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Three-dimensional resistivity inversion using alpha centers

Wm. R. Petrick, Jr.x, Wm. R. Sill+, and S. H. Wardz

ABSTRACT

The method of alpha centers represents a class of solu-
tions to the three-dimensional (3-D} de conduction egua-
tion based on certain nonlincar substitudons for electric
potential and earth conductivity. A solution is obtained
which is sufficiently fast to make the inversion of 3-D re-
sistivity data practical. The Inversion routine results in a
conductivity distribution defined by a centers which
simultuneously fits the data from several paratlel or per-
pendicular dipole-dipole profiles.

To illustrate the characteristics of this modeling approach,
we apply the inversion algorithm to three theoretical and
four field data sets. The four ficld data sets represent
samples from massive sulfide and geothermal environ-
ments. The technique, when applicd to theoretical data
from prismatic bodies, gives fairly good estimates of the
positions of conductive inhomogeneities but poar estimates
of their actual conductivities.

The entire inversion algorithm requires less than 15,000
words of computer memory, thus making it tractable for
small computers. We envision two major applications, The
first is for in-ficld data interpretation to site drilling loca-
tions or to guide further exploration. The second is for ob-
taining a good initial guess for more sophisticated and
costly multidimensional inversion schemes.

INTRODUCTION

Solutions of the dc conduction equation using alpha (o) centers
were completely derived by Stefanescu and Stefanescu (1974). In
that paper references to the « center method are given which date
back to 1950. More rccently, « media (the term “‘alpha media™
refers to the conductivity distribution defined by « centers) have
beecn used to calculate magnetometric resistivity responses (Ed-
wards et al, 1978). The method uses nonlinear substitutions for
media conductivity and electric potential, followed by a straight-
forward application of image theory. This results in an economical
solution which is exact for & media.

Due to the speed and case of parameterization of this forward
algonithm, it seemed only natoral to implement it in an inverse
routine. The ridge regression inversion atporithm was chosen be-
cause cxperience with the method has proven it to be stable and
simple to implement in a wide variety of inverse applications

(Inman, 1975; Rijo et al, 1977, Petrick et al, 1977, Pelton et al,

1978).

We do not maintain that this modeling scheme is ideal, but it
scems to be successful in locating the positions of conductive in-
homogeneities in the presence of substantial peologic noise. It is
atso flexible cnough to handle muliibody problems and problems
of mixed dimension, Run times for the examples presented here
range from 18 sce to 5.5 minutes on the University of Utah Univac
1108,

THE ALPHA CENTER FORWARD SOLUTION

This development follows Stefuncscu and Stefanescu (1974).
We start with the general de conduction eguation in inhomogeneous
isotropic media

Vo - Vé + oV =0, (1)
where o = media conductivity, and ¢ = electric potential.
Through use of the transformations & = ¢/ea.do = a?, cqua-
tion {1) becomes

aViy — ¢¥2a = 0, (2)
Upon separating variables in equation (2), we obtain
vy  Via
—— == f(m), (3)
W o

where m is any point in a whole space. At this point f(m) is
arbitrary and can be chosen so that closed form solutions to equa-
tion (3) are obtained. In choosing f {m), we determine the func-

tional farm of a which in turn fixes the form of the conductivity

distribution since o = o?.

One possible choice for f {m) is f (m)} = k% where & is a real posi-
tive constant. This choice of f () was the subject of Stefanescu
and Stefanescu (1974). It leads to a formulation having o media
described by

kR o PR iy

£
alm) = O + Cy )
( ) 2l: ' R im R (i

where R, is the distance from point m to the position of the ith o
center. We first tested an inversion routine utilizing o media of
this type. In all test cases on data generated with prismatic bodies,
k was forced to zero resulting in o being a sum of C,;/R,,, terms.

Anecther choice for f (m) which results in equation (3) having a
closed form solution is f (m) = 0. This results in

T2 =0, V2a = 0. (4)
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Fi. 1. Relationships between components summarized by equa-
tions {7) for two « centers (& und o) in a whole-space.

Choosing solutions 1o VZx = 1) of the form
alm) =B+ 2, Ci/Rim {5)

allows us easily to specify a background conductivity (B2). Because
of this ease and the fact that the inversion routine set & to 0, we
chose the f {m) = 0 solution over the £ (m) = &2 solution for the

final forward problem.
The solution to V*1 = 0 which decays with increasing & is

Wil = o + 2 DifRim. ©

Ury may be determined by noting that near a current clectrode in a
whole space the primary electric potential &g must hehave as
I/ 47 ro, o, Substituting this in ) = da, we have

‘bﬂ = !,/41rr.3ma0,

where «, is the value of o at the current electrode and ry,,, is the
distance from point m to the current electrode.
At this point we have the following relationships:

$ = b/a,

l')'=0'.‘!,

(x(m) = H 4 E Ci'/Rim:

'JJ(’”} = ]/417?‘0”!0'-0 + EDI-/RI-HI’ (?)

where B, (; are chosen positive constants, ey = value of « at the
current electrode, ry,, = distance [rom current electrode to the
puint i at which the potential is measured, R, = distance from
ith alpha center to the point at which the potential is measured,
and {}; — constants to be determined,

‘The earth conductivity is determined by choosing B, C;, and the
positions of the « centers. Once we determine , we may obtain
the electric potential.

