DEPARTMENT OF GEOLOGY AND GEOPHYSICS

AUTHORS: John A. Stodt

DATE: July 1978

UNIVERSITY OF UTAH SALT LAKE CITY, UTAH 84112

Documentation of a Finite Element Program for Solution of Geophysical Problems Governed by the Inhomogeneous 2-D Scalar Helmholtz Equation

bу

John A. Stodt

Acknowl edgements

The author was supported from NSF contract No. AER 76-11155 while preparing this documentation.

TABLE OF CONTENTS

List	of F	figures	. iv	
List	of	Tables	. v	
1.	Inti	roduction	. 1	
· 11.	Appl	lications	• 2	
111.	Docu	umentation	. 4	
	Α.	Description of software	. 4	
	Β.	Explanation of PARAMETERS	. 6	
	C.	Input list	. 6	
	D.	Output list	. 10	
	E.	Notes on mesh design	. 10	
	F.	Notes on execution on the University of Utah Univac 1108 System	. 12	
Ι۷.	Theo	pry	. 15	
	Α.	Brief description of the finite element method	. 15	
	Β.	Incorporation of sources and boundary conditions	. 19	
	С.	Calculation of auxiliary fields	. 23	
Refe	*ence	28	. 26	
Apper	ndix	I - Calculation of MT Boundary Conditions	. 27	
Apper	ndix	<pre>II - UUCC Univac 1108 System Subroutines</pre>	. 30	
	Α.	NTRAN	. 30	
	B.	DERIV1	. 33	
	С.	CGJR	. 35	
Apper	ndix	III - Program Listing	. 37	
Apper	ndix	IV - Sample Runs	. 57	

List of Figures

.

	· · ·		Page
	Figure 1	Flow diagram of program architecture	5
	Figure 2	Finite element mesh structure, node numbering convention, con-	
		ductivity code number convention. Association of node number	
		with position in global matrix, as indicated by slashes, for	
•		element with nodes 1, 2, 5, 6	8
•	Figure 3	Derivation of linear approximation of an unknown field over a	
		triangular sub-region e	16
	Figure 4	Matrix equations associated with a triangular element; formation	
	-	of guadrilateral element and associated matrix equation from	
		combination of four triangular elements	18
	Figure 5	Explicit form of the 5 x 5 coefficient matrix associated with	
		the quadrilateral element of figure 4. Process of static con-	
		densation to reduce this matrix to a 4 x 4	20
	Figure 6	Method of incorporating Dirichlet boundary conditions in the	
		global system of equations	22
	Figure 7	Calculation of auxiliary field components from the strike direc-	
		tion field obtained with the finite element solution	24

i٧

List of Tables

Page

Table 1 Examples of physical problems governed by equation 1..... 2

I. Introduction

A two dimensional finite element program applicable to the numerical solution of a wide variety of geophysical problems has been developed at the University of Utah. Finite element programs to handle a number of geophysical problems were originally developed by Rijo (Rijo, 1977). Linear interpolation of the unknown field over triangular sub-domains of the region where a solution is sought was used in conjuction with the Galerkin technique to derive a system of linear equations which approximates the governing PDE. The solution of this linear system of equations gives the approximate field values at the nodes of the discretized domain.

These programs have been modified and consolidated by the author into a single program which will handle the two dimensional magnetotelluric TE and TM mode problems, as well as the infinite line source problem. In addition, the element equations obtained from the finite element technique have been re-derived and re-programmed in a sufficiently general form so that any physical problem governed by the two dimensional inhomogeneous scalar Helmholtz equation may be handled with minor modifications to the program.

II. Applications

The finite element formalism developed in part IV of this documentation is applicable to any physical problem governed by the equation

1)
$$\frac{1}{\partial x}(\frac{1}{k}\frac{\partial f}{\partial x}) + \frac{\partial}{\partial x}(\frac{1}{k}\frac{\partial f}{\partial z}) + pf = S$$

where

 $s \equiv source function$

f = unknown field for which a solution is sought

In practice, f, k, p, and s may be real or complex. Examples of some particular physical problems which are governed by this equation are given in Table 1. In Table 1 we make use of the following parameters:

 $z = j\omega\mu$

$$y = \sigma + j\omega\varepsilon$$

I = current strength

Problem	f	k	р	S
TE-MT	Ev	ź	-ŷ	0
TM-MT	н _у	ŷ	-ŷ	0
Line Source	Ε _γ	ź	-ŷ	$l\sigma(x)\delta(z)$

Table 1. Examples of physical problems governed by equation 1.

The program for which this documentation is written solves the examples of Table 1, where f, k, and p are complex quantities. Any or all of σ , μ , and ε may be considered piecewise constant functions of position. The DC resistivity problem, which is also goverened by equation 1 after Fourier transformation of the strike direction, is not incorporated in the same program since only real numbers are required for its solution. It is more efficient computationally to develop a program utilizing only real arithmetic when dealing with problems involving only real quantities. A program based on the theory outlined in part IV of this documentation which solves the DC problem is available at the Department of Geology and Geophysics of the University of Utah as a separate program.

In closing this section, it should be pointed out that an effort was made, through appropriate structuring, to produce a program which could be easily modified to handle other physical problems governed by equation 1 once the user has gained a rudimentary knowledge of both the program and the finite element method. Sufficient theory is hopefully provided in part IV of this documentation, while knowledge of the program itself should be obtained from part III of this report in conjunction with a study of the comment statements in the program itself.

III. Documentation

A. Description of software

A flow diagram of program construction is given in figure 1. This diagram shows the sequence in which subroutines are called to do the various calculations. Also indicated are calls to the Univac 1108 system library routines where they are used. A brief description of the function of the various routines is given in comment statements in the program itself and will not be repeated here. As an aid to the programmer trying to implement the program on a different system, the write-ups on the 1108 system library subroutines are included in Appendix II.

One Univac 1108 system I/O device is used which deserves special mention. The device name is NTRAN and its use is in transferring large amounts of unformatted data from core to Fastrand drum storage and vice versa in an efficient manner. This is necessary in implementing this program on the 1108 because of the relatively limited amount of core storage available. A temporary word addressable data file is assigned in which the coefficient matrix of the linear system to be solved is stored. The Greenfield algorithm (see e.g. Swift, 1967 - Appendix 3) is then used to solve the linear system of equations, with appropriate size blocks of the coefficient matrix being transferred into core and reduced one by one during solution. This data transfer into and out of core is handled by Univac's system device NTRAN. A write up of NTRAN is included in Appendix II as an aid to the user trying to adapt the program to a different system. In this case, a suitable substitution for NTRAN must be found, unless the user's system has a large amount of core memory (150-200K) available so that execution can proceed entirely in core.

