number	Amount $(\mathrm{BTU} / \mathrm{bb})$	$\%$
Spray Drying	27.11	3102	100.0
	Total		3102

Table 5-11e. Total energy cost per pound of dried buttermilk powder.

Type of Energy	$\begin{aligned} & \text { Energy Use } \\ & \text { (BTU/1b) } \end{aligned}$	$\begin{array}{r} \text { Unit } \\ \frac{10}{10^{6}} \end{array}$	Price* \$ BTU	$\begin{gathered} \text { Dollar Cost } \\ \frac{\$}{(1 \mathrm{~b})} \end{gathered}$	Fossil Fuel Equivalent* (BTU/1b)
Electrical					
1. Lights and motors	- 284		7.32	0.0021	852
2. Refrigeration	73		7.32	0.0005	219
Steam	3772		1.33	0.0050	4526
Natural Gas (for spray drying)	3102		1.06	0.0033	3102
Total				0.0109	8699

Description

Evaporated milk is whole milk whose solids concentration has been doubled by evaporation. The production is outlined below.

First, incoming milk is weighed, cooled and stored to await further processing. The raw milk is withdrawn from the storage tank and pumped through a clarifier and on to standardizing tanks. Some of the milk going to the standardizing tanks is separated so as to standardize the milk which is to be evaporated, to 4.0% fat and 13% total solids.

The next step is evaporation. The standardized milk is warmed to $205^{\circ} \mathrm{F}$ before entering the evaporator to improve the heat stability and viscosity of the finished product. The milk then enters the evaporator and soon afterwards exits as a 26% total solids concentrate at $115^{\circ} \mathrm{F}$. The warm evaporated milk is homogenized at a total pressure of 3000 psig and is pumped through a plate cooler to lower the temperature to $40^{\circ} \mathrm{F}$.

The cooled evaporated milk is checked for total solids and fat content and restandardized if necessary. The finished product should contain at least 26.0% total solids and 8% fat. The evaporated milk is then placed in cans and sealed. The cans are placed in a retort which raises the temperature of the evaporated milk to $245^{\circ} \mathrm{F}$. The cans are considered sterilized after this temperature is held for 15 minutes. The evaporated milk cans are cooled, dried, labeled, and packaged and are ready for shipment.

Figure 5-12a. Flow chart showing evaporated milk production.

Energy Inputs into Evaporated Milk Production

The energy inputs to evaporated milk production will be based on a plant processing $2,000,000$ pounds of milk every week. Evaporated milk will be the only product produced by the plant. The size and components of the plant will be based on several evaporated milk plant descriptions. The following assumptions will be made about the plant.

1. Two pounds of whole milk will be consumed in making one pound of evaporated milk.
2. The air circulation rate for the entire plant will be 76,000 CFM.
3. The plant will operate seven days a week.
4. About one third of the incoming raw milk must be separated for standardization purposes.
5. The climate of the plant area is similar to that of the Salt Lake Gity, Utah area.
6. The following CIP cleaning cycles are needed each day:

10 - Tanker trucks
5 - Milk tanks and pipeline systems
2 - double effect evaporator (Acid Wash)
17 cycles/day
7. The clarifier, three positive displacement pumps, and the canning equipment parts are cleaned manually in two batches.
8. The sizes of the rooms in the plant are:

Room
Floor space (ft. ${ }^{2}$) volume (Ft. ${ }^{3}$)

Processing and \quad Evaporating Rooms	8,000	112,000
Offices, lunch, locker, and restrooms	2,700	24,300
Boiler and refrigeration rooms	3,300	46,200
Cold storage room	100	1,000
Dry storage room	2,000	28,000
Canned product storage	3,000	42,000
Receiving shelter	1,400	19,600
Labs, shop and misc.	1,300	18,000
	21,800	291,100

The following tables represent most of the energy inputs into evaporated milk production. The estimating procedures for each energy requirement is given in the Energy Calculation Section under the Energy Calculation Number given with each energy cost.

Table 5-12a. Typical electrical energy uses per pound of evaporated milk.

Process	Calculation Number	Energy Use (BTU/1b)	$\%$
Pumping Milk	1.12	3.0	6.8
Clarification	2.12	2.0	4.5
Separation	3.12	0.7	1.6
Homogenization	4.12	10.8	24.3
CIP Pumps	5.12	1.4	3.2
Double Effect Evaporator	6.12	2.1	4.7
Air Compressor	8.12	0.4	0.9
Cold Storage Room Fans	9.12	0.1	0.2
Heating and Air Cond. Fans	10.12	12.1	27.3
Boiler Fan	11.12	2.4	5.4
Evaporative Cooling Tower Fans	12.12	4.0	9.0
Lights and Misc. Motors	13.12	5.4	12.2

Table 5-12b. Typical steam energy uses per pound of evaporated milk.

Process	Calculation Energy Use Number (BTU/1b)	$\%$	
Cleaning - CIP	15.12	76	9.0
Cleaning - Manual	16.12	13	1.5
Double Effect Evaporator	17.12	344	40.7
Heating the Plant	18.12	21	2.5
Product Heating	19.12	80	9.5
Steam Line Losses	20.12	18	2.1
Sterilization of canned mi 1 k	21.12	293	34.7

1apıe J-1<c. Uses of retrigeration per pound of evaporated milk.

Uses of Refrigeration	Calculation Number	Cooling Needed $(\mathrm{BTU} / \mathrm{b})$	$\%$
Cold Storage Room	22.12	1	1.0
Air Conditioning	23.12	2	1.9
Product Cooling	24.12	83	80.6
Cooling Line Losses	25.12	17	16.5
	Total		103

With a coefficient of performance of 2.86 for the refrigeration system as defined in Energy Calculation No. 28.02, the electrical energy needed to deliver the above cooling load is:

$$
\frac{\left(103 \frac{\mathrm{BTU}}{\mathrm{lb} \text { evap. milk }}\right)}{2.86}=36 \frac{\mathrm{BTU}}{\mathrm{lb} \text { evap. milk }}
$$

Table 5-12d. Total energy cost per pound of evaporated milk.

Type of Energy E	Energy Use (BTU/1b)	$\begin{aligned} & \text { Unit Price* } \\ & \frac{\$}{10^{6} \mathrm{BTU}} \end{aligned}$	Dollar Cost $\frac{\$}{(1 b)}$	Fossil Fuel Equivalent* (BTU/lb)
Electrical				
1. Lights and Motors	s 44	7.32	0.00032	132
2. Refrigeration	36	7.32	0.00026	108
Steam	845	1.33	0.00112	1014
Total			0.00170	1254

Table 5-12e. Maximum process temperature and percent of total heating energy consumption in Evaporated Milk production. (Cross hatching represents the maximum temperature range per process.)

Section 5-13
ICE CREAM PRODUCTION

Description

Ice Cream can be made with a variety of ingredients and may or may not use fresh milk in the mix. Many plants use 40% fat cream, condensed milk, and non-fat dry milk in making their mix. Liquid sugar, corn syrup, corn syrup solids, and dry sugar are used in different combinations as sweetners. No matter what ingredients are used, the mix composition is about the same. Arbuckle states that a good average ice cream has the following composition:

Fat	-12%
Milk solids, not fat	-11%
Sugar	
Stabilizer and Emulsifier	-15%
TOTAL SOLIDS	$-\quad 0.3 \%$

Ice Cream is defined by federal standards to contain not less than 10% milkfat and 20% total milk solids, except in the case of bulky flavors.

The first step in making ice cream is assembling and mixing the ingredients to make the desired composition mix. Next the mix is pasteurized. Pasteurization can be done in the vat by heating the mix to $160^{\circ} \mathrm{F}$ for 30 minutes. An altornate mothod is using a HTST pasteurizer and heating the mix to $180^{\circ} \mathrm{F}$ for 15 seconds. After pasteurization and while the mix is still hot, it is run through a homogenizer set at 2000 psig on the first stage and 500 psig on the second. The mix, which has gained $5^{\circ} \mathrm{F}$ during homogenization, is cooled

Figure 5-13a. Flow chart showing ice cream production.
from $185^{\circ} \mathrm{F}$ to $40^{\circ} \mathrm{F}$. Flavoring can be either added and mixed in the storage tank or it can be added as the mix is pumped to the freezer. The mix can also pass through a fruit feeder which adds fruit prior to freezing.

The mix is fed into a continuous freezer which lowers the temperature to about $21^{\circ} \mathrm{F}$ and freezes about 65% of the water. Another function of the freezer is to entrain air into the ice cream. The volume of air entrained during the freezing process divided by the original volume of the mix and multiplied by 100 is defined as the "percent overrun". Ice cream overrun varies from 70% to 100%.

The semi-fluid ice cream is packaged and placed in the hardening room to cool to $-20^{\circ} \mathrm{F}$. The hardened ice cream is then ready to be shipped.

Energy Inputs into Ice Cream Production

The energy inputs into ice cream production is based on a plant producing $1,000,000$ gallons of ice cream per year. The plant will operate five days per week making 19,231 gallons of ice cream per week. The following assumptions are made about the plant.

1. Ice cream is the only product made by the plant.
2. The finished ice cream will have 85% overrun and one gallon will weigh 4.95 pounds.
3. To make 19,231 gallons of ice cream requires 10,395 gallons of ice cream mix made from:

40% cream	$23,7841 \mathrm{bs}$.
30% concentrated skimmilk	$32,1831 \mathrm{bs}$.
Liquid sugar	$18,1841 \mathrm{bs}$.
Corn syrup	$3,9921 \mathrm{bs}$.

Emulsifer	52 lbs.
Stabilizer	
Water	288 lbs.
	$16,632 \mathrm{lbs}$.
	$95,115 \mathrm{lbs}$.

Thus one gallon of ice cream mix weighs 9.15 pounds.
4. The air circulation rate for the entire plant is 63,000 CFM.
5. The climate the plant is located in is similar to that of the Salt Lake City, Utah area.
6. The following CIP cleaning cycles are needed each day.

1 - IITST (acid wash)
1 - Tanker truck
5 - Storage tanks and pipeline systems
7 cycles/day
7. The ice cream freezer, the packaging equipment, positive displacement pumps, and the fruit feeder are cleaned manually each day in three batches.
8. The sizes of the rooms in the plant are:

$$
\text { Room } \quad \text { Floor space (ft. }{ }^{2} \text {) volume (ft. }{ }^{3} \text {) }
$$

Offices, labs, locker 1unch and
Restrooms 4,400 39,600

Processing and freezing rooms
4,863 68,082
Dry storage room
5,784
80,976
Hardening Room
3,550
49,700
Cold storage room 388

5,432
Boiler and Refrigeration room
2,336
32,704
Recelving area
1,282
17,948
Kitchen
totals
378
22,981 $\frac{5,292}{299,734}$
9. There are $4-3 / 4$ horsepower fans in the hardening room and $1-1 / 2$ horsepower fan in the cold room to circulate air.

The following tables relate most of the energy requirement of producing. ice cream. The estimating procedures for each energy requirement is given in the Energy Calculation Section under the Energy Calculation Number given with each energy cost. A plant layout showing an ice cream plant dimensions and components is given after the tables.

Table 5-13a. Typical electrical energy costs per gallon of ice cream.

Table 5-13b. Typical steam energy costs per gallon of ice cream.

Process	Calculation Number	Amount (BTU/gal)	$\%$
Cleaning - CIP	15.13	1176	36.5
Cleaning - Manual	16.13	150	4.7
Heating the Plant	18.13	954	29.6
Product Heating	19.13	138	4.3
Steam Line Losses	20.13	804	25.0

Table 5-13c. Uses of refrigeration.

Uses of Refrigeration	Calculation Needed	Cooling Needed (BTU/gal)	$\%$
Hardening Room	22.13	1643	58.3
Cold Storage Room	22.13	95	3.4
Air Conditioning	23.13	133	4.7
Product Cooling	24.13	243	8.6
Cooling Line Losses	25.13	26.13	630
Ice Cream Freezer		2819	2.7

With a coefficient of performance of 2.86 for the refrigeration system as defined in Energy Calculation No. 28.02, the electrical energy needed to deliver the above cooling load is:

$$
\frac{\left(2819 \frac{\mathrm{BTU}}{\text { gal. Ice Cream }}\right.}{2.86}=986 \frac{\mathrm{BTU}}{\text { gal. Ice Cream }}
$$

Table 5-13d. Total energy cost per gallon of ice cream.

Type of Energy	Amount Used (BTU./1b)	Unit Price* $\frac{\$}{10^{6} \mathrm{BTU}}$	$\begin{gathered} \text { Dollar Cost } \\ \frac{\$}{(1 \mathrm{~b})} \end{gathered}$	Fossel Fuel Equivalent* (BTU/Lb)
Electrical				
1. Lights and Motors	1227	7.32	0.0090	3681
2. Refrigeration	986	7.32	0.0072	2958
Steam	3222	1.33	0.0043	3866
Total			0.0205	10,505

Table 5-13e. Maximum process temperature and percent of total heating energy consumption in Ice Cream production. (Cross hatching represents the maximum temperature range per process.)

Figure 5-13b. Ice cream plant layout.as given by Tracy ${ }^{16}$

Section 5-14
PROCESSED CIIEESE PRODUCTION

Description

Processed cheese is made from natural cheese and emulsifying salts. The function of the emulsifying salts is to form a more stable emulsion which prevents oiling-off of fat in the cheese at room temperatures. Also the heat treatment given to the processed cheese is equivalent to a pasteurization process. Hence, a large portion of the microbial load is destroyed and body and flavor changes during storage are brought to a minimum. Consequently, the maximum permissible storage temperature for processed cheese is considerably higher than natural types of cheese.

A processed cheese factory would have natural cheese being delivered to it. A common method of delivering the cheese is in 55 gallon drums. The cheese is put into cold storage at $40^{\circ} \mathrm{F}$ as it is delivered. Samples of each batch are analyzed for fat and water content.

The processing begins by selecting, from the cheese stock, the lots of cheese which would give the desired flavor, fat, and water content. The legal definition for processed cheese requires it contain no more than 3% emulsifying salts and its fat and moisture content be equal to the fat and molsture content of the cheese from which it is derived. The calculated amount needed from each lot of cheese is brought to the grinder. The surfaces of the cheese blocks are scraped before entering the grinder to remove any mold and wax present. After the cheese has been pulverized by the grinder, It is fed into the cheese kettles or cookers. The emulsifying salts and any water or flavoring and coloring ingredients desired are added at this time.

Figure 5-14a. Flow chart showing processed cheese Production.

The cook begins by heating the cheese in the cooker until its temperature reaches about $160^{\circ} \mathrm{F}$. The heating can be done by a jacketed steam vat or by direct steam injection. The cheese is agitated while being heated and after being at $160^{\circ} \mathrm{F}$ for three minutes, the cooker is emptied. The hot plastic mass can be poured into foil-lined or plastic coated boxes or it can be pumped to a cooling belt to be extruded out in a thin layer. On the cooling belt the cheese is cooled to $50^{\circ} \mathrm{F}$ with a glycol-water solution circulated on the other side. With the cheese cooled it is firm enough for slicing and packaging.

After packaging the processed cheese is placed in a $40^{\circ} \mathrm{F}$ cold room to lower the temperature to $40^{\circ} \mathrm{F}$ before shipment.

Energy Inputs into Processed Cheese Production

The energy input to processed cheese production is based on a plant producing 280,000 pounds of processed cheese every day. The size and components of the plant are derived from several processed cheese plant descriptions. The following assumptions will be made about the plant.

1. Only processed cheese will be made in the plant.
2. There are 0.97 pounds of natural cheese consumed for every pound of processed cheese produced.
3. The plant will operate 6 days a week with two 8 hour shifts each day.
4. The total air circulation rate for the entire plant is 90,000 CFM.
5. The climate of the area of the plant location will be similar to that of the Salt lake City, Utah area.
6. Four- three horsepower fans circulate air in the cold room.
7. There will be 8 CIP cleaning cycles each day to clean the cookers. These are acid washes.
8. The sizes of the rooms in the plant are:

Room	Floor space (ft. ${ }^{2}$)	volume (ft. ${ }^{3}$)	
Offices, lunch, locker, and restrooms	4,875	48,750	
Processing rooms	13,000	208,000	
Cold storage room	12,000	240,000	
Boiler and refrigeration rooms	2,500	40,000	
Dry storage areas	13,000	156,000	
Shop and hallways	4,875	58,500	
		50,250	751,250

The following tables represent estimatres of most of the energy requirement in producing processed cheese. The estimating procedures are found in the Energy Calculation Section under the Energy Calculation Number given with the energy cost.

Table 5-14a. Typical electrical energy costs per pound of processed cheese.

Process	Calculation Number	Amount $(\mathrm{BTU} / 1 \mathrm{~b})$	$\%$
Air Compressor	8.14	0.2	0.3
Cold Storage Room Fans	9.14	2.0	2.8
Heating and Air Cond. Fans	10.14	7.2	10.2
Boiler Fan	11.14	1.4	2.0
Cooling Tower Fans	12.14	1.4	2.0
Lights and Misc. Motors	1.4 .14	4.4	10.4
Grinding	14.14	1.9	63.3
Agitation During Cooking	14.14	70.9	6.3
Packaging Machines			100.0

Table 5-14b. Typical steam energy costs per pound of processed cheese.

Process	Calculation Number	Amount (BTU/1b)	$\%$
Cleaning - CIP	15.14	26	8.8
Heating the Plant	18.14	24	8.1
Product Heating	19.14	72	24.4
Steam Line Losses	20.14	18	6.1
Processed Cheese Plant Cleaning	21.14	295	100.0

Table 5-14c. Usés of refrigeration.

Uses of Refrigeration	Calculation Number	Cooling Needed (BTU/Ib)	$\%$
Cold Storage Rooms	22.14	22	21.2
Air Conditioning	23.14	2	1.9
Product Cooling	24.14	66	63.5
Cooling Line Losses	25.14	14	13.4
	Total		104

With a coefficient of performance of 2.86 for the refrigeration system as defined in Energy Calculation No. 28.02, the electrical energy needed to deliver the above cooling laod is:

$$
\frac{\left(104 \frac{\mathrm{BTU}}{1 \mathrm{~b} \text { cheese }}\right)}{2.86}=36 \frac{\mathrm{BTU}}{\mathrm{lb} \text { cheese }}
$$

Table 5-14d. Total energy cost per pound of processed cheese.

Type of Energy Am	Amount Used (BTU/1b)	$\begin{aligned} & \text { Unit Price* } \\ & \frac{\$}{10^{6} \mathrm{BTU}} \end{aligned}$	$\begin{aligned} & \text { Dollar Cost } \\ & \frac{\$}{(1 \mathrm{~b})} \end{aligned}$	Fossil Fuel Equivalent* (BTU/lb)
Electrical				
1. Lights and motors	rs 72	7.32	0.00053	216
2. Refrigeration	36	7.32	0.00026	108
Steam	295	1.33	0.00039	354
Total			0.00118	678

Table 5-14e. Maximum process temperature and percent of total heating energy consumption in Processed Cheese production. (Cross hatching represents the maximum temperature range per process.)

Over 400 questionnaires were mailed to dairy processors in the five state region of California, Oregon, Idaho, Utah, and Nevada. Factors such as the highly competitive nature of the dairy industry perhaps contributed to the result that only 36 responses were received.

The 36 responding plants covered a wide spectrum of products and provided valuable information. However, the variation in energy inputs reported together with a sufficiently insignificant number did not provide a firm basis for determining realistic energy inputs. We, therefore, put greater reliance on the calculated values than on the survey results. Table 5-15a provides a comparison between average values of the survey data and our ca1culated values. This comparison indicates that the calculated values are almost certainly conservative. Also, the survey showed that our calculated values would be typical of a large energy efficient plant. Survey values which double our calculated values are not surprising since there exists wide variation in the efficiency of dairy processing equipment and procedures.

$$
\begin{aligned}
& \vdots \\
& \because \\
& \because
\end{aligned}
$$

Table 5-15 Comparison of energy requirements for dairy products from survey information and
from calculated valucs:

Product	Eossil Fuel Energy Consumed		$\begin{aligned} & \text { Fossil Fuel Energy } \\ & \text { Cost } \end{aligned}$		Electrical Energy Consumed		Electrical Energy Cost		No. of Plants Used to calculate the averages
	survey average	predicted	survey average	predicted	survey average	predicted	survey average	predicted	
$\begin{aligned} & \text { Fluid } \\ & \text { Milk } \end{aligned}$	$2702 \frac{\text { BrU }}{\text { gal }}$	$1508 \frac{\mathrm{BTU}}{\mathrm{gal}}$	$\frac{\$ 0.0054}{\mathrm{gal}}$	$\frac{\$ 0.0017}{g a 1}$	$1575 \frac{\mathrm{BTU}}{\mathrm{gal}}$	$1508 \frac{\mathrm{BTU}}{\mathrm{gaI}}$	$\frac{\$ 0.0067}{g a 1}$	$\frac{\$ 0.0035}{\text { gai }}$	4
Cheddar Cheese (Neglecting Whey Drying)	$2545 \frac{\mathrm{BTU}}{\mathrm{Ib}}$	$2783 \frac{\mathrm{BTU}}{\mathrm{Ib}}$	$\frac{\$ 0.0060}{1 b}$	$\frac{\$ 0.0031}{16}$	$366 \frac{\mathrm{BTU}}{1 \mathrm{~b}}$	$533 \frac{\mathrm{BTU}}{1 \mathrm{~b}}$	$\frac{\$ 0.0019}{1 b}$	$\frac{\$ 0.0039}{16}$	5
Cheddar Cheese (Including Whey Drying	$10,822 \frac{\mathrm{BTU}}{16}$	$8265 \frac{\text { BTU }}{16}$	$\frac{\$ 0.0080}{16}$	$\frac{\$ 0.0090}{1 b}$	$852 \frac{\mathrm{BTU}}{1 \mathrm{~b}}$	$766 \frac{\mathrm{BTU}}{1 \mathrm{~b}}$	$\frac{50.0042}{16}$	$\frac{\$ 0.0056}{1 b}$	1
Cottage Cheese	$1542 \frac{\mathrm{BTU}}{\mathrm{ID}}$	$1034 \frac{\mathrm{BTU}}{1 \mathrm{~b}}$	$\frac{\$ 0.0015}{1 b}$	$\frac{\$ 0.0012}{1 b}$	$591 \frac{\mathrm{BTU}}{1 \mathrm{~b}}$	$153 \frac{\mathrm{BTU}}{1 \mathrm{D}}$	$\frac{\$ 0.0036}{1 b}$	$\begin{gathered} \$ 0.0011 \\ 1 \mathrm{~b} \end{gathered}$	5
Butter	$3328 \frac{\text { BTU }}{\text { Ib }}$	$742 \frac{\mathrm{BTU}}{16}$	$\frac{\$ 0.0043}{1 b}$	$\frac{\$ 0.0008}{1 b}$	$584 \frac{\mathrm{BTU}}{\mathrm{Ib}}$	$118 \frac{\mathrm{BIT}}{\mathrm{Ib}}$	$\frac{\$ 0.0057}{1 b}$	$\begin{gathered} \$ 0.0009 \\ 16 \end{gathered}$	3
$\begin{aligned} & \text { Dried } \\ & \text { Milk } \end{aligned}$	$14,225 \frac{\mathrm{BTU}}{1 \mathrm{~b}}$	$7657 \frac{\mathrm{BTU}}{\mathrm{Ib}}$	$\frac{\$ 0.0017}{1 b}$	$\frac{\$ 0.0080}{1 b}$	$605 \frac{\mathrm{BTU}}{16}$	$323 \frac{\mathrm{BTU}}{1 \mathrm{~b}}$	$\frac{50.0040}{1 b}$	$\begin{gathered} \$ 0.0020 \\ 1 b \end{gathered}$	3
Instantized Dried Milk	$2958 \frac{\mathrm{BTU}}{1 \mathrm{~b}}$	$782 \frac{\mathrm{BTU}}{1 \mathrm{~b}}$	$\frac{\$ 0.0034}{1 \mathrm{~b}}$	$\frac{\$ 0.0009}{1 b}$	$475 \frac{\mathrm{BTU}}{1 \mathrm{~b}}$	$58 \frac{\mathrm{BTU}}{1 \mathrm{~b}}$	$\frac{\$ 0.0034}{1 b}$	$\frac{\$ 0.0004}{1 b}$	1
Evaporated Milk	$1627 \frac{\mathrm{BTU}}{1 \mathrm{~b}}$	$1014 \frac{\text { BTU }}{16}$	$\frac{\$ 0.0022}{16}$	$\frac{\$ 0.0011}{1 b^{?}}$	$90 \frac{\mathrm{BTU}}{1 \mathrm{~b}}$	$80 \frac{\mathrm{BTU}}{1 \mathrm{~b}}$	$\frac{\$ 0.0005}{1 b}$	$\frac{\$ 0.0006}{1 b}$	2
Ice Cream	$4406 \frac{\mathrm{BTU}}{\mathrm{gal}}$	$3866 \frac{\mathrm{BTU}}{\mathrm{gal}}$	$\frac{\$ 0.0041}{\text { gal }}$	$\frac{\$ 0.0043}{8 a 1}$	$3299 \frac{\mathrm{BTU}}{\mathrm{gaI}}$	$2213 \frac{\mathrm{BTU}}{\mathrm{gal}}$	$\frac{\$ 0.0148}{\text { gal }}$	$\frac{\$ 0.0162}{\mathrm{gal}}$	4

Section 6
 ENERGY CALCULATIONS

This section illustrates the methods used to derive each of the energy costs given in the preceeding sections. Each energy cost has an energy calculation number given with it. To locate the derivation of an energy cost, find the energy calculation numbers given in the left hand margin on the following pages and match it with the energy calculation number given with the energy cost in question.

Because the same energy consuming process may be used in the production of several dairy products, this section is divided into 28 subsections, each devoted to a particular energy consuming process. The first of each subsection gives the general procedures used to determine the energy consumption by a particular energy consuming process, such as pumping milk. The remainder of the subsection is divided up by energy calculation numbers. The data to the right of each energy calculation number includes the energy consumption for a particular product, such as cheddar cheese, and the fig-. ures which are necessary for the calculation of that particular energy consumption.

The energy calculation numbers are organized to refer to both the location of the subsection containing the energy calculation and to the product whose energy consumption we are interested in. The number to the left of the decimal point in each energy calculation number, refers to the subsection where the energy consumption derivation is found. The number to the right of the decimal point, which we shall call the product code number, refers to a specific product: The product code numbers are as follows:

.00	General derivation
.01	Fluid milk
.02	Cheddar cheese
.03	Cottage cheese
.04	Sour cream
.05	Cream cheese
.06	Cultured milk
.07	Dried whey
.08	Butter
.09	Dried milk
.10	Instantized dried milk
.11	Dried buttermilk
.12	Evaporated milk
.13	lce cream
.14	Processed cheese

An index showing the subsections in this section follows. As an example of the definition of energy calculation numbers, the energy calculation number 1.02 refers to both subsection one where the energy consumption in pumping milk is derived and to the specific product of cheddar cheese.