The continuity equation

V.Ji—=0,
&

reduces to ¥ + J = 0 in the de case. ‘To determine W, we enforce
j V- Jdv =0

at each «x center. This leads to a sct of lincar cquaiions to be solved
for the coefficients £3;. From the constitetive relation J = oE
{assuming isotropic media), E = — Vi, and the relationship given
by equation (7}, the expression for current density, is
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Fi. 2. Relationships between commponents of a center solution now
taking into account current input at point p, current extraction at
point g, and image « distribution resulting in a half-space solation,
image components are denoted by asterisks.

J=uVa— aVi. (8)

Figure | shows the relationships between the components
summarized in equations (7) for two alpha centers.

Substituting equation (7) into equation (8} and evaluatitig the
expression at point 1, we have

— (B + 2, C‘f,/R;,,,) [(“[/41ra0)(vr0m/r§m]

o VRim
J(’") - (Ifdﬂrllm'll] + EDE/R{m) (_ 2 Ci Ri’!
d i im

S p, i ] ©)
- i~ |-
é Rim

After constructing a sphere of radius Rj,, about the jth « center,
we have

f v-jdv=f j—ﬁds,-zf (- VR)RZ d =0,
'
Vi 5 3
where {1} is the solid angle. Now taking
lim [jradial,mR-zm] =0
Rym 7

we obtain, noting that as Rz, — 0 then R, — Rj;,

al 1
- [1/4m(,ruj + 2 D; P DJ-/RJ-J C;
i ¥
it

i [3 '+ z C;/R,‘j i3 Cj,fRﬂ" DJ,' = 0.
i¥§

Solving for 1}, we obtain

Dj [8 + l, C”‘rRU] - Cj L DE;IR,J = C}:[;"i’ﬁ'ﬁgr@j. (le
i - i
EA] iA7
Eyuation (10} is valkd for a paint current source in a whole
spuce, To account for a conductivity distribution in a half-space
{z 2> 0) and two cumrent e¢lectrodes, consider image o centers as
stiown in Figure 2. The image components are indicated by
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FiG. 3, Comparison of 2-I} finite-element solution and o center
solution for dipole-dipole array. Electrode spacing is a. The 2-D
inhomogeneity is approximated by a string of 36 « centers placed
nosrmat to the plane of the section spaced a distance g/3 apart at a
depth of 1.5 g below electrode seven.

asterisks. Carrying out the same analysis as that leading from equa-
tion {9) to equation (10} except now comsidering current input at
point p, extraction at point ¢, and the image centers, we have

DJ,[B+§CI-(§1;+;]§)J_C [ED (E’; *R_}H

i#j L

_CL{ 1 1 ] (an
7 2m Xplpj agrgjd

The system of cquations defined by equation (11) can now be
solved for D, Two important characteristics of this system are (1}
the coefficients defining the matrix are source independent, there-
fore the matrix only need be inverted once for a particular alpha
center distribution, and (2) the matrix is guaranteed to be non-
singular for positive coefficients & and C;.

The function W at point m on the plane z = § due (o cunent
injection and extraction on the same plane at points p and g is

‘j—'(m)pq - {ffzﬁ){i/ﬁp'"pm - }/U‘-q qm] S‘ Di,flR
f (12)

The expression for o at point #t, where s may now be anywhere
in the half-space z = 0 (z positive in the carth} is

1 1
Rim +“R:)I {13)

i

The associated electric potential at point m or z = 0 is then
&bl = Wim)pg /e lm), (14)

From equation (14}, the apparent resistivity for any electrode
array on the plane z = 0 can be calcutated. Figure 3 shows a com-
parison of the apparent resistivities calculated using the a center
forward solution and a 2-D finite-element program {Rijo, 1977)
for the dipole-dipole array. The agreement is everywherc better
than [0 percent, Alpha centers were placed every dipole length/3
normal to the plane of the profile in order to represent a 2-D body.
The center of the string of 36 o centers is 1.5 dipole lengths
below electrode 7 and has coefficients 8 = 001, ¢ = 2. This
particular o center body appears 2-D when its strike extent is 11
to 12 dipole lengths. Although 2-D « media responses were pre-
sented by Stefancsce and Radulescu (1965), we do not cmploy
that solution due to the programming difficulty that would be en-
countered when we invert to three dimensional (3-D) bodics in
the presence of 2-D bodies.

Figurc 4 is an example of the type of conductivity distribution
that can be expected with o center modeling, This conductivity
distribution is due 1o two centers located at ry = 500 m and

= 600 m. The three different curves indicate how the con-
ductivity changes by varying the cocificients of the centers with
the background conductivity given by B2 on Figure 4, The con-
ductivity has the form o = B® + 2BC/R + C®/R? showing u
rapid 1/R? fall-off neur the o center at R = 0 with 4 slower
1/R bchavior at greater distance, The smaller the C coefficient,
the more rapid the conductivity decrease, Note that with this form
for o, it is Aot possible to consider compact resistive bodies. At
R = 0 the conductivity becomes infinite so each « center may
be thought of as a current sink. By enforcing

a(rn)=B+ZC,-(

IV cJav =0

at each « center and soiving for the assoctated [3; coefficients, we
are determining the strength of artificial current sources which
must he applied at cach o center. This forces a divergenceless
current desnsity everywhere except at true sources.