Figure 1. Flow diagram of program architecture.

B. Explanation of PARAMETERS

There are three parameters which are set during compilation of the program which must be tailored to the run. A description of these parameters, with a list of the subroutines in which they occur in PARAMETER statements follows.

- IPl = number of nodes in the z-direction. Must be greater than or equal to the actual number of nodes vertically in the mesh.
- IP4 = number of nodes in the x-direction. Must be greater than or equal to the actual number of nodes horizontally in the mesh.
- NLAYR = number of layers (including the half-space) of the 1-D earth model bounding the right and left sides of the mesh. This parameter is only used when calculating the boundary conditions to be applied to the sides of the mesh for MT modeling. It must be greater than or equal to the maximum number of layers on either side of the mesh. The earth models do not have to be the same on both sides of the mesh.

Subroutines in which these parameters appear:

PARAMETER SUBROUTINE NAME

IP1 - MAIN, SELECT, SOLVER, GAUSS1, GAUSS2, AUXFLD

IP4 - MAIN, SELECT, SOLVER, GAUSSI, GAUSS2, AUXFLD

NLAYR - MAIN, EFIELD, EFLD, HFLD

C. Input list

Card 1: FORMAT(2014)

IDX - Option parameter to select appropriate solution.

1 = 2-D line source (TURAM)

2 = TE Magnetotellurics (E-parallel mode)

3 = TM Magnetotellurics (H-parallel mode)

NODEX - Number of nodes horizontally in the mesh (must be exact) NODEZ - Number of nodes vertically in the mesh (must be exact)

NXX - Number of blocks of equal-sized elements horizontally. (See figure 2 for the definition of a block which consists of a given number of elements with equal sized edges horizontally or vertically)

NZZ - Number of blocks of equal-sized elements vertically.

NRES - Number of <u>conductivities</u> in the mesh (including the air layer)

M1 - Number of blocks vertically above z = 0 (air layer) NPRINT - 1 = just print input

0 = execute program

LINE1 Number of nodes horizontally from left edge of mesh to LINE2 where the line source(s) is/are positioned. Default value = 0. For examples, when modeling TURAM, if the effects of the return current part of the loop are not being considered, then LINE2 = 0. LINE1 gives a source current flowing in the + coordinate strike direction, while LINE2 gives a current source of equal strength flowing in the opposite direction.

Card 2: FORMAT(8F10.0)

Y(I) - Conductivities in the mesh - A, B, C... where
A, B, C... = conductivities in the mesh
t t t
0, 1. 2... = mesh code for model input (see Card 7)
F - frequency (Hz)
Card 3: FORMAT(2014)

NX(I) - Number of equal sized intervals DELX(I) in block I

Figure 2. Finite element mesh structure, node numbering convention, conductivity code number convention. Association of node number with position in global matrix, as indicated by slashes, for element with nodes 1, 2, 5, 6.

horizontally.

Card 4: FORMAT(2014)

DELX(I) - Size of the intervals in block I in meters

Card 5: FORMAT(2014)

NZ(I) - Number of equal sized intervals DELZ(I) in block I vertically.

Card 6: FORMAT(8F10.0)

DELZ(I) - Size of the intervals in block I in meters.

Card 7: FORMAT(8011)

Model Deck - Input consists of the code numbers outlined under Card 2, with the ordering convention as illustrated in figure 2. Each interval in z comprises four data cards with conductivity code numbers appropriate to each triangular element punched on the cards in the order shown in figure 2. There are, therefore, NODEX-1 code numbers on each card. Note: The code number for the conductivity of air is always zero.

Card 8: FORMAT(8F10.0)

H(I), I=1, NLYR (NLYR=NLAYR-1) - depths from z = 0to layer interfaces of 1-D boundary condition at <u>left</u> edge of mesh in meters.

Card 9: FORMAT(8F10.0)

P(I), I-1, NLAYR - <u>resistivities</u> of the successive layers on the <u>left</u> edge of the mesh.

Cards 10 and 11 - Same as cards 8 and 9 except these cards apply to the 1-D boundary condition at the right edge of the mesh.

D. Output list

Successive columns of output for the MT programs are:

Column

1 Distance from center of mesh to each mode

2-5 Vertical field components (Re, Im, Magnitude, Phase)

6-9 Field components perpendicular to strike

10-13 Field components parallel to strike

14 Apparent resistivity

15 Negative of the phase of the impedance

Successive columns of output for the line source program are: Column

1 Horizontal distance from the + line source to the nodes at z = 0

2-5 Transverse magnetic field components (Re, Im, Magnitude, Phase)

6-9 Vertical magnetic field components

- 10 Ratio of magnitude of transverse field to primary field
- 1] Ratio of magnitude of vertical field to primary field
- 12 Primary field

E. Notes on mesh design

Proper mesh design is important in obtaining meaningful (i.e. accurate) output from this program. Proper mesh design is an art that the programmer will gain with experience. The following rules of thumb concerning element dimensions will serve as guidelines. They are based on a unit of distance, the skin depth, defined as the distance in which the amplitude of a plane wave is attenuated by 1/e as it propogates through a homogeneous conducting medium. The formula is Skin depth = δ 500 $\sqrt{\rho/f}$ meters where ρ = resistivity of the medium

f = frequency (Hz)

The rules of thumb are:

1) Element dimensions should not change from one element to the next by more than a factor of 3 to 5.

2) In the vicinity of a change in conductivity of the medium the element dimensions should be approximately $\delta/6$ in the medium where the element resides.

3) 2 to 3 δ away from any variation in conductivity the element dimensions may be increased to the order of δ of the medium.

4) Vertical element dimensions may be increased approximately logarithmically (1, 3, 10, 30...) from the air-earth interface because of the exponential decay of the fields. The maximum vertical dimension of an element should still ideally be held to 1 to 28 however.

5) The air layer for the TE-MT and line source problems should consist of 7 or 8 elements logarithmically increasing in vertical dimension from the air-earth interface, staring with about 10-100 m for frequencies <1Hz and 1-10 m for frequencies >1Hz.

6) A 1 or 2 node air layer is required computationally in this program (not theoretically) for the TM-MT case. A 2 m and 10 m layer has given good results.

7) Vertical mesh boundaries should ideally be extended 3 to 6 skin depths away from the nearest 2-D structure.

8) The bottom mesh boundary should ideally be 4 to 6 skin depths of the background conductivity from the air-earth interface.

9) When solving the line source problem, the mesh should be made "fine" in the region of the sources. A little experience will determine what "fine" is for a given problem. The mesh boundaries should be extended out to where the fields due to the source are approximately zero.