Section 6 Subsections Index

```
Electrical Energy Calculations
6-1 Pumping
6-2 Clarification
6-3 Separation
6-4 Homogenization
6-5 CIP Pumps
6-6 Double Effect Evaporator
6-7 Spray Drying
6-8 Air Compressor
6-9 Cold Storage Room Fans
6-10 Heating and Air Conditioning Fans
6-11 Boiler Fan
6-12 Evaporative Cooling Tower
6-13 Lights and Miscellaneous Motors
6-14 Miscellaneous Electrical Energy Costs
Steam Energy Calculations
6-15 CIP Cleaning Costs
6-16 Manụal Cleaning Costs
6-17 Double Effect Evaporator
6-18 Heating the Plant
6-19 Product Heating
6-20 Steam Line Losses
6-21 Miscellaneous Steam Energy Costs
```

Refrigeration Energy Calculations
6-22. Cold Storage Rooms
6-23 Air Conditioning
6-24 Product Cooling
6-25 Cooling Line Losses
6-26 Miscellaneous Refrigeration Energy Costs

Natural Gas Energy Costs
6-27 Spray Drying

General Energy Costs
6-28 Miscellaneous Energy Calculations

ENERGY CALCULATION NO. 1.00

Pumping Dairy Products During Processing

It is assumed that the average pump used in pumping dairy products has a capacity of 50 G.P.M. and is powered by a one horsepower motor. It is also assumed that the motor is under a load which is 75% of its rated capacity and has an electrical efficiency of 75%. If an average density for dairy products was assumed to be $8.6 \mathrm{lbs} / \mathrm{gal}$, the electrical energy cost is given by:

$$
\begin{gathered}
\frac{(1 \mathrm{hp} / \text { pump })\left(2545 \frac{\mathrm{BTU}}{\mathrm{hr}-\mathrm{hp}}\right)(0.75 \mathrm{load})}{(50 \mathrm{gal} / \mathrm{min})(60 \mathrm{~min} / \mathrm{hr})(0.75 \text { efficiency })\left(8.6 \frac{\mathrm{lbs}}{\mathrm{gal}}\right)} \\
=0.1 \frac{\mathrm{BTU}}{\text { pump }-1 \mathrm{bs} . \text { of dairy product }}
\end{gathered}
$$

For simplicity the above cost is assumed to apply to pumping milk, skim milk, cream, whey, buttermilk, cultured milk, ice cream mix, evaporated milk, corn syrup, and liquid sugar.

The energy cost calculation process begins by estimating the average number of pumps the ingredients of the finished product passes through. Next, the number of pumps is multiplied by the above cost per pump and by a conversion factor. The conversion factor is defined as the ratio of the mass of material pumped to the amount of product produced. This gives the cost of pumping for various products. The following table illustrates the results.

Table 6 -la Energy Requirements for Pumping

Energy Cal. No.	$\begin{aligned} & \text { Energy Req'd } \\ & \text { for } \end{aligned}$	Material Pumped	Average Number Pumps ... Used	$\begin{aligned} & \frac{\text { BTU }}{\text { Pump }-1 b} \\ & \text { Pumped } \end{aligned}$		Conversion Factor		trical Energy Req' ${ }^{\prime}$
1.01	Fluid Milk	Milk and Skim milk	5	0.1	8.6	1b. milk	4.3	$\frac{\text { BTU }}{\text { Gal. Milk }}$
						gal. milk		
1.02	Cheddar Cheese	Milk	5	0.1	10	16. milk	5.0	$\frac{\mathrm{BTU}}{1 \mathrm{l} . \text { cheese }}$
						1b. cheese		
1.03	Cottage Cheese			0.1	4.1	1b. milk	2.5	BTU
		Milk and Skim milk	6			1b. cheese		1b. cheese
1.04				0.1	1.0	lbs milk \& cream		BTU
	Sour Cream	Milk and 40% cream	6			1b. sour cream	0.6	lb. sour cream
1.05	Cream Cheese	M11k and 40\% cream	6	0.1	3.2	lbs milk \& chee		BTU
						1b. cheese	1.9	1b. cheese
1.06			4			1bs. milk	0.9	BTU
	Cultured Milk	Milk and Skim milk		0.1	2.15	qt. cult. milk		qt. cult. milk
		Skim milk	2			1bs 6\% whey		
1.07	Dried Whey	Whey		0.1	16.1	lb. powder	3.2	1b. whey powder
						1bs. cream		BTU
1.09	$\begin{aligned} & \text { Dried } \\ & \text { Milk } \end{aligned}$	40\% Cream	6	0.1	2.0	1b. butter lbs. milk	1.2	1b. butter. BTU
		Skim milk	5	0.1	10.8	1b. powder	5.4	1b. pouder
1.11						1bs. buttermilk		BTU
	$\begin{aligned} & \text { Dried } \\ & \text { Buttermilk } \end{aligned}$	buttermi.1k	3	0.1	10.8	lb. powder	3.2	1b. powder
						1bs. milk		BTU
1.12	Evaporated Milk	Nilk	5	0.1	2.0	lb. evap. milk		lb. evap. milk
						1bs. mix		BTU
1.13	Ice Cream	ice cream	6	0.1	4.95	gal. ice cream	3.0	gal. ice cream

Section 6-2
ENERGY CALCULATION NO. 2.00

Clarification of Milk

Manufacturer's specifications show that a $20,000 \mathrm{lb} / \mathrm{hr}$ clarifier requires a 10 horsepower motor. Assuming the motor is 88% efficient while under a load which is 75% of the rated capacity, then the electrical energy cost can be calculated as:

$$
\frac{(10 \mathrm{hp})\left(2545 \frac{\mathrm{BTU}}{\mathrm{hp}-\mathrm{hr}}\right)(0.75 \text { load })}{\left(20,000 \frac{1 \mathrm{bmilk}}{\mathrm{hr}}\right) \cdot(0.88 \text { efficiency })}=1.0 \frac{\mathrm{BTU}}{1 \mathrm{~b} \mathrm{milk}}
$$

Since, in some cases, cream is separated from milk and since both the cream and the skim milk are clarified, the cost of clarification will be distributed equally between cream and skim milk. Thus, the cost to clarify cream is

$$
1.0 \frac{\text { BTU }}{1 \mathrm{~b} \text { cream }}
$$

It is assumed that the energy cost to clarify 6% solids whey is the same as it is for milk.

The energy cost which clarification adds to various products is summarized in the following table. The total electrical energy cost is derived by multiplying the energy cost to clarify a material times the ratio of the mass of the material which is clarified to the mass of the product which is produced. This may be multiplied by a gravimetric to volumetric conversion factor when it is desired to express the energy cost per gallon instead of per pound.

Table 6-2a Energv Requirements for Clarification

Section 6-3
ENERGY CALCULATION NO. 3.00

Separation of Milk
Manufacturer's specifications show a $20,000 \mathrm{lb}$ per-hour separator requires a 10 horsepower motor. Assuming the motor is 88% efficient while under a load which is 75% of the rated capacity, then the electrical energy cost can be calculated as:

$$
\frac{(10 \mathrm{hp})\left(2545 \frac{\mathrm{BTU}}{\mathrm{hr}-\mathrm{hp}}\right)(0.75 \mathrm{load})}{\left(20,000 \frac{\mathrm{lbmilk}}{\mathrm{hr}}\right)(0.88 \text { efficiency })}=1.0 \frac{\mathrm{BTU}}{1 \mathrm{~b} \mathrm{milk}}
$$

Since both cream and skim milk are derived from, the separator, the cost per pound will be assumed to be equal. Thus, the cost to separate cream is:

$$
1.0 \frac{\mathrm{BTU}}{\mathrm{lb} \text { cream }}
$$

and the cost to separate skim milk is:

$$
1.0 \frac{\text { BTU }}{\mathrm{lb} \text { skim milk }}
$$

Also, it is assumed that the energy cost to separate whey is equal to milk separating costs.

The energy cost of separation is summarized in the following table. The total electrical energy cost is derived by multiplying the energy cost to separate a particular material times the ratio of the mass of the material separated to the mass of the product produced. This may be multiplied by a gravimetric to volumetric conversion factor when it is desired to express the energy cost, per gallon instead of per pound.

Table 6-3a. Energy requirements for separation.

Energy Ca1. No.	$\begin{aligned} & \text { Energy } \\ & \text { Req'd for } \end{aligned}$	Products of Separation Needed	$\frac{\frac{\mathrm{BTU}}{1 \mathrm{~b} .}}{\text { Separated }}$	Ratio of Product Separated	Conversion Factor	Electrical Energy Req'd
3.01	Fluid Milk	Skim Milk	1.0	$0.33 \frac{1 \mathrm{bs} \mathrm{skim}}{1 \mathrm{~b} \text { whole }}$	$8.6 \frac{1 \mathrm{bs} \mathrm{milk}}{\mathrm{gal} \mathrm{milk}}$	$2.9 \frac{\mathrm{BTU}}{\mathrm{gal} \mathrm{milk}}$
3.02	Cheddar Cheese	6\% Whey	1.0	$9.0 \frac{1 \mathrm{bs} \mathrm{whey}}{1 \mathrm{~b} \text { cheese }}$	-	$9.0 \frac{\mathrm{BTU}}{1 \mathrm{~b} \text { cheese }}$
3.03	Cottage Cheese	Skim Milk	1.0	$4.0 \frac{1 \mathrm{bs} \mathrm{skimmilk}}{\text { lb cheese }}$		$4.0 \frac{\text { BTU }}{\text { 1b cheese }}$
3.04	Sour Cream	40\% Cream	1.0	$0.39 \frac{1 \mathrm{lbs} \mathrm{cream}}{1 \mathrm{~b} \text { sour cream }}$		$0.4 \frac{\text { BTU }}{1 \mathrm{~b} \text { sour cream }}$
3.05	Cream Cheese	40\% Cream	1.0	$0.76 \frac{1 \mathrm{bs} \mathrm{cream}}{\mathrm{lb} \text { cheese }}$	--------	$0.8 \frac{B T U}{1 \mathrm{~b} \text { cheese }}$
3.06	Cultured Milk	Skim Milk	1.0	$0.75 \frac{1 \mathrm{bs} \mathrm{skim}}{1 \mathrm{~b} \text { whole }}$	$2.15 \frac{1 \mathrm{bs} \mathrm{milk}}{\mathrm{tt} \mathrm{milk}}$	$1.6 \frac{\mathrm{BTU}}{\mathrm{qt} \mathrm{cult} \mathrm{milk}}$
3.08	Butter	40\% Cream	1.0	$2.0 \frac{1 \mathrm{bs} \mathrm{cream}}{\mathrm{lb} \text { butter }}$		$2.0 \frac{\text { BTU }}{1 \mathrm{~b} \text { butter }}$
3.09	Dried Milk	Skim Milk	1.0	$10.8 \frac{1 \mathrm{bs} \mathrm{skim} \mathrm{milk}}{1 \mathrm{~b} \text { powder }}$		$10.8 \frac{\text { BTU }}{1 \mathrm{~b} \text { powder }}$
3.12	Evaporated Milk	Skim Milk	1.0	$0.7 \frac{1 \mathrm{bs} \mathrm{skim} \mathrm{milk}}{1 \mathrm{~b} \text { evap milk }}$	--	$0.7 \frac{\text { BTU }}{1 \mathrm{~b} \text { evap milk }}$

Section 6-4

ENERGY CALCULATION NO. 4.00

Homogenization

All homogenizers used will be assumed to be 3 cylinder, 2 stage machines with 2500 psig on the first stage and 500 psig on the second stage for a total pressure drop of 3000 psig. The theoretical work needed for this process can be calculated using the isentropic work equation for an incompressible fluid, or:

$$
-w=\int \frac{d p}{D}=\frac{1}{D}\left(P_{2}-P_{1}\right)
$$

where

$$
\begin{aligned}
& \mathrm{W}=\text { work } \\
& D=\text { density of the fluid } \\
& P=\text { pressure }
\end{aligned}
$$

When efficiencies of 88% for the pump and 91% for the motor are assumed and appropriate pressures and conversion factors are inserted the above equation becomes:

$$
-w=\frac{(3000 \mathrm{psig})\left(14412^{2} / \mathrm{ft}^{2}\right)}{\left(\mathrm{D}-\frac{1 \mathrm{bs}}{\mathrm{ft}^{3}}\right)\left(778 \frac{\mathrm{ft}-1 \mathrm{~b}}{\mathrm{BTU}}\right)(0.85)(0.91)}=\frac{718}{\mathrm{D}} \frac{\mathrm{BTU}}{1 \mathrm{~b} \text { homogenized }}
$$

The following tables gives the energy cost which homogenization adds. It is calculated by dividing the homogenization energy cost calculated above by the density of the material homogenized and multiplying by the ratio of the mass of material homogenized to the mass of product produced. This may be again multiplied by a gravimetric to volumetric conversion factor when it is desired to express the energy cost per gallon instead of per pound.

Tabe 6-4a Energy Requirements for Homogenization

CIP Pumps

A clean-in-place system uses pumps to circulate cleaning solution through a few pipelines or tanks. A CIP cycle is described in Energy Calculation Number 15.00. During each CIP cycle it is assumed there are two pumps running. One will be a 5 horsepower feed pump and the other a 1 horsepower return pump for a total of 6 horsepower. It is further assumed that each cycle is 50 minutes long, the motors have an electrical efficiency of 80%, and the average load on the motor is 75% of the rated capacity. The electrical energy cost per cycle is:

$$
\frac{(6 \mathrm{hp})\left(2545 \frac{\mathrm{BTU}}{\mathrm{hp}-\mathrm{hr}}\right)\left(5 / 6 \frac{\mathrm{hr}}{\mathrm{cycle}}\right)(0.75 \text { load })}{(0.80 \cdot \text { efficiency })}=11,930 \frac{\mathrm{BTU}}{\text { cycle }}
$$

The following table will show the electrical energy costs which are attributed to CIP pumping. The electrical energy cost is derived by multiplying the above cost per cycle by the number of cycles per day and dividing by the average production per operating day. These factors are all shown in the table.

Table 6-5a Energy Requirements for CIP pumps

Energy Cal. No.	$\begin{aligned} & \text { Erergy Req'd } \\ & \text { for } \end{aligned}$	Cost per cycle			$\begin{gathered} \text { Cycles. Per } \\ \text { day } \end{gathered}$	Production per day		Electricaz Energy Req'd	
5.01	Fluid Milk	$11 ; 930$	$\frac{B T U}{\text { cycle }}$	19	$\frac{\text { cycles }}{\text { day }}$	$21,000$	$\frac{\text { gal }}{\text { day }}$	10.8	$\frac{\mathrm{BTU}}{\mathrm{gal} \cdot \mathrm{milk}}$
5.02	Cheddar Cheese	11,930	$\frac{\text { BTU }}{\text { cycle }}$	13	$\frac{\text { cycles }}{\text { day }}$	13,333	$\frac{1 b}{d a y}$	11.6	$\frac{\mathrm{BTU}}{\mathrm{lb} \cdot \text { cheese }}$
5.03	Cottage Cheese	11,930	$\frac{B T U}{c y c l e}$	13	$\frac{\text { Cycles }}{\text { day }}$	43,950	$\frac{1 b}{d a y}$	3.5	$\frac{\text { BTU }}{1 \mathrm{~b} . \text { cheese }}$
5.04	Sour Cream	11,930	$\frac{B T U}{c y c l e}$		$\frac{\text { cycle }}{\text { day }}$	12,000	$\frac{1 b}{d a y}$	1.0	BTU 1b. sour cream
5.05	Cream Cheese	11,930	$\frac{B T U}{\text { cycle }}$	2	$\frac{\text { cycles }}{\text { day }}$	3,600	$\frac{1 \mathrm{bs} .}{\text { day }}$	6.6	$\frac{\text { BTU }}{\text { 1b. cheese }}$
5.06	Cultured Milk	11,930	$\frac{\text { BTU }}{\text { cycle }}$		$\frac{\text { cycles }}{\text { day }}$	12,279	$\frac{\text { gts. }}{\text { day }}$	1.9	$\frac{\mathrm{BTU}}{\mathrm{qt} \cdot \operatorname{cult} \cdot \operatorname{milk}}$
5.08	Butter	11,930	$\frac{\mathrm{BTU}}{\mathrm{cyc} \mathrm{e}}$ BTU	7	$\begin{aligned} & \frac{\text { cycles }}{\text { day }} \\ & \text { cycles } \end{aligned}$	11,222	$\begin{aligned} & \frac{1 \mathrm{bs}}{\mathrm{day}} \\ & 1 \mathrm{bs} \end{aligned}$	7.4	$\begin{aligned} & \frac{\text { BTU }}{1 \mathrm{~b} . \text { butter }} \\ & \text { BTU } \end{aligned}$
5.09	Dried Milk	11,930	cycle		6 day	21,150	day	9.0	1b. powder
5.11	Dried Buttermilk	11,930	$\frac{\text { BTU }}{c y c 1 e}$		$4 \frac{\text { cycles }}{\text { day }}$	1,046	$\frac{1 \mathrm{bs}}{\mathrm{day}}$	16.0	$\frac{\text { BTU }}{1 \mathrm{~b} \cdot \text { powder }}$
5.12	Evaporated Milk	11,930	$\frac{\text { BTU }}{\text { cycle }}$	17	$\frac{\text { cycles }}{\text { day }}$	142,857	$\frac{1 \mathrm{bs}}{\mathrm{day}}$	1.4	$\frac{\text { BTU }}{\text { lb. evap. milk }}$
5.13	Ice Cream	11,930	$\frac{\text { BTU }}{\text { cycle }}$	7	$\frac{\text { cycles }}{\text { day }}$	3,846	$\frac{\text { gals }}{\text { day }}$	21.7	$\frac{\text { BTU }}{\text { gal. ice cream }}$

Section 6-6
ENERGY CALCULATION NO. 6.00

Double Effect Evaporator (Electrical Costs)
It is assumed there are seven electric motors with a total rating of 20 horsepower running condensate and product pumps which are required to operate a double effect evaporator that has a capacity of 22,500 lbs of evaporation per hour. If the motors are 80% efficient and are under a load which is 75% of their rated capacity, the electrical cost of evaporation is:
$\frac{(20 \mathrm{hp})\left(2545 \frac{\mathrm{BTU}}{\mathrm{hp}-\mathrm{hr}}\right)(0.75 \text { load })}{\left(22,500 \frac{1 \mathrm{bs} \mathrm{H}_{2} \mathrm{O} \text { removed }}{\mathrm{hr}}\right)(0.80 \text { efficiency })}=2.1 \frac{\mathrm{BTU}}{1 \mathrm{~b} \mathrm{H} \mathrm{H}_{2} \text { O removed }}$

The electrical energy cost of a double effect evaporator are listed in the following table. The energy cost for a particular product is derived by multiplying the mass of the water removed in concentrating one pound of material by the above cost of evaporation and by the ratio of the mass of the material evaporated to the mass of the desired concentrated product.

$\begin{gathered} \text { Energy } \\ \text { Cal. } \\ \text { No. } \end{gathered}$	$\begin{aligned} & \text { Energy } \\ & \text { Req' } \\ & \text { For } \end{aligned}$	Vaterial Concentrated	Change in \% solids Concentration	Lbs. of water Removed per lb. original material	1b. $\frac{\mathrm{BTU}}{\mathrm{H}_{2}^{\mathrm{O}}}$ removed	```Lbs. of original Electrical material per lb. Energy concentrated Req'd product```
6.07	Dried Whey	whey 6\% solids	6\% $\rightarrow 40 \%$	$0.85 \frac{1 \mathrm{bs} \mathrm{H}}{2} \mathrm{O}$	2.1	$16.1 \frac{\text { lbs } 6 \% \text { whey }}{\text { 1b whey powder }} 30 \frac{\text { BTU }}{1 b \text { whey pow }}$
6.09	Dried Milk	skim milk	9\% \rightarrow 40\%	$0.775 \frac{\mathrm{lbs} \mathrm{H}_{2} \mathrm{O}}{\mathrm{Ib} \text { skim milk }}$	2.1	$10.8 \frac{\text { Ibs skim milk }}{1 \mathrm{~b} \text { whey powder }} 17.3 \frac{\text { BTU }}{1 \mathrm{~b} \text { milk pc }}$
6.11	Dried Buttermilk	buttermilk	9\% \rightarrow 40\%	$0.775 \frac{1 \mathrm{bs} \mathrm{H}_{2} \mathrm{O}}{\mathrm{Ib} \mathrm{buttermilk}}$	2.1	$10.8 \frac{\text { lbs buttermilk }}{\mathrm{lb} \text { buttermilk }} \begin{gathered} \text { powder } \end{gathered} \quad \frac{\text { BTU }}{\begin{array}{l} \text { buttermj } \\ \text { powder } \end{array}}$
6.12	Evaporated Milk	whole milk milk	$12.5 \% \rightarrow 25 \%$	$0.5 \frac{\mathrm{Ibs} \mathrm{H}}{2} \mathrm{O}$	2.1	$2 \frac{\text { Ibs milk }}{\text { Ib. evap. milk }} \quad 2.1 \frac{\text { BTU }}{\text { Ib evap. mi }}$

Section 6-7
ENERGY CALCULATION NO. 7.00

Spray Drying (Electrical Costs)
Manufacturer's specifications show about 325 horsepower for a $6000 \mathrm{lb} / \mathrm{hr}$ drier that produces 3.5% moisture powder from a 40% solids concentrate. Assuming that the motors are 85% efficient and under a load which is 75% of their rated capacity, the electrical cost can be given by:

$$
\frac{(325 \mathrm{hp})\left(2545 \frac{\mathrm{BTU}}{\mathrm{hp}-\mathrm{hr}}\right)(0.75 \text { load })}{\left(6000 \frac{\mathrm{lbs} \text { powder }}{\mathrm{hr}}\right)(0.88 \text { efficient })}=117.5 \frac{\text { BTU }}{\text { powder }}
$$

The electrical energy cost of spray drying is the same for Dried Whey, Dried Milk, or Dried Buttermilk.

Table 6-7a. Electrical energy requirements of spray drying.

Energy Cal. No.	Energy Required For	Electric Energy Required
7.07	Dried Whey	
7.09	Dried Mi1k	$117.5 \frac{\text { BTU }}{1 \mathrm{~b} \mathrm{powder}}$

Section 6-8

ENERGY CALCULATION NO. 8.00

Air Compressor

Assuming a 20 horsepower air compressor is used in each plant and runs 5% of the time with an 88% efficient electrical motor which is under a load of 75% the energy consumption per week is:

$$
\frac{(20 \mathrm{hp})\left(2545 \frac{\mathrm{BTU}}{\mathrm{hp}-\mathrm{hr}}\right)(0.75 \text { load })\left(1.2 \frac{\mathrm{hr}}{\mathrm{day}}\right)\left(7 \frac{\text { days }}{\text { week }}\right)}{(0.88 \text { efficiency })}=364,398 \frac{\mathrm{BTU}}{\text { week }}
$$

The following table relates the electrical energy cost of an air compressor for various products. The energy cost is derived by dividing the above electrical cost per week by the weekly production and multiplying by an apportioning factor. The apportioning factor is needed for plants producing more than one product. For these plants, it is assumed that the fraction of the cost of compressing air that should be attributed to a particular product be equal to the fraction of the total amount of raw milk coming into a plant which goes into the particular product. If a plant produces only one product the apportioning factor is equal to 1.0 .

Table 6-8a Electrical Energy Requirements for Air Compressors

| Energy
 Cal.
 No. | Energy
 Req'd
 For | Energy Cost
 Per Week | Production
 Per Week | Apportioning
 Factor | Electrical Energy
 Req'd |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 8.01 | Fluid
 Milk | 364,398 | $\frac{\text { BTU }}{\text { week }}$ | 105,000 | $\frac{\text { gal. }}{\text { week }}$ |

ENERGY CALCULATION NO. 9.00

Cold Storage Room Fans.

The electrical energy cost to run the cold storage room fans will be estimated by assuming the fans run two-thirds of the time. The motor efficiency will be assumed to be 75% while it is under a load of 75% of its rated capacity. The electrical energy cost per total horsepower needed per week is:

$$
\frac{\left(2545 \frac{\mathrm{BTU}}{\mathrm{hr}-\mathrm{hp})(0.75 \text { load })\left(16 \frac{\mathrm{hr}}{\mathrm{day})}\left(7 \frac{\text { days }}{\text { week }}\right)\right.}\right.}{(0.75 \text { efficiency })}=285,040 \frac{\mathrm{BTU}}{\mathrm{hp}-\text { week }}
$$

The following table relates the electrical energy cost for cold storage room fans for various products. The energy cost is derived by multiplying the above cost by the total horsepower used to run the fans in a room, dividing by the weekly production, and multiplying by an apportioning factor. The apportioning factor is needed for cold rooms storing more than one product. For the cold storage rooms, the fraction of the cost of running the cold room fans that should be attributed to a particular product, is called the apportioning factor and is equal to that fraction of the total mass stored in the room that the mass of a particular product is equal to. The apportioning factors used were derived by Step 5 in Energy Calculations Nos. 22.03-22.06. If only one product is stored in the room, the apportioning factor is equal to 1.0 .

Table 6-9a Electrical Energy Requirements for Cold Room Fans

Fans for Heating and Air Conditioning
The electrical energy cost to run the heating and air conditioning fans will be estimated here. Manufacturer's ratings estimate 1 horsepower per 2000 CFM on air handling units. Assuming they run 16 hours a day with a motor efficiency of 80% and under a 75% of capacity load, the electrical energy consumption per CFM of air circulation in the plant, per week is:

The following table relates the electrical energy cost for air circulation fans for various products. The energy cost is derived by multipying the above cost by the estimated air circulation rate for the plant, dividing by the weekly production rate, and multiplying by an apportioning factor. The apportioning factor is needed for plants manufacturing more than one product. The fraction of the cost of running the air circulation units which can be attributed to a particular product is called the apportioning factor and is equal to the fraction of the mass of the incoming raw milk which goes into that particular product. For plants producing only one product, the apportioning factor is equal to one.

Table 6-10a Electrical Energy Requirements for Air Circulation Fans

Section 6-11
ENERGY CALCULATION NO. 11.00

Boiler Fan
The electrical energy costs to run the boiler fan will be estimated assuming that each plant's boiler has a 10 horsepower motor running a fan to furnish combustion air. The motor runs constantly while air is throttled for the correct flow rate. If the motor is 88% efficient while under a load which is 50% of the rated capacity, then the electrical energy cost is given by:

$$
\frac{(10 \mathrm{hp})\left(2545 \frac{\mathrm{BTU}}{\mathrm{hp}-\mathrm{hr})}(0.50 \text { load })\left(24 \frac{\mathrm{hr}}{\mathrm{day}}\right)\left(7 \frac{\mathrm{days}}{\text { week }}\right)\right.}{(0.88 \text { efficient })}=2.43 \times 10^{6} \frac{\mathrm{BTU}}{\text { week }}
$$

The following table relates the electrical energy cost to run a boiler fan for various products. The energy cost is derived by dividing the above energy cost by the weekly production and multiplying by an apportioning factor. The apportioning factor is needed for plants manufacturing more than one product. The fraction of the cost of running the boiler fan which can be attributed to a particular product is the apportioning factor and is equal to the fraction of the raw milk which goes into that particular product. For plants producing only one product, the apportioning factor equals one.

Table 6-1la Electrical Energy Requirements for the Boiler Fan

Energy Ca1.	Energy Req'd	$\frac{\text { BTU }}{\text { Week }}$	Production Per Week		Apportioning Factor	Electrical Energy	
11.01	Fluid			gals.			BTU
	Milk	2.43×10^{6}	105,000	week	1.0	23.1	gal. milk
11.02	Cheddar			1bs.			BTU
	Cheese	2.43×10^{6}	80,000	week	1.0	30.4	1b. cheese
11.03	Cottage Cheese	2.43×10^{6}	219,750	$\frac{1 \mathrm{bs} .}{\text { week }}$	0.75	8.3	$\frac{\text { BTU }}{1 \mathrm{~b} \cdot \text { cheese }}$
11.04	Sour Cream	2.43×10^{6}	000	$\frac{1 \mathrm{bs} .}{\text { week }}$	0.05	2.0	$\frac{B T U}{1 \mathrm{~h}}$
11.05	Cream			1 bs.			BTU
	Cheese	2.43×10^{6}	18,000	week	0.10	13.5	lb. cheese
11.06	Cultured	2.43×10^{6}	61,395	qts.	0.10	4.0	BTU
	Milk			week			qt. cult. milk
11.08	Butter	2.43×10^{6}.	78,554	$\frac{1 \mathrm{bs}}{\text { week }}$	0.05	1.5	$\frac{\mathrm{BTU}}{1 \mathrm{~b} \cdot \text {. butter }}$
11.09	Dried	2.43×10^{6}	148,050	1bs.	0.90		BTU
11.11	Dried		1bs.		0.05	16.6	BTU
	Buttermi	$\mathrm{k} 2.43 \times 10^{6}$	7,322	week			Ib. powder
11.12	Evaporated 6		1,000,000	1bs.	1.0	2.4	BTU
	Milk	2.43×10^{6}		week			lb. evap. milk
11.13	Ice	2.43×10^{6}	19,231	gals.	1.0	126.3	BTU
	Cream						gal. ice cream
11.14	ProcessedCheese	2.43×10^{6}	1.68×10^{6}	$\frac{\text { lbs. }}{\text { week }}$			B'U
					1.0	1.4	1b. cheese

Section 6-12
ENERGY CALCULATION NO. 12.00

Evaporative Cooling Tower Fans
Eyaporative cooling towers, will be used to condense refrigerant and to cool the recirculated water used to condense steam in the double effect evaporators. Manufacturer's ratings for cooling towers indicate that approximately 0.06 horsepower is required to run the fans per ton of capacity. This can be translated into the following ratio giving the BTU's of electricity consumed per BTU of cooling load exhausted out of the cooling tower. Assuming the electric motors are 88% efficient and under a load which is 75% of their rated capacity, the ratio is:

$$
\frac{\left(0.06 \frac{\mathrm{hp}}{\operatorname{ton}}\right)\left(2545 \frac{\mathrm{BTU}}{\mathrm{~h} p-\mathrm{h} 4}\right)(0.75 \text { load })}{\left(12,000 \frac{\mathrm{BTU}}{\mathrm{hr}-\operatorname{ton})} \quad(0.88 \text { efficient })\right.}=0.010
$$

Multiplying the above dimensionless ratio by the load which exhausts out the cooling tower gives the electrical energy consumed.

