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ABSTRACT 

This document presents the material used in an oral presentation to 
the DOE/Division of Geothermal Energy, which was designed to illustrate 
the importance of well technology development in reducing geothermal 
well costs, and to achieve geothermal power-on-line goals. Examination 
of recent studies of the economics of geothermal energy leads to the 
conclusion that the overall sensitivity of geothermal power-on-line to 
well cost is in the range of one to two. Current data suggest that a 
vigorous R&D program in rotary drilling technology can reduce geothermal 
drilling costs by about 20%, but a reduction of 40-50% is needed to 
achieve DOE/DGE goals. Research in advanced drilling systems is needed 
to satisfy this more stringent requirement. This report details some 
critical technological deficiencies that occur when current rotary 
drilling techniques are used for geothermal drilling. A broadly based 
development program directed at correcting these deficiencies is defined. 
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A PROGRAM IN GEOTHERMAL WELL TECHNOLOGY 
DIRECTED TOWARD ACHIEVING DOE/DGE 

POWER-ON-LINE GOALS 

Introduction 

This document presents material used in an oral presentation to the DOE/Divi­

sion of Geothermal Energy in December of 1977. The presentation was designed to 

illustrate the importance of well technology development in reducing geothermal 

well costs and to achieving geothermal power-on-line goals. Each major viewgraph 

is followed by a short text. The written section explains the viewgraph and pro­

vides background material. 

Recent studies of the economics of geothermal energy were examined. Several 

conclusions can be drawn from them: 

1. DOE/DGE power-on-line goals will probably not be met unless the 

economics of geothermal energy become more favorable, 

2. the sensitivity of power-on-line to busbar cost is high, in the 

range of one to two, 

3. the sensitivity of busbar cost to well cost is also high (in the 

range one-half to one). 

All of this suggests that reductions in geothermal well costs will have a signifi­

cant impact on increased power-oh-line. 

Several chronic problems combine to make the costs of geothermal drilling ab­

normally high. These difficulties fall in the categories of 

1. temperature effects 

2. formation effects, and 

3. erosion and corrosion effects. 

Most conventional drilling equipment is not designed to operate at geothermal 

temperatures or in the erosive and corrosive environment of geothermal wells. Also, 

the difficult, fractured formations in whcih geothermal wells are often found 

reduce penetration rate and lead to high replacement costs. All of these effects 

corr~inc to make geothermal drilling substantially more expensive than conventional 

drilling. 
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Examination of current cost and technical data for geothermal drilling indi­

cates that a vigorous development program in rotary drilling technology can reduce 

drilling costs by approximately 20%. Examination of the economic data previously 

discussed reveals that well cost reductions of 40-50% are needed to meet DOE/DGE 

goals. 

If power-on-line goals are to be met, research must be directed at developing 

advanced systems for drilling geothermal wells. A broadly based program is outlined 

which includes 

1. Improved methods and materials for drilling, 

2. Laboratory and field testing facilities, 

3. Development of advanced geothermal drilling systems, 

4. Safety and training programs for geothermal drilling, and 

5. Development of data acquisition and automation systems for geothermal 

drilling. 

The above program must develop radically new technology in order to meet the 

goal of a 40-50% reduction in geothermal well costs. Such development is not a 

certain event, of course, but power-on-line goals will almost surely not be met 

if no attempt is made to reduce costs beyond 20%. 
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VG-2 The purpose of this presentation is to provide justification for a 

vigorous program in Geothermal Well Technology Development. This program 

is directed toward achieving DOE/DGE power-on-line goals by reducing the 

cost of drilling and completing geothermal wells. The justification for 

such a program is based on the relationship between geothermal power-on­

line and the cost of geothermal wells. 

This viewgraph presents an outline of the presentation. The first topic 

is the dependence of geothermal power-on-line to busbar energy cost. 
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VG-4 DGE power-on-line goals l for all uses of geothermal energy are shown along 

with Mitre2 and Battelle Northwest (BNWL)3 projections for geothermal 

electric capacity to the year 2015. 

The Mitre projections result from an optimistic assumption for growth 

rate based on an aggressive federal R&D program. 

The BNWL projections result from a linear programming model in which 

geothermal electrical power competes with power produced from fossil 

and nuclear fuels to satisfy projected demand. Fossil and nuclear fuel 

supply curves are held constant in 1974 dollars, as are well costs, 

which are fixed at $300,000. Recent data indicate that current average 

well costs are $400,000-$450,000 expressed in 1974 terms. The "Max" and 

"Most Likely" designations result from uncertainty as to the amount of 

hydrothermal energy that is available at economically competitive tempera­

tures. No federal R&D program is assumed. The area between the BNWL 

scenarios represents the most probable range for geothermal development 

if no R&D program is pursued. 

Two factors would move the BNWL estimate up to meet DGE goals. The first 

is a discovery that more hydrothermal energy exists at competitive tem­

peratures than is now believed. In other words, a discovery that the 

resource base is larger than is now expected. 

A second possibility is that technological advances will reduce the busbar 

cost of geothermal energy. Reduction in busbar cost will have two 

effects. 

15 
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EFFECTS OF REDUCTIONS IN GEOTHERMAL BUSBAR COST 

REDUCED GEOTHERMAL BUSBAR COST WILL 

• LEAD TO SUBSTITUTION TOWARD GEOTHERMAL ENERGY 

• INCREASE THE AMOUNT OF ECONOMICALLY RECOVERABLE 

GEOTHERMAL RESOURCES 
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VG-5 Technological advances will 

(a) reduce the busbar cost of producing electricity from currently 

competitive resources. This will improve the relative position 

of geothermal electricity in the marketplace and will lead to 

sUbstitution of geothermal electricity for electricity generated 

from fossil and nuclear fuels, and 

(b) make it possible to economically produce electricity from lower 

temperature reservoirs (this effectively increases the amount of 

resource available). 