These rules of thumb will lead to inordinately large (and hence expensive) meshes much of the time. The programmer's task is then to cut corners where his experience tells him he may do so without too adversely affecting the accuracy of the results. Accuracy is checked by refining the mesh and checking convergence of the solutions. For information on convergence rates for linear approximation of the field see e.g. Strang and Fix (1973).

F. Notes on execution on the University of Utah Univac 1108 system

The first step in using the program is to compile the appropriate subroutines with the correct parameters as explained in III. B. The program then needs to be mapped into an absolute element for execution. The UUCC Mathpack system library (UUCC*MSLIB.) must be made available during this operation, since this is the system file where subroutines CGJR and DERIV1 reside. After compilation, a typical map sequence will be as follows:

@PREP, QUALIFIER*FILENAME.

@MAP, IS,,,QUALIFIER*FILENAME.ABSOLUTE

IN QUALIFIER*FILENAME.MAIN

LIB QUALIFIER*FILENAME., UUCC*MSLIB.

In this sequence, QUALIFIER*FILENAME. is the user's file in which the elements of the program reside. The LIB statement is crucial since this is the statement which makes the system routines in UUCC*MSLIB. available to the program. ABSOLUTE is the name of the absolute element which is being created and stored in the file OUALIFIER*FILENAME. The program is now ready to execute, given the proper data as described in III.C. A temporary <u>word addressable</u> data file <u>must be assigned</u> at execution for storage of the coefficient matrix while the solution is progressing. Data are stored on and retrieved from this file during execution through the use of NTRAN (See Appendix II).

A typical execution sequence would be:

```
@ASG,T_1., D///FILESIZE
Data Deck
@XQT,OF_QUALIFIER*FILENAME.ABSOLUTE
@FIN
```

The first control card assigns the temporary (T option) data file. The number 1 is the <u>unit number</u> with which the program has been set up to identify this file. The D option makes the file word addressable. If there were no D option here, the file would be assigned as sector addressable. FILESIZE is the number of words of storage assigned to the temporary file. The formula for determining file size is:

FILESIZE = $2*(NBAND^2 + NNODE*NBAND)$ where NBAND = IP1 + 2

NNODE = IP] * IP4

We see, for example, that a 30 X 50 node problem would require the following storage:

 $2*(32^2 + 30*50*32) = 98048$ words

The F option on the execution statement deserves mention. This option is used to suppress the counting of underflows which occur during execution. Since the program usually generates a large number of underflows, this option can produce a considerable savings in execution time. Overflows and divide checks will still be flagged. Neither of these should occur during normal execution. Re-check the input carefully for proper format and consistency should these occur, as this is the usual source of error.

IV. Theory

This section will be concerned with a brief description of the application of the finite element method to the solution of equation 1. More detailed analysis may be found in Rijo (1977) and, e.g. Huebner (1975). Incorporation of boundary conditions and source parameters is also discussed as as the calculation of auxiliary field components which are obtained by appropriate manipulation of the field values obtained from the finite element solution.

A. Brief description of the finite element method.

The application of the finite element method to the solution of equation 1 hinges on the derivation of element matrix equations from the governing differential equation. We use the following technique. Re-write equation 1 in operational form:

2) Lf = S

where $L \equiv \partial/\partial x(1/k \partial/\partial x) + \partial/\partial z(1/k \partial/\partial z) + p$

Now approximate f by piecewise linear functions defined over triangular subregions e of the domain over which a solution is being sought--see figure 3. We have m = total number of triangular3) $\tilde{f} = \sum_{e=1}^{m} \tilde{f}^{e}$ e=1

where

4) $\tilde{f}^{e} = \alpha_1 + \alpha_2 \chi + \alpha_3 Z$

Using 4, we obtain an equation for each of the field values at nodes i, j, k of the triangular region.

5) $f_n = \alpha_1 + \alpha_2 X_n + \alpha_3 Z_n$ When these three equations are solved for the α 's and the results substituted into equation 4 we obtain 6) $\tilde{f}^e = N_i^e \tilde{f}_j + N_j^e \tilde{f}_j + N_k^e \tilde{f}_k$ ORIGINAL EQUATION:

L F = S $L = \frac{\partial}{\partial x} \left(\frac{1}{\kappa} \frac{\partial}{\partial x} \right) + \frac{\partial}{\partial z} \left(\frac{1}{\kappa} \frac{\partial}{\partial z} \right) + P$ APPROXIMATE F BY SOME F: THEN $L\tilde{F} - S = \epsilon$

SUPPOSE F VARIES LINEARLY OVER TRIANGULAR REGIONS e.

THEN $\tilde{F}^e = q + a_2 X + a_3 Z$ OR, IN TERMS

OF NODAL $\tilde{F}_n = \alpha_1 + \alpha_2 X_n + \alpha_3 Z_n$

 N_i^e , N_k^e are obtained through cyclic permutation of the subscripts i,j,k.

Figure 3. Derivation of linear approximation of an unknown field over a triangular sub-region e.

where N_n^e , n = i, j, k is defined in figure 3. N_j^e and N_k^e are obtained from the formula for N_i^e by cyclic permutation of the subscripts i, j, k. The N_n^e are a local, linearly independent, complete set of basis functions in which the unknown linear variation of the field is expanded over the triangular sub-domain e. Having defined the form of the approximation over these sub-domains, we can now substitute 3 into 2 and obtain an expression for the error of approximation, ε .

7) Lf-s≡ε

We now wish to minimize in some sense this approximation error. One way to do this is to force the inner product of the error with the basis functions to be zero over the region where the local basis is defined, i.e. 8) $\langle N_n^e \rangle = \iint_e N_n^e \varepsilon dxdz \equiv 0$ n = i,j,kMathematically, this states that the error of approximation be orthogonal to the weight functions N_n^e over the sub-domain e. In our scheme, the basis functions and weight functions are the same so that the norm of the approximation error ε is minimized by this technique (Harrington, 1967). By carrying out the integrations appropriately (see Rijo, 1977, or Huebuer, 1975) we obtain the matrix equations in figure 4. In evaluating 8 an integration by parts is performed which results in a line integral term around element boundaries. This term is associated with the Neumann boundary condition. Since we apply Dirichlet boundary conditions to all mesh edges for the three problems which are being considered, we disregard this term.

If the finite element mesh is set up in a regular fashion so that four triangular elements combine to form a quadrilateral element, we can reduce the size of the global system of equations by 20% by eliminating the unknown field value associated with node five of the quadrilateral element in figure 4.

WE WISH TO MINIMIZE IN SOME SENSE THE ERROR E.