The energy cost to run the evaporative cooling tower fans is derived by multiplying the total refrigeration load needed for the unit production of a dairy product times a refrigeration factor and adding this to the water cooling load generated if a double effect evaporator is used during the processing procedure of the product in question. The sum is then multiplied by the above dimensionless ratio to yield the electrical energy cost per unit product produced.

The total refrigeration load per unit production is the sum of the cooling loads associated with the production of a certain product. It can be found
in the "Uses of Refrigeration" table in the section showing the total energy costs of the product in question. The total refrigeration load is the load measured at the evaporator of thie refrigeration system. Assuming the coefficient of performance of the system is 3.0 , the load exhausting out the cooling towers is 1.3 times the calculated cooling load. Therefore the refrigeration factor equals 1.3.

Manufacturer's specifications for a double effect evaporator indicate that 226 BTUs must be transferred to cooling water for every pound of water evaporated from the product. By multiplying the amount of water removed during the evaporation process (this is found in the Table described in Energy Calculation No. 6.00) times the above water heating factor, times the ratio of the mass of material evaporated to the mass of the finished product, yields the water cooling load generated by the use of a double effect evaporator. For dried whey production, this is:

$$
\begin{aligned}
\left(226 \cdot \frac{\mathrm{BTU}}{1 \mathrm{~b} \cdot \mathrm{H}_{2} \mathrm{O}} \text { removed)}\right) & \left(0.85 \frac{1 \mathrm{bs} \mathrm{H}_{2} 0 \text { removed }}{1 \mathrm{~b} 6 \% \text { whey }}\right) \quad\left(16.1 \frac{1 \mathrm{bs} \frac{6 \% \text { whey }}{1 \mathrm{~b} \text { whey powder })}}{=} \quad 3093 \cdot \frac{\text { BTU }}{1 \mathrm{~b} \text { whey powder }}\right.
\end{aligned}
$$

For the production of dried milk the water cooling load is:

$$
\begin{aligned}
& \text { (226 } \frac{\mathrm{BTU}}{1 \mathrm{~b} \mathrm{H}_{2} \mathrm{O}} \text { removed) (} 0.775 \frac{1 \mathrm{bs} \mathrm{H}_{2} 0 \text { removed }}{1 \mathrm{~b} \mathrm{skim} \mathrm{milk}} \text {) (10.8 } \frac{\mathrm{lbs} \text { skim milk }}{1 \mathrm{~b} \text { powder }} \text {) } \\
& =1892 \frac{\mathrm{BTU}}{\mathrm{Ib} \mathrm{mi} 1 \mathrm{k}} \text { powder }
\end{aligned}
$$

The water cooling load for dried buttermilk is the same as dried milk. For the production of evaporated milk the water cooling load would be:

$$
\begin{aligned}
\left(226 \frac{\mathrm{BTU}}{1 \mathrm{bll}} 20 \text { removed }\right) & \left(0.5 \frac{1 \mathrm{bs} \mathrm{H}_{2} \mathrm{O} \text { removed }}{1 \mathrm{~b} \text { milk }}\right)\left(2 \frac{1 \mathrm{bs} \text { milk }}{1 \mathrm{~b} \text { evap. milk })}\right. \\
= & 226 \quad \frac{\mathrm{BTU}}{1 \mathrm{~b} \text { evaporated milk }}
\end{aligned}
$$

The following table relates the eyaporative cooling tower electrical energy costs in the production of various products.

Table 6-12a Electrical Energy Requirements for Cooling Tower Fans

Section 6-13

ENERGY CALCULATION NO. 13.00

Lights and Misc. Motors

The electrical energy cost for lighting and the use of small motors will be calculated here. It is assumed that there is on the average one 8 -foot, 110 watt fluorescent 1 ight per $60 \mathrm{Ft}^{2}$ of floor space in operation 36 hours per week. The cost of lighting per square foot of floor space is:

$$
\frac{(110 \text { watt })\left(3 . 4 1 \frac { \mathrm { BTU } } { \mathrm { hr } - \text { watt }) } \left(36 \frac{\mathrm{hr}}{\text { week })}\right.\right.}{\left(60 \mathrm{Ft}^{2}\right)}=-225 \quad \frac{\mathrm{BTU}}{\mathrm{Ft}^{2} \text {-week }}
$$

For the many small motors which run intermittantly, such as conveyers or stirrers, it is assumed that their cost can be estimated by adding 10% to the lighting cost or:

$$
\left(225 \frac{\mathrm{BTU}}{\left.\mathrm{ft}^{2}-\text { week }\right)}(1.1)=247.5 \frac{\text { BTU }}{\mathrm{ft}^{2}-\text { week }}\right.
$$

The following table relates the electrical energy cost of lighting in the production of various products. The energy cost is derived by multiplying the above energy cost times the number of square feet of floor space in a plant, times an apportioning factor and dividing the product by the weekly production of the plant. The apportioning factor is needed in plants manufacturing more than one product.

The fraction of the cost of lighting the plant which is attributed to a specific product is the apportioning factor and is equal to the fraction of the raw milk which enters the plant and goes into that particular product. If a plant produces on 1 y one product, the apportioning factor is 1.0 .

Table 6-13a Electrical Energy Requirements for Lights and Misc. Motors

Section 6-14

ENERGY CALCULATION NO. 14.00

Miscellaneous Electrical Energy Calculations
Energy Calculation No. 14.08
Churning
It is estimated that a batch-type churn with a capacity of 11,250 1bs. requires a 10 horsepower motor. The operating time per batch is 1.2 hours. If the motor is 85% efficient and is under a 75% of capacity load, the electrical energy cost is:

$$
\frac{(10 \mathrm{hp})\left(2545 \frac{\mathrm{BTU}}{\mathrm{hp}-\mathrm{hr}}\right)(0.75 \text { load })\left(1.2 \frac{\text { hours }}{\text { batch }}\right)}{\left(11,250 \frac{\text { lbs butter }}{\text { batch }}\right)(0.85 \text { efficient })}=2.4 \frac{\mathrm{BTU}}{\text { 1b butter }}
$$

Energy Calculation No. 14.10

Instantizing (Electrical Energy Costs)
A typical instantizer has seven fans and a conveyor belt all run by electric motors. It is assumed that the total output required by these motors on a 2000 lbs per hour instantizer is 40 hp . If the motors are 83% efficient and under a load which is 75% of their rated capacity, the electrical energy cost is given by:

$$
\frac{(40 \mathrm{hp})\left(2545 \frac{\mathrm{BTU}}{\mathrm{hr}-\mathrm{hp}}\right)(0.75 \mathrm{load})}{\left(2000 \frac{\mathrm{lbs} \text { powder }}{\mathrm{hr}}\right)(0.85 \text { efficiency })}=44.9 \frac{\mathrm{BTU}}{1 \mathrm{~b} \text { powder }}
$$

Energy Calculation No. 14.13
Agitation of Ice Cream Mix
The electrical energy cost of agitating ice cream mix is calculated by the following procedure. It is assumed that a total of 6 hours of
agitation by a 1 horsepower agitator is required to make 2,775 gallons of ice cream. If the motor is 75% efficient and under a load which is 75% of the rated capacity, the electrical energy cost is:

$$
\frac{(1 \mathrm{hp})\left(2545 \frac{\mathrm{BTU}}{\mathrm{hr}-\mathrm{hp}}\right)(6 \mathrm{hr})(0.75 \text { load })}{(2775 \mathrm{gal} \text { ice cream })(0.75 \text { efficiency })}=5.5 \frac{\mathrm{BTU}}{\text { gal. ice cream }}
$$

Ice Cream Freezer (Electrical Energy Costs)

It is assumed that a 900 gallon per hour ice cream freezer requires a 75 horsepower motor to run it. If the motor is 85% efficient and under a load which is 75% of its rated capacity, the electrical energy cost is:

$$
\frac{(75 \mathrm{hp})\left(2545 \frac{\mathrm{BTU}}{\mathrm{hr}-\mathrm{hp}}\right)(0.75 \mathrm{load})}{\left(900 \frac{\text { gal ice cream }}{\mathrm{hr}}\right)(0.85 \text { efficiency })}=187.1 \frac{\mathrm{BTU}}{\text { gal. ice cream }}
$$

Energy Calculation No. 14.14
Processed Cheese Grinding
A $5000 \mathrm{lb} / \mathrm{hr}$ grinder requires a 100 horsepower motor. If the motor is 85% efficient while under a load which is 75% of the rated capacity, the electrical energy cost to grind cheese is:

$$
\frac{(100 \mathrm{hp})\left(2545 \frac{\mathrm{BTU}}{\mathrm{hr}-\mathrm{hp}}\right)(0.75 \mathrm{load})}{\left(5000 \frac{\mathrm{lbs} \mathrm{cheese}}{\mathrm{hr}}\right)(0.85 \text { efficiency })}=44.9 \frac{\mathrm{BTU}}{\text { lb cheese }}
$$

Agitation During the Cooking of Processed Cheese

It takes about 30 minutes to complete the cooking operation for processed cheese. If a 10 horsepower motor is required to agitate a 2500 pound batch of processed cheese and if the motor is 85% efficient while under a load which is 75% of the rated capacity, the electrical energy used for agitation is:

$$
\frac{(10 \mathrm{hp})\left(2545 \frac{\mathrm{BTU}}{\mathrm{hp}-\mathrm{hr}}\right)(0.75 \text { load })\left(0.5 \frac{\mathrm{hr}}{\mathrm{batch}}\right)}{\left(2500 \frac{1 \mathrm{bs} \text { cheese }}{\text { batch }}\right)(0.85 \text { efficiency })}=4.5 \frac{\mathrm{BTU}}{1 \mathrm{~b} \text { cheese }}
$$

Processed Cheese Packaging Machines
It is estimated that a packaging machine for processed cheese would require a 1 horsepower motor and 2 kilowatts of heating for a 5000 pound per hour machine. If the motor is 75% efficient while under a load which is 75% of its rated capacity, the electrical energy cost is given by:
$\frac{(1 \mathrm{hp})\left(2545 \frac{\mathrm{BTU}}{\mathrm{hp}-\mathrm{hr}}\right)(0.85 \mathrm{load})}{\left(5000 \frac{\mathrm{lbs} \text { cheese }}{\mathrm{hr}}\right)(0.75 \text { efficient })}+\frac{(2 \mathrm{kw})\left(3413 \frac{\mathrm{BTU}}{\mathrm{hr}-\mathrm{kw}}\right)}{\left(5000 \frac{\text { lbs cheese }}{\mathrm{hr}}\right)}=1.9 \frac{\mathrm{BIU}}{1 \mathrm{~b} \text { cheese }}$

Section 6-15
ENERGY CALCULA'PION NO. 15.00

Hot Water for the CIP System
A typical wash cycle for a Clean-In-Place system is:

1. A 5 minute rinse with $100^{\circ} \mathrm{F}$ water which goes down the drain.
2. An alkali wash for 30 minutes with a $160^{\circ} \mathrm{F}$ solution which is recirculated and returns at an estimated $130^{\circ} \mathrm{F}$.
3. A rinse with $100^{\circ} \mathrm{F}$ water for 5 minutes which goes down the drain.
4. A sanitizing cycle (chlorinated cold water) circulating for ten minutes.

For equipment with milk touching heated surfaces a 20 minute acid wash precedes the sanitizing. The acid wash water is assumed to leave at $165^{\circ} \mathrm{F}$ and return at $130^{\circ} \mathrm{F}$. If the culinary water temperature is $60^{\circ} \mathrm{F}$ and the flow rate through the system is 50 GPM (a minimum velocity of 5 feet per second is needed for proper cleaning) the steam energy cost of each cycle is:

$$
\begin{aligned}
& (10 \mathrm{~min})(50 \mathrm{G} . \mathrm{P} . \mathrm{M} .)\left(8.3 \frac{1 \mathrm{~b} \mathrm{H}_{2} \mathrm{O}}{\mathrm{gal}}\right)\left(1 \frac{\mathrm{BTU}}{1 \mathrm{bT} \mathrm{H}_{2} 0^{\circ} \mathrm{F}}\right)\left(40^{\circ} \mathrm{F}\right)+ \\
& (30 \mathrm{~min})(50 \mathrm{GPM})\left(8.3 \frac{1 \mathrm{bs} \mathrm{H}_{2} \mathrm{O}}{\mathrm{gal}}\right)\left(1 \frac{\left.\mathrm{BBU}^{1 \mathrm{bH}} \mathrm{H}_{2} 0^{\circ} \mathrm{F}\right)}{\left(35^{\circ} \mathrm{F}\right)=604,287 \frac{\mathrm{BTU}}{\mathrm{cycle}}}\right.
\end{aligned}
$$

If an acid wash cycle is needed, the extra cost is:
$(20 \mathrm{~min})(50 \mathrm{GPM})\left(8.3 \frac{\mathrm{lbH}_{2} \mathrm{O}}{\mathrm{gaI}}\right)\left(1 \frac{\mathrm{BTU}}{1 \mathrm{~b} \mathrm{H} \mathrm{H}_{2} 0^{\circ} \mathrm{F}}\right)\left(35^{\circ} \mathrm{F}\right)=291,725 \frac{\mathrm{BTU}}{\mathrm{cycle}}$
The following table relates the steam energy consumed by the CIP system for various products. The energy cost is calculated by multiplying the energy cost for a regular CIP cycle and for the acid wash cycle times the number of regular and acid CIP cycles per day respectively. Then summing the products and dividing by the average daily production gives the steam energy cost per unit produced.

Table 6-15a' Steam Energy Requirements for CIP cleaning

Energy Cal. No.	$\begin{aligned} & \text { Energy } \\ & \text { Req'd } \\ & \text { For } \end{aligned}$	$\frac{\mathrm{BTU}}{\mathrm{CIP} \text { cycle }}$	$\frac{\text { Cycles }}{\text { day }}$	$\frac{\text { BTU }}{\text { acjd cycle }}$	Acld cycles Daily day Production				Steam Energy Req'd
15.01	$\begin{aligned} & \text { Fluid } \\ & \text { Milk } \end{aligned}$	$604,287$	19	291,725	1	$21,000$	$\frac{\text { gal }}{\text { day }}$	561	$\frac{\text { BTU }}{\text { gal. milk }}$
15.02	Cheddar Cheese	604,287	13	291,725	1	$13,333$	$\frac{16 s}{\text { day }}$	611	$\frac{\mathrm{BTU}}{\mathrm{Ib} \text {. cheese }}$
15.03	Cottage Cheese	604,287	13	291,725	1	-43,950	$\frac{1 b}{\text { day }}$	1.85	BTU 1b. cheese
15.04	Sour Cream	604,287	1	291,725	1	$12,000$	$\frac{15}{d a y}$	75	$\frac{B T U}{1 b-~ s o u r ~ c r e a r ~}$
15.05	Cream Cheese	$604,287$	2	$291,725$	1.	$3,600$	$\frac{1 b}{\text { day }}$	417	$\frac{\text { BTU }}{\text { BYo cheese }}$
15.06	Cultured Milk	604,287	2	291,725	1	12.279	$\frac{\text { ges. }}{\text { day }}$	122	$\frac{\mathrm{BTU}}{\mathrm{qt}} \text {. cult. milk }$
15.07	Dried Whey	604,287	6	291,725	2	7,200	$\frac{\text { lbs. }}{\text { day }}$	585	$\frac{\mathrm{B}^{\prime} \mathrm{CU}}{\mathrm{Ib} \cdot \text { powder }}$
15.08	Butter	604,287	7	291,725	2	11,222	$\frac{1 b s .}{\text { day }}$	429	$\frac{B T U}{1 b} \text {. buttex }$
15.09	$\begin{aligned} & \text { Dried } \\ & \text { Milk } \end{aligned}$	604,287	16	291,725	2	21,150	$\frac{1 \mathrm{bs} .}{\text { day }}$	485	$\frac{\text { BTU }}{1 \mathrm{~b} \cdot \text { powder }}$
15.10	Instantized Milk	604,287	1	291,725	0	10,575	$\frac{1 b s .}{d a y}$	57	$\frac{\text { BTU }}{\text { Ib. powder }}$
15.11	$\begin{aligned} & \text { Dried } \\ & \text { Buttermilk } \end{aligned}$	604,287	1	291,725	0	1.046	$\frac{1 \mathrm{bs}}{\mathrm{day}}$	578	$\frac{\mathrm{Bru}}{1 \mathrm{~b}: \text { powder }}$
15.12	Evaporated Mi.1k	604,287	17	291,725	2	142.857	$\frac{1 b s .}{\text { day }}$	76	$\frac{\text { BTU }}{1 \mathrm{~b} \cdot \text { evap. mill }}$
15.13	Ice Cream	604,287	7	291,725	1	$3,846$	$\frac{\text { gal }}{\text { day }}$	1176	$\frac{\text { BTU }}{\text { gal. ice crear }}$
15.14	Processed Cheese	604,287	8	291,725	8	280,000	$\frac{1 b s}{d a y}$		$\frac{\text { BTU }}{1 \mathrm{~b} . ~ c h e e s e ~}$

Section 6-16
ENERGY CALCULATION NO. 16.00

Hot Water for Manual. Washing

Steam energy is used to heat water to wash items which must be disassembled to be cleaned. The items will be washed a. batch at a time in a 100 gallon wash tank. It is assumed that each batch requires 50 gallons of $100^{\circ} \mathrm{F}$ rinse water, 100 gallons of $150^{\circ} \mathrm{F}$ wash water, and after rinsing with cool water and refilling with 100 gallons of $60^{\circ} \mathrm{F}$ water, the tank is heated to $180^{\circ} \mathrm{F}$ for sanitization. With a $60^{\circ} \mathrm{F}$ water source, the steam cost per batch washed is:

$$
(50 \mathrm{gal})\left(8.3 \frac{1 \mathrm{bHH}_{2} \mathrm{O}}{\mathrm{gal}}\right)\left(1 \frac{\mathrm{BTU}}{1 \mathrm{~b} \mathrm{H} \mathrm{H}_{2}-^{\circ} \mathrm{F}}\right)\left(40^{\circ} \mathrm{F}\right)+(100 \mathrm{gal})\left(8.3 \frac{1 \mathrm{bH} \mathrm{H}_{2} \mathrm{O}}{\mathrm{gal}}\right)
$$

$\left(1 \frac{\mathrm{BTU}}{1 \mathrm{~b} \mathrm{H}} 2^{\circ}{ }^{\circ} \mathrm{F}\right)\left(90^{\circ} \mathrm{F}\right)+(100 \mathrm{ga} 1)\left(8.3 \frac{1 \mathrm{~b} \mathrm{H}_{2} \mathrm{O}}{\mathrm{gal}^{2}}\right)\left(1 \frac{\mathrm{BTU}}{1 \mathrm{~b} \mathrm{H}}{ }_{2}{ }^{\circ} \mathrm{F}\right)\left(120^{\circ} \mathrm{F}\right)$ $=191,320$ BTU batch

The following table relates the steam energy cost of Manual Washing for various products. The energy cost is derived by multiplying the above energy cost per batch by the number of batches washed per day and divided by the daily production. For plants having to wash cheese vats, it is assumed that the above cost per batch could also be the cost to wash a vat producing 2000 lbs . of cheese.

Table 6-16a Steam Energy Requirements for Manual Cleaning

Energy Cai. No.	Energy Req'd For.	$\frac{\text { BTU }}{\text { Batch }}$	$\frac{\text { Batches }}{\text { day }}$	$\frac{\text { Production }}{\text { day }}$	Steam Energy Req.'d
16.01	$\begin{aligned} & \text { Fluid } \\ & \text { MiIk } \end{aligned}$	191,820	3	$21,000 \frac{\text { gal }}{\text { day }}$	$27 \frac{\text { BTU }}{\mathrm{gal} \cdot \mathrm{milk}}$
16.02	Cheddar Cheese	$191,820$	13	$13,333 \frac{15 \mathrm{~s} .}{\mathrm{day}}$	$187 \frac{\text { BTU }}{1 b}$. cheese
16.03	Cottage Cheese	191,820	19	$43,950 \frac{15 s}{d a y}$	83. $\frac{\mathrm{BTU}}{16}$ cheese
16.04	Sour Cream	191,820	1	$12,000 \frac{1 \mathrm{bs} .}{\text { day }}$	$16 \frac{\mathrm{BTU}}{\mathrm{1b} . \text { sour cream }}$
16.05	Cream Cheese	191,820	1	$3,600 \frac{1 b}{\text { day }}$	$53 \frac{\mathrm{BTU}}{\mathrm{Ib} . \text { cheese }}$
16.06	Cultured Milk	191,820	1	$12,279 \frac{\text { qts. }}{\text { day }}$	$16 \frac{\text { BTU }}{q t \cdot} \text { cult. milk }$
16.08	Butter	191,820	4	$11,222 \frac{1 \mathrm{bs}:}{\text { day }}$	$68 \frac{\mathrm{BTU}}{\text { 1b. butter }}$
16.09	Dried Milk	191,820	1	$21,150 \frac{1 b s .}{\text { day }}$	$9 \frac{\text { BTU }}{1 \mathrm{~b} \cdot \text { powder }}$
16.12	Evaporated Milk	191,820	2	142,857 $\frac{1 \mathrm{bs} .}{\text { day }}$	$13 \frac{\mathrm{BTU}}{\text { 1b. evap. milk }}$
16.13	Ice. Cream	191,820	3	$19,231 \frac{\text { gals. }}{\text { day. }}$	$150 \frac{\text { BTU }}{\text { gal. ice cream }}$

Section 6-17

ENERGY CALCULATION NO. 17.00

Double Effect Evaporator (Steam Costs.)
Steam energy is used to concentrate dairy products in a vacumn evaporator. One manufacturer specifies that his double effect evaporator with vapor preheaters and a thermocompressor will consume 0.344 lbs. of steam for every 1b. of evaporation. This includes the cost of air ejectors and preheating to $165^{\circ} \mathrm{F}$. This cost translates to:

$$
\text { (0.344 } \frac{1 \mathrm{bs} . \text { steam }}{\left.1 \mathrm{~b} \mathrm{H} \mathrm{H}_{2} 0 \text { removed }\right)}\left(1000 \frac{\mathrm{BTU}}{1 \mathrm{~b} . \text { steam })}=344 \quad \frac{\mathrm{BTU}}{1 \mathrm{~b} \mathrm{H}_{2} 0}\right. \text { removed }
$$

The following table relates the steam energy consumed in running the evaporator during the processing of various dairy products. The energy cost is derived by multiplying the above evaporation cost times the pounds of water evaporated per pound of material entering the evaporator, times the ratio of the mass of material evaporated to the mass of product produced.