Reductions in geothermal bus bar cost (BBEC) which are independent (or 

nearly so) of temperature would accomplish both (a) and (b). 

BNWL has computed the sensitivity of power-an-line estimates to changes 

in BBEC. 
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I 
VG-6 The BNWL model shows that a reduction of only 6% in the busbar cost of 

geothermal electricity will lead to a 13% increase in the power-on-line 

estimates for the "most likely" scenario. Thus, the sensitivity of 

power-on-line to busbar cost is approximately 2, so small reductions in 

the cost of geothermal electricity can cause proportionately greater 

substitution toward geothermal energy. 

BNWL also estimates that reductions of 10% to 35% in BBEC may double the 

amount of geothermal energy that is economically attractive because 

large, lower temperature reserves become competitive. While they do 

not estimate the increase in installed capacity, a larger resource base 

would lead to greater opportunity for exploitation and therefore to 

greater utilization of geothermal energy. 

The critical question concerning geothermal drilling and completions is: 

"What is the impact of well costs on the busbar energy cost of electricity 

produced from geothermal reservoirs?" In other words, how effective can 

improvements in well technology be in producing the desired reductions 

in geothermal BBEC? 

This question can be answered by considering recent work by BNWL,3,4 
5 d h . . 6 USGS, an t e Mltre Corporatlon. 
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3 ---BNWL computed geothermal BBEC costs for several well costs and reser-

voir temperatures. All other costs were held constant, as was the 

flow rate from the wells. Using an assumed base cost of $500,000 per 

well, a 40% reduction in well cost, for example, would result in the 

following changes in geothermal BBEC. 

Temper~ture - C 

180 

200 

250 

Change in BBEC - % 

-23 

-17 

-15 

These reductions in bus bar costs are large enough to produce the signifi­

cant increase in geothermal availability suggested on the previous slide. 

Also note that the effect of well cost reductions is most significant for 

lower temperature resources because at a given flow rate more wells are 

required to provide a specified power output. Therefore, a higher 

fraction of total costs are well-related. 

The approach taken by USGS 5 considers this question from a slightly 

different perspective. 
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VG-9 Results from the USGS 5 emphasize the relationships between well costs, 

reservoir temperature, and geothermal economics. For a given conver­

sion technology and maximum competitive BBEC (which is determined by the 

prevailing price of fossil or nuclear generated electricity), the maxi­

mum price which can be paid for a well is a function of temperature.* 

Conversely, for a given maximum BBEC and well cost, the minimum competi­

tive reservoir temperature can be determined. As wells become less 

expensive, lower temperature reservoirs become competitive. 

This reiterates the BNWL conclusion that reducing well costs increases 

the amount of economically competitive geothermal resources. 

Mitre/METREK6 has recently completed a site specific analysis of geo­

thermal development, and they also have projected the impact of reduc­

tions in well costs. 

*More correctly, the maximum well cost is a function of the power output per well. 
For illustrative purposes, and to be compatible with the BNWL data, the flow rate 
is held constant on this graph. The result is that the maximum \'le11 cost is a 
function of temperature only. 
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RECENT ESTIMATES OF THE IMPACT OF REDUCTION IN WELL COST 

MITRE 1977 - - - SITE SPECIFIC ANALYSIS 

AREA (BASE WELL COST) 
------

ROOSEVELT H.S., UT ($530,000) 

COVE FORT-SULPHURDALE, UT ($1,500,000) 

SURPRISE VALLEY, CA ($920,000) 

LASSEN, CA ($615,000) 

-~llfIr ;-Jr----- - - ---mr'-- --

1990 CHANGE IN BBEC FOR 20% REDUCTION ~ 

IN WELL COSTS (1977 DOLLARS) ~-

-15.3% 

-19.3% 

-17.9% 

-17.4% 
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Mitre 6 has computed well cost sensitivities for geothermal power plants 

projected to come on line in 1990. Comparisons are between wells with 

no cost reduction, and wells that are reduced in cost by 20%, and 

have increased lifetimes because of technological improvements. All 

costs in this study are expressed in 1977 dollars. 

Four typical sites are presented; they all produce low salinity brine 

with medium-hard overlaying rock (Mitre's designation). They were 

selected to be similar reservoirs, although Roosevelt has much more 

powerful wells than the other three. Surprise Valley, Lassen, and 

Cove Fort wells are all similar in output. As seen before, the lower 

quality resource exhibit is greater sensitivity to well cost, but these 

sensitivities are not directly comparable because the analysis is site 

specific, and "other things" are not necessarily equal between locations. 

In particular, well costs vary substantially, as indicated on the 

accompanying figure. 

As before, substantial reductions in BBEC are possible by reducing well 

costs. Note that only a 20% reduction in well costs is required in 

Mitre's study to produce approximately the same change in BBEC as a 40% 

reduction in BNWL'S report. 

These differences result from somewhat different methodologies and 

assumptions concerning base costs of wells, piping, and other items. 

An estimate of the sensitivity of busbar cost to well cost is about 

0.5 from the BNWL report and about 1.0 from the Mitre study. 

These results, while they differ numerically, are not contradictory. 

They all point to substantial reductions in geothermal BBEC resulting 

from well cost reductions. 
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RECENT ESTIMATES OF THE IMPACT 
OF REDUCTIONS IN WELL COST 

BNWL,1975 

PARAMETER 

WELL COST 

WELL FLOW RATE 

WIELL LIFE 

PLANT CAPITAL 

PLANT L1FIE 

INTERNAL POWER 

CONSUMPTION 

OPERATING 

EXPENSES 

. ~1lmI-:1r'"1I--

CHANGE % CHANGE IN BBEC 

-40% -20% 
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. 3 
In 1975, Bloomster at BNWL computed geothermal BBEC sensitivities for a 

number of cost factors. The reference case is a 200°C reservoir that 

produces 500,000 lb/hr flow from wells that cost $500,000 (1974 dollars). 