LET'S TAKE $\langle N_n^e \varepsilon \rangle = \iint_e N_n^e \varepsilon \, dx \, dz = 0$ n = i, j, k

CARRYING OUT THE INTEGRATIONS:

HAS THE FORM

 $\begin{array}{c} A & B & O & C & D \\ E & F & O & G \\ H & I & J & J \\ K & L & \\ \hline M & M \end{array} \end{array} = \begin{bmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{bmatrix}$

Figure 4. Matrix equations associated with a triangular element; formation of quadrilateral element and associated matrix equation from combination of four triangular elements.

This is done at the element level through a process known as static condensation (Huebner, 1975). When the triangular element matrix equations are combined additively in the appropriate manner a 5 X 5 system of equations is obtained. The coefficient matrix of this system has the form indicated symbolically in figure 4, and is written out explicitly in figure 5. The process of static condensation consists of partitioning the 5 X 5 matrix associated with the quadralateral element into a 2 X 2 system as shown in figures 4 and 5, and then eliminating the field variable associated with the internal node. This is achieved through appropriate manipulation of the 2 X 2 system as indicated in figure 5. The resulting 4 X 4 system involves only field values at the external nodes of the quadrilateral element. The coefficient matrix of this system is written symbolically in figure 5. This is the matrix which is actually programmed and then loaded additively into the global system coefficient matrix in the appropriate locations, as illustrated in figure 2. The appropriate locations in the global matrix are determined by the node numbering scheme. Our node numbering scheme is also shown in figure 2. Notice that the flexibility to assign different physical property factors k, p in each triangular region of the quadrilateral element has been retained, so that the discretization is still over the triangular regions, not over the quadrilateral regions.

B. Incorporation of sources and boundary conditions

The incorporation of the infinite line source of current strength I for the line source problem is an easy matter with the finite element method. The term of the source vector associated with the node in the finite element mesh where the source is located is assigned a number equal to +I if current is flowing in the + coordinate direction, and a number equal to -I if current is flowing in the - coordinate direction. This result is easily

 $\frac{1/a^{2}}{4(a^{2} + a^{2})} + \frac{a^{2}}{K} + \frac{a^{2}}{24} + \frac{1}{24} + \frac{1}{24} + \frac{1}{24} + \frac{1}{4} + \frac$ $\frac{1}{4} \left(\frac{AZ}{AX} - \frac{AX}{AZ} \right) \frac{1}{X_1} + \frac{AXAZ}{48} R_1 = \frac{1}{2} \left(\frac{AX}{AZ} + \frac{AZ}{X_2} \right) + \frac{4XAZ}{48} \left(\frac{R}{1} + \frac{R}{2} \right)$ $\frac{1}{4} \left[\frac{AZ}{AX} + \frac{AX}{AZ} \right] \left[\frac{AX}{K_{2}} + \frac{AX}{24} \left[\frac{R}{2} + \frac{R}{3} \right] = \frac{1}{4} \left[\frac{AZ}{AX} - \frac{AX}{4Z} \right] \frac{AXAZ}{48} \frac{R}{3}$ $\frac{1}{2}\left(\frac{4X}{4X} + \frac{4Z}{4X}\right) + \frac{4XAZ}{48}\left(\frac{P}{2} + \frac{P}{3}\right)$ SYMMETRIC $-\frac{1(\frac{AZ}{4}+\frac{AX}{K_{3}})\frac{K_{3}}{K_{3}}+\frac{K_{4}}{24}+\frac{AXAZ}{24}(\frac{R}{3}+\frac{R}{4})}{-\frac{1}{4}\frac{AZ}{4X}-\frac{AX}{4Z}(\frac{R}{4}+\frac{AX}{4B}-\frac{R}{4}-\frac{1}{2}\frac{AX}{4B}+\frac{AZ}{4B}(\frac{R}{4}+\frac{R}{4})+\frac{AXAZ}{4B}(\frac{R}{3}+\frac{R}{4})}$ $\frac{1/aZ}{4(AX} + \frac{AX}{AZ}) \frac{(K_1 + K_2)}{K_1 K_4} + \frac{4XAZ}{24} \binom{P+P}{24} \frac{1}{2} \frac{AX}{(K_1 + Z} + \frac{AZ}{K_4 + X}) + \frac{4XAZ}{48} \binom{P+P}{48}$ $\frac{1}{4} \left(\frac{\Delta Z}{\Delta X} + \frac{\Delta X}{\Delta Z} \right) \left(\frac{K_1 + K_2}{K_1 K_2} \right) + \frac{\Delta X \Delta Z}{24} \left(\frac{P}{1} + \frac{P}{2} \right)$ $= \frac{4X}{4Z} \left(\frac{K_1 + K_3}{X_1 K_3} \right) = \frac{4Z}{4X} \left(\frac{K_2 + K_4}{K_1 K_4} \right)$ + $\frac{4\times42}{24}(P_1+P_2+P_3+P_4)$

STATIC CONDENSATION:

Figure 5. Explicit form of the 5 x 5 coefficient matrix associated with the quadrilateral element of figure 4. Process of static condensation to reduce this matrix to a 4×4 .

derived, see Rijo (1977). I is arbitrarily assigned a value of 1 in the program. It is possible to assign a + and a - source, to simulate both long wires of a TURAM loop for example. The other terms of the source vector are zero.

When solving the TE or TM magnetotelluric problem, the entire source vector is set to zero, simulating a source at infinity. The source is introduced in the problem by applying a constant field value at the top of the mesh as a boundary condition.

Dirichlet boundary conditions are applied at all external mesh boundaries when solving the problems of Table 1. The method used in the program to incorporate these conditions once the global system has been formed is illustrated in figure 6. The following boundary conditions are applied:

- Line Source problem: Homogeneous (zero) boundary conditions are specified at all external boundaries, with the assumption that the source(s) is/are located sufficiently far from the mesh edges so that the fields are approximately zero there.
- TE-MT problem: A homogeneous boundary condition is applied at the bottom edge of the mesh. At each side of the mesh, fields due to a normally incident plane wave over a layered earth structure (one side may differ from the other) are calculated. The amplitude of the incident E-field is arbitrarily chosen as unity at the earth's surface, oriented in the + x (strike) direction. The resultant E-fields from this calculation are applied as boundary conditions on the sides of the mesh. The field values at the upper left and upper right corners of the mesh are then extended to the center of the mesh to give the constant field

Suppose we want to fix $f_1, f_3 = \beta_1, \beta_3$

K ₁₁ ×10 ¹⁵	k ₁₂	k ₁₃	k ₁₄	$\begin{bmatrix} f_1 \end{bmatrix}$		ß ₁ k ₁₁ x10 ¹⁵	
k ₂₁	k ₂₂	k ₂₃	k ₂₄	f2	ł	\$ ₂	
k ₃₁	k ₃₂	k ₃₃ x10 ¹⁵	k ₃₄	f ₃	-	15 8 ₃ k ₃₃ x10	
k ₄₁	k ₄₂	k43	k ₄₄	f ₄		S4	

e.g.
$$k_{11} \times 10^{15} f_1 + k_{12} f_1 + k_{12} f_2 + k_{13} f_3 = \beta_1 \times k_{11} \times 10^{15}$$

or $f_1 \simeq \beta_1$

since $k_{11} \times 10^{15} > k_{1j}$ j = 2,3,4

Figure 6. Method of incorporating Dirichlet boundary conditions in the global system of equations.

at the top of the mesh which simulates the source for this problem. TM-MT problem: The boundary conditions for this mode are applied in the same manner as for the TE mode, except that H-fields from the layered earth calculations are used. The source for the layered earth problem is again a normally incident plane wave with unit amplitude incident E-field, this time oriented in the + x (dip) direction. Notice the change in coordinate convention here. This is documented in the comment cards in the program. The reason for the change in convention is due to the manner in which the side boundary fields are calculated (see Appendix 1).