For an analysis which compares the whole-space uniform
electric field response of an o center to that of an infinitely con-
ductive sphere, see the Appendix. Suffice it to say that an o center
response is not dipolar, We assert that this lack of a dipolar re-
sponse is the factor limiting the accuracy with which a center
inversion is capable of fitting theoretical data from prismatic
bodies,

THE INVERSION ALGORITHM

We have found in practice that by locking together several
centers, we can represent responses duc to conductive layers,
dikes, podiform masscs, cylinders or any combination of these
fairly successfully. Alpha centers are locked together by fixing
intercenter distances while allowing the group to move as a whole.
Not only is the forward solution exceptionally fast, but parameter-
ization in « center inversion is conveaiently accomplished. The
inversion resnlis are not discrete bincks ar sharp contacts, but a
continuous resistivity distribution which, in some cases, may
more nearly reflect the true peolopic situation. The methad is,
however, not without #s shortcomings, and we have atfempled v
ilustrate these as weil as its advantages in several examples to be
presented later,

The actual tnversion technique employed 1s weighied nonlinear
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FiG. 4. Conductivity distribution duc to two « centers. The three different curves show how the conductivity changes as the coefficients C; of
the ot centers are changed, o is the level at which the conductivity is 20 times the hackground conductivity defined by B<. r is the distance

in meters,

least-squares with ridge regression. lts application to elecirical
methods has been described in many papers {Inman, 1975; Rijo
et al, 1977; Potrick et al, 1977 Pelton ct ai, 1978), so, to be con-
cise, we refer the reader to these.

After having found a model which best fits the observed data,
it s useful to have some idea concerning how well cach of our
model parameters is determined. We may obtain some feeling for
this by examining the parameter covariance matrix, which for
weighted least-squares is given by

covip) = x2(ATWTwaA) 1, (13)

where p is an inversion parameter {in this case, 8, C;, and Ry},
x2 is the reduced chi-square value defined as the weighted least-
square error divided by v (the problem degrees of freedom), A is
a matrix of derivatives, and W is a data weight matrix,

Taking the square root of the diagonal elements of cov (p)
gives us an estimate of the parameter standard deviation, while
normalizing equation (135) as follows

covip,)

N [eov(py) - covipy 1

cor{p ) NIz
resulis in parameter correlation coefficients. If the correlation
coeflicient is near +1.0, ooly the product of two parameters is
determingd. If it is necar —1.0, only the guoticnt is determined.
To construct the A matrix, it is necessary o take derivatives of
apparent resistivity with respect to parameters of the conductivity
distribution, essentially « in this case. Repeating equation (13)

1
R*

5]

]

we see that the conductivity distribution depends upon B, C;, and
the x-, y-, z- coordinates of the o centers. Since B, ;. and z; can
never be negative, we can most simply ensure this by inverting
with respect te log B, log C;, and log z;. Derivatives with respect
to x; and y; are taken with respect to the normal Euclidean space
parameters. When scveral oo centers are locked together, the
derivative is taken with respect to the component of « in which
movement of the entire group is desired. The derivatives are ap-
proximated using the first forward difference.

We fit log apparent resistivity data, so the redoced chi-square
data variance cstimate refers to a percent data error. Simifarly, the
parameter standard deviation estimates arc in terms of percent
standard deviation for 8, C;, and z, while the cstimates are in units
of meters for the x-, y- coordinates, By percent standard deviation
we refer to a measure that is normally distributed about the param-
eter estimate in log space. For example, if we determine the
parameter & to within 60 percent, the upper value in Enclidean
space is given by 8 » 1.6 while the lower value is B/ 1.6,

Orginally a program was used which calculated the percent stan-
dard deviations of the inverted earth model resistivities from the
o center statistics. Expericnce has shown that the direct o center
statistics provide more uscful information conccrning possible
reparameterizations. ‘The reason for this is that the direet o param-
eter statistics provide an analysis of exactly which aspects of the

i
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FiG. 5. Test casc 1: model 9-3D). Parameterization 3 inversion re-
sults using o centers to fit data from & prismatic model. The
prismatic bedy which is bisected by the profile is two dipole
lengths in strike and depth extent, has u thickness of one dipole
length, and is .5 dipole lengths to the fop. The prism has a resistiv-
ity of 3{2-m and is set in a 100 £2-m hackground.
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Fig. 6. Convergence for model 9-3D, parameterization three.
Reduced chi-square value versus number of iterations.

Table 1, Different parameterizations used to invert prismatic model 9-3D data. v = o? = (B + %, /R ). Note that data fit is virtually the same for

all parameterizations. x denotes an inversion parameter.

Position Depth To Nepth Ta
Along Top t ower
Parameterization B [31. = Profite i Center a Center Dip Data Fit
1 X X b 20%
Z v ¥ ¥ x 21%
3 X X X X % 21%
X X b 21%
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Talde 2. Alpha center parameters, parumeter statistics, and correlation coefficients for model 9-31, parameterization three.

Correlaticn

Inverted Parameter
Parameters ModeT Statistics Coaefficients
B 071 \fS/m 75 1.0
¢,=¢ 1.6 s =104% -.99 1.0
X, 7X 748n Lo , 04 ~.(12 1.0
L.ower 334m +225% -. 98 .99 -.01 1.0
Upper 91m +63% -.495 45 04 .33 1.0

mode! arc poorly determined, while resistivity confidence limits
represent a combination of all direct « parameler statistics, The
one standard deviation error bars on the following plots refer to
the direct o parameters B, C;, x;, y;, and z;.

INVERSE TEST CASES

During the normal course of program development we, of

course, assured ourselves that the algorithin was capable of invert-
ing to the correct oo conductivity distributions {or data generated
hy w media. A more important practical guestion concerns the
ability of the « inversion to determine the location and condue-
tivities of more general conductive inhomogeneities. To test this
ability, we used theoretical data from 3-1 conductive prisms. Two
duta sets were obtained {from finite-difference calculations (Dey
and Morrison, [979), The models chosen were a 3-I conductive
prism in a haif-space {model 9-313) and Dey and Morrison’s
Basin and Runge geothermal model, A third data set was ob-
tained from G. Hohmann {personal commumication} and repre-
sents an integral-cquation solution of two finite-length verticai
dikes in a half-space.