Initial well cost is an important factor, with a reduction to $300,000 

per well resulting in a 20% decrease in BBEC. 

The importance of completion technology is emphasized by the sensitivities 

to well flow rate and well life. Technology improvements in well stimula­

tion and completion which increase the flow rate 50% and the well life 

from 10 to 20 years will reduce BBEC by 17% and 10%, respectively. The 

well-related sensitivities are, of course, not additive; but they do 

point out that improvements in drilling and completion technology are at 

least as important as, and perhaps more important than, improvements in 

energy conversion technology. 

The four studies cited vary in their assumptions and methodology, and 

therefore the numerical results differ. But they all point out the 

fact that geothermal busbar cost is strongly influenced by well-related 

factors. Furthermore, Bloomster 3 indicates that well cost is at least 

as important as conversion costs in determining busbar costs. This 

effect can be seen clearly by examining the fraction of total capital 

cost attributable to well cost. 
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The viewgraph shows the fraction of total capital cost attributable to 

well costs for several reservoirs from Mitre's site specific analysis. 6 

In the first group we see that high well fractions exist when the well 

costs are high ($1,000,000), even if the reservoirs are relatively hot. 

For cooler reservoirs (second group), well fractions remain high even 

though wells are less expensive ($500,000 - $600,000). 

Finally, if high cost wells must be drilled into moderate temperature 

reservoirs, then well fractions over 60% result. 

Well fraction, by itself, does not determine whether a field is competi­

tive, but it does indicate the impact that reductions in well cost can 

have on total busbar cost. Areas with high well fractions will be most 

affected by reducing well costs. 

Taken together, the information presented so far leads to the following 

conclusions. 
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SUMMARY 

• GEOTHERMAL POWER ON LINE AND RESOURCE AVAILABILITY 

ARE VERY SENSITIVE TO BUSBAR COST 

• SIGNIFICANT REDUCTIONS IN BUSBAR COST ARE POSSIBLE BY 

REDUCING WELL COSTS 

• THE ECONOMICS OF LOWER QUALITY RESOURCES ARE MOST 

SENSITIVE TO WELL COSTS 

• WELL COSTS WILL BE EVEN MORE SIGNIFICANT FOR NON-ELECTRIC 

APPLICATIONS 
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The amount Of sUbstitution of geothermal energy for nuclear and fossil 

energy is dependent upon the relative busbar costs. If relative 

reductions in geothermal costs occur, then geothermal power will become 

a significant alternate energy source. Reductions in geothermal cost 

have the dual effect of increasing substitution toward geothermal 

energy and of effectively increasing the amount of resource available 

by making more reservoirs economically competitive. Reductions in 

geothermal BBEC can have significant impact on geothermal power-on-line. 

Sensitivity analyses show that sizable reductions in geothermal busbar 

costs will result from reduced well costs. The greatest impact of well 

cost is on bus bar costs for lower quality resources. This fact is 

important because the USGS 5 estimates that, of the known hydrothermal 

resources above l50o C, 55% are between 200o -250o C, and 37% exist below 

200oc. Thus, well cost reductions can lead to vast increases in the 

amount of competitive resources. 

Finally, although the studies cited earlier concern electrical production, 

the results should apply to non-electric applications as well. Since 

well costs are a higher fraction of total cost for non-electric than for 

electric applications, reductions in well cost should have an even 

greater impact on reducing the delivery price of geothermal space and 

process heat. 
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An indication of the temperature distribution of hydrothermal resources 

can be obtained by examining data from the USGs. 5 The Salton Sea 

(indicated by a solid circle with a dash) is the single hydrothermal 

reservoir in the lower 48 states with a temperature over 250°C (one other 

exists in Hawaii, but Hawaii and Alaska sites are not shown) . 

Triangles. In the range of 200-250°C, only ten more sites are included. 

Open Circles. If sites between 150-200 o C are included, then 51 reservoirs 

are added. 

Solid Circles. In the range 100-150°C, 224 sites (including Alaska and 

Hawaii) are added. 

The breakdown of total energy stored in these temperature ranges is 

above 250°C 4% 

200-250°C 22% 

150-200 o C 15% 

10O-150°C 59% 

100% 2312 Quads 

On the previous viewgraph we discussed the breakdown of energy above 

150°C for electrical production. Here we see that twice as much energy 

is available if non-electric applications are included (i.e., reservoirs 

with temperatures in the range of 100-150°C). 

Given the importance of well cost to the economic potential of this 

resource, it is natural to examine recent trends in the cost of wells. 
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VG-16 Average footage costs for all land wells are shown by year with bars. 7 ,8 

The trend is clearly one of rapid escalation, at a rate exceeding the 

general inflation rate. 

In general, the cost of geothermal wells has escalated at a rate com­

parable to that for all land wells. Furthermore, geothermal footage 

costs have remained substantially above the industry-wide average cost 

for all land wells. Greider's9 1973 estimates of $30-$75/ft yield the 

often cited factlO,ll that geothermal footage costs are about two to four 

times the average for land drilling. Recent data and estimates for 

average geothermal footage costs do not contradict this multiplier 

range. Average costs at Baca, NM 43 and the Geysers, CA12 ,l3 are about 

three times the average land rate. This suggests that the spread of 

costs at these different drilling areas would easily fall within a range 

of two to four times that of average land well costs. 

In primarily sedimentary regions such as the Imperial Valley, CA, average 

geothermal well costs are about twice the land average. 

Finally, it should be noted that the costs cited here are for production 

type wells. Exploratory wells may cost substantially more than four 

times the average for land wells. 