C. Calculation of auxiliary fields

The only field component we obtain with the finite element solution directly is the field (E or H depending on the problem) in the strike direction. Since other field components are required to calculate the parameters usually desired for interpretation, we must devise a numerical scheme for obtaining these from the field component in the strike direction. The auxiliary fields in this program are obtained through direct application of Maxwell's equations, as illustrated in figure 7. Note the different coordinate conventions for the three problems and the effects they have on the auxiliary field calculations. The derivatives indicated are evaluated numerically by fitting a piecewise polynomial to the mesh field values and then differentiating these analytically. This operation is performed by Univac 1108 system subroutine DERIV1 (see Appendix II).

The auxiliary field calculation for the TM-MT problem is approximately constant at the earth's surface, so that the Dirichlet boundary condition could be applied at the air-earth interface in the finite element solution. However, system subroutine DERIVI will not calculate a derivative TE-MT and LINE SOURCE ($e^{\pm j\omega t}$ time dependence)

Non-zero field components E_x, H_y, H_z $H_x = 0$

TM-MT ($e^{+j\omega t}$ time dependence)

Х

 $\frac{\partial}{\partial y} \equiv 0$

From $\nabla xH = (\sigma + j\omega \varepsilon)E$ get

Coordinate System

Non-zero field components

Ez

$$E_{y} = 0$$

$$E_{x} = +1/(\alpha + j\omega\varepsilon) \frac{\partial H_{y}}{\partial z}$$

$$E_{z} = +1/(\alpha + j\omega\varepsilon) \frac{\partial H_{y}}{\partial x}$$

Figure 7. Calculation of auxiliary field components from the strike direction field obtained with the finite element solution.

24

very accurately near the end of a set of interpolated data points. Because of this, a one or two node air layer is incorporated in this problem, and the derivatives are calculated one node below the air-earth interface. For this reason, the first increment in z below the air-earth interface is made very small, say one to five meters. References:

- Harrington, R. F., 1967. Matrix methods for field problems: Proc. of the IEEE, vol. 55, no. 2, pp. 136-149.
- Huebner, K. H., 1975. The Finite Element Method for Engineers: John Wiley & Sons, Inc., New York. 500 p.
- Rijo, L., 1977. Modeling of electric and electromagnetic data: Ph.D. thesis, University of Utah.
- Strang, G. and Fix, F. J., 1973. An Analysis of the Finite Element Method: Prentice-Hall, Inc., Englewood Cliffs, N. J., 306 p.
- Swift, C. M., Jr., 1967, A magnetotelluric investigation of an electrical conductivity anomaly in the southwestern United States: Ph.D. thesis, M.I.T.

Appendix I - Calculation of the Layered Earth Fields for the Boundary

Condition for the Magnetotelluric Problem Conventions: $e^{\pm j\omega t}$ time dependence $E_{i},H_{i}^{\pm}+F_{r},H_{r}$ h_{2} h_{2} h_{1} $E_{m_{1}}H_{m_{1}}^{\pm}+ k_{2}^{2} = \omega^{2}\mu_{0}\varepsilon_{0}^{\pm}-j\omega\mu_{0}\sigma_{1}^{\pm}$ $E_{m_{2}}H_{m_{2}}^{\pm}+ k_{3}^{2} = \omega^{2}\mu_{0}\varepsilon_{0}^{\pm}-j\omega\mu_{0}\sigma_{2}^{\pm}$ $E_{t}H_{t}^{\pm} k_{4}^{2} = \omega^{2}\mu_{0}\varepsilon_{0}^{\pm}-j\omega\mu_{0}\sigma_{3}^{\pm}$

Writing down the solutions in each layer, we have

1)
$$E_i = E_0 e^{-jk_1 Z}$$
 $H_i = \frac{K_1}{\omega \mu_0} E_i$
 $E_r = E_1 e^{+jk_1 Z}$ $H_r = \frac{-k_1}{\omega \mu_0} E_r$ $Z \leq 0$

2)
$$E_{m_1} = (E_2^+ e^{-jk_2 z} + E_2^- e^{+jk_2 z})$$

 $H_{m_1} = \frac{k_2}{\omega \mu_0} (E_2^+ e^{-jk_2 z} - E_2^- e^{+jk_2 z})$
 $0 < z \leq h_1$

3)
$$E_{m_2} = (E_3^+ e^{-jk_3 z} + E_3^- e^{+jk_3 z})$$

 $h_1 < z \le h_2$
 $H_{m_2} = \frac{k_3}{\omega \mu_0} (E_3^+ e^{-jk_3 z} - E_3^- e^{-jk_3 z})$

4)
$$E_t = E_{\mu} + e^{-jk_{\mu}z}$$

 $H_t = \frac{k_{\mu}}{\omega\mu_o} E_t$
 $z > h_2$

Assume E_O = 1. Then E¦_{Z=O} = 1 + E₁ Let

-

$$Z_{j} \equiv \frac{\omega \mu_{j}}{k_{j}}$$

$$Z_{ij} \equiv \frac{Z_{i}}{Z_{j}} = \frac{\mu_{i}k_{j}}{\mu_{j}k_{i}} = \frac{k_{j}}{k_{i}} \text{ if } \mu_{j} = \mu_{i}$$