Table 6-17a Steam Energy Requirements for a Double Effect Evaporator

```Energy Cal. NO.```	$\begin{aligned} & \text { Energy } \\ & \text { Req' } \\ & \text { Fori } \end{aligned}$	Material   Concentrated	Change in $\quad$ Lbs. of water $\%$ solids $\quad$ Removed per 1 b. Concentration of original material	$\frac{\text { BTU }}{\mathrm{Ib} \mathrm{H}_{2} \mathrm{O} \text { removed }}$	Lbs. of original material per 1 b . of concentrated product	Steam   Energy   Req'd
17.07	Dried Whey	$6 \%$ solids whey	$6 \% \rightarrow 40 \% \quad 0.85 \frac{1 b s H_{2} \mathrm{O}}{\mathrm{lb} 6 \%^{2} \text { whey }}$	344	$16.1 \frac{\text { lbs } 6 \% \text { whey }}{\text { Ib whey powder }}$	$4708 \frac{\text { BTU }}{1 \mathrm{~b} . \text { whey pow }}$
17.09	$\begin{aligned} & \text { Dried } \\ & \text { Milk } \end{aligned}$	skim milk	$9 \% \rightarrow 40 \% \quad 0.775 \frac{\mathrm{lbs} \mathrm{H}_{2} \mathrm{O}}{\mathrm{lb} \text { skim milk }}$	344	$10.8 \frac{\mathrm{lbs} \text { skim milk }}{\mathrm{lb} \text { dried milk }}$	$2979 \frac{\text { BTU }}{1 b \text { dried mill }}$
17.11	Dried   Buttermilk	Buttermilk	$9 \% \rightarrow 40 \% 0.775 \frac{\mathrm{lbs} \mathrm{H}_{2} \mathrm{O}}{\mathrm{lb} \text { buttermilk }}$	$344$	$10.8 \frac{1 \mathrm{bs} \text { buttermilk }}{\begin{array}{c} \text { dried } \\ \text { buttermilk } \end{array}}$	$2879 \frac{\text { ITU }}{\text { Ib dried but }} \begin{gathered}\text { milk }\end{gathered}$
17.12	Evaporated Milk	whole milk	$12.5 \% \rightarrow 25 \% \quad 0.5 \frac{\mathrm{Ibs} \mathrm{H}_{2} \mathrm{O}}{\mathrm{Ib} \text { miIk }}$	$344$	$2 \quad \frac{1 b s \text { milk }}{1 b \text { evap. milk }}$	$344 \frac{\mathrm{BTU}}{1 \mathrm{~b}} \text { evap. mi }$

Section 6-18
ENERGY CALCULATION NO: 18.00

Heating the Plant
The steam energy consumed for heating costs for one heating season will be approximated by using values giyen by Jennings and Lewis. ${ }^{10}$ They estimate that for heating manufacturing buildings the steam consumption per $1000 \mathrm{Ft}^{3}$. per degree day is $0.81 \mathrm{1b}$. The heating season is considered as October 1 through May 1 (212 days). Assuming a typical degree day center for the intermountain west is Salt Lake City, Utah with 5555 degree days, the steam consumption per cubic foot of heated space can be calculated as:
$\frac{\left(0.81 \frac{\text { lbs steam }}{\text { degree day }}-\text { MCF }\right)\left(5555 \frac{\text { degree days }}{\text { year }}\right)\left(1000 \frac{\text { BTU }}{1 \mathrm{~b} \text { steam })}\right.}{\left(1000 \frac{\mathrm{ft} .^{3}}{\mathrm{MCF}}\right)}=4500 \frac{\mathrm{BTU}}{\mathrm{ft} \mathrm{t}^{3}-\text { year }}$

The following table relates, for various dairy products, the steam energy consumed in heating the plant in which the products were made. The energy cost is derived by multiplying the above energy cost per cubic foot times the cubic feet of heated space in the building, times an apportioning factor, and divided by the yearly production of product produced in the plant. The heated space in a building will not include the boiler, refrigeration, or spray drying rooms where the equipment in these rooms will furnish most the heating needed and neither will any cold storage rooms be included. An apportioning factor is necded for plants manufacturing more than one product. The fraction of the cost of heating the plant which is attributed to a specific product is the apportioning factor and is equal to the fraction of the raw milk which enters the plant and goes into that particular product. If a plant produces only one product the apportioning factor is 1.0 .

Table 6-18a Steam Energy Requirements to Heat the Plant

Energy   Cal.   No.	$\begin{aligned} & \text { Energy } \\ & \text { Req'd } \\ & \text { For } \end{aligned}$	$\mathrm{Ft}^{3}$ of   Heated Space	$\frac{B^{\prime T U}}{\mathrm{ft}^{3-y e a r}}$	Apportionin Factor	Production			$\begin{aligned} & \text { eam } \\ & \text { ergy } \\ & q^{\prime} d \end{aligned}$
18.01	Fluid   Milk	278,286	4500	$1.0 .5$	$5.46 \times 10^{6}$	$\frac{\text { gal }}{\text { year }}$		$\frac{\text { BTU }}{\text { gal. milk }}$
18.02	Cheddar   Cheese	457,528	4500	1.04	$4.16 \times 10^{6}$	$\frac{1 b s}{\text { year }}$	$495$	$\frac{\mathrm{BTU}}{1 \mathrm{~b} \cdot \mathrm{cheese}}$
18.03	Cottage Cheese	300,918	4500	0.7511	$11.4 \times 10^{6}$	$\frac{1 \mathrm{bs}}{\text { year }}$	89	$\frac{\text { BTU }}{1 \mathrm{~b} \cdot \text { cheese }}$
18.04	Sour Cream	300,918	4500	0.053	$3.12 \times 10^{6}$	$\frac{1 \mathrm{bs}}{\text { year }}$	22	$\frac{\mathrm{BTU}}{1 \mathrm{~b} . \text { sour cream }}$
18.05	Cream Cheese	300,918	4500	$0.10 \quad 0$	$0.94 \times 10^{6}$	$\frac{1 \mathrm{bs}}{\text { year }}$		$\frac{\mathrm{BTU}}{\mathrm{lb} \cdot \mathrm{cheese}}$
18.06	Cultured Milk	300,918	4500	0.103	$3.19 \times 10^{6}$	$\frac{\text { qts. }}{\text { year }}$		$\frac{\text { BTU }}{q t . ~ c u l t . ~ m i l k ~}$
18.08	Butter	167,610	4500	0.054	$4.08 \times 10^{6}$	$\frac{\text { lbs. }}{\text { year }}$	9	$\frac{\text { BTU }}{1 b \cdot \text { butter }}$
18.09	Dried Milk	167,610	4500	0.907	$7.7 \times 10^{6}$	$\frac{1 \mathrm{bs} .}{\text { year }}$		$\frac{\text { BTU }}{\mathrm{lb} \cdot \text { powder }}$
18.11	$\begin{aligned} & \text { Dried } \\ & \text { Buttermilk } \end{aligned}$	167,610	4500	0.050	$0.38 \times 10^{6}$	$\frac{1 \mathrm{bs}}{\text { year }}$		$\frac{\mathrm{BTU}}{\mathrm{lb} \cdot \text { powder }}$
18.12	Evaporated Milk	243,800	4500	1.0	$5.2 \times 10^{7}$	$\frac{1 \mathrm{bs}}{\text { year }}$		$\frac{\mathrm{BTU}}{1 \mathrm{~b} \cdot \text { evap. milk }}$
18.13	Ice Cream	211,898	4500	1.0	$1.0 \times 10^{6}$	$\frac{\text { gals. }}{\text { year }} .$		$\frac{\text { BTU }}{\text { gal. ice cream }}$
18.14	Processed Cheese	471,250	4500	1.08	$87.4 \times 10^{6}$	$\frac{1 b s}{\text { year }}$		$\frac{\mathrm{BTU}}{1 \mathrm{~b} \cdot \text { cheese }}$

## ENERGY CALCULATION NO. 19.00

## Product Heating

Much of the steam energy used in the dairy industry goes for heating the product, to pasteurize it, or to facilitate further processing such as cheese making or spray drying. The steam energy required will be calculated by multiplying the specific heat of product times the product temperature change. If the product is heated in a high temperature-short time (HTST) pasteurizer, most of the temperature change comes in the regenerative section which uses previously heated products as a heat source. Thus on the HTST systems, only the temperature changes in the heating section are counted as energy costs. Heating by means other than a HTST plate heater will be designated as vat heating or pasteurization. Some materials will be pasteurized twice. Cream, for example, is separated and pasteurized one day and a day or two later it is recombined with raw whole milk to make cottage cheese dressing and pasteurized again.

The following table will relate the steam energy used in product heating. The energy cost of heating a material is derived by multiplying the specific heat of the material by the temperature change it goes through, times the ratio of the amount of material heated to the amount of desired product produced. Since several materials may be heated separately in the production of one product, each material heating cost will be summed to form a total product heating cost.

Table 6-19 a Steam Energy Requirements for Product Heating


Table 6-19a (continued) Steam Energy. Requirements for Product Heating


Section 6-20
ENERGY CALCULATION NO. 20.00

## Steam Line Losses

It is assumed that most dairy processing plants have approximately the same amount of steam lines per square foot of floor space. Using a plant described by Tracy ${ }^{12}$ which processes cheddar cheese, the steam 1 ine losses per square foot of heated floor space will be calculated and this factor will be applied to the other dairy plants in this study. The following floor plan shows the assumed layout of steam lines and their assumed sizes. The following assumptions are made about the layout:

1. There is a 10 foot drop at the end of each line.
2. A11 pipes are covered with $1 / 4$ inches of magnesia insulation $\left(\mathrm{k}=0.041 \quad \frac{\mathrm{BTU}}{\mathrm{hr}-\mathrm{F} t}-{ }^{\circ} \mathrm{F}\right)$
3. The temperature outside the pipe is $340^{\circ} \mathrm{F}$ and outside the insulation it is $120^{\circ} \mathrm{F}$.
4. The following lengths of pipe are used :

Pipe Diameter	Length
6 inch	37 feet
5 inch	210 feet
4 inch	160 feet
2 inch	280 feet
1 inch	723 feet



Figure 6-20a. Steam pipe layout in a cheddar cheese plant.

The heat loss through the insulation on the steam lines is calculated using the following formula for steadystate axial heat conduction in cylinders:

$$
\begin{aligned}
& q=\frac{2}{\ln }(\text { ro/ri) } \\
& \text { where } \quad=\text { (Ti-To) } \\
& \mathrm{K}=\text { conductivity } \\
& \mathrm{Ti}=\text { inside temperature } \\
& \text { To }- \text { outside temperature } \\
& r o- \text { outside radius } \\
& r i=\text { inside radius } \\
& q=\text { heat loss }
\end{aligned}
$$

Summing the heat losses for each pipe diameter used, the heat loss for the system is:

$$
119,782 \quad \frac{\mathrm{BTU}}{\mathrm{hr}}
$$

To compensate for uninsulated valves and hangers, $10 \%$ is added to the above sum giving:

$$
131,760 \quad \frac{\mathrm{ETU}}{\mathrm{hr}}
$$

Along with every steam line there is usually a condensate return line. The following assumptions will be made about the condensate lines:

1. The over-all length of pipe needed equals that of the steam line but the diameters are smaller.
2. All pipes are covered with $1 / 4$ inches of magnesia insulation.
3. The temperature outside the pipe is $200^{\circ} \mathrm{F}$ and outside the insulation is $100^{\circ} \mathrm{F}$.
4. The following lengths of pipe are used;

Pipe Diameter	Length
2 inch	37 feet
$11 / 2$ inch	370 feet
$3 / 4$ inch	1003 feet

The heat loss is calculated in the same way as done for steam lines giving: 34,006 BTU/hr

Adding $10 \%$ for uninsulated valves and hangers gives:

$$
37,784 \quad \mathrm{BTU} / \mathrm{hr}
$$

The heat losses from the boiler itself will be calculated by a method similar
to that of the steam pipes. The following assumptions are made about the boiler:

1. The boiler is cylindrical in shape with a 7 foot diameter and a 17 foot length.
2. The entire surface area is covered with $11 / 2$ inches of magnesia insulation.
3. The temperature outside the shell of the boiler is $340^{\circ} \mathrm{F}$ and outside the insulation it is $170^{\circ} \mathrm{F}$.

Using the same formula used for the steam pipes gives the heat transfer through the cylinder portion of the boiler. This calculation gives a value of:

$$
21,216 \mathrm{BTU} / \mathrm{hr}
$$

For the end plates which are flat, the Fourier equation gives the heat losses. The equation is;

$$
\begin{aligned}
& \mathrm{q}=-\mathrm{K} \Lambda \frac{\mathrm{dT}}{\mathrm{dx}} \\
& \text { where } \quad \begin{array}{l}
\mathrm{K}=\text { conductivity } \\
\mathrm{A}=\text { surface area } \\
\mathrm{T}=\text { temperature } \\
\mathrm{x}=\text { insulation thickness }
\end{array}
\end{aligned}
$$

This calculation gives the heat losses from the end plates as;

$$
2146 \frac{\mathrm{BTU}}{\mathrm{hr}}
$$

The total heat loss for the complete steam line system is:

Steam lines	131,760	BTU $/ \mathrm{hr}$
Condensate lines	37,784	BTU $/ \mathrm{hr}$
Boiler	23,362	$\mathrm{BTU} / \mathrm{hr}$
TOTAL	192,906	$\mathrm{BTU} / \mathrm{hr}$

The total square feet of floor space in this cheese plant excluding the cold storage room is $39,921 \mathrm{ft}^{2}$. The heat loss per square foot of floor space per week is given by:


The following table relates the steam line losses in the production of various products. The energy cost is derived by multiplying the number of square feet of applicable floor space times the above energy cost factor, times an apportioning factor and then dividing the product by the weekly production of the item of interest. The applicable floor space of a plant is the total floor space less the area covered by cold storage rooms. The apportioning factor is needed in plants manufacturing more than one product. The fraction of the cost of steam line losses which is attributed to a specific product is the apportioning factor and is equal to the fraction of the raw milk which enters the plant and goes for that particular product. If a plant produces only one product, the apportioning factor is 1.0 .

Table 6-20a Steam Energy Requirements from Steam Line Losses


Section 6-21
ENERGY CALCULATION NO. 21.00

Miscellaneous Steam Energy Calculations
Energy Calculation No. 21.01

## Milk Bottle Washing

A 1080 bottle per hour washing machine requires 4 boiler horsepower to operate. Assuming $25 \%$ of the product is bottled and the bottles hold $1 / 2$ gallon, the steam energy cost is given by:

$$
\frac{(4 \mathrm{~B} \mathrm{hp})\left(33,472 \frac{\mathrm{BTU}}{\mathrm{Bhp}-\mathrm{hr}}\right)(0.25)}{\left(1080 \frac{\text { bottles }}{\mathrm{hr}}\right)\left(0.5 \frac{\mathrm{gal}}{\text { bott } 1 \mathrm{e}}\right)}=62 \frac{\mathrm{BTU}}{\mathrm{gal} \mathrm{milk}}
$$

Energy Calculation No. 21.10
Instantizer (Steam Costs)
Steam is used to increase the moisture content and to heat the air to redry powder. Tracy estimates that a 2000 1b per hour instantizer requires $1.19 \times 16^{9}$ BTU per hour. This translates to:

$$
\frac{\left(1.19 \times 16^{6} \frac{\mathrm{BTU}}{\mathrm{hr}}\right)}{\left(2000 \frac{1 \mathrm{bs}}{\mathrm{hr}}\right)}=595 \frac{\mathrm{BTU}}{1 \mathrm{~b} \text { powder }}
$$

Energy Calculation No. 21. 12
Sterilization of Canned Milk
It is assumed that the energy cost of running a continuous can sterilizer is approximated by the energy cost of heating the product plus $50 \%$. The evaporated milk is heated from $40^{\circ} \mathrm{F}$ to $245^{\circ} \mathrm{F}$ and that cost is given by:

$$
0.9 \frac{\text { BTU }}{\left(1 \mathrm{~b} \text { evap milk }-{ }^{\circ} \mathrm{F}\right)\left(205^{\circ} \mathrm{F}\right)}=195 \frac{\text { BTU }}{1 \mathrm{~b} \text { evap milk }}
$$

Adding 50\% gives:

$$
293 \frac{\text { BTU }}{\text { lb evap milk }}
$$

Energy Calculation No. 21.14
Processed Cheese Plant Manual Cleaning
Although manual cleaning in processed cheese plants consumes a portion of the total steam energy cost, it is still difficult to derive a cleaning cost that will fit most plants. This is because of the variability of the manual cleaning method. Commonly, hot water or steam spray guns are used to melt and blow cheese off the floors and equipment. It is estimated that the plant in question would draw a load of 325 boiler horsepower during the cleaning procedure, which requires 4 hours to complete. This translates to:

$$
\frac{(325 \text { boiler hp })\left(33,472 \frac{\mathrm{BTU}}{\mathrm{hr}-\mathrm{B} \mathrm{hp}}\right)\left(4 \frac{\mathrm{hr}}{\mathrm{day}}\right)}{(280,000 \mathrm{lbs} \text { cheese/day })}=155 \frac{\mathrm{BTU}}{1 \mathrm{~b} \text { cheese }}
$$

Section 6-22
ENERGY CALCULATION NO. 22.00

Cold Storage Rooms

## Basic Assumptions

A11 the cold storage rooms considered will be at either $40^{\circ} \mathrm{F}$ or $-20^{\circ} \mathrm{F}$. The $-20^{\circ} \mathrm{F}$ temperature is used only in ice cream hardening rooms. The rooms will be insulated with the equivalent of 4 inches of corkboard surrounding the $40^{\circ} \mathrm{F}$ room and $91 / 2$ inches of corkboard surrounding the $-20^{\circ} \mathrm{F}$ room. The average outside conditions will be estimated at $85^{\circ} \mathrm{F}$ and $60 \%$ relative humidity.

The estimating procedure will follow a seven step outline.

Step 1
Using the ASHRAE Handbook of Fundamentals ${ }^{2}$, the heat transfer rate through the walls, ceiling, and floor is estimated at 81 BTU/ft ${ }^{2}-24-\mathrm{hr}$ for both the $40^{\circ} \mathrm{F}$ and the $-20^{\circ} \mathrm{F}$ rooms. Thus, the heat infiltration through walls, ceiling and floor is given by:

$$
\frac{\text { BTU }}{\left(81 \mathrm{ft}^{2}-\text { day }\right)}(\text { surface area of cooler })=\text { cooling load }
$$

## Step 2

To account for the air infiltration due to loading and unloading, the ASURAE Handbook ${ }^{3}$ gives a table showing the number of air changes per day versus the volume of the cooler. The heat removed in cooling outside air to storage room conditions is also tabulated. The cooling costs per
cubic foot to cool air from the assumed outside conditions is 1.56 BTU for the $40^{\circ} \mathrm{F}$ room and 3.24 BTU for the $-20^{\circ} \mathrm{F}$ room. Thus, the cooling load due to air infiltration in a $40^{\circ} \mathrm{F}$ room is given by:

$$
\text { (number air changes/day) (volume of room) (1.57 } \frac{\mathrm{BTU}^{3}}{\mathrm{ft}^{3}}=\text { cooling load }
$$

For the $-20^{\circ} \mathrm{F}$ room, the cooling load is given by:

$$
\text { (number air changes/day) (volume of room) }\left(3.24 \frac{\mathrm{BTU}}{\mathrm{ft}^{3}}\right)=\text { cooling load }
$$

## Step 3

The heat gain from lights will be estimated by assuming there is one 100-watt fluorescent light per $50 \mathrm{ft}^{2}$ of floor space running 8 hours per day. The heat gain per square foot of floor space is given by:

$$
\frac{(110 \text { watt })\left(3.41 \frac{\mathrm{BTU}}{\mathrm{hr}-\mathrm{watt}}\right)\left(8 \frac{\mathrm{hr}}{\mathrm{day}}\right)}{\left(60 \mathrm{ft}^{2}\right)}=50 \frac{\mathrm{BTU}}{\mathrm{ft}^{2}-\mathrm{day}}
$$

The heat gain for the entire room is then given by:

$$
\left(50 \frac{\mathrm{BTU}}{\mathrm{ft}^{2}-\mathrm{day}}\right)\left(\mathrm{ft}^{2} \text { of floor space }\right)=\text { cooling load }
$$

## Step 4

The heat gain from electric motors running the fans will be estimated by assuming the motors are $75 \%$ efficient and under a load which is $75 \%$ of the rated capacity. If the fans run two-thirds of the time, the heat gain per horsepower used is:

$$
\frac{\left(2545 \frac{\mathrm{BrU}}{\mathrm{hr}-\mathrm{hp}}\right)\left(1 \mathrm{~b} \frac{\mathrm{hr}}{\mathrm{day}}\right)(0.75 \text { 1oad })}{(0.75 \text { efficiency })}=40,720 \frac{\mathrm{BTU}}{\mathrm{hp}-\mathrm{day}}
$$

The total heat gain from motors is given by:
$\left(40,720 \frac{\mathrm{BTU}}{\mathrm{hp}-\text { day }}\right)($ Total hp used $)=$ cooling load

Step 5
The cooling loads from Steps $1-4$ are added together and then converted to a refrigeration cost per unit production of a specific item. This is done by the following formula:

$$
\frac{\text { (sum of cooling loads) }}{\text { (daily input of product into cold room) }}=\frac{\text { cooling load }}{\text { unit production }}
$$

If more than one type of product enters the cold storage room, the above cooling cost is multiplied by the fraction the mass flow rate of the product being considered to the total mass flow rate of products going into the cold storage room.

## Step 6

The cooling load from lowering the incoming product temperature to that of the cold storage room is estimated by:
(specific heat of product) (temperature change) $=\frac{\text { cooling load }}{\text { production }}$

The above formula will function for all products with the exception of ice cream. The ASHRAE Handbook ${ }^{6}$ estimates the load for lowering the temperature of ice cream in a hardening room as $458 \mathrm{BTU} / \mathrm{gal}$ for $85 \%$ overrun ice cream.

Step 7
The total refrigeration load will be estimated by adding the results of Step 5 and Step 6 together. For ice cream an additional factor is needed, The energy cost to refrigerate an ice cream hardening room at $-20^{\circ} \mathrm{F}$ is more than a $40^{\circ} \mathrm{F}$ cold storage room with the same cooling load. A
typical ammonia refrigeration system in a dairy plant uses 25 psig suction pressure in the evaporator in a $40^{\circ} \mathrm{F}$ cold storage room and 0 psig suction pressure in a $-20^{\circ} \mathrm{F}$ hardening room. The usual procedure in compressing the ammonia vapor is to first compress the vapor from 0 psig to 25 psig, then cool the vapor and compress it again to about 185 psig. Thus, the cooling load for the $-20^{\circ} \mathrm{F}$ hardening room must run through an extra compressor and an intercooler. Tracy ${ }^{17}$ recommends that 51.4 horsepower are required in the booster compressor to pump from 0 psig to 25 psig and handle 68.7 tons of refrigeration. He also recommends that 105.2 horsepower are required in the 25 psig to 185 psig compressor to handle 75.4 tons. If the motors are $85 \%$ efficient, this translates to 0.187 BTU of electricity for every BTU of cooling for the booster compressor and 0.349 BTU of electricity for every BTU of cooling in second stage compressor. Thus, the $-20^{\circ} \mathrm{F}$ hardening room requires $53.6 \%$ more energy for the same cooling load than a $40^{\circ} \mathrm{F}$ room. Also, Tracy ${ }^{17}$ recommends that $11.6 \%$ of the cooling load going to the hardening room is required for the intercooler. Therefore, by increasing the calculated cooling load for hardening room by $65.2 \%$ and treating it like a cooling load from a $40^{\circ} \mathrm{F}$ room, the correct energy cost of the ice cream hardening room is obtained.

All cooling loads for dairy plant cold storage rooms will be calculated following the above procedure.

Energy Calculation No. 22.01
Fluid Milk Cold Storage Room
The dimensions of the cooler are:


$$
\begin{aligned}
& \text { volume }=32,000 \mathrm{ft}^{3} \\
& \text { surface area }=8,800 \mathrm{ft}^{3} \\
& \text { floor space }=3,200 \mathrm{ft}^{3} \\
& \text { temperature }=40^{\circ} \mathrm{F}
\end{aligned}
$$

Following the outline in Energy Calculation No. 22.00, the cooling loads are:

Step 1. Heat infiltration through walls, ceilings and floors.

$$
\left(81 \frac{\mathrm{BTU}}{\mathrm{ft}^{2}-\mathrm{day}}\right)\left(8800 \mathrm{ft}^{2}\right)=712,800 \frac{B T U}{\mathrm{day}}
$$

Step 2. Heat gain from air changes.

$$
\left(2.6 \frac{\text { air changes }}{\text { day }}\right)\left(32,000 \frac{\mathrm{ft}^{3}}{\text { change }}\right)\left(1.57 \frac{\mathrm{BTU}}{\mathrm{ft}^{3}}\right)=130,624 \frac{\mathrm{BTU}}{\mathrm{day}}
$$

Step 3. Heat gain from lights.

$$
\left(50 \frac{\mathrm{BTU}}{\mathrm{ft}^{2}-\mathrm{day}}\right)\left(3200 \mathrm{ft}^{2}\right)=160,000 \frac{\mathrm{BTU}}{\mathrm{day}}
$$

Step 4. Heat gain from motors.
It is assumed there are $4-1 / 2 \mathrm{hp}$ motors.

$$
\left(40,720 \frac{\mathrm{BTU}}{\mathrm{day}-\mathrm{hp}}\right)(2 \mathrm{hp})=81,440 \frac{\mathrm{BTU}}{\mathrm{day}}
$$

Step 5. Sum of cooling loads.
The sum of Steps $1-4$ is $1,084,864 \frac{\text { BTU }}{\text { day }}$

If there is an average of 15,000 gallons of milk go through the cooler per day, the cooling cost per gallon is:

$$
\frac{\left(1,084,864 \frac{\mathrm{BTU}}{\mathrm{day}}\right)}{\left(15,000 \frac{\text { gals milk }}{\text { day }}\right)}=72.3 \frac{\mathrm{BTU}}{\mathrm{gal} \mathrm{milk}}
$$

Step 6. Cooling incoming product.
Besides the cooling of milk from $45^{\circ} \mathrm{F}$ to $40^{\circ} \mathrm{F}$, steel cases holding the milk containers are cooled from $75^{\circ} \mathrm{F}$ to $40^{\circ} \mathrm{F}$. The cases weigh 8 lbs and hold 2 gallons of milk. The specific heat of the case is $0.2 \mathrm{BTU} / \mathrm{lb}-{ }^{\circ} \mathrm{F}$.

Thus, the incoming product cooling load is given by:
$\frac{\mathrm{BTU}}{\left(1 \mathrm{lbmilk}-{ }^{\circ} \mathrm{F}\right)}\left(5^{\circ} \mathrm{F}\right)\left(8.6 \frac{1 \mathrm{bmilk}}{\mathrm{galmilk}}\right)+\frac{\left(8 \frac{\mathrm{lbs} \text { steel }}{\text { case }}\right)\left(0.2 \frac{\mathrm{BTU}}{\mathrm{lb} \mathrm{stee} 1-{ }^{\circ} \mathrm{F}}\right)\left(35^{\circ} \mathrm{F}\right)}{\left(2 \frac{\mathrm{gal} \mathrm{milk}}{\text { case }}\right)}$
$=71 \frac{\mathrm{BTU}}{\mathrm{gal} \mathrm{milk}}$
Step 7. Total cooling load.

$$
\left(72.3 \frac{\mathrm{BTU}}{\mathrm{gal} \mathrm{milk}}\right)+\left(71 \frac{\mathrm{BTU}}{\mathrm{gal} \mathrm{milk}}\right)=143.3 \frac{\mathrm{BTU}}{\mathrm{gal} \mathrm{milk}}
$$

Energy Calculation No. 22.02
Cheddar Cheese Cold Storage Room
The dimensions of the cooler are:


Following the outline in Energy Calculation No. 22.00, the coolings loads are:

Step 1. Heat infiltration through walls, ceilings, and floors.

$$
\left(81 \frac{\mathrm{BTU}}{\mathrm{ft}^{2} \text {-day }}\right)\left(26,326 \mathrm{ft}^{2}\right)=2,132,406 \frac{\text { BTU }}{\text { day }}
$$

Step 2. Heat gain from air changes
For this room there are 1.2 air changes/day.
$\left(1.2 \frac{\text { air changes }}{\text { day }}\right)\left(160,480 \frac{\mathrm{Ft}^{3}}{\text { change }}\right)\left(1.57 \frac{\mathrm{BTU}}{\mathrm{Ft}^{3}}\right)=302,344 \frac{\mathrm{BTU}}{\text { day }}$

Step 3. Heat gain from lights
(50 $\left.\frac{\text { BTU }}{\mathrm{Ft}^{2}-\mathrm{day}}\right)\left(9440 \mathrm{Ft}^{2}\right)=472,000 \frac{\text { BTU }}{\mathrm{day}}$

Step 4. Heat gain from motors.
It is assumed there are $8-1 \mathrm{hp}$. motors.
$\left(40,720 \frac{\text { BTU }}{\mathrm{hp} \text {-day })}(8 \mathrm{hp})=325,760 \cdot \frac{\mathrm{BTU}}{\text { day }}\right.$

Step 5. Sum of cooling loads.
The sum of Steps $1-4$ is $3.23 \times 10^{6} \frac{\mathrm{BTU}}{\mathrm{day}}$.
There is an average of $11,429 \mathrm{lbs}$. of cheese through the cooler
per day. The cooling cost per pound of cheese is:
$\left(3.23 \times 10^{6} \frac{\text { BTU }}{\text { day }}\right) \quad=282.8 \frac{\text { BTU }}{1 \mathrm{~b}}$ cheese
(11,429 $\frac{\text { lbs. cheese }}{\text { day }}$ )
Step 6 . Cooling incoming product.
The incoming cheese is cooled from $70^{\circ} \mathrm{F}$ to $40^{\circ} \mathrm{F}$ and has a specific
heat of $0.6 \frac{\mathrm{BTU}}{1 \mathrm{~b}}$, cheese $-{ }^{\circ} \mathrm{F}$.
$\left(0.6 \frac{\mathrm{BTU}}{1 \mathrm{~b}}\right.$. cheese $\left.-{ }^{\circ} \mathrm{F}\right)\left(30^{\circ} \mathrm{F}\right)=18 \frac{\mathrm{BTU}}{\mathrm{Lb}}$. cheese .

Step 7. Total Cooling load.
$\left(282.8 \frac{\mathrm{BTU}}{1 \mathrm{~b} .}\right.$ cheese $)+\left(18 \frac{\mathrm{BTU}}{\mathrm{lb}}\right.$. cheese $)=300.8 \frac{\mathrm{BTU}}{\mathrm{Lb}}$. cheese

Energy Calculation No. 22.03
Cottage Cheese Cold Storage Room
The dimensions of the cooler are:


$$
\begin{aligned}
& \text { Volume }=39,375 \mathrm{Ft}^{3} \\
& \text { Surface area }=8,775 \mathrm{Ft}^{3} \\
& \text { Floor space }=2,813 \mathrm{Ft}^{3} \\
& \text { Temperature }=40^{\circ} \mathrm{F}
\end{aligned}
$$

Following the outline in Energy Calculation No. 22.00, the cooling loads are:
Step 1. Heat infiltration through walls, ceiling and floor.
$\left(81 \frac{\mathrm{BTU}}{\left.\mathrm{Ft}^{2}-\mathrm{day}\right)}\left(8775 \mathrm{Ft}^{2}\right)=710,775 \cdot \frac{\mathrm{BTU}}{\mathrm{day}}\right.$

Step 2. Heat gain from air changes.
For this room there are 2.3 air changes/day.

$$
\left(2.3 \frac{\text { air changes }}{\text { day }}\right)\left(39,375 \frac{\mathrm{Ft}^{3}}{\text { change })}\left(1.57 \frac{\mathrm{BTU}}{\mathrm{Ft}}\right)=142,183 \frac{\mathrm{BTU}}{\mathrm{day}}\right.
$$

Step 3. Heat gain from lights.

$$
\left(50 \frac{\mathrm{BTU}}{\left.\mathrm{Ft}^{2}-\text { day }\right)}\left(2813 \mathrm{Ft}^{2}\right)=140,650 \frac{\text { BTU }}{\mathrm{day}}\right.
$$

Step 4. Heat gain from motors.

It is assumed there are 6-1/2 hp. motors.
$\left(40,720 \frac{\text { BTU }}{\mathrm{hp}-\text { day }}\right)(3 \mathrm{hp})=122,160 \frac{\text { BTU }}{\text { day }}$

Step 5. Sum of the cooling loads.
The sum of Steps $1-4$ is $1.116 \times 10^{6} \frac{\text { BTU }}{\text { day. }}$
There is an average of $31,393 \mathrm{lbs}$. of cottage cheese through the cooler every day. But there is also 2,571 1bs. of cream cheese, 8571 lbs . of sour cream, and $18,856 \mathrm{lbs}$ of cultured milk which go through the cooler. Therefore only $51 \%$ of the load from Steps $1-4$ should be attributed to cottage cheese production, or:
$\left(1.116 \times 10^{6} \frac{\mathrm{BTU}}{\mathrm{day}}\right)(0.51)=18.1 \frac{\mathrm{BTU}}{\text { Ib }}$. cottage cheese
$\left(31,393 \frac{\text { lbs. cottage cheese }}{\text { day }}\right)$

Step 6. Cooling incoming product.
The cottage cheese is cooled from $45^{\circ} \mathrm{F}$ to $40^{\circ} \mathrm{F}$ and has a specific BTU
heat of $0.7 \overline{1 b}-{ }^{\circ} \mathrm{F}$.
$\left(0.7 \frac{\mathrm{BTU}}{1 \mathrm{~b}}\right.$ cheese $\left.-{ }^{\circ} \mathrm{F}\right) \quad\left(5^{\circ} \mathrm{F}\right) \quad=3.5 \frac{\mathrm{BTU}}{1 \mathrm{~b}}$. cottage cheese

Step 7. Total Cooling Load.
$\left(18.1 \frac{\mathrm{BTU}}{1 \mathrm{~b}}\right.$ cottage cheese $)+\left(3.5 \frac{\mathrm{BTU}}{1 \mathrm{~b}}\right.$ cottage cheese $)=21.6 \frac{\mathrm{BTU}}{1 \mathrm{~b}}$. cottage cheese

Energy Calculation No. 22.04

## Sour Cream Cold Storage Room

The dimensions of the cooler are:

Volume $=39,375 \mathrm{Ft}^{3}$
Surface area $=8,775 \mathrm{Ft}^{2}$
Floor Space $=2,813 \mathrm{Ft}^{2}$
Temperature $=40^{\circ} \mathrm{F}$

Following the outline in Energy Calculation No. 22.00, the cooling loads are:
Step 1. Heat infiltration through walls, ceiling and floors.

$$
\left(81 \frac{\mathrm{BTU}}{\left.\mathrm{Ft}^{2}-\mathrm{day}\right)\left(8775 \mathrm{Ft}^{2}\right)} \quad=710,775 \frac{\mathrm{BTU}}{\mathrm{day}}\right.
$$

Step 2. Heat gain from air changes.
For this room there are 2.3 air changes/day.

$$
\left(2.3 \frac{\text { air changes }}{\text { day }}\right) \quad\left(39,375 \frac{\mathrm{Ft}^{3}}{\text { change }}\right)\left(1.57 \frac{\text { BTU }}{\mathrm{Ft}^{3}}\right)=142.183 \frac{\text { BTU }}{\mathrm{day}}
$$

Step 3. Heat gain from lights.

$$
\left(50 \frac{\mathrm{BTU}}{\mathrm{Ft}} \text {-day }\right) \quad\left(2813 \mathrm{Ft}^{2}\right)=140,650 \frac{\mathrm{BTU}}{\text { day }}
$$

Step 4. Heat gain from motors.
It is assumed there are $6-1 / 2 \mathrm{hp}$ motors.
$\left(40,720 \frac{\mathrm{BTT}}{\text { ho-day })} \quad(3 \mathrm{hp})=122.160 \frac{\mathrm{BTU}}{\text { day }}\right.$

Step 5. Sum of the cooling loads.
 8,571 lbs. of sour cream through the cooler every day. But there is also $2,571 \mathrm{lbs}$. of cream cheese, $31,393 \mathrm{lbs}$. of cottage cheese, and $18,857 \mathrm{lbs}$. of cultured milk which go through the cooler every day. Therefore only $14.0 \%$ of the load from Steps $1-4$ should be attributed to sour cream production, or:

$$
\frac{\left(1.116 \times 10^{\left.6: \frac{\mathrm{BTU}}{\mathrm{day}}\right)(0.14)}\right.}{\left(8,571 \frac{1 \mathrm{bs} \cdot \operatorname{sour~cream}}{\text { day }}\right)}=18.2 \quad \frac{\text { BTU }}{1 \mathrm{~b} .} \text { sour cream }
$$

Step 6. Cooling incoming product.
The sour cream is cooled from $65^{\circ} \mathrm{F}$ to $40^{\circ} \mathrm{F}$ and has a specific heat BTU
of $0.9 \overline{1 \mathrm{~b} .}{ }^{\circ}{ }^{\circ} \mathrm{F}$.

Step 7. Total Cooling Load


## Energy Calculation No. 22.05

## Cream Cheese Cold Storage Room

The dimensions of the cooler are:

Volume $=39,375 \mathrm{Ft}^{3}$
Surface area $=8,775 \mathrm{Ft}^{2}$
Floor space $=2,813 \mathrm{Ft}^{2}$
Temperature $=40^{\circ} \mathrm{F}$

Following the outline in Energy Calculation No. 22.00, the cooling loads are: Step 1. Heat infiltration through walls, ceiling, and floor.
(81 $\frac{\text { BTU }}{\left.\mathrm{Ft}^{2} \text {-day }\right)}\left(8,775 \mathrm{Ft}^{2}\right)=710,775 \quad \frac{\text { BTU }}{\text { day }}$

Step 2. Heat gain from air changes.
For this room there are 2.3 air changes/day.
$\left(2.3 \frac{\text { air changes }}{\text { day }}\right)\left(39,375 \frac{\mathrm{Ft}^{3}}{\text { change }}\right)\left(1.57 \mathrm{FTU}^{3}\right)=142,183 \frac{\mathrm{BTU}}{\text { day }}$

Step 3. Heat gain from lights.
$\left(50 \frac{\mathrm{BTU}}{\left.\mathrm{Ft}^{2}-\text { day }\right)}\left(2,813 \mathrm{Ft}^{2}\right)=140,650 \frac{\mathrm{BTU}}{\mathrm{day}}\right.$

Step 4. Heat gain from motors.
It is assumed there are $6-1 / 2 \mathrm{hp}$ motors.
$\left(40,720 \frac{\text { BTU }}{\text { hp-day }}\right)(3 \mathrm{hp})=122,160 \frac{\text { BTU }}{\text { day }}$

Step 5. Sum of the cooling loads.
The sum of Steps $1-4$ is $1.116 \times 10^{6} \frac{\mathrm{BTU}}{\text { day }}$. There is an average of 2,571 lbs. of cream cheese through the cooler every day. But there is also $31,393 \mathrm{lbs}$. of cottage cheese, $8,571 \mathrm{lbs}$. of sour cream, and 18,857 1bs. of cultured milk which go through the cooler every day. Therefore, only $4.2 \%$ of the load from Steps $1-4$ should be attributed to crean cheese production, or:
$\frac{\left(1.116 \times 10^{6} \frac{\mathrm{BTU}}{\text { day })(0.042)}\right.}{\left(2571 \frac{1 \mathrm{bs} \text { cream cheese }}{\text { day }}\right)}=18.2 \frac{\mathrm{BTU}}{1 \mathrm{~b}}$ cream cheese

Step 6. Cooling incoming product.
The cream cheese is cooled from $150^{\circ} \mathrm{F}$ to $40^{\circ} \mathrm{F}$ and has a specific BTU heat of $0.9 \overline{1 b-{ }^{\circ} F}$.
$\left(0.9 \frac{\mathrm{BTU}}{1 \mathrm{~b} \text { cream cheese }-}{ }^{\circ} \mathrm{F}\right)\left(110^{\circ} \mathrm{F}\right)=99 \frac{\mathrm{BTU}}{1 \mathrm{~b} \text { cream cheese }}$

Step 7. Total Cooling Load
$\left(18.2 \frac{\mathrm{BTU}}{1 \mathrm{~b} \mathrm{cream} \mathrm{cheese})}+\left(99 \frac{\mathrm{BTU}}{1 \mathrm{~b} \mathrm{cream} \mathrm{cheese})}=117.2 \quad \frac{\text { BTU }}{\text { 1b cream }}\right.\right.$ cheese

Energy Calculation No. 22.06
Cultured Milk Cold Storage Room
The dimensions of the cooler are:


Following the outline in Energy Calculation No. 22.00 , the cooling loads are: Step 1. Heat infiltration through walls, ceilings, and floors.
$\left(81 \frac{\text { BTU }}{\mathrm{Ft}^{2}-\mathrm{day}}\right)\left(8,775 \mathrm{Ft}^{2}\right)=710,775 \frac{\text { BTU }}{\text { day }}$

Step 2. Heat gain from air changes.
For this room there are 2.3 air changes/day.
$\left(2.3 \frac{\text { air changes }}{\text { day }}\right)\left(39,375 \frac{\mathrm{Et}^{3}}{\text { change }}\right)\left(1.57 \frac{\mathrm{BTU}}{\mathrm{Ft}^{3}}\right)=142,133 \frac{\mathrm{BTU}}{\text { day }}$

Step 3. Heat gain from lights.
$\left(50 \frac{\text { BTU }}{\mathrm{Ft}^{2}-\mathrm{day}}\right)\left(2,81.3 \mathrm{Ft}^{2}\right)=140,650 \frac{\text { BTU }}{\text { day }}$

Step 4. Heat gain from motors.
It is assumed there are $6-1 / 2 \mathrm{hp}$ motors.
$\left(40,720 \frac{B T U}{\mathrm{hp}-\mathrm{day}}(3 \mathrm{hp})=122,160 \frac{\mathrm{BTU}}{\mathrm{day}}\right.$

Step 5. Sum of the cooling loads.
The sum of Steps $1-4$ is $1.116 \times 10^{6} \frac{\text { BTU }}{\text { day }}$. There is an average of 18,857 lbs. of cultured milk through the cooler every day. But there is also 2,571 lbs. of cream cheese, $8,5711 \mathrm{bs}$. of sour cream, and $31,393 \mathrm{lbs}$. of cottage cheese which go through the cooler every day. Therefore, only $30.7 \%$ of the load from Steps $1-4$ should be attributed to cultured milk production, or:
$\frac{\left(1.116 \times 10^{6} \frac{\mathrm{BTU}}{\mathrm{day}}(0.307)\left(2.15^{\left.\frac{\mathrm{lbs}}{\mathrm{qt}}\right)}\right.\right.}{\left(31,393 \frac{\text { lbs cultured milk }}{\text { day }}\right)}=23.5 \frac{\mathrm{BTU}}{\mathrm{qt}}$ cultured milk

Step 6. Cooling incoming product.
The cultured milk enters the cooler at $40^{\circ} \mathrm{F}$ so no cooling load is added here.

Step 7. Total Cooling Load
$\left(23.5 \frac{\text { BTU }}{\text { qt. cultured milk })}+\left(0 \frac{\mathrm{BTU}}{\mathrm{qt} \cdot \text { cultured milk })}=23.5 \frac{\mathrm{BTU}}{\mathrm{qt} \cdot \text { cultured milk. }}\right.\right.$

Butter Cold Storage Room

The dimensions of the cooler are:

Volume $=21,840 \mathrm{Ft}^{3}$
Surface area $=5,416 \mathrm{Ft}^{2}$
Floor space $=1,560 \mathrm{Ft}^{2}$
Temperature $=40^{\circ} \mathrm{F}$

Following the outline given in Energy Calculation No. 22.00 , the cooling loads are:
Step 1. Heat infiltration through walls, ceiling, and floor.
$\left(81 \frac{\mathrm{BTU}}{\left.\mathrm{Ft}^{2}-\text { day }\right)}\left(5,416 \mathrm{Ft}^{2}\right)=438,696 \frac{\text { BTU }}{\text { day }}\right.$

Step 2. Heat gain from air changes.
For this room there are 3.4 air changes/day.
$\left(3.4 \frac{\text { air changes }}{\text { day }}\right)\left(21,840 \frac{\mathrm{Ft}^{3}}{\text { air change })}\left(1.57 \frac{\mathrm{BTU}}{\mathrm{Ft}}\right)=116,581 \frac{\mathrm{BTU}}{\mathrm{day}}\right.$

Step 3. Heat gain from lights.
$\left(50 \frac{\mathrm{BTU}}{\left.\mathrm{Ft}^{2}-\text { day }\right)(1,560 \mathrm{Ft}}{ }^{2}\right)=78,000 \frac{\mathrm{BTU}}{\mathrm{day}}$

Step 4. Heat gain from motors.
It is assumed there are $2-1 / 2 \mathrm{hp}$ motors.
$\left(40,720 \frac{\text { BTU }}{\text { hp-day }}(1 \mathrm{hp})=40,720 \frac{\text { BTU }}{\mathrm{day}}\right.$

Step 5. Sum of cooling loads.
The sum of Steps $1-4$ is 673,997 day. There is an average of 11,222 1bs of butter through the cooler every day. The cooling cost per pound is:

$$
\frac{\left(673,997 \frac{\mathrm{BTU}}{\mathrm{day})}\right.}{\left(11,222 \frac{1 \mathrm{bs} \text { butter }}{\text { day }}\right)}=60.1 \frac{\mathrm{BTU}}{1 \mathrm{~b} . \text { butter }}
$$

Step 6. Cooling incoming product.
The butter is cooled from $50^{\circ} \mathrm{F}$ to $40^{\circ} \mathrm{F}$ and has a specific heat of $0.5 \cdot \frac{\mathrm{BTU}}{\mathrm{Ib}-{ }^{\circ} \mathrm{F} .}$

$$
\left(0.5 \frac{\mathrm{BTU}}{1 \mathrm{~b} \cdot \text { butter }}-{ }^{\circ} \mathrm{F}\right)\left(10^{\circ} \mathrm{F}\right)=5 \frac{\mathrm{BTU}}{1 \mathrm{~b} \cdot \text { butter }}
$$

Step 7. Total Cooling Load.
$\left(60.1 \frac{\text { BTU }}{1 \mathrm{~b} \text { butter })}+\left(5.0 \frac{\mathrm{BTU}}{1 \mathrm{~b} \text { butter })}=65.1 \frac{\mathrm{BTU}}{1 \mathrm{~b} \text { butter }}\right.\right.$

## Energy Calculation No. 22.12

## Evaporated Milk Storage Room

The dimensions of the room are:

Volume $=1,000 \mathrm{Ft}^{3}$
Surface area $=600 \mathrm{Ft}^{2}$
Floor space $=100 \mathrm{Ft}^{2}$
Temperature $=40^{\circ} \mathrm{F}$

Following the outline in Energy Calculation No. 22.00 the cooling loads are:

Step 1. Heat infiltration through walls, ceiling, and floors.
$\left(31 \frac{\text { BTU }}{\left.\mathrm{Ft}^{2}-\mathrm{day}\right)}\left(600 \mathrm{Ft}^{2}\right)=48,600 \frac{\text { BTU }}{\mathrm{day}}\right.$