The high costs associated with geothermal wells are due in part to a 

number of chronic deficiencies in geothermal drilling technology. 
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The chronic-difficulties in geothermal drilling are attributable to three 

effects which are found uniquely or primarily in geothermal environments. 

Geothermal reservoirs, by definition, involve high temperatures. Diffi­

culties resulting from drilling into high temperature formations are 

significant, well documented, and pervasive. 

Formation effects refer to the increased cost of drilling through hard, 

fractured or otherwise difficult rocks. 

To a lesser extent, corrosion and erosion also impose higher drilling 

costs. These problems tend to be site dependent but they can be very 

significant when present. 

Each of the above problem areas requires special materials and special 

procedures. The results are that expensive tools and equipment are 

needed and that drilling crews must be trained in the special procedures 

required in the geothermal field. Crew training is significant because 

an otherwise competent drilling crew will not be prepared to deal with 

the unfamiliar problems encountered in drilling hot wells. 14 

An expanded discussion of each of these effects will be given in the 

following viewgraphs. 
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TEMPERATURE EFFECTS 

• ON DRILLING FLUIDS 
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• ON CASING AND CEMENTING 
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Drilling anq Completion Fluids. Drilling-fluid-related difficulties form 

the single most frequently cited category of geothermal drilling 

problems. 10 ,15,16,17,lS,19,20,21 Lost circulation is a pervasive diffi-

culty in the geothermal field because of the highly fractured formations 

in which geothermal resources are found. Fluids which remain stable at 

high temperature often do not have adequate filtration characteristics 

for control of lost circulation. 

Furthermore, conventional muds tend to gel when circulation is stopped 

for tripping, logging, and running casing. This can lead to induced 

problems such as stuck tools and failures of the drill string from dif­

ferential sticking. Expensive procedures are required to correct these 

fluid-related failures. Improved fluids and automated fault detection 

systems would substantially reduce fluid-induced contingency costs and 

non-rotating rig costs. 

High direct costs are associated with geothermal drilling fluid systems, 

too, because expensive treatment and complete replacement of the circu­

lating fluid is often needed to prevent or minimize the above problems. 

In addition, extra training must be provided so that crews can properly 

prepare and condition the unusual fluids used in geothermal drilling. 

Casing and Cementing. High temperature cements are being developed by 
22 Brookhaven National Laboratory. But the problems of cementing geo-

thermal wells are not caused entirely by the quality of the cement. 
'ff' l' " " 1 t 10,15,16,21,23 d Dl lCU tles arlse ln assurlng lts correct p acemen , an 

in determining the proper chemical formulation for the temperatures en­

countered. 

Drilling fluids tend to contaminate the cement, and muds that have gelled 

and thickened leave excessive filter cake on the casing and formation. 

This filter cake inhibits good cement bonding. Also, a thickened mud can 

cause the cement to channel behind the casing and can result in large un­

cemented regions. These regions can fill with water which can vaporize 

at geothermal temperatures. The pressures which build up have the poten­

tial for causing collapse of the casing. 

A further problem results from uncertainty in determining the temperature 

profile of the well. Geothermal cements must be formulated with the 

proper amount of retardants. Incorrect mixtures will fail to set up 

properly and lead to expensive remedial cementing ("perf and squeeze"). 

Such operations are expensive in themselves and also increase non-rotating 

rig costs. Downhole monitoring of temperature and improved thermal well 

models will improve the probability of good cementing. 

Special training requirements for casing and cementing include procedures 
, A 

for handling large diameter casing,L~ determination of proper casing 

I 
I 
I 
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programs to account for thermal expansion, estimation of the thermal 

environment which will be encountered by the cement, and determination 

of the proper retardant mixture by the service company. 
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VG-20 Bits. The predominant mode of bit failure in geothermal wells is through 

bearing failure. Unsealed bearings are normally used because elastomeric 

seals will not survive the high temperatures encountered. The bearings 

and races are lubricated only by the drilling fluid. High downhole 

temperature and increased friction cause these critical parts to experi­

ence much higher temperatures than the main bit body. Research at the 

Geysers,24 where formation temperatures are about 240°C, has shown that 

temperatures up to 540°C are experienced at the friction pin, and that 

significant softening of the steel occurs at 260-316°C. The high 

temperature and resultant softening of the bearing surfaces reduces 

bit life at the Geysers to 1/4-1/5 normal.* Costs are increased by the 

need for more bits, the greater number of round trips required, and 

reduced penetration rates while drilling. 

Real time knowledge of downhole bit conditions would permit measurement 

or prediction of bearing, tooth, and gauge wear. Optimal adjustments 

of weight-on-bit, rpm, circulation rate, and fluid composition could be 

made to reduce costs. Also, warning of impending bit failure would 

prevent leaving cones and other "junk" in the hole and eliminate many 

expensive, time-consuming fishing operations. 

Elastomers. Currently the best elastomers fail at temperatures of 

175-225°C depending upon use and environment. These materials cease to 

be elastomeric when subjected to high temperatures and pressures, and 

thus their value in geothermal applications is limited. Unfortunately, 

elastomers are important to virtually every aspect of drilling. The 

best current designs of rock bits, downhole motors, blowout preventers, 

packers, and logging tools all contain elastomers. Most of the equipment 

either cannot be used or can be used only with frequent, costly inspec­

tion, repair, and special procedures. 

The result is that, in geothermal wells, bits with unsealed bearings are 

used, existing downhole motors have only limited utility, blowout pre­

venters must be cooled and frequently repaired, logging is an uncertain 

operation requiring specially designed tools, and many operations re­

quiring long term use of removable packers are not possible. 

References: 10, 11, 21, 24, 25. 

* Measured lifetimes are about 1/3 normal, but the bits are loaded to 
only 1/2 normal weight-on-bit. This leads to an equivalent life of 
1/4 to 1/5 normal. 24 
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VG-21 In addition to the extra costs due to high temperature, additional costs 

are often incurred in geothermal drilling because of the type and condi­

tion of the formations which must be penetrated. 