Test case 1: Model 9-3D

‘The theoretical data shown in Figure 5§ are lrom a profile bisect-
ing the prism perpendicular to its strike. The strike extent s two
units.

These data were inverted several (imes with the dilferent param-
eterizations shown in Table 1. Since theoretical data were avail-

ahle for only one profile, we constrained the lateral positions of

four o centers at £ .5 units with respect to the profile. The rather
poor initial guesses for the positions of these centers are indicated
by the open circles in the mode] shown in Figure 5. The o conters
are actually constrained to lic at + .5 units off the profile to mimic
the strike extent of the prism,

Tuble | shows that all parameterizations were capable of fitting
the theoretical datz to within about 20 percent. This is probably
about us good a fit 1o datu from prismatic maodels as we can expect
from an « center approximation. Note that the paramcterization
for inverse four in Table | inclades dip as an inversion paramcter,
In this modeling approach, dip is approximated by allowing the
lower two o centers to move along the profile independently from
the top two centers. We found that the positions along the profile,
as well as the depth of these deeper o centers, were very poorty
determined paramcters supporting the obscrvation that dip is not
well determined by dipote-dipole surveys (Pelton ct af, 1978).

The inversion results for parameterization 3 are shown in Fig-
urc 5. The final positions of the « centers are shown by the solid
cireles, The one standard deviation error bars indicate that the
depths to the top e centers and their positions along the profite are
fairly well determined {63 percent and %13 units, respectively)
while the depih extent, as implicd by the position of the lower «
centers, is very poorly determined. Table 2 shows the purameter
statistics and correlation coefficients. High correlations between
a center coefficients C and background value B were virtually
always obtained. The reason for this is easily explained by Figure
4, noting that the 1/R component of conductivity fall-off (i.e.,
o — B2+ 2BC/R + C%/RY) is controlled by the product of B
and €. The correlation is reduced by data containing more samples
distant from the inhomogeneity. The remainder of the large corre-
lation cocfficients ate all in some way associated with the very
poorly determined depth to the lower o centers.

These mversion results point out two scriows defects 1n this
modeling scheme. The first is that, although the location of the
top o center iy fairly well determined, we are given no clear cut
indication of the getual depth to the top of the conductor. We may,
however, be lairly confident that the a center position determined
by inversion represents a maximum depth. The second defect is
that we have no way of deducing the actual conductivity of the
causative bady from the o centers. This hus been observed by
practitioners of 2-1) inversion using prismatic models who find
that, without narrow constraints on prism boundarics, the con-
ductivity distribution is very poorly determined {rom surface data
{Oristaglio and Worthington, 1980).

Ten iterations for parameterization three required 18 sce on
the University of Utal Univac 1108 and cost $.07. Figure 6 shows
the convergence.

Test cuse 21 Dey and Morrison Basin and Range geothermal
model

This model is shewn in Figure 7. Data from lne | and line 4
were inverled stmultancously. The initial guess is indicated in
Figurc 7 by the open circles. The small circles near the surface
rcpresent a disivibuiion of o ceniers sufficlent to accouni for the
near-surface conductive layer and the more conductive matertal
tor the left of the vertical contact, The positions of these were kept
constant, but their coefficients were included as inverston param-
eters. Four e centers were used o approximate the deeper con-
duetive prism. Their inlercenter reometry was specificd but the
position of the srray was included us another nversion parameter.
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This is tantamount to assuming that one knew approximately the
size of the rescrvoir but not its location.

The theoretical data from lines T and 4 are shown in Figure 8.
Initially the data from line | were inverted along with the off-
profile position of the reservoir specified. All attempts to locate
the reservoir failed; instead, the reaction was simply to remove
the 3-T) inhomogencity. This is not particularly surprising when,
as Dey and Morrison point out, the difference between data along
line 1 with the prism and data along iine | without the prism is
slight, The inclusion of the line 4 profile greatly improved the
situation, Since we were simultancously ioverting data from
orthogonal traverses, there was no further necd to specify the
lateral position of the prism with respect tw line |, The simui-
tancous inversion placed all four prism o centers within the loca-
tion of the hypothetical reservoir.

The resultant position of the centers and their one standard
devialion error bars are shown in plan and profile in Figures 7 and
& by the solid circles. Figure 8 shows the resultant best fit pseudo-
sections. These represent a data fit of approximalely 30 percent.

The parameter statistics (Table 3) indicate that this combina-
tion of parameters and data sets results in a well-determined
madel with no highly correlated parameters,

Five iterations for this group of parameters, simultancousty
inverting to both data sets, took 5 minutes and cost 54,20,

Test case 3: Parallel dikes

This model is shown in Figure 9. The profile is perpendicular
10, and bisects, the dikes, cach of which is cight dipole lengths in
strike exlent.