Step 2. Heat gain from air changes.
For this room there are 17.5 air changes/day.
$\left(17.5 \frac{\text { air changes }}{\text { day }}\right)\left(1000 \frac{\mathrm{Ft}^{3}}{\text { change })}\left(1.57 \frac{\mathrm{BTU}}{\mathrm{Ft}^{3}}\right)=27.475 \frac{\mathrm{BTU}}{\text { day }}\right.$

Step 3. Heat gain from lights.
$\left(50 \frac{\mathrm{BTU}}{\left.\mathrm{Ft}^{2}-\text { day }\right)}\left(100 \mathrm{Ft}^{2}\right)=5,000 \frac{\mathrm{BTU}}{\mathrm{day}}\right.$

Step 4. Heat gain from motors.
It is estimated there is $1-1 / 2 \mathrm{hp}$ motor.
$\left(40,720 \frac{\text { BTU }}{\text { hp-day }}\right)(0.5 \mathrm{hp})=20,360 \quad \frac{\text { BTU }}{\text { day }}$

Step 5. Sum of cooling loads.
BTU
The sum of Steps $1-4$ is 101,435 day. There is 142,857 1bs. of evaporated milk produced every day in this plant. The cost per pound is:

$$
\frac{\left(101,435 \frac{\text { BTU }}{\text { day }}\right)}{\left(142,857 \frac{1 \mathrm{bs} \mathrm{evap.} \mathrm{milk}}{\text { day }}\right)}=0.7 \frac{\mathrm{BTU}}{1 \mathrm{~b}} \text { evap. milk }
$$

Step 6. Cooling incoming product.
It is assumed that the cooling load is small since only small volumes of excess cream and milk are stored here.

Step 7. Total Cooling Load.

$$
\left(0.7 \frac{\mathrm{BTU}}{1 \mathrm{~b} \text { evap. milk })}+\left(0 \frac{\mathrm{BTU}}{1 \mathrm{~b} \text { evap. milk })}=0.7 \frac{\text { BTU }}{1 \mathrm{~b} \text { evap. milk }}\right.\right.
$$

Energy Calculation No. 22.13
Ice Cream Hardening Room
The dimensions of the room are:

Volume $=52,416 \mathrm{Ft}^{3}$
Surface area $=10,960 \mathrm{Ft}^{2}$
Floor space $=3,550 \mathrm{Ft}^{2}$
Temperature $=-20^{\circ} \mathrm{F}$

Following the outline in Energy Calculation No. 22.00, the cooling loads are:
Step 1. Heat infiltration through walls, ceiling, and floor.

$$
\left(81 \frac{\text { BTU }}{\mathrm{Ft}^{2}-\text { day }}\right) \quad\left(10,960 \mathrm{Ft}^{2}\right)=887,760 \frac{\text { BTU }}{\text { day }}
$$

Step 2. Heat gain from air changes.
For this room there are 1.97 air changes/day.
$\left(1.97 \frac{\text { air changes }}{\text { day }}\right)\left(52,416 \frac{\mathrm{Ft}^{3}}{\text { change })}\left(3.24 \frac{\mathrm{BTU}}{\mathrm{Ft}^{3}}\right)=334,561 \frac{\mathrm{BTU}}{\text { day }}\right.$

Step 3. Heat gain from lights.
$\left(50 \frac{\mathrm{BTU}}{\mathrm{Ft}^{2}-\text { day }}\right)\left(3,550 \mathrm{Ft}^{2}\right)=177,500 \frac{\mathrm{BTU}}{\mathrm{day}}$

Step 4. Heat gain from motors.
It is assumed there are $4-3 / 4 \mathrm{hp}$ motors.
$\left(40,720 \frac{\text { BTU }}{\mathrm{hp}-\mathrm{day}}\right)(3 \mathrm{hp})=122,160 \frac{\mathrm{BTU}}{\mathrm{day}}$

Step 5. Sum of the cooling loads.
The sum of Steps $1-4$ is $1.52 \times 10^{6} \frac{\mathrm{BTU}}{\text { day }}$. If there are 2,747 gallons of ice cream through the hardening room every day, the cooling cost per gallon is:
$\frac{\left(1.52 \times 10^{6} \frac{\mathrm{BTU}}{\text { day })}\right.}{\left(2,747 \frac{\text { gals ice cream }}{\text { day }}\right)}=553 \frac{\frac{\mathrm{BTU}}{\text { ga1 }} \text { ice cream }}{}$

Step 6. Cooling incoming product.
The cooling load for hardening ice cream is estimated at $458 \frac{\mathrm{BTU}}{\mathrm{gal}}$.

Step 7. Total Cooling Load.
Remembering the refrigeration factor needed for a Hardening Room given in Step 7 of Energy Calculation Number 22.00, the total cooling load is:
$\left[\left(553 \frac{\text { BTU }}{\text { gal ice cream })}+\left(458 \frac{\text { BTU }}{\text { gal ice cream })}\right](1.652)=1643 \frac{\text { BTU }}{\text { gal ice cream }}\right.\right.$

The dimensions of the room are:

Volume $=5,460 \mathrm{Ft}^{3}$
Sur£ace area $=1,984 \mathrm{Ft}^{2}$
Floor space $=390 \mathrm{Ft}^{2}$
Temperature $=40^{\circ} \mathrm{F}$.

Following the outline in Energy Calculation No. 22.00, the cooling loads are:
Step 1. Heat infiltration through walls, ceiling, and floor.
$\left(81 \frac{\mathrm{BTU}}{\mathrm{Ft}^{2}-\mathrm{day}}\right)\left(1,984 \mathrm{Ft}^{2}\right)=160,704 \frac{\mathrm{BTU}}{\mathrm{day}}$

Step 2. Heat gain from air changes.
For this room there are 6.9 air changes/day.
$\left(6.9 \frac{\text { air changes }}{\text { day }}\right)\left(5,460 \frac{\mathrm{Ft}^{3}}{\text { change }}\right)\left(1.57 \frac{\mathrm{BTU}}{\mathrm{Ft}^{3}}\right)=59,148 \frac{\mathrm{BTU}}{\mathrm{day}}$

Step 3. Heat gain from Iights.
$\left(50 \frac{\mathrm{BTU}}{\mathrm{day}}-\mathrm{Ft}^{2}\right)\left(390 \mathrm{Ft}^{2}\right)=19,500 \frac{\mathrm{BTU}}{\mathrm{day}}$

Step 4. Heat gain from motors.
It is assumed there is $1-1 / 2 \mathrm{hp}$ motor.
$\left(40,720 \frac{\text { BTU }}{\text { hp-day }}(1 / 2 \mathrm{hp})=20,360 \frac{\text { BTU }}{\text { day }}\right.$

Step 5. Sum of the cooling loars.
The sum of Steps $1-4$ is 259,712 day. If an average of 2,747 gallons of ice cream are made in this plant each day; the cooling cost per gallon is:
$\frac{\left(259,712 \frac{\mathrm{BTU}}{\text { day }}\right)}{\left(2,747 \frac{\text { gal ice cream }}{\text { day }}\right)}=94.5 \frac{\text { BTU }}{\text { gal ice cream }}$

Step 6. Cooling incoming products.
This room is used mainly for storage of flavoring materials and assorted goods and would have a small heat gain from incoming material.

Step 7. Total Cooling Load.
$\left(94.5 \frac{\mathrm{BTU}}{\mathrm{gal} \text { ice cream })}+\left(0 \frac{\mathrm{BTU}}{\text { gal ice cream })}=94.5 \frac{\mathrm{BTU}}{\text { gal ice cream }}\right.\right.$

Energy Calculation No. 22.14
Processed Cheese Cold Storage Room
The dimensions of the room are:

Volume $=240,000 \mathrm{Ft}^{3}$
Surface area $=32,800 \mathrm{Ft}^{2}$
Floor space $=12,000 \mathrm{Ft}^{2}$
Temperature $=40^{\circ} \mathrm{F}$

Following the outline in Energy Calculation No. 22.00, the cooling loads are:
Step 1. Heat infiltration through walls, ceiling, and floor.
$\left(81 \frac{\mathrm{BTU}}{\mathrm{Ft}^{2} \text {-day }}\right) \quad\left(32,800 \frac{\mathrm{ft}^{2}}{\text { change }}\right)=2.66 \times 10^{6} \quad \frac{\mathrm{BTU}}{\text { day }}$

Step 2. Heat gain from air changes.
For this room, there are 0.8 air changes/day.
$\left(0.8 \frac{\text { air changes }}{\text { day }}\right)\left(240,000 \frac{\mathrm{Ft}^{3}}{\text { change })}\left(1.57 \frac{\left.\mathrm{BTU}^{\mathrm{Ft}}\right)}{}=0.30 \times 10^{6} \frac{\mathrm{BTU}}{\mathrm{day}}\right.\right.$

Step 3. Heat gain from lights.
$\left(50 \frac{\mathrm{BTU}}{\mathrm{day}-\mathrm{Ft}}\right) \cdot\left(12,000 \mathrm{Ft}^{2}\right)=0.60 \times 10^{6} \frac{\text { BTU }}{\text { day }}$

Step 4. Heat gain from motors.
It is assumed there are $4-3 \mathrm{hp}$ motors.
$\left(40,720 \frac{\text { BTU }}{\text { hp-day }}\right)(12 \mathrm{hp})=0.49 \times 10^{6} \frac{\text { BTU }}{\text { day }}$

Step 5. Sum of the cooling loads.
The sum of Steps $1-4$ is $4.55 \times 10^{6} \frac{\mathrm{BTU}}{\text { day }}$. Since there are 280,000 lbs. of processed cheese made every day, the cost is:
$\frac{\left(4.55 \times 10^{\left.6 \frac{\text { BTU }}{\text { day }}\right)}\right.}{\left(280,000^{\frac{1 b s \text { cheese }}{\text { day }}}\right)}=16.25 \frac{\text { BTU }}{1 \mathrm{~b} \text { cheese }}$

Step 6. Cooling incoming products.
The incoming natural cheese is assumed to be at $40^{\circ} \mathrm{F}$ and creates no cooling load. The incoming processed cheese will enter at $50^{\circ} \mathrm{F}$ and is cooled to $40^{\circ} \mathrm{F}$. The specific heat of processed cheese is $0.6 \frac{\operatorname{BTU}}{1 \mathrm{~b} .-{ }^{\circ} \mathrm{F}}$. $\left(0.6 \cdot \frac{\mathrm{BTU}}{\left.1 \mathrm{~b} \cdot{ }^{\circ} \mathrm{F}\right)}\left(10^{\circ} \mathrm{F}\right)=6 \frac{\mathrm{BTU}}{1 \mathrm{~b} \text { cheese }}\right.$

Step 7. Total Cooling Load.
$\left(16.25 \frac{\text { BTU }}{1 \mathrm{~b} \text { cheese })}+\left(6 \frac{\mathrm{BTU}}{1 \mathrm{~b} \mathrm{cheese})}=22.25 \frac{\text { BTU }}{1 \mathrm{~b} \text { cheese }}\right.\right.$

Section 6-23

ENERGY CALCULATION NO. 23.00

## Air Conditioning

Air conditioning energy costs are difficult to estimate for a
"typical" dairy plant due to variation in the areas of the plant that are air conditioned and the components in these areas. In this study it is assumed that only office areas, labs, lunch rooms and restrooms should be air conditioned. In order to simplify the calculations; the following assumptions are made.

1. The air conditioning will be used from May until September (122 days).
2. The air conditioned areas of the plant shall be located together forming a square shape with one wall connected to the rest of the plant.
3. The unconditioned areas of the plant which are next to the air conditioned areas are assumed to have the same temperature as the outside air.
4. During the air conditioning season, the average daily outside temperature is $85^{\circ} \mathrm{F}$ while the inside temperature is at $75^{\circ} \mathrm{F}$ constantly. The average humidity of the outside air is $65 \%$.
5. The roof will be flat, dark in color, and will be made of steel siding with 2 inches of insulation.
6. The walls are made of 4 inches of brick, 4 inches of concrete block, and 1 inch of insulation. The outside wall will be dark in color.
7. The air conditioning will run from 8:00 A.M. till 8:00 P.M.
8. In the air conditioned areas the ceiling is 10 feet above the floor.

Using these assumptions, an air conditioning cost per square foot of floor space will be developed.

Outside heat gains or heat transfer rates through walls and roof at any time of the day is estimated in the ASHRAE Handbook of Fundamentals ${ }^{4}$ by using the Total Equivalent Heat Transfer Differentials. Plotting the heat transfer rates from 8:00 A.M. till 8:00 P.M. and finding the area under the curve gives the total heat transfer for the day. For the walls and roof given in the assumptions, the heat transfer is:

Roof	171.4	BTU
		$\mathrm{Ft}^{2}$-day
East Wall	59.6	$\frac{B T U}{\mathrm{Ft}^{2}-\mathrm{day}}$
		BTU
South Wall	39.5	$\mathrm{Ft}^{2-\mathrm{day}}$
		BTU
West Wa11	39.5	$\mathrm{Ft}^{2}-\mathrm{day}$
		BTU
North Wall	22.1	$\mathrm{Ft}^{2}$ - day

Since the areas which are air conditioned will always be square in shape, the wall heat transfer rates can be added together and multiplied by the area of one wall. Because the air conditioned areas form a square, variation in load due to the direction of the building faces is eliminated. Also, since the walls are 10 feet tall, the heat gain per day through the walls is given by sum of the above wall heat transfer rates multiplied by 10.0 and by the
length of one wall. The length of one wall is also the square root of the air conditioned floor space. The area of the roof is approximately equal to the floor space which is air conditioned. Thus the heat transferred through the roof per day equals the above roof heat transfer rate times the area of the floor space which is air conditioned. This is summarized in the following formula:

Heat Infiltration through Walls and Ceilings $=$


Heat gained from within the air conditioned areas is assumed to come from only two major sources; people and electrical devices. It is assumed there are 12 people in the air conditioned areas for 10 hours per day doing moderately active office work. Using values from the ASHRAE Handbook, 5 the following heat gain is derived.

The heat gain from electrical devices comes mainly from lights and miscellaneous motors. Using the value derived in Energy Calculation No. 13.00 the heat gain from electrical devices is given by:

$$
\left.\frac{\left(247.5 \frac{\mathrm{BTU}}{\mathrm{Ft}^{2}-\text { week }}\right) \cdot\left(\mathrm{Ft}^{2} \text { of floor space }\right)}{\left(7 \frac{\text { days }}{\text { week }}\right)}=\left(35.4 \cdot \frac{\mathrm{BTU}}{\mathrm{Ft}^{2}-\mathrm{day}}\right) \text { (Ft }{ }^{2} \text { of floor space }\right)
$$

Thus the cotal heat given off per day by people and electrical devices
is given by:


Incoming outside air which is circulated into the air conditioned areas must be cooled to room temperature. Since the average outside temperature is $85^{\circ} \mathrm{F}$ with $65 \%$ relative humidity, the amount of cooling required to lower one cubic foot of air to the $75^{\circ} \mathrm{F}$ room temperature given by:

$$
\left.\left.\begin{array}{rl}
\left(0 . 0 7 5 \frac { 1 \mathrm { b } \text { air } } { \mathrm { Ft } ^ { 2 } \mathrm { air } ) } \left[\left(0.24 \frac{\mathrm{BTU}}{\left.\mathrm{lbair}{ }^{\circ} \mathrm{F}\right)}+\left(0.017 \frac{1 \mathrm{bH} \mathrm{H}_{2} \mathrm{O}}{\mathrm{lb} \mathrm{air}^{2}}\left(0.45 \cdot \frac{\mathrm{BTU}}{1 \mathrm{bTU}} \mathrm{H}_{2} 0^{\circ}{ }^{\circ} \mathrm{F}\right)\right.\right.\right.\right.
\end{array}\right]\left(10^{\circ} \mathrm{F}\right)\right)
$$

It is assumed that the air circulation rate in the air conditioned areas is such that one complete air change occurs every 4 minutes with $10 \%$ of this circulated air coming from outside. Since the volume of the air conditioned area is given by multiplying the floor space times the ceiling height of 10 feet, the amount of outside air entering is given by:

$$
\frac{\left(\mathrm{Ft}^{2} \text { of floor space } \mathrm{xl0}\right) \frac{\mathrm{Ft}^{3}}{\text { air change }\left(60 \frac{\mathrm{~min}}{\mathrm{hr}}\right)\left(12 \frac{\mathrm{hr}}{\mathrm{day}}\right)(0.1)}}{\left(4 \frac{\text { minutes }}{\text { air change })}\right.}
$$

$$
=\left(\mathrm{Et}^{2} \text { of floor space }\right)(180)=\frac{\mathrm{Ft}^{3} \text { of air }}{\mathrm{day}}
$$

Thus the cooling load from incoming air is:

$$
\left(\mathrm{Ft}^{2} \text { of floor space) }(180)(0.186)=33.5\left(\mathrm{Ft}^{2} \text { of floor space) } \frac{\text { BTU }}{\text { day }}\right.\right.
$$

Simplifying the outside heat gain, the inside heat gain, and the cooling of incoming air into one formula:

$$
\begin{aligned}
\frac{\text { BTUs of cooling }}{\text { day }} & =240.3\left(\mathrm{ft}^{2} \text { of floor space }\right)+1607\left(\mathrm{ft}^{2} \text { of floor space) }{ }^{1 / 2}\right. \\
& +54,000
\end{aligned}
$$

The following table relates the air conditioning load per unit product in the production of various dairy products. The unit load is derived by inserting the square feet of air conditioned floor space into the above formula and multiplying the result, times the length of the air conditioning season and the apportioning factor. The product is divided by. the yearly production. The length of the air conditioning season is assumed to be 122 days per year. The apportioning factor is needed for plants producing more than one product. For these plants, the fraction of the cost of air conditioning which should be attributed to a specific product is the apportioning factor and is equal to the fraction of the incoming raw milk which goes into that particular product. If a plant produces only one product the apportioning factor equals 1.0 .

Table 6-23a Air Conditioning Loads per Unit Production

Energy   Cal.   No.	Energy   Req'd   For	Air Cond. Floor Space	Air Cond. Load	Air Cond. Season	Apportw   ioning   Factor	Yearly   Average   Production	Refrige   Energy.   Req' ${ }^{\text {d }}$	eration
23.01	Fluid Milk	$6860 \mathrm{Ft}^{2}$	$1.84 \times 10^{6} \frac{\mathrm{BTU}}{\mathrm{day}}$	$122 \frac{\mathrm{day}}{\text { year }}$	$1.0$	$5.46 \times 10^{6} \frac{\mathrm{gals}}{\text { year }}$		$\frac{\mathrm{BTU}}{\mathrm{gal}}, \mathrm{milk}$
23.02	Cheddar   Cheese	$4972 \mathrm{Ft}^{2}$	$1.36 \times 10^{6} \frac{\mathrm{BIU}}{\mathrm{day}}$	$122 \frac{\text { day }}{\text { year }}$	1.0	$4.16 \times 10^{6} \frac{1 \mathrm{hs}}{\mathrm{year}}$		$\frac{\mathrm{BTU}}{1 \mathrm{~b} .} \text { cheese }$
23.03	Cottage Cheese	$5502 \mathrm{Ft}^{2}$	$1.50 \times 10^{6} \frac{\mathrm{BTU}}{\mathrm{day}}$	$122 \frac{\text { day }}{\text { year }}$	0.75	$1.14 \times 10^{7} \frac{1 \mathrm{bs}}{\text { year }}$	12	$\frac{\mathrm{BTU}}{1 \mathrm{~b}} \text { cheese }$
23.04	Sour   Cream	$5502 \mathrm{Ft}^{2}$	$1.50 \times 10^{6} \frac{\mathrm{BTU}}{\mathrm{day}}$	$122 \frac{\text { day }}{\text { year }}$	$0.05$	$3.12 \times 10^{6} \frac{\mathrm{lbs}}{\text { year }}$		BTU   1b. sour creat
23.05	Cream Cheese	$5502 \mathrm{Ft}^{2}$	$1.50 \times 10^{6} \frac{\mathrm{BTU}}{\mathrm{day}}$	$122 \frac{\text { day }}{\text { year }}$	0.10	$9.36 \times 10^{5} \frac{1 \mathrm{bs}}{\mathrm{year}}$	20	$\frac{\text { BTU }}{1 \mathrm{~b} \cdot \text { cheese }}$
23.06	Cultured Milk	$5502 \mathrm{Ft}^{2}$	$1.50 \times 10^{6} \frac{\mathrm{BTU}}{\mathrm{day}}$	$122 \frac{\text { day }}{\text { year }}$	$0.10$	$3.19 \times 10^{6} \frac{\text { qts }}{\text { year }}$		$\frac{\mathrm{BTU}}{\mathrm{qt}} \text { cult. milt }$
23.08	Butter	$2715 \mathrm{Ft}^{2}$	$7.90 \times 10^{5} \frac{\mathrm{BTU}}{\text { day }}$	$122 \frac{\text { day }}{\text { year }}$	0.05	$4.08 \times 10^{6} \frac{\mathrm{lbs}}{\text { year }}$		$\frac{\mathrm{BTU}}{1 \mathrm{~B} .} \text { butter }$
23.09	Dried Milk	$2715 \mathrm{Ft}^{2}$	$7.90 \times 10^{5} \frac{\mathrm{BTU}}{\mathrm{day}}$	$122 \frac{\text { day }}{\text { year }}$	0.90	$7.70 \times 10^{6} \frac{1 \mathrm{bs}}{\text { year }}$		$\frac{B T U}{1 b} \text { powder }$
23.11	$\begin{aligned} & \text { Dried Bu } \\ & \text { milk } \end{aligned}$	$\operatorname{ter}^{2715 \mathrm{Ft}^{2}}$	$7.90 \times 10^{5} \frac{\mathrm{BTU}}{\mathrm{day}}$	$122 \frac{\text { day }}{\text { year }}$	0.05	$3.80 \times 10^{5} \frac{1 \mathrm{bs}}{\text { year }}$	13	$\frac{\mathrm{BTU}}{1 \mathrm{~b} \cdot} \text { powder }$
23.12	Evaporat Milk	$2700 \mathrm{Ft}^{2}$	$7.86 \times 10^{5} \frac{\mathrm{BTU}}{\mathrm{day}}$	$122 \frac{\text { day }}{\text { year }}$	1.0	$5.20 \times 10^{7} \frac{1 \mathrm{bs}}{\text { year }}$		$\frac{\mathrm{BTU}}{\text { 1b. evap. mil }}$
23.13	Ice   Cream	$3907 \mathrm{Ft}^{2}$	$1.09 \times 10^{6} \frac{B T U}{\text { day }}$	$122 \frac{\text { day }}{\text { year }}$	1. 0	$1.00 \times 10^{6} \frac{\mathrm{gals}}{\mathrm{year}}$	133	$\frac{\text { BTU }}{\text { gal. ice crear }}$
23.14	Processe   Cheese	$4875 \mathrm{Ft}^{2}$	$1.34 \times 10^{6} \frac{\mathrm{BTU}}{\mathrm{day}}$	$122 \frac{\text { day }}{\text { year }}$	1.0	$87.4 \times 10^{6} \frac{\mathrm{lbs}}{\text { year }}$		$\frac{\mathrm{BTU}}{\mathrm{Ib}} \text { cheese }$

## Section 6-24

ENERGY CALCULATION NO. 24.00

## Product Cooling

Most of the refrigeration costs in a dairy processing plant can be attributed to cooling dairy products after they have been heated for processing. The refrigeration energy required in each cooling of material will be estimated by multiplying the specific heat of the product times the temperature change of the product.

If the product is cooled in a high temperature-short time (HTST) pasteurizer, most of the cooling occurs in the regenerative section which uses incoming cold product for cooling.

At temperatures above $90^{\circ} \mathrm{F}$ to $100^{\circ} \mathrm{F}$, cooling is also done with culinary water. For this study, only the cooling done with chilled brine or water solutions will be considered. products may also be cooled in a vat by circulating chilled water or by expanding ammonia in an exterior jacket.

The following table will relate the refrigeration loads created in product cooling. The refrigeration load for cooling a material is derived by multiplying the specific heat of the material by its change in temperature. This is multiplied by the ratio of the amount of material cooled to the amount of desired product produced. Since several materials may be cooled separately in the production of one product, each material cooling cost will be summed to form a total product cooling load. Where the cooling occurred will be designated by "H'TST" for a high temperature short time pasteurizer, "vat" for cooling in a jacketed vat, or "Plate" for cooling in a plate heat exchanger.

Table 6-24a Product Cooling Unit Loads

Energy Cal. No.	Energy Req'd For	$\begin{aligned} & \text { Material } \\ & \text { Cooled } \end{aligned}$	Where   Cooling   Occurred	Specific Heat	c Tempera chang in ${ }^{\circ} \mathrm{F}$		Lbs. of Material per unit product produced	Refrigeration Unit Load
24.01	FluidMilk	milk P	Plate	1.0	$42-36$	8.6	$\frac{1 \mathrm{bs} \text { milk }}{\text { gal milk }}$ 52   1bs milk	$\begin{aligned} & \frac{\text { BTU }}{\text { gal }} \text { milk } \\ & \text { BTU } \end{aligned}$
		milk	HTST	1.0	$64-36$	8.6	$\overline{\text { gal milk }} 241$	$\overline{\mathrm{gal}} \mathrm{milk}$
							293	$\frac{\text { BTU }}{\mathrm{gal}} \mathrm{mi} 1 \mathrm{k}$
24.02	Cheddar   Cheese	milk	Plate	1.0	$42-36$	10	1b cheese . 60 lbs starter	$\begin{aligned} & \frac{B T U}{1 b} \text { cheese } \\ & \frac{B T U}{1} . \end{aligned}$
		starter V	Vat	1.0	$70 \rightarrow 40$	0.2	1b cheese $\frac{6}{66}$	$\frac{\overline{1 b} \text { cheese }}{\frac{\text { BTU }}{1 \mathrm{~b}} \text { cheese }}$
24.03	Cottage   Cheese		Plate	1.0	$42-36$	4.1	1bs milk	BTU
		milk P					1b cheese 25   1bs water	1b cheese BTU
		wash water Vat		1.0	$60-34$	2.55	```lo cheese (tbs cream```	Ib cheese BTU
		40\% cream HTST		0.85	105-38		```Ib cheese 6``` Ib dressing	lb cheese BTU
		dressing	Vat	0.90	$100 \rightarrow 38$	0.33	1b cheese 18 lbs starter	1b cheese BTU
		starter	Vat	1.0	$70-40$	0.19	Ib cheese 6	$\frac{\overline{1 b} \text { cheese }}{\frac{B T U}{1 \mathrm{~b} \cdot \text { cheese }}}$
24.04	Sour Cream	40\% cream	HTST	0.85	$105-38$	0.39	1 bs cream	BTU
							1b sr. cream 22   lbs sr. cream	1b. sour crea BTU
		sour crean	m Vat	0.9	$170 \geqslant 65$	1.0	1b sr cream 95	1b. sour crea: BTU
		starter	Vat	1.0	70-40	0.02	1bs sr. cream 1	1b. sour crea BTU
							118	lb. sour crea
24.05	Cream Cheese	13\% cream	Plate	0.9	$42-36$	3.2	1 bs cream	BTU
							1 lb cheese 17   1bs cream	$\overline{16}$ cheese BTU
		40\% cream	HTST	0.85	105-38	0.76	lb cheese lbs cream	1b) cheese BTU
		5\% cream	Vat	0.95	$100-65$			1b cheese BTU
		starter	Vat	1.0	$70-40$	0.03	1b cheese $\frac{1}{144}$	$\frac{\overline{1 b} \text { cheese }}{\frac{B T U}{1 b} \text { cheese }}$

Table 6-24a (continued) Product Cooling Unit Loads


Table 6-24a (continued) Product Cooling Unit Loads


## Section 6-25

ENERGY CALCULATION NO. 25.00

Cooling Line Losses
With the exceptions of the cold storage rooms, the instantizer cooling costs, and the ice cream freezer, all the cooling done in this report will be assumed to be done with a chilled brine or chilled water (sweet water). The water solutions will be chilled at a central point in the plant and pumped to the process location. These cooling lines run through the plant and are warmed by the surroundings. It was assumed that $20 \%$ of the calculated cooling load that circulates in those lines would approximate the heat gain in the lines.

The following table relates the cooling line loss unit loads in the production of various products. The unit loads will be determined by adding the applicable cooling loads and multiplying the sum by 0.2 .

Table 6-25a. Cooling line loss unit loads.

Energy Cal. No.	Energy Req'd For	Air Conditioning Load	Product Cooling Load	$\begin{aligned} & \text { Total } \\ & \text { Cooling } \\ & \text { Load } \end{aligned}$	$\begin{aligned} & \text { Line } \\ & \text { Loss } \\ & \text { Factor. } \end{aligned}$	Refrigeration Unit Load
25.01	Fluid Milk	$42 \frac{\mathrm{BTU}}{\mathrm{gal} \mathrm{m} 11 \mathrm{k}}$	$293 \frac{\mathrm{BTU}}{\mathrm{gal} \mathrm{milk}}$	$355 \frac{\mathrm{BTU}}{\mathrm{gal} \mathrm{milk}}$	0.2	$67 \frac{\text { BTU }}{\text { gal milk }}$
25.02	Cheddar   Cheese	$40 \frac{\text { BTU }}{\text { 1b cheese }}$	$66 \frac{\mathrm{BTU}}{1 \mathrm{~b} \text { cheese }}$	$106 \frac{\text { BTU }}{\text { 1b cheese }}$	0.2	$26 \frac{\mathrm{BTU}}{1 \mathrm{~b} \text { cheese }}$
25.03	Cottage Cheese	$12 \frac{\text { BTU }}{1 \mathrm{~b} \text { cheese }}$	$121 \frac{\mathrm{BTU}}{1 \mathrm{~b} \text { cheese }}$	$133 \frac{\text { BTU }}{1 \mathrm{cheese}}$	0.2	$27 \frac{\mathrm{BTU}}{1 \mathrm{~b} \text { cheese }}$
25.04	Sour   Cream	$3 \frac{\mathrm{BTU}}{1 \mathrm{~b} \text { sour } \mathrm{cr}}$	$118 \frac{\text { BTU }}{1 \mathrm{~b} \text { sour } \mathrm{cr}}$	$121 \frac{\mathrm{BTU}}{1 \mathrm{~b} \text { sour cr }}$	0.2	$24 \frac{\text { BTU }}{1 \mathrm{~b} \mathrm{sour} \mathrm{cr}}$
25.05	Cream Cheese	$20 \frac{\text { BTU }}{1 \mathrm{~b} \text { cheese }}$	$144 \frac{\text { BTU }}{\text { 1b cheese }}$	$164 \frac{\mathrm{BTU}}{1 \mathrm{~b} \text { cheese }}$	0.2	$33 \frac{\mathrm{BTU}}{1 \mathrm{~b} \text { cheese }}$
25.06	Cultured Milk	$6 \frac{\mathrm{BTU}}{\mathrm{qt} \mathrm{cult} \mathrm{mk}}$	$143 \frac{\mathrm{BTU}}{\mathrm{qt} \mathrm{cult} \mathrm{mk}}$	$149 \frac{\mathrm{BTU}}{\mathrm{qt} \mathrm{cult} \mathrm{mk}}$	0.2	$30 \frac{\mathrm{BTU}}{\text { qt cult mk }}$
25.07	Dried Whey	--	$603 \frac{\mathrm{BTU}}{\mathrm{Ib} \text { powder }}$	$603 \frac{\text { BTU }}{1 \mathrm{~b} \text { powder }}$	0.2	$121 \frac{\text { BTU }}{1 \mathrm{~b} \text { powder }}$
25.08	Butter	$1 \frac{\text { BTU }}{1 \mathrm{~b} \text { butter }}$	$154 \frac{\text { BTU }}{1 \mathrm{~b} \text { butter }}$	$155 \frac{\text { BTU }}{1 \mathrm{~b} \text { butter }}$	0.2	$31 \frac{\text { BTU }}{1 \mathrm{~b} \text { butter }}$
25.09	Dried   Milk	$11 \frac{\text { BTU }}{1 \mathrm{p} \text { powder }}$	$97 \frac{B T U}{1 \mathrm{~b} \text { powder }}$	$108 \frac{\text { BTU }}{1 \mathrm{~b} \text { powder }}$	0.2	$22 \frac{B^{T} T U}{1 b \text { powder }}$
25.11	Dried   Buttermilk	$13 \frac{\text { BTU }}{1 \mathrm{~b} \text { powder }}$	$162 \frac{\mathrm{BTU}}{\text { Ib powder }}$	$175 \frac{\text { BTU }}{\mathrm{Ib} \text { powder }}$	0.2	$35 \frac{\mathrm{BTU}}{1 \mathrm{~b} \text { powder }}$
25.12	Evaporated Milk	$2 \frac{\mathrm{BTU}}{\text { 1b evap mk }}$	$83 \frac{\text { BTU }}{1 \mathrm{bevap} m k}$	$85 \frac{\text { BTU }}{\mathrm{Ib} \text { evap mk }}$	0.2	$\text { 17. } \frac{\text { BTU }}{1 \mathrm{~b} \text { evap milk }}$
25.13	Ice Cream	$133 \frac{\text { BTU }}{\text { gal ice cr }}$	$243 \frac{\text { BTU }}{\text { gal ice cr }}$	$376 \frac{\text { BTU }}{\text { gal ice cr }}$	0.2	$75 \frac{\mathrm{BTU}}{\mathrm{gal} \mathrm{ice} \mathrm{cr}}$
25.14	Processed Cheese	$2 \frac{\mathrm{BTU}}{1 \mathrm{~b} \text { cheese }}$	$66 \frac{\mathrm{BTU}}{1 \mathrm{~b} \text { cheese }}$	$68 \frac{\mathrm{BTU}}{\mathrm{lb} \text { cheese }}$	0.2	$14 \frac{\text { BTU }}{1 \mathrm{~b} \text { cheese }}$

Section 6-26
ENERGY CALCULATION NO. 26.00

Miscellaneous Cooling Loads
Energy Calculation No. 26.10
Instantizer Cooling Loads
Tracy ${ }^{15}$ recommends that a 1000 CFM air stream at $70^{\circ} \mathrm{F}$ or below is needed to cool the dried powder from the 2000 lb . per hour instantizer. It will be assumed that half of the year the average outside temperature is $85^{\circ} \mathrm{F}$ and $60 \%$ relative humidity. The warm air is cooled to $50^{\circ} \mathrm{F}$ to condense some of the moisture and then raised to $70^{\circ} \mathrm{F}$. The cost of cooling air from $85^{\circ} \mathrm{F}$ to $50^{\circ} \mathrm{F}$ is tabled in the ASHRAE Handbook of Fundamentals ${ }^{3}$ as 1.21 BTU per cubic foot. With the given flow rate needed, this translates to:


Energy Calculation No. 26.13
Ice Cream Freezer (cooling load)
The manufactuer's specifications for a 900 gallon per hour freezer recommend a load of 28.6 tons of refrigeration. Because all the refrigeration costs in this study are in reference to a 25 psig suction ammonia refrigeration system discharging at 185 psig, and because the ice crean freezer requires 0 psig suction, the refrigeration cost for the ice cream freezer requires an increased cost factor. This factor is described in Energy Calculation No. 20.00 on Step 7.

Using the above information, the refrigeration load translates to:

$$
\frac{(28.6 \text { tons })\left(12,000 \frac{\mathrm{BTU}}{\mathrm{hr}-\operatorname{ton}}\right)(1.652)}{\left(900 \frac{\text { gals ice cream }}{\mathrm{hr}}\right)}=630 \frac{\text { BTU }}{\text { gal ice cream }}
$$

Section 6-27

ENERGY CALCULATION NO. 27.00

Energy Calculation Nos. 27.07, 27.09, and 27.11
Spray Drying (natural gas cost)
The manufacturer's ratings of a direct fired horizontal spray dryer list a requirement of 2200 BTUs of natural gas energy for each pound of water removed. To get one pound of $3.5 \%$ moisture powder from a $50 \%$ total solids concentrate of whey, skim milk, or buttermilk, requires the removal of 1.41 pounds of moisture. Thus, the cost translates to:

$$
\left(2200 \frac{\mathrm{BTU}}{1 \mathrm{~b} \mathrm{H}} \mathrm{O} \text { removed }\right)\left(1.41 \frac{1 \mathrm{~b} \mathrm{H} \mathrm{O} \text { removed }}{1 \mathrm{~b} \text { powder }}\right)=3102 \frac{\mathrm{BTU}}{1 \mathrm{~b} \text { powder }}
$$

Section 6-28.
ENERGY CALCULATION NO. 28.00

Miscellaneous Energy Calculations
Energy Calculation No. 23.01

## Electricity Cost in Dollars

The average cost of electricity is estimated at $\$ 0.025 / \mathrm{kw}-\mathrm{hr}$. This converts to:

$$
\frac{(\$ 0.025 / \mathrm{kw}-\mathrm{hr})}{(3413 \cdot \mathrm{BTU} / \mathrm{kw}-\mathrm{hr})}=\$ 7.32 / 10^{6} \mathrm{BTU}
$$

Energy Calculation No. 28.02
Refrigeration Coefficient of Performance
Most of the refrigeration for dairy plants require ammonia compressors running at 25 psig suction and 185 psig discharge. This requires a 13.3 horsepower motor for every 9.2 tons of refrigeration according to Farrall ${ }^{7}$. Assuming an electrical motor efficiency of $88 \%$, the coefficient of performance of the system is:

$$
\frac{(9.2 \text { tons })\left(12,000 \frac{\mathrm{BTU}}{\mathrm{hr}-\operatorname{ton}}\right)}{(13.3 \mathrm{hp})(1.14 \text { efficiency })\left(2545 \frac{\mathrm{BTU}}{\mathrm{hr}-\mathrm{hp}}\right)}=2.86
$$

Energy Calcuation No. 28.03
Cost of Natural Gas in Dollars
It is assumed that the average cost of natural gas is $\$ 1.15 / \mathrm{MCF}$. The heating value of the natural gas is assumed to be $1082 \mathrm{BTU} / \mathrm{ft}^{3}$. The cost translates to:

$$
\frac{(\$ 1.15 / \mathrm{MCF})}{\left(1082 \frac{\mathrm{BTU}}{\mathrm{ft}^{3}}\right)\left(1000 \frac{\mathrm{ft}^{3}}{\mathrm{MCF}}\right)}=\$ 1.06 / 10^{6} \mathrm{BTU}
$$

Energy Calculation No. 28.04
Cost of Steam in Dollars
It is assumed that the boilers used are $80 \%$ efficient and are burning natural gas. Using the above cost of natural gas, the cost of steam becomes:

$$
\frac{\left(\$ 1.06 / 10^{6} \mathrm{BTU}\right)}{(0.80 \text { efficiency })}=\$ 1.33 / 10^{6} \mathrm{BTU}
$$

Energy Calculation No. 28.05
Fossil Fuel Equivalent or Electricity
It is assumed that electrical power needed comes from a fossil fuel power plant with a thermal efficiency of 0.33 . Thus, multiplying the electrical energy used by a factor of 3.0 gives the fossil fuel energy requirement for the plant.

Energy Calculation No. 28.06

## Fossil Fuel Equivalent of Steam

Since the boiler is assumed to be $80 \%$ efficient, multiplying the steam energy need by 1.2 gives the fossil fuel energy requirement in steam generation.

Section 7
COPY OF SURVEY QUESTIONNAIRE

ENERGY USE SURVEY

1. Estimate the amount of each product you produced regularly (gallons/ month, pounds/year, $1 / 2$ gallons/week, or any convenient units)

Whole Milk $\qquad$ Evaporated Milk $\qquad$
Skim Milk $\qquad$ Nonfat Dry Milk $\qquad$
Cottage Cheese Dry Whole Milk $\qquad$
Lowfat Milk $\qquad$ Dried Whey $\qquad$
Cheddar Cheese $\qquad$ Butter $\qquad$
Italian Cheese $\qquad$ Sour Cream $\qquad$
Swiss Cheese $\qquad$ Yogurt $\qquad$
Other Cheeses $\qquad$ Half and Half $\qquad$
Chocolate Milk $\qquad$ Ice Cream $\qquad$
Buttermilk $\qquad$ Ice Milk $\qquad$
Other (specify) $\qquad$
2. What is your average consumption of raw milk? (In gal./month, lbs./week, or other convenient units.)
3. Are you aware of any innovative approaches to energy use in the dairy industry such as solar, geothermal, wind, etc.? If so, describe briefly.
4. How much energy of each of the following types did you consume during each month given and what did it cost you?

TYPE		Apr. 1975	July 1975	Oct. 1975	Jan. 1975	$\begin{aligned} & \text { Total } \\ & \text { Calendar } 1975 \end{aligned}$
Electricity	KWHR					
	Cost					
Natural Gas	MCF					
	Cost					
Fuel 017	Gallons					
	Cost					
Coal	Tons					
	Cost					
Other (specify)						
	Cost					

5. The approximate size of your plant in square feet.
6. Estimate the size and temperature of your cold storage rooms.

Size (cubic feet)	
1. Temperature ( ${ }^{\circ} \mathrm{F}$ )	
2.	
3.	
4.	
5.	
7.	


7.   Distance raw milk   hauled from farm to plant	$\%$ of total milk received
Under 25 miles	
25-100 miles	
100-500 miles	
Over-1000 miles 1000 miles	

8. Please give us any readily available information on what the average distance that your finished product is shipped from your plant.

PRODUCT	Plant to Wholesale distributor	Local   Delivery   (if applicable)
1. Cheese		
2. Fluid Milk		
3. Butter		
4. Ice Cream		
5. Condensed Milk		
6. Dried Milk		
7. Dried Whey		
8. Cultured Products		
9. Other (specify)		

Section 8
LOCATIONS AND PRODUCTION LEVELS OF DAIRY PLANTS IN

CALIFORNIA, IDAHO, OREGON, NEVADA AND UTAH

Table 8-1a. Dairy processing plants in California.

Name	Address	Average weekly use of milk		
		$\begin{gathered} \text { Under } \\ 500,000 \mathrm{lbs} . \end{gathered}$	$\begin{aligned} & 500,000 \text { to } \\ & 999,999 \text { lbs. } \end{aligned}$	$\begin{aligned} & 1,000,000 \\ & \text { or more } 1 \mathrm{bs} . \end{aligned}$
A \& J Sales	1151 Foothill Upland	X		
Adolphs Milk Depot	1650 East Main St. Stockton	X	.	
Adohr	1717 Mission Street San Francisco		X	
Adohr Farms	720 J Street   Tulare			X
Adohr Milk Farms	4002 Westminster Blvd. Santa Ana		X	
Adohr Milk Farms	9923 Atlantic Av̀e South Gate		X	
Albertsons	939 E Street Modesto	X		
Allura Farm Dairy	8809 Grove Ave Up1and	X		
Alpha Beta Co.	777 S. Harbor Blvd. La Habra			X
Alpine Swiss Dairy	Route 1, Box 299A El Centro	X		
Alta Dena Dairy	637 S. Hambledon Ave City of Industry			X
Alves Dairy	2205 South Cabrillo   Half Moon Bay	X		
Andersons Dairy	Route 4, Box 4007 Auburn	X		
Arcata Creamline Dairy	1330 Q Street Arcata	X		

Table 8-1a. California continued.

Name	Address	Average weekly use of milk		
		Under -500,000 1bs.	$\begin{aligned} & 500,000 \text { to } \\ & 999,999 \text { lbs. } \end{aligned}$	$\begin{aligned} & 1,000,000 \\ & \text { or more } 1 \mathrm{bs} . \end{aligned}$
Arden Mayfair Inc	1914 West Slauson Ave Los Angeles	X		'
Arden Mayfair Inc.	2101 South Los Angeles Los Angeles	X		
Arden Mayfair Inc.	1136 K Street San Diego	X		.
Arden Mayfair Inc.	2065 Oakdale Avenue   San Francisco	X		
Arden Mayfair Inc.	1815 Williams Street San Leandro			X
Arden Mayfair Inc.	Tipton	X		
Ariza Cheese Co.	20320 So. Norwalk B1vd Arțesia	X		
Arlington Farms Inc.	617 Sebastopol Rd Santa Rosa	X		
Arrow Dairy	1661 W Arrow Highway Upland	X		
Ashjians Cheese	7684 E Kings Canyon Rd Fresno	X		
Avoset Co.	$\begin{aligned} & \text { P.o. Box A } \\ & \text { Gustine } \end{aligned}$		X	
Babs	1001 Fruitvale Ave Oakland	X		
Babs Dajry Drive-In	6628 Foothill BIvd. Oak1 and	X		
Babs Datry Drive-In	100623 rd St.   Richmond	X		
Ba'bs Dairy Drive-In	10200 White Road San Jose	X		

$$
8-4
$$

Table 8-1a. California continued.

Name	Address	Average weekly use of milk		
		Under $500,000 \mathrm{lbs} .$	$\begin{aligned} & 500,000 \text { to } \\ & 999,999 \text { lbs. } \end{aligned}$	$\begin{aligned} & 1,000,000 \\ & \text { or more lbs. } \end{aligned}$
Balian Ice Crear Co.	2916-30 E. Olympic Rd Los Angeles	X		
Baskin Robbins	1201 S. Victory Blvd. Burbank			X
Belmont Farms	1090 No. Armstrong Fresno	X		
Bennett's Ice Cream	6333 West Third St Los Angeles	X		
Berkeley Farms	4550 San Pablo Eneryville			X
Berkeley Farms	555 Fulton St   San Francisco	X		
Betsy Ross Ice Cream Co.	969 East Hold Avenue Pomona	X		
Blewett Dairy	```221 So. Sacramento St. Lodi```	X		
Blue Bird Dairy	2985 Rubidoux Blvd Riverside	X		
Blue Ribbon Dairy Inc.	323 E Alisal St Salinas	X		
Brentwood Farms Milk Co.	2585 California St.   Mt. View	X		
Brewster Foods	7127 Canby Ave Reseda	X	.	
Brookside Dairy	Route 2, Box 67 Redlands	X	. .	
Brothers Three Dairy	11423 E Florence Ave Santa Fe Springs	X		

Table 8-1a. California continued.

Name	Address	Average weekly use of milk		
		$\begin{gathered} \text { Under } \\ 500,000 \mathrm{lbs} . \end{gathered}$	$\begin{aligned} & 500,000 \text { to } \\ & 999,999 \text { lbs. } \end{aligned}$	$\begin{aligned} & 1,000,000 \\ & \text { or more } 1 \text { bs. } \end{aligned}$
Cacique Cheese Company	3610 Monroe St. Richmond	X		.
Cal Va Dairy	1190 North Glassel1 Orange	X		
Cal Va Dairy	4226 West 5 Santa Ana	X		
Ca1 Va Dairy DriveThru	6297 Ball Road Cypress	X		
Cal Va Dairy DriveThru	7931 Speer   Huntington Beach	X		
California Coast Dairymen	1250 South Ave Turlock	X		
Callfornia Cheese Co.	1451 Sunny Court San Jose			X
California Cooperative Creamery	1527 N Street Newnan	X		
California Cooperative Creamery	Western Ave-Baker St. Petaluma			X
California Cooperative Creamery	530 Aurona Street Stockton	X		
California Cooperative Creamery	2401 McArthur Tracy			X
California Milk   Producers Assn.	11709 East Artesia Blvd Artesia	X		
Carnation Company	201 Union Ave Bakersfield		X	
Carnation Company	$\begin{aligned} & \text { P.o. Box } 36 \\ & \text { Gustine } \end{aligned}$			x

Table 8-1a. Calffornia continued.

Name	Address	Average weekly use of milk		
		$\begin{gathered} \text { Under } \\ 500,000 \mathrm{lbs} . \end{gathered}$	$\begin{aligned} & 500,000 \text { to } \\ & 999,999 \text { lbs. } \end{aligned}$	$\begin{aligned} & 1,000,000 \\ & \text { or more lbs. } \end{aligned}$
Carnation Company	1639 N Main Street Los Angeles			X
Carnation Company	8015 Van Nuys Blvd. Van Nuys	X		
Carnation Company	1310 14th Street Oakland			X
Carnation Company	35411 Avenue San Diego	X		
Carnation Company	Turlock	X		
```Central Valley Dairy Co.```	755 F Street Fresno	X		
Certified Grocers of California Ltd.	3626 11th Avenue Los Angeles			X
Challenge Cream $\&$ Butter Assn.	708 Addison Berkeley	X		
Challenge Cream \& Butter Assn.	Fernbridge	X		
Challenge Cream \& Butter Assn.	15729 E Smithway St Los Angeles	X		
Challenge Cream \& Butter Assn.	265018 Street San Francisco	X		
Chino Dairy	13613 Central Ave Chino	X		
Clancy Muldoons	11834 Wilshire Blvd. Los Angeles	X		
Clearbrook Dairy	11230 Wright Road Lynwood	X		
Cloverdale Cramery	37085 Fremont Blvd. Fremont	X		