Apply continuity conditions on tangential E, H and then solve for the amplitude coefficients E_i^{\dagger} and $E_{\bar{i}}$, i = 1, 4. We obtain:

$$E_{1} + E_{2}^{+} + E_{2}^{-} = E_{0} \qquad \text{at } z = 0$$

$$E_{1} + Z_{12}[E_{2}^{+} - E_{2}^{-}] = E_{0} \qquad \text{at } z = 0$$

$$E_{2}^{+}A^{-1} + E_{2}^{-}A - E_{3}^{+}B^{-1} - E_{3}^{-}B = 0 \qquad \text{at } z = h_{1}$$

$$E_{2}^{+}A^{-1} - E_{2}^{-}A - Z_{23}[E_{3}^{+}B^{-1} - E_{3}^{-}B] = 0 \qquad \text{at } z = h_{1}$$

$$E_{3}^{+}C^{-1} + E_{3}^{-}C - E_{4}^{+}D = 0 \qquad \text{at } z = h_{2}$$

$$E_{3}^{+}C^{-1} - E_{3}^{-}C - Z_{34}E_{4}^{+}D = 0$$

where

$$A = e^{jk_2h_1}$$
; $B = e^{jk_3h_1}$; $C = e^{jk_3h_2}$; $D = e^{jk_4h_2}$

Re-writing in matrix notation:

$$\begin{bmatrix} -1 & 1 & 1 & 0 & 0 & 0 \\ 1 & Z_{12} & -Z_{12} & 0 & 0 & 0 \\ 0 & A^{-1} & A & -B^{-1} & -B & 0 \\ 0 & A^{-1} & -A & -Z_{23}B^{-1} & Z_{23}B & 0 \\ 0 & 0 & 0 & C^{-1} & C & -D^{-1} \\ 0 & 0 & 0 & C^{-1} & -C & -Z_{34}D^{-1} \end{bmatrix} \begin{bmatrix} E_1 \\ E_2^+ \\ E_2^- \\ E_3^+ \\ E_3^- \\ E_4^+ \end{bmatrix} \begin{bmatrix} E_0 \\ E$$

This system of equations is set up and solved in subroutine EFIELD. Any number of layers may be handled by changing parameter NLAYR. Complex functions EFLD(Z) and HFLD(Z) implement equations 1 to 4 using the amplitude coefficients from EFIELD.

Appendix II - UUCC Univac 1108 System Subroutines

A. NTRAN

Ref. Univac 1108 Series Fortran V Library-Programmer's Reference, UP - 7896, Univac Division, Sperry Rand Corp., 1971.

Highlights:

- 1) Drum storage is FASTRAND drum storage at the UUCC.
- 2) With FASTRAND storage, the D option must be used when assigning a file (see section III.F) to make the file word addressable, as required by the finite element program. If no D option is used, the file is automatically assigned as sector addressable; I sector equals 28 words. The D option allows FASTRAND files to be manipulated in the same manner as drum files.
- 3) Several operations may be grouped in a single NTRAN call.
- 4) It is important to remember that NTRAN provides for parallel processing. This means that NTRAN will perform user specified operations on a unit (file or tape) while at the same time allowing continued execution of the user's program. Operation 22 provides control over the parallel processing by stopping execution of the program until all NTRAN operations specified before operation 22 are complete. This prevents a program from using a file which is not yet ready, for example.
- 5) The CALL statement for NTRAN has the form

CALL NTRAN(UNIT, sequence of operations)

where UNIT is an integer constant or variable specifying the logical unit. The UNIT number for the program is currently set equal to 1, as described in section III.F. The sequence of operations is any list of I/O operations to be performed in order on the specified unit. An operation consists of a group of arguments. The first argument of an operation identifies the type of operation and is followed by parameters for the operation; these are fixed in number and order of occurrence by the type of operation. When referencing a FASTRAND file which has been assigned as word addressable, the current address for that file is the starting address only if the file has never been referenced in the current run. If the file was referenced before, the current address is the current address before the last CALL to the file plus the number of words transmitted or positioned in that CALL.

6) In order to check the status of transmission, each block of main storage in a FORTRAN program which is used for I/O has a block status word (an integer variable) associated with it; the name of the status word being specified in the argument list of an operation. When NTRAN is
called, the status words in the list of operations are set to -1, which indicates incomplete transmission, and the operations are then stacted in order for execution. When an interrupt occurs in an operation, the status word for that operation is set to a value which indicates the nature of completion, with the following possibilities:

STATUS WORD	NATURE OF COMPLETION
+ N	normal completion; N equals the number of words transmitted.
-2	abnormal completion; attempt to read or write past an end of file marker.
-3	hardware errors, parity and character count errors (tape), or illegal unit specified. Legal units are all properly identified files and tapes.
-4	transmission aborted (previous operation had -2 or -3 status).

Notice that status -2 or -3 disables a unit for further NTRAN operations.

- 7) The following NTRAN I/O operations are used in the finite element program:
 - a) Write

The arguement group is: 1,N,B,L

- N = integer constant or variable specifying the number of words to be transmitted.
- B = variable name from which data is to be written.
- L = status word.
- b) Read

The argument group is: 2,N,B,L

- N = integer constant or variable which specifies the length of the main storage block which will recieve the data.
- B = variable into which data is to be read.

L = status word.

c) Position Drum

The argument group is: 6,N

N = integer constant or variable, positive or negative, which is added to the current drum address to form a new current drum address.

d) Rewind

The argument group is: 10

e) Wait and Unstack

The argument group is: 22

This operation causes a wait in NTRAN until all previous operations for the specified unit are complete before stacking any further operations or returning to the user's program. It also removes any operation which has caused an abnormal or error status and is still stacked against the specified unit, thereby enabling a file or tape which has been previously disabled, as described in 6).

The user must not change any argument of an argument group before the function is completed; i. e. before the status word for an operation has been changed from -1 to another value. All NTRAN operations are executed in sequence; completion of an operation, whether successful or unsuccessful, implies completion of all preceeding operations. B. DERIV1

Ref. Large Scale Systems Math-Pack-Programmer's Reference, UP-7542, Rev. 1, Univac Division, Sperry Rand Corp., 1970.

DERIVI is a function subprogram which approximates the first derivative of a tabulated single valued function at one of the tabulated points. A parabolic approximation is used in which the tabulated function f(x) is approximated by a parabola passing through three pivotal points. The derivative of the parabola is taken as the approximate value of the derivative of f(x). The mathematical basis for the method is as follows:

Using a Taylor's series expansion of f(x+h) we obtain the following expressions for $f(x_i+ah)$ and $f(x_i-h)$:

$$f(x_{i}+ah) = f_{i} + ahf_{i}^{1} + \frac{a^{2}h^{2}}{2}f_{i}^{"} + \dots$$
$$f(x_{i}-h) = f_{i} - hf_{i} + \frac{h^{2}}{2}f_{i}^{"} - \dots$$

where $f_i = f(x_i)$.