The difficult aspect of inverting these data is that there is a
rather attractive local chi-square minimum corresponding to a

position.
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F1G. 8. Test case 2 results of simullaneous inversion of data from orthogonal profiles {line 1 and line 4} ol Doy and Morrison Buasin and
Rangc geothermal model. The final positions of the four « centers used to mimic the reservoir are shown as the solid circles projected on the
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Table 3. Alpha center parameters, parameter statistics, and correlation coefficients for Dey and Morrison Basin and Range geothermal model,

Inverted Parameter Correlation
Parameters Model Statistics Goefficients
B .024 '\ﬁ/m +28% 1.0
Coverburden 1845 2203 -.59 1.0
o K et _ _
Creservoir 1,2545n +245 .14 .58 1.0
Aranter Res. 617m =48m -.61 .69 -.30 1.0
yCeﬂte\" Res. 6599m +35m N3 -.01 'G]_ 0 1.0
184m “21% -, 44 L1 .55 .15 -.01 1.8

ZTop. Res.

single large, deep conductor located at the center of the profile.
The & center difference in data fit between the tocal and the *“‘trite’”’
minima is only three percent. The situation is aggravated by the
low-contrast {ps/p; = .2) bodies involved, but the major diffi-
culty is due to the inability of the o response to duplicatc the high
apparent resistivities between electrodes 7 and 9 at n = 1.
Three parameterizations were attempted. The first two involved
starting with o centers locked together to form two separate verti-
cal dikes with inversion variables being the background conduc-
tivity (&), coefficient for the left dike (Cien), coefficient lor the

Theoretical dipole-dipole pseudosection

a | 2 3 4 5 B 7 -1 L 10 1 12 13 4
} 1 L L 1 1 I3 3 1 1 I 4 - I L
T T T L T T L3 T T T T T T Ll T
I6h 1044 92 /66 Q& 85,/ 88 N2 NMo4 Ol
g3 1077 83 E6 6l 0T BT 58 N8 NOT 103
10g/”" 78 s/?? 43 43 T7._66N 78
e/ 78 70-"8r S a4 58 &N 75
/?4 75 893 S84 &0 EI 54 83 T8
bi:] 36 E‘?_,__,.TD"'" Bl — 70 &6 \96 T8
Prism madel with bast fit atpha  center moded
5 2 3 a4 5 & 78 9 a2 13 14
i — 1 1 3 L 4 i n 1 Il 1 rl 4
t } i + } + + + + t t t 1 .
¢ e
| | :
: 200m | | 208m
INITIAL _/-fI
GUESS~
i oo fim
9]
Best fit alpho center psaudosection
o 2 3% 4 35 & 7 & s 1o 12 13 14
+—1 4 + p——t———tp : { } —+ 1 +—t

Fuwi. 9. Test case 3: two parallel dikes. Inversion reselts using o
cenlers o Nf data from prismatic model of two parallel, finite-
length vertical dikes, The dikes are bisected by the profile. Solid
circles show projection of finai « center positions with associated
cne standard deviation error bars, A dipole length of 100 53 was
used for the calculations.

right dike {(C,in,), position of the left dike along the profile
(x1en ), and the position of the right dike along the profile {xyighe ).
The strike position of the dikes was held constant since we have
only one profile. The difference between these two parameteriza-
tions was that onc included as variables the depth {z1.p and zpigpe)
of each dike while for the other the depth was specified and held
constant.

In the cases where the depth was a variable, the inversion pro-
cess converged to the local minimum. Only when the depth
was specified were the correct positions along the profile deter-
mined. This is certainly a scrious constraint since in practice one
would rarely have a better idea of the depth to the top of a bady
than of its position along the profile. Perhaps a better initial guess
would remedy the problem, but it is probably safe to say that the
false minimum is a broad one capable of engulfing all but the best
of initial gucsses,

The third parameterization represents a more practical appli-
cation of inversion in which the position along the profile of one
body is known. The addition of this information deprives the solu-
tion of the single central body local minimum, restlting in a very
stable inverse. Included as inversion parameters were the back-
ground (B}, the position along the profile {xj.r) and depth
{210n) of the left dike, the coefficients of both dikes (Ciop and
Crignt), and the depth of the right dike (z,;45().

The initial guess o center positions are shown in Figure 9 as the
open circles while the inverted o center positions arc the solid
circles. Figure 9 also shows the resultant best fit pseudo-section,
This represents a data fit of approximately 19 percent. Parameter
statistics are listed in Table 4,

Thirteen iterations reguired 5.5 minutes and cost $7.40.

FIELD EXAMPLES

To test the ability of « center inversion to locate conductive
bodies in the presence of geologic noise, we chose data from three
massive sulfide environments and a geothermal arca. The only
available data for cach of these test cases are from a single pro-
file; therefore, the off-profile geometry of the conductor was held
fixed, [n the massive sulfide fest cases, the off-profile geometry
was known from drillhole information,

Field example 1: Que River, N. W, Tasmania

The field data from line 7350N and simplified geologic cross-
section are shown in Figure 10 {Webster and Skey, 1977). Figure
t1 is a plan view of the massive sulfide ore outline.
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’Iahlt 4, Alpha center parameters, paramcter btatls!ua, and wrrd.:tmn wtfﬁucnts for test case 3, two p.xr.:]kl vertical dikes.
inverted Parameter Correlation
Parameters Hodet Statistics Coefficients
B .06 \S7y, 173 1.0

CLeft L34 4 )0 +36% -.41 1.0

X aft £37m +59m L8 .37 1.0

Z oft 120m £ 1098 -.21 .73 .22 1.0
ST [N held - - - -

ch:jht L7 afam 2429 72 .28 .67 21 1.0

zRi_r;ht 125m £80% - 41 -.17 -.25 - 07 .73 1.0

Amn effective approach to invert real field data is initially to fix
the depth to the top of the conductive zones and invert to back-
ground and conductor ¢oefficients and positions alomg the profile,
(nce a minimum is obtained lor this parameterization, the depth
to the conductive zone is added as a new inversion variable. This

approach was used on the Que River data allowing both P and §

Field dain- Que River |ine T350 N
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Fr. 10, Field example 1: Que River line 7350N. lnversion results
showing field data, best fit psendo-section, and « center model.
Cror bars represent one standard deviation, Note that aithough
the 5 conductor has been precisely located, the inversion seheme
failed to locate the deeper P conductor.

conductor parameters to vary independently. The result was a
correet placement ol the large, shallow § conductor bencath
5274E with the P conductor focated at approximately 5250E. §
and P conductor parameters were highly correlated, so we de-
cided to fix the position of the § conductor and search only for the
position (x,, z,) of the # conductor and coefficients €, and €.
This parameterization (regardless of any reasonable initial guess)
resulted consistently in a conductor being placed deep below the
electrode at 5250E. One might conclude that within the data fit
error (approximately 120 percent), there is no do resistivity in-
formation about a £ conductor benecath 5150E.