The fractured formations that predominate in most geothermal reservoirs 

(except the geopressured Gulf Coast) cause severe stresses on drilling 

equipment. Furthermore, many reservoirs exist in hard or medium-hard 

formations where penetration is slow and equipment wear is high. 
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MOST GEOTHERMAL RESERVOIRS EXIST IN 
DIFFICULT FRACTURED ROCK 

AREA RESERVOIR ROCK TYPE HARDNESS 

GEYSERS,CA GRAYWACKE HARD 

ROOSEVELT HOT SPRINGS, UT GRANITE & VOLCANICS MEDIUM HARD 

STEAMBOAT SPRINGS, NV GRANITE & METAMORPHIC MEDIUM HARD 

BEOWAWE, NV BASALT HARD 

VALLES CALDERA, NM VOLCANICS, IGNEOUS HARD 

RAFT RIVER, 10 QUARTZ MONZONITE HARD 

HEBER,CA SANDY DELTAIC SEDIMENT SOFT 

GULF COAST SEDIMENTARY SOFT 
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VG-22 Most geothermal reservoirs are located in hard or medium-hard, fractured 

rock. The best known exceptions are the Imperial Valley, California, and 

the geopressured Gulf Coast area. In other regions, the reservoir is 

usually located in hard, difficult formations even though these may be 

overlain with sedimentary rocks. 

The difficulty and expense of drilling hard, fractured rock is well 

documented. 10 ,13,14,15,2l,25,26,27 Costs for drilling these formations 

are high because of low penetration rates and heavy wear and tear on 

equipment. Also, the hard, fractured rocks are usually encountered in 

the deepest, hottest part of the well as the reservoir is penetrated. 

Temperature effects are at their maximum, directional drilling is fre­

quently required, lost circulation problems may be severe, and the 

selection of drilling fluid characteristics is constrained by the 

necessity to leave the reservoir undamaged. 

These problems highlight the need for improved methods and fluids for 

drilling hard, fractured rock in deep, hot wells. 
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At those sites where erosion and/or corrosion occur, severe difficulties 

and high costs can result. Air is an attractive fluid for drilling into 

competent reservoirs because it will not damage the formations and 

generally improves rate of penetration. However, air drilling causes 

rapid erosion of downhole equipment. lO ,13,15,19,20,21,24,28 At the 

Geysers, where the drill string is frequently inspected and hardbanded 

and where a special anti-erosion additive is used in the air stream, it 

is still necessary to junk one foot of drill pipe for each seven feet of 

hole. 28 These procedures require extra services and additional training 

for the rig crew, and the high discard rate for pipe requires advance 

planning to insure adequate supplies of rePlacements. 29 

Completion problems can arise for those wells which produce wet steam 

which erodes casing as the high speed fluid strips water film from the 

, f 20,25 'h I' , b d 'thfl h caslng sur ace. Hlg er qua lty caslng must e use Wl us 

joints to reduce the problem. 

When hot, acidic brines or H2S are present, downhole equipment is sub­

ject to embrittlement and corrosion.19 ,21,24,25,30,31 These conditions 

also require special procedures and training for the crews. Also, more 

expensive, corrosion resistant materials are used, and additives may be 

required in the drilling fluid to help control corrosion. 

Hydrogen sulfide poses a special problem if it escapes into the air. 

Crews must wear respirators and rig efficiency drops by 2/3. 32 Also, 

state regulations may require special safety procedures for wells likely 

to produce H
2

S. 
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ASSESSMENT OF THE POTENTIAL IMPACT OF IMPROVE ~ENTS 
IN GEOTHERMAL DRILLING AND COMPLETION TECHNOLOGY 
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In order to assess the potential impact of improvements in drilling and 

completions technology on well costs, it is necessary to examine the 

effect of technological deficiencies. Costs (as percentages of the total 

well cost) for three wells at the Geysers are shown below and on the 

the previous page. 

Rig Cost 

Rotating 

Non-rotating 

Direct Fishing Cost 

Other Costs 

1977 
Trouble Free 

8000 ft 
(Estimated) 

31. 4% 

0% 

68.6% 

100.0% 

1977 
Easy Well 

9000 ft 
(Actual) 

39.5% 

30.4% 

9.1% 

3.9% 

56.6% 

100.0% 

1976 
Difficult Well 

9000 ft 
(Actual) 

55% 

29.8% 

25.2%* 

8.9% 

36.1% 

100.0% 

Data for the idealized trouble free well are taken from estimates by 

Glass, 1977. 13 The data for the easy and difficult wells are taken from 

actual well costs for two wells drilled at the Geysers in 1977 and 1976, 
. 1 33 respectlve y. 

Several conclusions can be drawn by studying the trends revealed in 

these figures: 

1. The percentage of cost attributable to rotating rig time is about 

30% of total cost.** A development program aimed solely at improved 

penetration rate cannot reasonably expect to achieve more than about 

15% savings in total well cost. A savings of this size would require 

a major improvement that doubles the overall average rate of penetra­

tion. 

2. As difficulties in drilling the well increase, non-rotating rig costs 

increase substantially. This suggests that one of the main effects 

of problems is to increase the time required to complete the well. 

Since many drilling failures are due to deficiencies in present 

technology, improved materials and equipment for geothermal applica­

tions might save 10-15% on difficult wells (by reducing non-rotating 

costs to approximately the same percentage as on easy wells). Note 

that this does not mean 10-15% savings on average well costs. Rather, 

*Note: This well was plugged back and kicked off. All rig time from 
twist off until depth again reached the level at twist off is counted as 
non-rotating time, i.e., the fishing, plug back and re-drill time is taken 
as non-rotating. 