An approximate expression for f_i^t is obtained by subtraction of the bottom equation from the top one followed by elimination of f_i^t between the two to get

 $f'_{i} = \frac{1}{a(a+1)h} f(x_{i}+ah) - (1+a^{2})f_{i} - a^{2}f(x_{i}-h) + e$

where e represents the error. The error goes to zero as h^2 for any a. The proceedure for use of DERIVI is as follows:

Calling statement: VAR = DERIVI(X,Y,N,XX,\$K)

where

- DERIV1. is the name of the function and contains the approximation to the derivative at point XX upon return to the calling program. It is a floating point variable, as is XX. XX must equal an element of the X array, but must not equal X(1) or X(N).
 - X is an array of N independent variable values which may be unequally spaced, but must be stored monotonically increasing. X is a floating point array; N is an integer.
 - Y is an array of N dependent variable values. The elements of Y must be stored in correspondence to the elements of the X array. Y is also a floating point array.

- K is a statement in the calling program to which control returns when one of the following conditions holds:
 - 1) XX is not equal to an element of the X array.
 - 2) XX = X(1)
 - 3) XX = X(N)
 - 4) overflow occurs in the computation of the first derivative approximation.

- C. CGJR
 - Ref. Large Scale Systems Math-Pack Programmer's Reference, UP-7542, Rev. 1, Univac Division, Sprrey Rand Corp., 1970.

CGJR is a subroutine which solves simultaneous equations, computes a determinant, inverts a matrix, or does any combination of these three operations, by using a Gauss-Jordan elimination technique with column pivoting.

The proceedure for using CGJR is as follows:

Calling statement: CALL CGJR(A,NC,NR,N,MC,\$K,JC,V)

where

- A is the matrix whose inverse or determinant is to be determined. If simultaneous equations are solved, the last MC-N columns of the matrix are the constant vectors of the equations to be solved. On output, if the inverse is computed, it is stored in the first N columns of A. If simultaneous equations are solved, the last MC-N columns contain the solution vectors. A is a complex array.
- NC is an integer representing the maximum number of columns of the array A.
- NR is an integer representing the maximum number of rows of the array A.
- N is an integer representing the number of rows of the array A to be operated on.
- MC is the number of columns of the array A, representing the coefficient matrix if simultaneous equations are being solved; otherwise it is a dummy variable.
- K is a statement number in the calling program to which control is returned if an overflow or singularity is detected.
 - If an overflow is detected, JC(1) is set to the negative of the last correctly completed row of the reduction and control is then returned to statement number K in the calling program.
 - 2) If a singularity is detected, JC(1) is set to the number of the last correctly completed row, and V is set to (0.,0.) if the determinant was to be computed. Control is then returned to statement number K in the calling program.

- JC is a one dimensional permutation array of N elements which is used for permuting the rows and columns of A if an inverse is being computed. If an inverse is not computed, this array must have at least one cell for the error return identification. On output, JC(1) is N if control is returned normally.
- V is a complex variable. On imput REAL(V) is the option indicator, set as follows:
 - 1. invert matrix
 - 2. compute determinant
 - 3. do 1. and 2.
 - 4. solve system of equations
 - 5. do 1. and 4.
 - 6. do 2. and 4.
 - 7. do 1., 2. and 4.

Notes on usage of row dimension arguments N and NR:

The arguments N and NR refer to the row dimensions of the A matrix. N gives the number of rows operated on by the subroutine, while NR refers to the total number of rows in the matrix as dimensioned by the calling program. NR is used only in the dimension statement of the subroutine. Through proper use of these parameters, the user may specify that only a submatrix, instead of the entire matrix, be operated on by the subroutine.

Appendix III - Program Listing

STODT*PWLS1(1),MAIN

1	C	THIS DRUCTAM COLVES THE THE DIMENSIONAL LINE CONTREL AND THE AND THE
2	č	TALS FROM AND SOLVES THE TWO DIMENSIONAL LINE SUURCE AND TE AND TM
~	ž	MAGNETOTELEORIC PROBLEM ACCORDING TO WHETHER THE INPUT PARAMETER
3	C C	IDX=1,2, OR 3. THE FINITE ELEMENT METHOD IS USED WITH LINEAR
4	С	BASIS FUNCTIONS. MKS UNITS AND EXP(+JWT) TIME DEPENDENCE IS
5	С	ASSUMED. THE + COORDINATE DIRECTIONS FOR THE L.S. AND TE PROBLEMS
6	C	ARE X-NORTH, Y-FAST, Z-DOWN, FOR THE TM PROBLEM THEY ARE Y-FACT.
7	С	Y-SOUTH, Z-DOWN, THE STRIKE DIDECTION TO ASCHUED ALL AND A CASH
Å	ē	S AT LE LEET COLE OF TOUR OF THE TABLE TO ASSUMED 453, THE ORIGIN
õ	č	15 AT THE CEFT EDGE OF THE MESH AT THE AIR-EARTH INTERFACE.
	Ċ.	
10		PARAMETER IP1=27, IP4=57, IP6=30
11		\$+IP2=IP1+IP4+IP3=1P1+2+IP5=2*IP3
12		PARAMETER NLAYR=3
13		PARAMETER NEYRENLAYR-1+NKINLAYR+1+MDIMID*NA AYR
14		COMPLEX CK (4) + CP (4) + CK 12 + CK 13 + CK 10 + CK 23 + CK 24 + CR 24 + CR 24 + CR 24
15		
10		561147612347A117A127A137A237A237A237A337A347A357A447A457A557
10		#E11/011/011/011/E22/H22/C22/E33/G33/E44/BC(IP4),
17		18C1(1P4),S1(1P2,5),S2(1P5,IP3),S(1P3,IP3),P(1P2),R1(1P5),ZER0
18		COMPLEX XE(MDIM);XK(NK);DUM(MDIM;MDIM);EFLD;HFLD
19		DIMENSIUN H(NLYR) P(NLAYR)
20		COMMON/HEK2/DUM, XE, XK
21		COMMONIZINE K 3 ZH - W
22		
23		COMPANY SERVICE DUG CK OD
20		
24		COMMON/BLK5/XX+22+BC+BC1+NTART+NODEX+NODEX1+NODEZ
25		COMMON/PERGAIDX+C+W
26		INTEGER NPT(IP1,4,IP4),NX(IP6),NZ(IP6)
27		REAL DELTAX(IP4), DELTAZ(IP1), DELX(IP6), DELZ(IP6), SHO(IP1, 4, IP4)
28		4,Y(10),XX(1P4),77(1P4),RF(1P4),ATF(1Ph)
29	С	
29 30	c c	****
29 30 31	C C C	***************************************
29 30 31 32	с с с	***************************************
29 30 31 32	с с с	**************************************
29 30 31 32 33	с с с	**************************************
29 30 31 32 33 34	C C C	**************************************
29 30 31 32 33 34 35	с с с	<pre>************************************</pre>
29 30 31 32 33 34 35 36	c c c	<pre>************************************</pre>
29 30 31 32 33 34 35 36 37	C C C	<pre>************************************</pre>
29 30 31 32 33 34 35 36 37 38	0 0 0	<pre>************************************</pre>
29 30 31 32 33 34 35 36 37 30 39	с с с	<pre>************************************</pre>
29 30 31 32 33 34 35 36 37 30 39 40	с с с	<pre>************************************</pre>
29 30 31 32 33 34 35 36 37 38 39 40 41	с с с	<pre>************************************</pre>
29 30 32 33 34 35 36 37 38 39 40 41	с с с	<pre>************************************</pre>
29 31 32 33 35 35 37 39 41 41 23	с с с	<pre>************************************</pre>
29 31 32 33 35 35 37 39 41 42 34	c c c	<pre>************************************</pre>
290 332 333 3567 890 41 234 567 890 41 234 567 890	CCC	<pre>************************************</pre>
290 332 333 3567 890 412 345 412 345 412 345 412 345 412 345 412 345 357 357 357 357 357 357 357 357 357 35	C C 29	<pre>************************************</pre>
290123345678901234567	с с 29	<pre>************************************</pre>
290123345678901223456789012234567	C C 29	<pre>************************************</pre>
29012334567890122345678	C C 29	<pre>************************************</pre>
29 31 32 33 35 35 35 35 41 42 45 47 49 49	C C 29	<pre>************************************</pre>
29 33 33 33 35 35 35 35 41 42 45 47 49 50	C C 29	<pre>************************************</pre>
29 33 33 33 35 56 78 90 12 34 56 78 90 12 34 56 78 90 12 51	C C 29	<pre>************************************</pre>
29012333333567890123456789012	C C 29	<pre>************************************</pre>
290123333333339012345678901223	C C 29	<pre>************************************</pre>
2901233456789012345678901223	C C 29	<pre>************************************</pre>
2901233333333333333444444444444445555555555	C C 29	<pre>************************************</pre>
2901233333333333344444444444444555555555555	C C 29	<pre>************************************</pre>