Table 8-1a. California continued.

Name	Address	Average weekly use of milk		
		$\begin{aligned} & \text { Under } \\ & 500,000 \mathrm{lbs} . \end{aligned}$	$\begin{aligned} & 500,000 \text { to } \\ & 999,999 \text { lbs. } \end{aligned}$	$\begin{aligned} & 1,000,000 \\ & \text { or more } 1 \mathrm{bs} . \end{aligned}$
Collica Dairy	8223 Phlox Street Downey	X		
Continental Culture Specialist	1354 E Colorado Blvd Glendale	X		
Consolidated Dairy. Products	1474 N Indiana Street Los Angeles		X	
Country Maid Dairy	P.O. Box 75 Smith River	X		
Covina Meadows	4030 Glendora Ave Covina	X		
Crafton Dairy	1765 E Citrus Avenue Redlands	X		
Crystal Cream \& Butter Company	1013 D Street Sacramento			X
Culp Dairy	8554 Bever1y Blvd. Pico Rivera	X		
D-V Marketing Ltd	939 E Street Modesto		X	.
Dairy Enterprizes Co.	735 East Baseline San Bernardino	X		
Dairy Fresh	1013 D Street Sacramento	X		
Dalry King Milk Farms	11501 Exposition Blvd. Los Angeles	X		
Dairy Mart Farms, Inc.	2050 Dairy Mart Rd San Ysidro	X		
Datry Rich Milk Co.	3071 East 14 Street: Oakland	X		