**Note: In areas of easier drilling, this fraction can be expected to be 
even less than 30%. 



it means that fewer wells will be classified as expensive, "difficult" 

wells. The cost of an "average" well might be reduced by five or per­

haps ten percent. 

Neither the easy nor the difficult well was characterized as atypical 

by the contractor who drilled them. If we assume that the "average" 

well is somewhere between these, and that percent improvements are 

additive, then an aggressive program to increase rate of penetration 

and develop better geothermal drilling fluids, cements, and equipment 

can reasonably be expected to reduce average well cost by about 20%. 

3. Cost reductions substantially in excess of 20% can be achieved only 

by attacking the basic cost structure of rotary drilling. At the 

Geysers, this is represented by the idealized, trouble-free estimate. 

An improved drilling system would be required which could reduce the 

fraction of "other costs" and at least equal the average rate of 

penetration of rotary drilling. In summary, it is reasonable to 

expect that a 20% reduction in average well cost is possible through 

a vigorous program to improve present rotary drilling technology. 

Cost reductions that are substantially greater than this will require 

advanced technological development. 
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SUMMARY 

EVEN IF A RADICAL IMPROVEMENT INCREASES AVERAGE PENETRATION 

RATE BY A FACTOR OF TWO, AND 

EVEN IF IMPROVED MATERIALS ELIMINATE MOST CONTINGENCY COSTS, 

THE POTENTIAL REDUCTION IN AVERAGE GEOTHERMAL WELL COST WITH 

CONVENTIONAL ROTARY DRILLING IS APPROXIMATELY 20% 

IS 20% ENOUGH? 
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VG-26 Technological developments directed toward improvement of geothermal rotary 

drilling have the potential to reduce drilling costs by approximately 20%. 

The important question is whether 20% is sufficient to give reasonable 

certainty of achieving DGE goals. 
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This viewgraph is obtained by assuming that the 2015 elasticity of power­

on-line to busbar cost is constant at two, and by using pessimistic (0.5) 

and optimistic (1.0) values for the elasticity of BBEC to well cost (the 

BNWL studies yield the approximate value of 0.5 and Mitre's site-specific 

analysis14 yields the higher value of 1.0). 

The two elasticities have been applied to the "Max" and "Most Likely" BNWL 

cases to obtain the optimistic and pessimistic fans for a range of well 

cost reductions from zero to 50%. 

The range of uncertainty for 20% well cost reduction does not offer sub­

stantial assurance that DGE goals will be met. This is especially clear, 

since the "most likely" values for both the optimistic and pessimistic 

cases are well below DGE goals. 

At 40% to 50% well cost reduction, however, the range of uncertainty 

begins to bracket DGE goals. And at 50%, the optimistic, "most likely" 

case essentially meets DGE goals. 

There is much uncertainty in this graph, but it does indicate that cost 

reductions in excess of 20% are needed to yield reasonable assurance of 

meeting DGE goals. In order to accomplish this, a broadly based develop­

ment program is needed. 
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A BROADLY BASED DEVELOPMENT PROGRAM 

FOR 

GEOTHERMAL DRILLING AND COMPLETION TECHNOLOGY 

• DEVELOP IMPROVED TOOLS, DRILLING FLUIDS, AND MATERIALS FOR 

USE IN GEOTHERMAL DRILLING. 

• ACQUIRE NECESSARY LABORATORY AND FIELD TESTING FACILITIES. 

• DEVELOP ADVANCED SYSTEMS FOR DRILLING GEOTHERMAL WELLS 

• DETERMINE THE NEED FOR AND DEVELOP TRAINING AND SAFETY 

PROGRAMS FOR GEOTHERMAL DRILLING 

• DEVELOP INTEGRATED BOREHOLE AND SURFACE DATA ACQUISITION 

AND AUTOMATION SYSTEMS 
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The current development activities in geothermal drilling are directed 

primarily at the first area. Improvements in this category will reduce 

contingency costs and produce near term, tangible results. As discussed 

previously, however, the ultimate potential of projects in this category 

is a cost reduction of about 20% in average well cost. 

Development of new geothermal drilling hardware will be accelerated if 

adequate facilities are available for laboratory and field testing under 

realistic geothermal conditions. Furthermore, no new concepts or equip­

ment will be accepted by the drilling industry until they are thoroughly 

and credibly demonstrated in laboratory and field tests. 

In order to achieve a 50% reduction in average cost, activities aimed at 

revolutionary improvements in drilling are needed. Novel rock breaking 

methods and advanced drilling systems must be developed. New geothermal 

training and safety programs are needed to insure that crews are well 

prepared to function efficiently in the geothermal field, and rig auto­

mation and instrumentation systems which make optimum use of real time 

drilling parameters must be developed. 

The research areas proposed here are consistent with the topics outlined 

by the Ad Hoc committee on Technology of Drilling for Energy Resources of 

the National Academy of sciences 34 and with the needs for geothermal and 

geoscientific exPloration.
35 
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IMPROVED METHODS, TOOLS, AND MATERIALS FOR 

USE IN GEOTHERMAL DRILLING 

CURRENT DEVELOPMENT ACTIVITIES INCLUDE PROGRAM ELEMENTS 

IN THE FOLLOWING AREAS 

• GEOTHERMAL ROCK BITS 

STRATA PAX 

CHAIN 

JET ASSISTED ROLLER CONE 

ROLLER CONE 

• GEOTHIERMAL DRILLING MOTORS 

• GEOTHIERMAL DRILLING FLUIDS 

'MUD' 

FOAM, MIST 

• GEOTHIERMAL COMPLETION TECHNOLOGY 
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VG-31 Current activities are concentrated in the areas shown. The Rock Bit 

and Drilling Motor programs are intended to develop tools that are 

rated for use in geothermal drilling. Programs in these areas have 

the potential to relieve current materials problems and also to 

increase the rate of penetration in hard, fractured geothermal forma­

tions. 