At this point we should define the components of “‘data fit
grror’’ with reference to real ficld data. The first component is
measurcment error which, for modern equipment i conductive
terrains, is perhaps of order 5 percent. The second component is
geologic noise—the response of small {or possibly large) scale
inhomogeneitics not directly associated with the sought after
ore body. The third component is actually very difficult to separate
from geologic noise, and that results in the possibility, or in-
evitability, of the wrong forward problem being done. Doing the
wrong forward problem may be further subdivided into (1) the
ahility of a model conductivity distribution to fit what is actually
in the subsurface, and (2) the adequacy of, or our interest in,
madeling the geologie noisc reflected in the field data,

We have found that using an o center model to it theoretical
datz from conductive prisms usually results in g data fit error in
the neighborhood of 20 to 30 percent,

To summarize, unless we really know the exact subsurface
vonductivity distribution, it s impossibie to separate the geologic
noise component of data fit error [rom the component due to doing
the wrong forward problem.

The model statistics and correlation coecfficients for the last
parameterization are shown in Tabie 5. Ten itcrations required
1.5 minutes and cost $1.90
Ficld example 2: Woodlawn, New South Wales, Australia

Field data from this massive sulfide prospect are shown in
Figure 12 (Tyne et al, 1978}, As shown In the plan view (Figure
13y, the profile crossed the northern edge of the near vertical ore
body at an angle of approximately 30 degrees,

[nitial parameterization took into account only wvariation in
paramcters B, and (7, and position along the profile. From an
initial puess shown by open circles in Fipures 12 and 13, the posi-
tion of the o deseribed body was moved horizontally along the
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Table 5. Alpha center parameters, parameter statistics, and correlation coefficients for field example 1, Que River, N. W. Tasmania.

Correfation

Inverted Parameter fat

Parameters Model Statistics Coefficients

C, .313 4fsm +58% 1.0

[“,p .23 AfSm 12505 -.98 1.0

b 5248n =84m -, 91 +.91 1.0

Z, 55m +1415% .83 -.37 ~.45 1.0

k)

B 5)(10_4“'5/”1 poorly determined parameter - fixed from earlier inversion

X 5274m 18m - fixed from earlier ifnversion

- fixed as shown in Figure 14

profile to approximate the actual position of the conductive (ap-
proximately 1 £1-m) massive sulfide body.

At this point we reparameterized to include also the depth of
the o centers, vsing as an initial guess the results from the first
tnversion. This resulted in an insignificant position adjustment
along the profile and a slight increase in the depth to the top o
center [rom 15 to 18 m. The final positiens of the centers with one
standard deviation error bars are shown by the solid circles in
Figures 12 and 13. These results would certainly be accurate
enough to locate 4 drilthole correctly along the profile.

Table 6 shows the parameter statistics and correlation coeffi-
cients for the final parameterization. The data fit was approximately
160 percent. Each inversion took from 401 to 50} sec for 1{} iterations,

Field example 3: Elura, New South Wales, Australia

The area in the vicinity of the Elura prospect is flat with extensive
alluvial cover and littie outerop (Ogiivy, 1976). There is no surface
expression of mineralization. The massive sullide ore body is a
near-vertical pipe (MeCracken, personal communication) below
approximately 90 m of overburden in a host of steeply dipping
sediments. _

The data and outline of the ore body arc shown in Figure 14,
The dipole length is 30.48 m. Due to the abundant geologic noise
and depth of burial, the inversion scheme failed to locate the con-
ductor. The appreach was to attempt to fit the near-surface re-
sponse with a surface « center distribution, then hold their positions

7600 N

7500N

S CONDUCTOR

7400 N

P CONDUCTOR

| line 7350N

7300N

5000E S5100E

5200E

5300E 5400E

Fei, Ti. Plan view showmg locations of £ and 5 conductors with respect to line 7350N, Que River, N. W, Tusmania,
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Table 6. Alpha center parameters, parameter statistics, and correlation coefficients for field example 2, Waodlawn, NS, W, Australia.

Inverted Paramoter
Parameters Mode] Statistics
B 02 S +167%
c 37\ s 337
b Z203m =12
Fd 18 1628

Field dato— Woodlown

o 1 2 3 4 5 G ¥ L:] k] 10 1] 12 314
3 b bt } 4 4 + | }
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B, 12 Field example 2: Woodiawn, N.S. W, Australia. In-
version results showing field dats, best-fit pseudo-section, and @
center model. [nitial guess ¢ center positions are the open cireles.
Electrode six represents a local position along the profilc of 243.8
m with a dipole lenpth of 30.48 m,

|
8400 N ‘ ‘ : . -
I JZ_Ié I4  BURVEY LINE
| —_—
9300 N b P R
4 !
‘—)v H
Sy _
S100N J»—

I ’ . 30

87C0E  9HODE SSJJOE {OCGOOE  10I0CE
Fra 13, Plan view showing position of massive sulfides at buse of
gossan with respect 10 survey ling and electrode positions. Initial
guess o cenler positions are open cireles, while solid cireles repre-
sent the inverted position of the o-defined conductive inhamo-
genelly, Woodlawn, N5 W, Austraiia.