Table 8-1a. California continued

Name	Address	Average weekly use of milk		
		$\begin{gathered} \text { Under } \\ 500,000 \mathrm{lbs} . \end{gathered}$	$\begin{aligned} & 500,000 \text { to } \\ & 999,999 \text { lbs. } \end{aligned}$	$\begin{aligned} & 1,000,000 \\ & \text { or more lbs. } \end{aligned}$
Dairy Valley Cheese Corp.	17227 Jersey Ave Artesia	X		
Dairymens Coop. Creamery Assn.	400 So. M Street Tulare			X
Daisy Farms	4876 Stevens Creek Rd Santa Clara	X		
Danish Creamery Assn.	E.\& Inyo Sts 755 F St Fresno			X
De Jongs Dairy	Route 2, Box 505 Elsinore	X		
Denham Company	520 Lacey Blvd Hanford	X		
Deveni's Dairy	Route 1, Box 484 Fort Bragg	X		
Dipsey Doodle Inc.	7811 South Alameda Los Angeles	X		
Dreyers Grand Ice Cream Inc.	5929 College Ave. Oakland		X	
Driftwood Dairy	10724 Lower Azusa Rd E1 Monte		X	
Du Mor Milk Deport Inc.	1261 E Newell Walnut Creek	X		
Dutch Maid Dairy Drive-In	2110 South Broad St San Luis Obispo	X		
Dutch Premium Dairy	4894 Tequesquite Avenue Riverside	X		
Dutch Pride Dairy	215 East 18 Street Antioch	X		.

Table B-la. Calffornia continued.

Name	Address	Average weekly use of milk		
		$\begin{gathered} \text { Undèr } \\ 500,000 \mathrm{lbs} . \end{gathered}$	$\begin{aligned} & 500,000 \text { to } \\ & 999,999 \text { lbs. } \end{aligned}$	$\begin{gathered} 1,000,000 \\ \text { or more lbs. } \end{gathered}$
EM Consumer Corp	575 lst Street Gilroy	X		
Eastside Dairy Fanus. Inc.	2929 North Durfee Ave E1 Monte	X		
Edgemar Farms	346 Rose Ave. Venice		X	
Eds Dairy	16561 Bolsa Chico Rd Huntington Beach	X		
Evergreen Dairy Ranch	2218 Quimby Road San Jose	X		
Excelsior Creamery Co. Ltd	926 E First Street Santa Ana	X		
Favorite Foods	1901 Via Burton Fullerton		X	
Fletcher Hills Farms	1055 North Cuyamaca E1 Cajon	X		
Foothill Dairy	8145 Canyon Road Azusa	X		
Foothill Home Dairy	5500 Auburn Sacramento	X		
Foremost Foods Co.	175 S. Redwood Hwy Fortuna		X	
Foremost Foods Co.	450 Belmont Ave. Fresno	X	.	
Foremost Foods Co.	$\begin{aligned} & \text { P.o. Box } 307 \\ & \text { Gustine } \end{aligned}$	X		
Foremost Foods Co.	2331 Tully Road Hughson			x

Table 8-1a. California continued.

Name	Address	Average weekly use of milk		
		Under 500,000 1bs	$\begin{aligned} & 500,000 \text { to } \\ & 999,999 \text { lbs. } \end{aligned}$	$\begin{aligned} & 1,000,000 \\ & \text { or more lbs. } \end{aligned}$
Foremost Foods Inc.	$\begin{aligned} & \text { P.O. Box } 531 \\ & \text { Lemoore } \end{aligned}$			X
Foremost Foods Inc.	490 F Street Lemoore	X		
Foremost Foods Inc.	281 Loleta Drive Loleta		X	
Foremost Foods Inc.	$\begin{aligned} & \text { P.O. Box } 428 \\ & \text { Loleta } \end{aligned}$	X		
Foremost Foods Inc.	802 8th Street Los Banos	X		
Foremost Foods Inc.	1739 Albion Los Angeles			X
Foremost Foods Inc.	5829 Smithway St Los Angeles		,	X
Foremost Foods Inc.	214 19th Street Sacramento			X
Foremost Foods Inc.	835 K Street San Diego	X		
Foremost Foods Inc.	366 Guerreto Street San Francisco			X
Foremost Foods Inc.	1675 Howard Street San Francisco			X
Foremost Foods Inc.	Cedar \& Tehema Sts Willows		X	
Fortuna Cheese Factory	858 Riverside Drive Chico	X		
Foss Bros. Dairy	6641 Riverside Drive Chino	X		

Table 8-1a. California continued.

Name	Address	Average weekly use of milk		
		$\begin{gathered} \text { Under } \\ 500,000 \mathrm{lbs} . \end{gathered}$	$\begin{aligned} & 500,000 \text { to } \\ & 999,999 \text { lbs. } \end{aligned}$	$\begin{aligned} & 1,000,000 \\ & \text { or more } 1 \mathrm{bs} . \end{aligned}$
Fosselmans	1824 West Main St Alhambra	X		
Foster Farms Jersey Dairy	1707 Mchenry Ave. Modesto		X	
Friendy Quality Dairies	14341 Newland Westminster	X		
Frozen Desserts Co.	6659 Santa Monica B1vd. Hollywood	X		
Gardena Cheese Co.	5583 E Imperial Hwy. South Gate		X	
Galaxy Products Inc.	2 Spain St Sonoma	X		
Giacopuzzi Dairy	4223 Vineyard Ave El Rio	X		
Gilbert Brockneyer Ice Cream Co.	1527 N Street Newman	X		
Gilt Edge Creamery	685 4th Street San Francisco	X		
Glen Farms	12986 Branford Street Pacolma	X		
Glen Farms Inc.	9021 East Beverly Road Pico Rivera	X		
Glen Oaks Dairy	1095 Yulupa Ave Santa Rosa	X		
$\begin{aligned} & \text { Glendora Quality } \\ & \text { Dafry } \end{aligned}$	860 South Glendora Ave G1endora	X		
Glenn Milk Producers Assn.	$\begin{aligned} & \text { P.o. nox } 868 \\ & \text { Willows } \end{aligned}$		X	

Table 8-1a. California continued.

Name	Address	Average weekly use of milk		
		$\begin{gathered} \text { Under } \\ 500,000 \mathrm{lbs} . \end{gathered}$	$\begin{aligned} & 500,000 \text { to } \\ & 999,999 \text { lbs. } \end{aligned}$	$\begin{aligned} & 1,000,000 \\ & \text { or more 1bs. } \end{aligned}$
Gold N Rich Corp.	2031 Second Street Berkeley	X		
Golden Arrow Co.	2750 Kurtz St San Diego			X
Golden Arrow Dairy	2014 West Vista Way Vista	X		
Golden Coast Dairy	6416 Hollister Ave Goleta	X		
Golden Jersey Dairy Inc.	11090 San Pablo Ave E1 Cerrito	X		
Golden State Foods	60 North Sierra Madre Pasadena	X		
Grays Ice Cream Inc.	480 E Sixth Street Beaumont	X		
Green Mill Dairy	8761 Knott Ave Buona Park	X		
Grueters Swiss Dairy	237 South Azusa Ave La Puente	X		
Hailwood Inc., Chase Bros.	E. 5th \& Wolff Road Oxnard		X	
Ham \& Son Ice Cream	11369 South Atlantic B1v Lynwood	X		
Harpains Dairy Farm	3949 North Barton Fresno	X		
Hendricks Milk DriveIn	605 Hickory St Red Bluff	X		
Hershey Foods Corp.	Milk Receiving Room Oakdale	X		

Table 8-1a. California continued.

Name	Address	Average weekly use of milk		
		$\begin{gathered} \text { Under } \\ 500,000 \mathrm{lbs} . \end{gathered}$	$\begin{aligned} & 500,000 \text { to } \\ & 999,999 \text { lbs. } \end{aligned}$	$\begin{aligned} & 1,000,000 \\ & \text { or more 1bs. } \end{aligned}$
Hillsdale Dairy Farms	201 Lewis Road San Jose	X	.	
Hites Dairy Farm	3900 Fruitridge Rd Sacramento	X		
Holdener Dairy	985 E Stanley Blvd Livermore	X		
Holland Dairy Drive-In	140 E Travis Blvd Fairfield	X		
Hollandia Dairy	540 West Felicita Ave Escondido	X		
Hollendia Dairy	622 Mission Road San Marcos	X	,	
Hopson Dalry Inc.	Route 1, Box 1790 Anderson	X		
Hudson Dairy	17010 Van Ness Ave Torrance	X		
Humboldt Creamery Assn.	$\begin{aligned} & \text { P.O. Box } 33 \\ & \text { Fernbridge } \end{aligned}$			X
Instantwhip - Los Angeles Inc.	830 Main Street Pleasanton	X		
Instantwhip - San Francisco Inc.	136 South Second Richmond	X		
Jersey Gold Dairy	12627 South Street Cerritos	X		
Jersey Cow Dairy DriveIn	315 North Main St Manteca	X		
Jerseymaid Milk Productis Co.	1040 W. Slauson Ave Los Angeles			X

Table 8-1a. California continued.

Name	Address	Average weekly use of milk		
		Under 500,000 1bs.	$\begin{aligned} & 500,000 \text { to } \\ & 999,999 \text { lbs. } \end{aligned}$	$\begin{aligned} & 1,000,000 \\ & \text { or more lbs. } \end{aligned}$
Jerseymaid Milk Products Co.	442 South Fair Oaks Pasadena	X		
Jerseymaid Milk Products Co.	$\begin{aligned} & 2522 \text { E. } 37 \mathrm{th} \\ & \text { Vernon } \end{aligned}$			X
John Boere Dairy	6842 East Alondra Paramount	X		
John Boere Dairy	9910 Glenoaks Sun Valley	X		
Johnston Foods Inc.	550 Rodier Drive Glendale	X		,
Joplin Boys Ranch	P.O. Box 307 Trabuco Canyon	X		
K-N Marketing Led.	3380 West Ashlan Ave Fresno		X	
K-V Marketing Ltd.	510 9th Street Modesto	X	.	
Knudsen Creamery of California	231 East 23rd St Los Angeles	X		
Knudsen Company	240 North Avenue Gustine	X		
Knudsen Dairy Products	2101 S. Los Angeles St. Los Angeles			X
Knudsen Dairy Products	415 Kansas Ave. Modesto			X
Knudsen Dairy Products	1049 Baseline San Bernardino	X		
Knudsen Dairy Products	1100 Goshen Avenue Visalia			X
Kraft Foods	6950 Artesia Ave Buena Park	X		

Table 8-1a. California continued.

Name	Address	Average weekly use of milk		
		Under 500,000 1bs.	$\begin{aligned} & 500,000 \text { to } \\ & 99.9,999 \text { lbs. } \end{aligned}$	$\begin{aligned} & 1,000,000 \\ & \text { or more lbs. } \end{aligned}$
Langlois Flour Co.	5354 E Slauson Los Angeles	X		
Larsons Dairyland	2800 Larson Lane Bakersfield	X		
Laurel Industries Inc.	9647 Rush St South E1 Monte	X		
Laurelwood Acres	$\begin{aligned} & \text { P.o. Box } 577 \\ & \text { Ripon } \end{aligned}$	X	\cdots	
Lawndale Dairy	4210 West Compton Blvd. Lawndale	X		
Liquidiet Formulas	6115 Manchester Blvd. Buena Park	X		
Little Home Dairy	11421 Ocean Ave. La Habra	X	4	
Lockman Drive-In Dairy	22010 South Avalon B1v Carson	X		
Lockmann Farms	24327 South Main St Wilmington	X	\because	
Loma Linda University	4700 Pierce Place Riverside	X		
Longs Dairy	8627 E Rosecrans Blv Paramount	X		
Luckens Drive-In Dairy	1814 West Edinger Santa Ana	X		
Lucky Stores Markets Inc.	2550 Merced St. San Leandro			X
Lukens Drive-In Dairy	425 So. State Col. Blvd Anahein	X		

Table 8-1a. California continued.

Name	Address	Average weekly use of milk		
		$\begin{gathered} \text { Under } \\ 500,000 \mathrm{lbs} . \end{gathered}$	$\begin{aligned} & 500,000 \text { to } \\ & 999,999 \text { lbs. } \end{aligned}$	$\begin{aligned} & 1,000,000 \\ & \text { or more lbs. } \end{aligned}$
M \& G Yogurt Co.	900 Leavenworth Str San Francisco	X		
Maple Dairy Farm	737 So. Maple Ave. Montebello	X		
Martn Dairymen's Milk Co.	1675 Howard Street San Francisco	X		
Marin French Cheese Co.	7500 Red Hill Road Petaluma			
Markets Inc. - Lucky Stores Inc.	6565 Knott Ave. Buena Park			X
Masson Cheese Corp.	6218 Maywood Bell	X		
Mava Ice Cream Co.	1111 West Sixth St Corona	X		
Mayfair Creamery	20301 South Western Ave. Torrance	X		
McColls Dairy Products Co.	2500 Angelo Redding		X	
McConnels Fine Ice Cream	2001 State Street Santa Barbara	X		
McMullan Dairy	3259 North Frazier St. Baldwin Park	X		
Meadow Gold Dairies	$\begin{aligned} & 120 \text { E1m St } \\ & \text { Los Gatos } \end{aligned}$		X	
Meadow Gold Dairies	519 Main St Watsonville.		X	
Meadow Park Dairy	17018 South Normandie Gardena	X		

Table 8-1a. California continued.

- Name	Address	Average weekly use of milk		
		Under $500,000 \text { lbs. }$	$\begin{aligned} & 500,000 \text { to } \\ & 999,999 \text { lbs. } \end{aligned}$	$\begin{aligned} & 1,000,000 \\ & \text { or more lbs. } \end{aligned}$
Meadowlark Dairy	3459 Foothill Road Pleasanton	X		
Medo Bel Creamery	345 College Ave. Gardena	X		
Meyenberg Milk Products Inc.	408 E Alondra Blvd. Compton	X		
Meyenberg Milk Products Inc.	$\begin{aligned} & 339 \text { Industrial St. } \\ & \text { Ripon } \end{aligned}$		X	
Miersma Dairy	11446 E. Artesia St. Artesia	X		
Mr. Milk Bottle Dairy	1533. Indian Hill Blvd. Pomona	X		
Milk Pail	21150 Redwood Road Castro Valley	X		
The Milk Pail	286 Jackson Street Hayward	X		
The Milk Stop	321 South Hutchins Str. Lodi	X		
Milkaway Dairy	1051 Mangrove Chico	X		
Mr. Milkman Inc.	400 South Blosser Road Santa Maria	X		
Milky Way Dairy	2442 E1m Ave Fresno	X		
Miller Dairy	7953 Mt. Vernon St Lemon Grove	x	.	
Millers Dairy	9501 Mill Station Road Sebastopol	X		

Table 8-1a. California continued.

Name	Address	Average weekly use of milk		
		$\begin{gathered} \text { Under } \\ 500,000 \mathrm{lbs} . \end{gathered}$	$\begin{aligned} & 500,000 \text { to } \\ & 999,999 \text { lbs. } \end{aligned}$	$\begin{aligned} & 1,000,000 \\ & \text { or more lbs. } \end{aligned}$
Monte Vista Dairy	2 School Way Watsonville	X		
Montebello Sanitary Dairy	505 South Maple Ave. Montevello	X		
```Montclair Drive-In Dairy```	5157 San Bernardino Rd Montclair	X		
Montrose Dairy	9850 Lower Azusa Rd E1 Monte	X		
Moreno Cheese Co.	Route 2, Box 181 Chino	X		
Morgan Ice Cream Co.	9228 E. Valley Blvd. Rosenead	X	.	
Morning Glory Dairies	1900 Richmond Road Susanville	X		
Mountain View Dairies Inc.	725 W. Anaheim St.   Long Beach	X		
Namar Company	7530 Jefferson Street Paramount	X	.	-
Newark Farms Inc.	134931 Newark Blvd. Newark	X		
Nielsons Creamery	136 East Cross Tulare	X		
Norwalk Dairy Inc.	13101 E Rosecrans Ave Santa Fe Springs	X		
$p \& M$ Cheese Corp.	1155 Pacheco Blvd.   Los Banos	X		
Pacolma Drive-In Dairy	13032 Van Nuys Pacolma	X		

Table B-la. California continued.

Name	Address	Average weekly use of milk		
		Under 500,000 1bs.	$\begin{aligned} & 500,000 \text { to } \\ & 999,999 \text { lbs. } \end{aligned}$	$1,000,000$ or more lbs.
Palos Verdes View Dairy Inc.	20301 South Western Ave. Torrance	X		
Par Mel Ice Cream Co.	5321 South Central Ave. Los Angeles	X		
Paramount Drive-In Dairy	400 West Rosecrans Compton	X		
Paramount Milk Depot	2721 Del Amo Blvd. Lakewood	X		
Pauls Dairy	6170 Paramount Blvd. Long Beach	X		
Peninsula Creamery	875 Alma St.   Palo Alto	X		
Petaluma Cooperative Creamery	Western Ave \& Baker St.   Box 950   Petaluma	X	.	
Peter Pan Dairy	16940 Chatsworth Street Granada Hills	X		
Piers Dairy	3070 Louis Road Palo Alto	X		. -
Pine View Daity	1430 South East End Ave. Pomona	X		
Pleasant Hills	1829 South White Road San Jose	X		
Pomona Valley Creamery	4835 Misston Blvd. Ontario	X		
Premier Creamery	6th and E1m Streets Coalinga	X		
Producers Dairy Dellvery Co. Inc.	144 Belmont Ave Fresno	X		

Table 8-1a. California contined. $\quad \because$

Name	Address	Average weekly use of milk		
		$\begin{gathered} \text { Under } \\ 500,000 \mathrm{lbs} . \end{gathered}$	$\begin{aligned} & 500,000 \text { to } \\ & 999,999 \text { lbs. } \end{aligned}$	$\begin{aligned} & 1,000,000 \\ & \text { or more lbs. } \end{aligned}$
Purity Dairy	9810 South Painter St. Whittier	X		
Quaker Maid Dairy	7026 South Comstock Ave. Whittier	X		
Quaker Ice Cream Co.	100 South Cherokee Lane Lodx	X		
Quaker Maid Farms	16823 Carmenita Road Cerritos	X		$\because$
Quality Dairy	619 New York Street Redlands	X		
Quality Dairy Farms	25642 Avenue 14   Madera	X		
Ralphs Grocery Co.	2201 S. Wilmington Compton			X
Real Fresh Milk Inc.	1221 E. Noble Visalia	X		
Reddi Whip Manufacturing Co.	2443 E 27th Street Los Angeles	X		
Redwood Drive-In Dairy	2560 Petaluma Blvd. No. Petaluma	X		- ${ }^{\text {- }}$
Redwood Drive-In Dairy	10855 Occidental Road Sebastopol	X		
Rex Bottling Co.	1209 N Court Visalia	X		
Rialto Home Dairy	206 South Lilac Ave. Rialto	X	-	
Richmaid Ice Cream Co.	100 South Cherokee Lane Lodi	X		

Table 8-1a. California continued.

Name	Address	Average weekly use of milk		
		$\begin{gathered} \text { Under } \\ 500,000 \mathrm{lbs} . \end{gathered}$	$\begin{aligned} & 500,000 \text { to } \\ & 999,999 \text { lbs. } \end{aligned}$	$\begin{aligned} & 1,000,000 \\ & \text { or more } 1 \mathrm{bs} . \end{aligned}$
Ridgewood Ranch Dairy	$\begin{aligned} & \text { P.o. Box } 659 \\ & \text { Willits } \end{aligned}$	X		
Riverbank Cheese Company	6603 Second St Riverbank	X		
Riverside Dairy	6726 Doolittle Ave. Riverside	X		
Rockview Dairies Inc.	7011 Steward \& Gray Sts. Downey		X	
Rocky Home Dairy Inc.	12027 Rocky Home Drive   - Lakeside	X		
```Rombergs Drive-In Dairy```	19655 Arnold Drive Sonoma	X		
Roosevelt Dairy	7216 Alondra Blvd. Paramount	X		
Rosecrest Dairy	11703 E Rose Avenue Selma	X		
Royal Jersey Inc.	3508 San Pablo Dam Blvd. El Sobrante	X		
Royal Oaks Dairy Farm	$\text { Box } 176$ Ojai	X		
Royal Spumoni \& Ice Cream Co.	835 South Vermont Ave. Los Angeles	X		
Rubidoux Dairy Farms	3260 Rubidoux B1vd. Rubidoux	X		
Rumieno Cheese Co.	9th and E Streets Crescent City	X		
Rumiano Cheese Co.	231 West Wood Street Willows	x		
Ryns Dairy Prod.	17389 Arrow Blvd. Fontana	X		

Table 8-1a. California continued.