The drilling fluid program will develop fluids that retain desired 

properties at high temperature, and the Completion Technology Program 

is addressing the difficulties associated with conventional completion 

of geothermal wells. 

Developments in these areas could potentially reduce well costs by 20%. 

To achieve further reductions, a more broadly based development 

program is needed. 
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LABORATORY AND FIELD TESTING FACILITIES 

CURRENT LABORATORY FACILITIES CANNOT SIMULATE 
GEOTHERMAL DRILLING CONDITIONS. 

NO ADEQUATE FIELD TEST CAPABILITY EXISTS 

POTENTIAL DEVELOPMENT AREAS INCLUDE 

• LABORATORY TEST FACILITIES 

SIMULATE IN SITU GEOTHERMAL CONDITIONS (PORE PRESSURE, ETC.) 

TEST NOVEL FLUIDS, DRILLING TOOLS, AND METHODS 

TEST DOWNHOLE MOTORS 

• FIELD TEST CAPABILITY 

DEVELOP REQUIRED INSTRUMENTATION 

DEVELOP A DATA ACQUISITION SYSTEM FOR USE IN THE FIELD 
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Present facilities for laboratory testing of geothermal drilling equip­

ment cannot adequately simulate downhole conditions. The only available 

geothermal drilling test stand is limited to an 8 inch diameter with a 

two foot working length. 36 The vessel can be pressurized to 5000 psi at 

about 315°C, but no capability to circulate drilling fluid is available. 

Furthermore, available facilities are intended almost solely to obtain 

data on performance of the rock bit only. 

A comprehensive laboratory test capability is needed because it quickly 

differentiates between competing designs, reduces development cycle time, 

permits design optimization before field testing, and ultimately reduces 

the time to place new technology in the field. The drilling industry has 

demonstrated its reluctance to accept untested technology. Risks in 

drilling are very high, and only proven methods can be financially justi­

fied in the field. 

A laboratory testing facility should have the capability to perform con­

trolled, full scale tests that simulate geothermal borehole conditions. 

It must be capable of simulating in situ geothermal conditions for 

temperature, confining pressure, pore pressure, etc. It is essential that 

the facilities be able to: 

a. Circulate drilling fluids under geothermal conditions, 

b. Test unconventional drilling fluids such as air and foam, 

c. Accommodate novel drilling methods such as jet drilling, and 

d. Test prototypes of geothermal drilling motors and completion 

tools. 

Field testing is an important part of the development cycle of any new 

tool. It is doubly important in drilling because no new method or tool 

will be used commercially until it has been credibly demonstrated in the 

field. The route to rapid commercialization of new geothermal drilling 

hardware is through thorough field demonstration. 
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ADVANCED SYSTEMS FOR DRILLING GEOTHERMAL WELLS 

POTENTIAL DEVELOPMENT AREAS INCLUDE 

• ADVANCED METHODS FOR ROCK DRILLING 

ROCK MECHANICS AND ENERGETICS OF IN SITU FORMATIONS 

MECHANICAL AND PERCUSSION METHODS 

JET AND CAVITATION METHODS 

THERMAL SPALLlNG, ETC . 

• ADVANCED DRILLING SYSTEMS 

FLEX PIPE 
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NOVEL COMPLETIONS AND NEW MATERIALS 

NOVEL AND/OR SPECIALIZED RIG DESIGNS 
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VG-35 Additional effort is required to define and develop the next generation 

of rock drilling methods. Central to this issue is the need to better 

understand the basic mechanics and energetics of in situ rock. Addi­

tional geophysical measurements in the field are needed to improve the 

knowledge of rock characteristics as they vary with depth. A complement 

to these endeavors is the development of improved models of rocks which 

bridge the gap between microscopic and macroscopic theories of fracture 

and which include the effects of porosity, contained fluids and ductility. 

An essential feature of such activities is the establishment or utiliza­

tion of high pressure geophysical laboratory facilities that can contain 

large samples. This will allow grain size distribution effects to be 

evaluated and transport properties to be measured at conditions simulating 

those in situ. These laboratory data are needed to validate model pre­

dictions which can then be used in the interpretation of field measure­

ments. 

11 Many novel methods for geothermal drilling have been proposed. Some of 

the more promising suggestions are listed. Jet, or jet with cavitation, 

has shown promise, especially when combined with percussion or mechanical 

methods. Thermal spalling with electron beam or other methods also 

efficiently drills rock. Difficulties with these exotic methods involve 

their application at depth in the well bore. Advanced theoretical and 

engineering development is needed to fully explore these and other methods 

in order to develop a method or methods which provide a revolutionary 

improvement over present technology. 

Novel completion methods which substitute lightweight materials for steel 

casing would complement flexible tube designs by eliminating the need for 

expensive, heavy duty rigs. 

A number of innovative changes are occurring in rig designs that need 

accelerated upgrading for heavy duty drilling. 38 ,39 Among these are 

highly mobile, quick set-up rigs that can be broken down into standard 

size-weight packages for easy transportation. 40 Also split level rigs 

with hydraulic hoists replacing conventional draw \'lOrks can substantially 

reduce trip times and cost. 4l Push-down rigs 42 have been used to rapidly 

drill the initial portion of the well when normal bit loads are small. 

Improvements of 10 to 1 in penetration rate over conventional rigs have 

been reported. Incorporation of this feature on heavy duty rigs would 

reduce costs for geothermal wells. 