Carrelotion
Coefiicianis

1.0
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-0 .81 ~ 05 1.6
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Fi. 14, Field example 3: Elura. Inversion results showing the
inability of an « center model to determine the position of the deep
vertical conductor in g conductive host. All o cenfer parameters
were undetermined. The dipole length s 160 m.

constant and invert to the position of an o center defined vertical
eylinder. The inverted section in Tigure 14 represents the o ap-
proximation to the near-surface noise. All attermnpts to locate the
vertical conductor failed. The inversion routine simply removed
the cylindrical conductor itom the area of interest.

The data fit is approximately 75 percent.

Field example 4: Black Rock Desert, Utah

The data shown i Figure 15 arc from the north portion of a
3 km muhifrequency dipole-dipole survey extending north for
33 km from the north end of the Mineral Range. The pserdo-
section reflects the apparent resistivity data from the low-frequency
usymptote. A deep drilthole 3 km west of the north end of the
Mineral Range is the only Tocal geotogic comtrol. The lithologic
[og reveals approximately |k of Pleistocene sediments overlying
Paleozoic sediments. The basalt and rhvolite lows shown in Figure
it have been dated at 2.1 to 2.2 mybp. The Cumbrian scdiments
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F1G. 15, Field example 4: Black Rock Desert, Utah, Two sets of inversion results illustrating the trade-off between data fit and parameter
iesolution when more o centers are used in the inverse sofution. The plots t the left show the results when only three o centers are esed to
deline the conductivity distribution, while those on the right show the results for five centers. H any deep conductors exist in this region, the
a center inversion scheme failed to discriminate between their response and the near-surface conductive areas. The dipole length is 3 km.

comprising the Cricket Range just to the west of the profile arc
also present In thrusts at the north end of the Mineral Range.
Water was virtually always encountercd in shallow driltholes
which penetrated the basalt and rhyolite Hows,

Stnee ondy one profite was available, we used what meager
geologic information we had in constraining the o centers. The
inversion routine insisted on only shallow conductors, so the ofl
profile centers played a nepligible role in the imterpretation. Al
this point all a cenlers were constrained W He immediately be-
neath the profile.

The two different inversion results illustrate the trade-off be-
tween data fit and parameter resolution. When three o centers are
uscd, the data fit error is 97 percent and the o center parameters
arc fairly well determined {Table 7a). When five o centers are
used, the data fit improves to 73 percent at the expense of param-
cter reselution {Table 7b).

The first model with three o centers defines, generally,
near-surface conductive zone due fo the sedimentary fill berween
the Cricket Range and the Mineral Range. The two additional o
centers improve the fit by defining a conductive zome hetween the
rhyolite and basalt flows (stations 24 27). The location of the
deepest o center 15 very poorly determined, indicating that from
this single profile not much can be said about the conductive zone.

This cxample serves as an dlustration of how the mversion

the
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Tahle 7. Alphu center parameters, parameter statistics on correlation coefficients for fwo different parameterizations of the Roosevelt Hol Springs

KGRA, (a) Three oo centers, (b) five o centers. Where depths ace not shewn, they were cunstrained to be 10 m.

Inverted Parameter
Mode] Statistics

Paraneters

3 078y +718 1.0
o 321afam 135% -3
Xy 16.7kn =144 -.11
C,  296.s  s47 -7
X 24 . 4km +.9km i
C;  112.4fm 879 -.22
Ay 13, 2km +2.2km -.20
B L0245 undet. 1.0

£, 72,6450 undet, -3 1.9

% 26.9km 18 6km -6 -.958 1.0
C,  26lafsm 21303 -.64 28 .34
Xy 16,0km -2, 8kn B2 .23 .28
C,  260.4/5m #1203 57 —2n .34
Xq 8.7k 12, 3k, LBE 28 -34
Cﬁ 212, “-— undet, .33 -1n -84
X 2b.8km 17k -3 .98 L9z
2y 1.34ke  undet, -. 49 i W97
C, 50.245m  +160% 59 .16 .20
% 12.7km 11, 3km A4 1B -23

forrelation
Coefficients

1.0
-.13 1.0
-.33 60 1.0
-.29 Nk .15 1.0
-.13 -, 57 -.31 -.14 1.0
7 -.05 .13 -2 .03 1.0
1.0
-.75 1.0
-. 04 A6 1.0
-.95 87 e 1.0
- 28 .23 L2 .28 .0
A7 =21 =28 -.de -9 1.0
L33 -280 =034 =032 -8 890 1.0
A4 -8B - 61 -.62 -7 .14 .23 1.0
-.51 LB .55 W57 19 -.17  -.2¢ -.49 1.8

algorithm could provide information to guide further exploration or
a reasonable initial guess lor more sophisticaled and probably
much more costly muitidimensional forward modeling or inversion
schemes. The cost of obtaining these results was $.07 for ten

itcrations,
DISCTISSION AND CONCLUSIONS

Using this very fast and simple forward solution, the dc response
of complex 3-I3 bodies may be casily calculated. Inverting data
from prismatic bodics shows that their responsc can usually be
approximated to within 20 to 30 percent. Multiple bodics and
problems of mixed dimension present no special complications,
although greatest efiiciency is achieved for compact bodies. The
most severe limilation inherent in this « center formulation is the
inability to approximate resistive bodies. Another limitation is the
difficulty in determining the actual conductivity of prismatic
bodies.