Name	Address	Average weekly use of milk		
		$\begin{gathered} \text { Under } \\ 500,000 \text { 1bs. } \end{gathered}$	$\begin{aligned} & 500,000 \text { to } \\ & 999,999 \text { 1bs. } \end{aligned}$	$\begin{aligned} & 1,000,000 \\ & \text { or more } 1 \mathrm{bs} . \end{aligned}$
S \& M Marketing	Boone \& Oakley Sts. Santa Maria	*	X	
Safeways Stores Inc Milk Depot	$\begin{aligned} & \text { P.O. Box G-1070 } \\ & \text { Hanford } \end{aligned}$			X
Safeway Stores Inc	612 West 5th Hanford	X		
Safeway Stores Inc Ice Cream Inc.	3327 S. Boxford Ave. Los Angeles		X	
Safeway Stores Inc Milk Dept.	3361 S. Boxford Ave. Los Angeles			1 X
Safeway Stores Inc Ice Cream Inc.	2240 Filbert St. Oakland		.	X
Safeway Stores Inc Milk Dept.	$\begin{aligned} & 5725 \text { E. 14th St. } \\ & \text { Oakland } \end{aligned}$			X
Safeway Stores Inc Milk Dept.	4400 Florin Perkins Rd Sacramento		X	
Sampson Milk Prod.	21422 So. Alameda Str. Long Beach	X		
San Fernando Valley Creamery	9220 E Firestone Vlvd. Downey	X		
San Joaquin Valley Milk Producers	1155 Pacheco Blvd. Los Banos			X
San Joaquin Valley Dairymens Assn.	$\text { P.O. Box } 548$ Newman	X		
San Juan Dairy	8845 Fair Oaks Blvd. Carmichael	X		
Sanitary Dairy	1613 West Mulr Street Fillmore	X	-	
Santa Cruz Dairy Farms	2202 Soquel Ave. Santa Cruz	X		

Table 8-1a. California continued.

Name	Address	Average weekly use of milk		
		$\begin{gathered} \text { Under } \\ 500,000 \mathrm{lbs} . \end{gathered}$	$\begin{aligned} & 500,000 \text { to } \\ & 999,999 \text { lbs. } \end{aligned}$	$\begin{aligned} & 1,000,000 \\ & \text { or more lbs. } \end{aligned}$
Scott Bros. Dairy	1200 South East End Ave. Pomona	X		
Scottsman's Farms	2100 North Santa Fe Ave. Compton	X		
Select Dairies	8101. East Compton Paramount	X		
Sequoia Creamery	1254 West Tulare Road Lindsay	X		
Shady Grove Dairy Inc.	711 W. Holt Blvd. Ontario		X	
Sterra Cheese Mfg. Co.	916 South Santa Fe Compton	X		
Sonoma Mission Creamery	465 Cabot Road San Francisco		X	
Stan Co. Cheese Company	3141 Sierra Street Riverbank	X		
Standard Cheese Co., Inc.	830 Main Street Pleasanton	X		
```Stauffer Chemical Co.```	712 North Leslie Visalia	X		.
Steelmans Creamery	1070 North Western Ave. Los Angeles	X		
Stornettas Dairy	4300 Fremont Drive Sonoma	X		
Sun Up Dairy	1500 East George St. Banning	X	,	
Sunny Crest Dairy	9152 Westminster Ave. Westminster	X		
Sunshine Dairy	4644 North Maxson Rd. El Monte	x		

Table 8-1a. California continued.

Name	Address	Average weekly use of milk		
		$\begin{gathered} \text { Under } \\ 500,000 \mathrm{Ibs} . \end{gathered}$	$\begin{aligned} & 500,000 \text { to } \\ & 999,999 \text { lbs. } \end{aligned}$	$\begin{aligned} & 1,000,000 \\ & \text { or more lbs. } \end{aligned}$
Sunshine Farms Inc.	753 16th Street Merced	X	$\cdots$	
Super Dairy	14042 South Garfield Ave. Paramount	X		
Superior Dairy Products Co.	325 North Douty St. Hanford	X		
Superior Mi1k ProDucers Assn.	10581 South Los Alamitos Los Alamitos	X		
Swensons on the Mall	1025 K Street Sacramento	X		-
Swiss Dairy	4221 Buchanan Riverside	X		
Sycamore Hill   Farm	Route 2, Box 2230 Newcastle	X		
Teunissen Dairy	4500 Van Buren Street Riverside	X		
Thrifty Drugstores	9200 Telstar Ave.   El Monte			X
Thrifty Drugstores Inc.	915 North Mansfield Hollywood	X		
Todds Food Co.	2731 Halladay Street Santa Ana	X	,	
Todds Food Co.	231 East 23rd Street Los Angeles			X
Tomales Bay Creamery	561 Eccles Ave. South San Francisco	X		
Tulare lome Dairy	1401 West Inyo Ave. Tulare	X		
Tuttle Cheese Co.	2401 Union Street Oakland	X		

Table 8-1a. California continued.

Name	Address	Average weekly uses of milk		
		$\begin{gathered} \text { Under } \\ 500,000 \mathrm{lbs} . \end{gathered}$	$\begin{aligned} & 500,000 \text { to } \\ & 999,999 \text { lbs. } \end{aligned}$	$\begin{aligned} & 1,000,000 \\ & \text { or more lbs. } \end{aligned}$
Valley View Farms	13907 Valley View La Mirada	X		
Van Kampens DriveIn Dairy	22441 South Norwalk B1v Hawaiian Gardens	X		
Vans Dairy Farms Inc.	5800 South Street Lakewood	x		
Vans Dairy Farms Inc.	10030 Orr \& Day Rds. Santa Fe Springs	X		
Vella Cheese Co.	315 East 2nd St. Sonoma	X		
Velvet Ice Crean Co.	708 L Street Modesto	X		
Vermont Dairy Farms	22400 South Vermont Torrance	X		
Vics Ice Cream	3199 Riverside Blyd. Sacramento	X		
Vitafreeze Frozen Confection	1210 66th Street Sacramento	X		
Vons Grocery Co.	10150 Lower Azusa Road E1 Monte	X		
Walkers Dairy	16650 Mojave Drive Victorville	X		
Waynes Dairy	4050 North Chester Ave. Bakersfield	X		
Wesdamar Goat Dairy	23401 Yucca Lorna Road Apple Valley	X		
Western Dairy   Products Inc.	405 East D Street Petaluma	x		

Table 8-1a. California continued.

Name	Address	Average weekly uses of milk		
		$\begin{gathered} \text { Under } \\ 500,000 \mathrm{lbs} . \end{gathered}$	$\begin{aligned} & 500,000 \text { to } \\ & 999,999 \text { lbs. } \end{aligned}$	$\begin{aligned} & 1,000,000 \\ & \text { or more lbs. } \end{aligned}$
Western Holstein Farms Inc.	3100 So. Grand Ave. Los Angeles	X		
Whipped Butter Products Inc.	1164 E Hyde Park B1vd. Inglewood	X		
White Rose Dairy	697 North Wuterman Ave. San Bernardino	X		
Wil Wright Ice Cream	8252 Santa Monica Blvd. Los Angeles	X		
Wilsey Bennett Co.	633 So. Mission St. Los Angeles	X		
Wilsey Bennett Co.	2300 Army Street San Francisco	X		
Woodbury Ranch Dairy Inc.	2020 N. Winery   Fresno		X	

Table 8-1b. Dafry processing plants in Idaho.

Name	Address	Average weekly use of milk		
		$\begin{gathered} \text { Under } \\ 500,000 \mathrm{lbs} . \end{gathered}$	$\begin{aligned} & 500,000 \text { to } \\ & 999,999 \text { lbs. } \end{aligned}$	$\begin{aligned} & 1,000,000 \\ & \text { or more lbs. } \end{aligned}$
A \& A Dairy	Route 2, Box 96A Pocatello, Idaho	$X$		
Albertson's Inc.	P.O. Box 20 Boise, Idaho	X		
Ashton Dairy	Route 1, Box 36   Payette, Idaho	X		
Associated Dairies Inc.	3310 Gekeler Land Boise, Idaho			X
Bingham Dairy	Route 3, E. Addison Twin Falls, Idaho	X		
Boise Fruit and Produce Co.	501 So. 8th St. Boise, Idaho	X		
Cammack Dairy	498 So. Fisher   Blackfoot, Idaho	X		
Carroll's Dairy	Route \#2   Emmett, Idaho	X		
Circle K. Corp.	6703 Ustick Rd. Boise, Idaho	X		.
Coeur d'Alene Creamery	304 North 4th Coeur d'Alene, Ida.	X		
$\begin{aligned} & \text { Commerical Creamery } \\ & \text { Co. } \end{aligned}$	Moscow Idaho Plant Moscow, Idaho	X		
Commerical Greamery Co.	Kamiah Idaho Plant So. 159 Cedar St. Spokane, Washington	X		
Cottonwood Dairy	Cottonwood, Idaho	X		
Dairyland Dairy, Inc.	260 So. State Rigby, Idaho	X		

Table 8-1b. Idaho continued.

Name	Address	Average weekly use of milk		
		$\begin{gathered} \text { Under } \\ 500,000 \mathrm{lbs} . \end{gathered}$	$\begin{aligned} & 500,000 \text { to } \\ & 999,999 \text { lbs. } \end{aligned}$	$\begin{aligned} & 1,000,000 \\ & \text { or more lbs. } \end{aligned}$
Dairymen's Creamery Assn.	520 Albany Caldwel1, Idaho			X
Delsa's Ice Cream	7923 Ustick   Boise, Idaho	X		
E1ison Dairy	655 Airport Rd. Blackfoot, Idaho	X		
Emmett Dairy	109 E. 4th St. Emmett, Idaho	X		
Farm Dairy	Star Route Mullan, Idaho	X		
Farr Candy Co., Inc.	345 D Street   Idaho Falls, Ida.	X		
Flavor Freeze	$\begin{aligned} & \text { P.o. Box } 397 \\ & \text { Caldwell, Idaho } \end{aligned}$	X		
French's Dairy	Route 4 Buh1, Idaho		X	
Fun Farm Dairy	Route 1   St. Anthony, Ida.	X	.	
Gold Seal Dairy	850 Benjamine Ln Boise, Idaho	X		
Golden Grain Dairy Prod.	1830 Main Street Lewiston, Idaho		X	
High "C" Acres	Route 3   Meridian, Idaho	X		
Home Dairies Co.	424 12th Ave. Rd. Nampa, Idaho	X		
Hopperdeitzel Cheese Co.	39 East 6th South St. Anthony, Ida.		X	

Table 8-1b. Idaho continued.

Name	Address	Average weekly use of milk		
		Under   500,000 1bs.	$\begin{aligned} & 500,000 \text { to } \\ & 999,999 \text { lbs. } \end{aligned}$	$\begin{aligned} & 1,000,000 \\ & \text { or more lbs. } \end{aligned}$
Ida Gem Dairymen's Assn.	220 South Birch Jerome, Idaho			X
Idaho Rocky Mountain Dairy	Pocatello Creek Rd. Pocatello, Idaho	X		
Kraft Foods Co.	$\text { P.O. Box } 4047$   Pocate11o, Idaho	X		
Kraft Foods Co.	Blackfoot, Idaho ,			X
Kraft Foods Co.	Carey, Idaho		X	
Kraft Foods Co.	RIrie, Idaho		X	
Kraft Foods Co.	Rupert, Idaho			X
Kraft Foods Co.	Caldwell, Idaho			X
Lost River Valley Dairy	Darlington, Idaho	X		
Manwaring Yellowstone and Teton	Box 416   Rigby, Idaho	X		
Meadow Gold Dairies	856 South lst Ave. Pocatello, Idaho	X		
Meadow Gold Dairies	Miller Street   Boise, Idaho		X	;
Meadow Gold Dairies	1301 Bannock St. Boise, Idaho			X
Meadow Lawn Dairy	Route 2   Meridian, Idaho	X		
Milky Way Dairy	100 South State Rigby, Idaho	X		
Mountaln Empire Dairymen's Assn.	237 West Taylor St. Meridian, Idaho	X		

Table 8-1b. Idaho continued.

Name	Address	Average weekly use of milk		
		Under 500,000 lbs.	$\begin{aligned} & 500,000 \text { to } \\ & 999,999 \text { lbs. } \end{aligned}$	$\begin{aligned} & 1,000,000 \\ & \text { or more } 1 \text { bs. } \end{aligned}$
Nelson Ricks Creamery	Rexburg, Idaho		X	
Paradise Dairy	Star Route \#1   Bonners Ferry, Ida.	X		
Patten Dairy	Route 1   Boise, Idaho	X		
Pend Oreflle Cheese Co., Inc.	P.O. Box 518 Sandpoint, Idaho	X		
Pet.Inc.	500 Condensory Rd. Buhl, Idaho			X
Reed Bros. Dairy	Route 5, Box 3   Idaho Falls, Ida.	X	.	
Rowland's Inc.	Box 1151   Pocatello, Idaho		X	
Salmon Valley Cheese Co.	$\begin{aligned} & \text { P.0. Box B } \\ & \text { Salmon, Idaho } \end{aligned}$	X		
Sam's Dairy	Route 3   Moscow, Idaho	X		
Suith's Dairy	205 So. Broadway   Buh1, Idaho	X		-
Smith's Dairy Products Inc.	205 So. Broadway Buhl, Idaho	X		
Starks Family Corp.	Route 1, Box 49   Payette, Idaho	X		
Stoker's Dairy	260 East 100 South Burley, Idaho	X		
Sun Ray Dalry	6127 Franklin Road Boise, Idaho		X	

Table 8-1b. Idaho continued.

Name	Address	Average weekly use of milk		
		$\begin{gathered} \text { Under } \\ 500,000 \mathrm{lbs} . \end{gathered}$	$\begin{aligned} & 500,000 \text { to } \\ & 999,999 \text { lbs. } \end{aligned}$	$\begin{aligned} & 1,000,000 \\ & \text { or more lbs. } \end{aligned}$
Swift and Co.	264-4th Ave. So. Twin Falls, Idaho			X
Swiss Village	Route 3   Nampa, Idaho		K	
Tomlinson's Dari-Mart	332 Thain Lewiston, Idaho	X		
Triangle Dairy	3310 Gekeler Lane Boise, Idaho	X		
Twenty-Four Flavors Ice Cream	322 East Main Burley, Idaho	X		
Upper Sanke River Valley Dairymen's Assn., Inc.	P.O. Box 1847   Idaho Falls, Idaho	X		
Wallace Dairy	Route 3, Box 12   Idaho Falls, Idaho	X		
Ward Cheese Co.	$\begin{aligned} & \text { P.O. Box } 96 \\ & \text { Richfield, Idaho } \end{aligned}$			X
Ward's Dairy	Route 2, Box 96 Pocatello, Idaho	X		
Western General Dairies	P.O. Box 1847   Idaho Falls, Idaho			X
Yellowstone and Teton Cheese	P.O. Box 416 Rigby, Idaho	X		
Young's Dairy Products Co.	143-4th Ave. West Twin Falls, Idaho		X	

Table 8-1c. Dairy processing plants in Oregon.

Name	Address	Average weekly use of milk:		
		$\begin{gathered} \text { Under } \\ 500,000 \mathrm{lbs} . \end{gathered}$	$\begin{aligned} & 500,000 \text { to } \\ & 999,999 \text { lbs. } \end{aligned}$	$\begin{aligned} & 1,000,000 \\ & \text { or more lbs. } \end{aligned}$
Alpenrose Dairy	6149 SW Shattuck'Rd. Portland, Oregon			X
Arden-Mayfair, Inc.	617 SE Main Street Portland, Oregon		X	
Carnation Company	3342 SW Morrison St, Portland, Orégon			X
Coquille Valley Dairy Coop.	2nd Street E   Brandon, Oregon		X	
Curly's Dairy Inc.	2310 Mission St. SE Salem, Oregon		X	
Cutlips Ice Cream Co.	Washington \& Sheridan North Bend, Oregon	X		
DeLuxe Ice Cream Co.	1860 State Street   Salem, Oregon		X	
DeLuxe Ice Cream Co.	1860 State Street Salem, Oregon	X		
Dutch Girl Ice Cream Co.	1780 West Eighth Eugene, Oregon	X		
Eberhard Creamery	Box 845   Redmond, Oregon	X		
Echo Spring Dairy	1750 West 8 th   Eugene, Oregon	x		
Erickson's Dairy   Products, Inc.	927 SE Marion St.   Portland, Oregon	x		
Eugene Farmers Creamery	568 Olive Street Eugene, Oregon		X	
Farmers Coop Creamery	$\begin{aligned} & \text { P.O. Box } 119 \\ & \text { McMinnville, Oregon } \end{aligned}$			X

Table 8-1c. Oregon continued.

Name	Address	Average weekly use of milk		
		$\begin{gathered} \text { Under } \\ 500,000 \mathrm{lbs} . \end{gathered}$	$\begin{aligned} & 500,000 \text { to } \\ & 999,999 \text { lbs. } \end{aligned}$	$\begin{aligned} & 1,000,000 \\ & \text { or more lbs. } \end{aligned}$
Fred Meyer, Inc.	4950 Basin Road Portland, Oregon			X
Foremost Foods Co.	8440 NE Halsey   Portland, Oregon	X		
Jones Boys Dairy	Route 5, Box 160 Hood River, Oregon	X		
Kilgore's Dairy	536 South 6th Redmond, Oregon		X	
Klamath Falls Creamery	P.O. Box 488   Klamath Falls, Ore.		X	
Larsen's Creamery	215 Thirteenth Oregon City, Oregon	X		
Lloyd's Dairy	3825 Gilham Road Eugene, Oregon	X		
Lochmead Dairy	$\begin{aligned} & 4155 \text { 99-W } \\ & \text { Junction City, ore. } \end{aligned}$	X		
Madrona Diary	3425 Madrona Land Medford, Oregon	X		
Mallorte's Dairy	$\begin{aligned} & \text { P.o. Box } 618 \\ & \text { Silverton, Oregon } \end{aligned}$		X	
Mayflower Farms	$\begin{aligned} & 2720 \text { SE 6th } \\ & \text { Portland, Oregon } \end{aligned}$			X
Mayflower Farms	1300 Court Street Medford, Oregon		X	
McMinnville Sunshine Dairy	$\begin{aligned} & \text { P.O. Box } 282 \\ & \text { McMinnville, Oregon } \end{aligned}$		X	
Neadowland Dairy	16430 SW Powell B1vd. Portland, Oregon	X		

Table 8-1c. Oregon continued.

Name	Address	Average weekly use of milk		
		$\begin{gathered} \text { Under } \\ 500,000 \mathrm{lbs} . \end{gathered}$	$\begin{aligned} & 500,000 \text { to } \\ & 999,999 \text { lbs. } \end{aligned}$	$\begin{aligned} & 1,000,000 \\ & \text { or more lbs. } \end{aligned}$
Meadow Gold Creamery Co.	675 Charnelton Eugene, Oregon		X	
Medo-Bel Creamery	1500 Explanade Klamath Falls, Ore.		X	
Pope Dairy	617 LaCreole Drive Dallas, Oregon	X		
Reedsport Creamery and Cheese Fty.	250 Water Street Reedsport, Oregon	X		
Rogue River Valley Creamery	P.O. Box 606 Central Point, Ore.		X	
Safeway Stores, Inc.	$\text { P.O. Box } 455$   Myrtle Point, Ore.		X	
Safeway Stores, Inc.	P.O. Box 275   Clackamas, Oregon			X
```Senn's Drive-In Dairies, Inc.```	11206 NE Prescott   Portland, Oregon		X	
Seppa Dairy Co.	Route 3, Box 270 Astoria, Oregon	X		
Springfield Creamery	145 North 3rd Springfield, Oregon		X	
Standard Dairy	2808 NE Union Ave Portland, Oregon		X	
Sunny Brook Dairy	1025 North 9th Corvallis, Oregon		X	
Sunshine Dairy	$\begin{aligned} & 801 \text { NE 2lst } \\ & \text { Portland, Oregon } \end{aligned}$		X	
Three Jay's Dairy Inc.	10815 0ld Stage Road Gold Hill, Oregon	X		

Table 8-1c. Oregon continued.

Name	Address	Average weekly use of milk		
		$\begin{gathered} \text { Under } \\ 500,000 \text { 1bs. } \end{gathered}$	$\begin{aligned} & 500,000 \text { to } \\ & 999,999 \text { lbs. } \end{aligned}$	$\begin{aligned} & 1,000,000 \\ & \text { or more } 1 \text { bs. } \end{aligned}$
Tillamook County	P.o. Box 313		,	x
Creamery Assn.	Tillamook, Oregon			
Twin Oaks Dairy	8485 River Road Hillsboro, Oregon	X		
Umpqua Diary Products Co.	333 SE Sykes Roseburg, Oregon	X		
Valley of the Rogue Dairy	P.O. 'Box 1327 Grants Pass, Ore.	X		
Walker's Dairy	Route 3, Box 138 Scio, Oregon	X		

Table 8-1d. Dairy processing plants in Nevada.

Name	Address	Average weekly use of milk		
		Under 500,000 1bs.	$\begin{aligned} & 500,000 \text { to } \\ & 999,999 \text { lbs. } \end{aligned}$	$\begin{aligned} & 1,000,000 \\ & \text { or more } 1 \mathrm{bs} . \end{aligned}$
Anderson Dairy	$\begin{aligned} & \text { P.O. Box } 2017 \\ & \text { Reno, Nevada } \end{aligned}$		X	
Anderson Dairy	1440 Las Vegas Blvd. Las Vegas, Nevada			X
Arden-Mayfair, Inc.	1000 North Main St. Las Vegas, Nevada		X	
Creamland Dairy	500 Harrigan Road Fallon, Nevada	X		
Meadow Gold Dairies	2600 Mill Street Reno, Nevada		X	
Model Dairy	$\text { P.O. Box } 477$ Reno, Nevada		X	
Nevada Dairy Distributors	2960 Westwood Las Vegas, Nevada	X		
Valley Dairy	123 McKenzie Land Yerington, Nevada	X		
Vegas Valley Farms	Logandale, Nevada		X	

Table 8-1e. Dairy processing plants in Utah.

Name	Address	Average weekly use of milk		
		$\begin{gathered} \text { Under } \\ 500,000 \mathrm{lbs} . \end{gathered}$	$\begin{aligned} & 500,000 \text { to } \\ & 999,999 \text { lbs. } \end{aligned}$	$\begin{aligned} & 1,000,000 \\ & \text { or more } 1 \mathrm{bs} . \end{aligned}$
BYU Dairy Products Lab	Brigham Young Univ. Provo, Utah	X		
Blue Hill Dairy	P.O. Box 298 Helper, Utah	X		
Blueblrd Ice Cream	Logan, Utah	X		
Brown's Dairy	Coalville, Utah	X		
Burton Place Dairy	2365 S.W. Temple Salt Lake City, Utah	X		
Cache Valley Dairy Assn.	Smithfield, Utah			X
Clearfield Cheese	Wellsville, Utah	X		
Cow Palace	Smithfield, Utah	X		
Deseret Dairy	751 West 7th South Salt Lake City, Utah	X		
Ekins Golden Arrow Dairy	Hinckley, Utah	X		
Erekson Brothers Dairy	701 East 5900 South Murray, Utah	X		
Farr Better Ice Cream Co.	274 21st Street Ogden, Utah	X		
Fendall Ice Cream	470 South 7th East Salt Lake City, Utah	X		
Fernwood Ice Cream	150 West Commonwealth Salt Lake City, Utah	X		
Fisher Dairy	2891 South 20th East Salt Lake City, Utah	X		

16. P.H. Tracy, "Layouts and Operating Criteria for Automation of Dairy Plants Manufacturing Ice Cream and Ice Cream Novelties", Marketing Research Report No. 750, Agricultural Research Service, U.S.D.A., December 1966.
 17. Ibid, page 45.
 18. Gerald Waring, Thermal Springs of the United States and Other Countries of the World - A Summary, Geological Survey, Professional Paper 492, U.S. Governmental Printing Office, 1965.

UNCITED REFERENCES

Hall, C.W., "Reducing Costs with Low-Pressure Steam". Amer. Milk Review, March, 1958, page 52.

Hall, Carl W. and Hedrick, T.I., Drying of Milk and Milk Products, AVI Publishing Co., Inc., Westport, Conn., 1971.

Hall, C.W, "Reducing Steam Costs in the Diary Plant", Journal of Dairy Science, 40:431-432, April, 1957.

Heldman, Dennis R., Food Process Engineering, AVI Publishing Co., Inc., Westport, Conn., 1975.

Henderson, James Lloyd, The Fluid-Milk' Industry, AVI Publishing Co., Inc., Westport, Conn., 1971.

Kosikowski, Frank, Cheese and Fermented Milk Foods, Edwards Brothers, Inc., Ann Arbor, Michigan, 1966.
"Manual for Milk Plant Operators", Milk Industry Foundation, Washington, D.C., 1967, 3rd Ed.

Rippen, A.L, 1975, "Conserving Energy in the Dairy Plant", Dairy and Ice Cream Field, 158 (2): 36,97.

Rippen, A.L., 1974 "Fuel-Handle with Care", American Dairy Rev. 36(5): 16, 17, 43, 44.

Rippen, A.L., "Energy Conservation in the Food Indstry", Journal of Milk Food Technology, Vol. 38, No. 11, pages 715-720.

Unger, S.G., "Energy Utilization in Leading Energy-Consuming Food Processing Industries", Food Technology, (12) 33-36, Dec. 1975.

Nielsen, V.N., 1974, "Dairy Industry Contemplates Future Position in the Energy Picture", Amer. Dairy Rev. 36(4): 46-49; 62, 63.

[^0]: Figure 5-2b. Cheddar cheese plant layout as given by Tracy ${ }^{13}$