These and other as yet unknown improvements must be investigated to in­

crease the likelihood of achieving the technological breakthrough needed 

for a 50% reduction in geothermal drilling cost. 
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DEVELOP SAFETY AND TRAINING PROGRAMS 

FOR GEOTHERMAL DRILLING 

SAFETY AND TECHNICAL TRAINING ARE ITEMS OF GREAT CONCERN TO DRILLING 

CONTRACTORS 

ACCIDENT RATES IN THE DRILLING INDUSTRY ARE THREE TIMES THE NATIONAL 

INDUSTRY AVERAGIE 

-
POTENTIAL DEVELOPMENT AREAS INCLUDE 

·1I11I T· ..• 

• DESIGNING SAFETY INTO NEW RIGS 

• WORKING WITH INDUSTRY TO DEVELOP PROGRAMS TO IMPROVE 

THE LEVEL OF PROFICIENCY IN GEOTHERMAL DRILLING 

• MINIMIZING POTENTIAL FOR HUMAN ERROR THROUGH 

INSTRUMENTATION AND AUTOMATION 
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Rig safety and crew training were recently identified by drilling con­

tractors 43 as very important areas that need improvement. 

Engineering development can make improvements in rig safety. Accident 

rates in the drilling industry are three times the national average for 

industry. 44 In 1976, 74% of the accidents on land rigs were in the 

four categories of "falls," "caught between objects," "struck by objects," 

and "over-exertion. ,,45 Many hazards related to these problems can be 

eliminated or reduced by design changes in rigs and drilling tools. 

Crew training was identified in a survey19 as a top priority need. There 

is a need to assess the adequacy of current training programs and to work 

with the drilling industry to develop programs which will increase crew 

proficiency. 

Additional training requirements exist to inform contractors and service 

companies of the special procedures (special muds, special cements, high 

temperatures, anti-corrosion/erosion measures, etc.) that are needed in 

geothermal drilling. The difficulties of using an otherwise competent 

contractor who is inexperienced in geothermal drilling have been noted 

in the literature. 14 

Engineering improvements on the rig will help to alleviate problems with 

training and safety, too. For example, data acquisition, telemetry, and 

on site data processing can reduce the potential for human error. Examples 

of this have been mentioned earlier, and include: 

a. automatic fault detection and alarms 

b. appropriate automation of contingency actions, and 

c. computers to eliminate the need for rig personnel to do calculations 

and make graphs. 
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INTEGRATED BOREHOLE AND SURFACE DATA ACQUISITION 

AND AUTOMATION SYSTEMS 

POTENTIAL DEVELOPMENT AREAS INCLUDE 

• UPHOLE MEASUREMENTS 

INSPECT PIPE 

DETECT LOST CIRCULATION AND WELL KICKS 

INFER DOWNHOLE CONDITIONS 

• DOWNHOLE MEASUREMENTS 

MAKE DIRECT MEASUREMENTS OF DOWNHOLE CONDITIONS 

DETECT LOST CIRCULATION AND WELL KICKS AT 

EARLIEST OPPORTUNITY 

MONITOR BIT CONDITION 

CONTINUOUSLY MONITOR HOLE DEVIATION 

• INTEGRATED DATA ACQUISITION AND AUTOMATION 

IIll e r- IIIr-

PROCESS DATA IN REAL TIME AND OPTIMIZE CONTROLLABLE 

VARIABLES 
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VG-39 A complement to Advanced Systems Development is an integrated approach 

collecting and using information available at the drill site. Data can 

be acquired uphole and downhole. Information from each location has value 

in itself and can provide near term payoff. Integrating the data from both 

sources into a unified system to make optimum use of all information will 

maximize the benefit of the total data acquisition system. 

Surface measurements are easier to obtain than downhole measurements and 

can provide valuable, cost saving information. For example, surface 

measurements can be used to inspect downhole equipment. Suggested pro­

jects include development of reliable high resolution means to inspect 

drill pipe and casing as it is run into or out of the well. Similarly, 

methods need to be devised to reliably inspect drill string joints for 

microfractures as the pipe is stacked during tripping. Also, development 

of reliable flow meters to compare inflow and outflow of drilling fluid 

may permit more timely detection of well kicks than is possible with mud 

pit measurements. 

In addition, the extent and precision to which downhole conditions can 

be inferred from uphole measurements need to be determined. Detection 

of impending equipment failures will be considered a major breakthrough 

by the drilling industry.46 Partial realization of this capability from 

surface data would provide a near term improvement in safety and cost 

reduction. 

To fully optimize controllable drilling parameters, however, downhole 

measurements will be required. Borehole measurements offer the capability 

to make direct observation of important well conditions. For example, in 

geothermal wells, knowledge of downhole temperature can be a critical 

factor in assnring good cementje.bs. In addition, the potential exists 

for immediate detection of well kicks, possible warning of impending 

kicks, and real time monitoring of bit wear and condition. Continuous 

directional monitoring is especially valuable in geothermal wells which 

are frequently directionally drilled. Such capability used in concert 

with a downhole motor will substantially enhance precision drilling. 

Ultimately, an integrated, automated data acquisition system will utilize 

information from both surface and downhole measurements. On site com­

puters will compare direct and inferred parameters in real time and pro­

vide information to aid in drilling optimization, warn of impending 

failures, and trigger alarms when failures do occur. 
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This viewgraph is a schematic of the dependence of geothermal power-on­

line to well cost. The control variable which is available for this 

process is the amount of well cost reduction achieved through tech­

nological improvements. 

Careful selection of technology development tasks by cost/benefit systems 

analysis and consultation with industry can probably achieve a 20% re­

duction in well cost through technology improvements for rotary drilling. 

This reduction does not yield high expectations of meeting DGE power-on­

line goals for 2015, however. A 50% reduction in well cost offers high 

probability of meeting DGE goals; but, of course, the probability of 

achieving the breakthroughs needed to obtain this reduction is. not 

known. 

It is true, however, that DGE power-on-line goals will probably not be 

reached unless an effort is made to achieve a 50% reduction in geothermal 

well cost. The broadly based development program just described is 

directed toward this goal. 
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