The ficld cxamples illustrate the capability of the inversion

algorithm to determine, in most cases, the positions of conductive
bodies in the presence of abundant geologic noise. The program
size, including both instruction and data storage, is currently less
than 15,000 words and could easily be decreased to 10,000 words
with judicious programming. These storage requirements bring the
program within reach of small truck-mounted computer systems
such as those currenily being employved in data acquisition
systems. This application would make in-ficld data interpretation
possible, i

A practical approach to inverting actual fleld data was first to
use any availuble peologic information to determine the gross con-
ductor geometry (c.g., podiform mass, vertical dike, manto, efc.)
and lock together several o centers to approximate this shape.
Again using as much geologic information as possible, fix the
depth to the body at some plausible figure and invert to the position
along the profiles. After obtaining a minimum for this parame-
terization, include the depth to the conductor as a variable and
invert again using the initial inversion results as a starting model.
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APPENDIX
COMPARISON OF ALPHA CENTER RESPONSE WITH AN
INFINITELY CONBUCTIVE SPHERE RESPONSE

Virtnally all numerical and scale modeling schemes caleulute
responses due to bodies with piece-wise constant conductivity
distributions. In an effort to bridge the gap between this type of
conductivity structure and an o center conductivity distribution,
we prescnt the following simple analysis.

We start by writing the r-component ¢lectric ficld response
Fi,, of a sphere in a whole-space subject to a uniform x-directed
clectrie field g, (Grant and West, 1965).
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where

a - radius of the sphere,

K - reflection coofficient (oy — )/ (uy + 201),
7 — conduetivity of the sphere,

7y — conductivity of the whole-space,

R —|Ax? + Ay? + AL2YE R =g,
Bx = (x, — x0),
Ay = (yp — ¥c),
Az = (z,_, - z.),
and the subscripts g and ¢ refer to the positions of the field point
and the center of the sphere, respectively.
The same field component £, due to a single o center in a

whole-space is
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where
R —[Ax? + Ay? + AL

Ax = (x; — 2}

Ay = {yp — ¥als

Az = (z, — z,),
B and C are the usual o center parameters, whiic the subscripts p
and w« refer to the position of the field point and the & center,
respectively.

Figure A-1 shows a plot of equations (A—1) and {A 2} where

K = 1 ({infinitely conductive sphere) in equation (A -1). Resulis
for two different sphere sizes and Az values are shown. As is
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Hig. A-1. Comparison between o center and infinitely conductive
sphere responses e a upiform v-directed electric field in a whole
space. The resnits are for two different A z values, (1) g and ooy
at &z 30 m, (2} og and g, at AL 0 200 m. ey, % obtained
by substituting B = 1, ¢ = 1.0, and Az ecquation ({8).
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Fia. A-2. Plot of charge density and resultant secondary electric
ticld pattern for one o center in a whole space subject to a uniform
x-directed electric field Eq,. Plot is in plane {x, 0, z} through an
« center located at origin, Contours indicate values of p/yEy and
vectors are in terms of P,/ Fy.

abvious from the plots, the « center response is not dipolar, An «
center response can never exhibit the characteristic *overshoot®”
of dipolar responscs.

We will now attempt to explain the reasons for this by calcuiat-
ing the charge density associated with an o center in a uniform
clectric ficld
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In terms of & center parameters the charpge density at point p is

() = 2E P BR + 2C Ax (At
¢l = i fE e ——— s — , _

plz oreaBC T R )
where Lhe variables in cquation (A—4) are the same as those de-
fined for equation (A-2). Figure A-2 shows a plot of the charge
density and the sccondary cleetric ficld pattern on the plane

Ay = 0. The response from this diffuse cloud of charge may be
understood by integrating equation (A—4) over the volume defired
by Ax = 0. The total charge in the right balf-space is given hy
Q = 2Eg,CR f R* [BR * 2C] dR (A--5)
= 2k, CHme —— dk. -
’ "o T IBR t CT
If we pick an arbitrary hemispherical surface at point R, we can
calculate the total charge in the regions R <X R, and R > R,
From equation {(A-5) we have

0 = 2E),CB ”R BRY 1R+fw BR? dR
= 2Ep CBre ————dR + —_—
o Ol [BR P x, [BR 1 CT°

ffRC 2CR? e j* 2CR? dRJ A-6)
o [BR+C] g, [BR+CP L

All but the second of the integrals in eguation (A-6) converge.
For large £ the integrand approaches a constant, indicating that
no matter how far away from the o center you take K., the com-
ponent of total charge due to the charge density remaining in the
region beyond R, is infinite. This forces the secondary clectric
ficld never to change sign and so it can nover cxactly duplicate a
truc dipolar field. Note that the total charge in the whole-space is
zero sinee the component of total charge in Ax <7 0 is opposite in
sign from that in Ax > . Also, equation (A—6) is not divergent
for any region; it simply states thal a charge density will be
supported al #ny point in @ media where one is willing Lo expend
the enerpy necessary to maintain 2 uniform electric feld £.

Thus far, we have shown that an a cenfer response is nol dipolar
and, furthermore, why it is not dipolar. We can still obtain some
useful information concerning the parameters of a conductive
sphere by considering the response directly above the sphere and
wcenter, i.e., Ax = Oand Ay = 0 in equations (A—1} and (A2},
Making these substitutions, then equating (A-1) and (A-2) and
solving for Ka®°, we obtain

Ka® = A2° (#)
BAz 4 C

Therefore, in the simple case of a single o center, the inversion
routing will supply all parameters on the right side of the cguation,
and from them an estimale of the reflection coefficient % volume

product may be obtained.