57 PRINT 300 (DELZ(I), I=1, NZZ) 58 PRINT 470 С 59 60 С THIS SECTION PRINTS OUT THE CODED MESH-IF THE MESH IS TOO LARGE С TO FIT ACROSS THE PAGE, JUST THE CENTER 43 ELEMENTS ARE PRINTED. 61 С 62 63 M=1 64 L2=NODEX1 65 IF (NODEX1.LE.42) GO TO 502 M=1+(NOUEX1-42)/2 66 67 L2=M+42 68 502 D0 501 I=1,NODEZ1 69 PRINT 62 (NPT(I,1,J),J=M,L2) PRINT 65 (NPT(1:2:J):NPT(1:4:J):J=M,L2) 70 501 PRINT 62 (NPT(I,3,J),J=M,L2) 71 С 72 С 73 THIS SECTION PROPERLY POSITIONS THE AIR-EARTH INTERFACE. ¢ 74 75 NTART=1 76 IF(IDX.GT.2.AND.M1.E0.0)G0 TO 220 ¢ 77 С THIS PORTION NUMBERS THE NOUES PROPERLY IF THERE IS AN AIR LAYER. 78 ¢ 79 NOTE--AT PRESENT THE TM MODE ALSO REQUIRES AN AIR LAYER TO AVOID 80 С PROBLEMS ASSOCIATED WITH THE CALCULATION OF THE E-PERPENDICULAR С 81 FIELD THROUGH NUMERICAL DIFFERENTIATION OF THE MESH VALUES -¢ 82 IN THE Z-DIRECTION. Ċ 83 84 DO 103 I=1+M1 85 103 NTART=NTART+NZ(I) 86 L=NTART ZZ(L)=0. 87 88 DO 710 1=M1,1,-1 89 INI=NZ(I) 90 00 710 J=1,INI 91 ZZ(L-1)=ZZ(L)-DELZ(I)92 710 L=L-1 1 93 L=NTART 94 M11=M1+1 95 DO 711 I=M11,NZZ 96 INI=NZ(1) 97 DO 711 J=1/INI 98 ZZ(L+1)=ZZ(L)+DELZ(I)99 711 L=L+1 100 GO TO 230 C 101 ¢ THIS PORTION WILL NUMBER THE NODES PROPERLY FOR NO AIR LAYER. 102 ¢ 103 104 220 LENTART 105 ZZ(L)=0. 106 00 240 I=1+NZZ 107 INI=NZ(I) 108 00 240 J=1,INI 109 2Z(L+1)=2Z(L)+0ELZ(I)110 L=L+1 240 111 CONTINUE 112 230 XE0=8.854333*1.0E-12 113 XMU0=3,14159265*4.0E-07

114		W=6+283185*F
115		IF(IDX.NE.1)GO TO 231
116	C	
117	С	THIS SECTION SETS THE MESH BOUNDARY CONDITIONS FOR THE L.S.
118	C	PROBLEM. THE SOURCE(S) IS ASSUMED INCLUDED IN THE MESH.
119	ć	
120	-	
120		
121		BCGJEZERO
122		BCI(J)=ZERO
123	232	CONTINUE
124		PRINT 610
125		GO TO 233
126	C	
127	C	THIS SECTION CALCULATES THE MESH BOUNDARY CONDITIONS FOR THE
128	С	TE AND IM PROBLEMS A LAYERED EAPTH ROLAIDARY OF UP TO B LAYERS
120	č	A A WALE FRACE (BADAMETER NU AVDATADA CAN DE ACCOMMATER TO 7 LATERS
129	č	A HALF-SFACE (FARAMETER NEATRAID) CAN BE ACCOMMUNATED, THE
130	č	SUCHART FIELDS ARE CALCOLATED FOR AN INCIDENT E-FIELD AMPLITUDE
101		OF I AT THE EARTHS SURFACE (NOT AT THE TOP OF THE MESH)
132	L	POLARIZED IN THE + X DIRECTION. THIS IS THE REASON FOR THE CHANGE
133	Ç	IN COORDINATE CONVENTION IN CALCULATING THE TE AND TM MODES. THE
134	Ç	LEFT BOUNDARY IS CALCULATED FIRST AND MAY DIFFER FROM THE PIGHT.
135	С	
136	231	D0 701 J=1/2
137		READ & (H(T), TE1, NIYR) WINDUT INTERFACE DEPTHS FROM 7-0.
138		READ 4 (P(T), T=1, NIAYP) - OINDUT POINDARY DESIGNATION
130		TE = c + T + T + T + T + T + C + T + C + C + C
100		
140		1F(0.E0.2)PRINT 490
141		PRIN(300 (H(I)) I=1, NLYR)
142		PRINT 300 (P(I),I=1,NLAYR)
143		XK(1)=CMPLX(w*SQRT(XEO*XMUO)0)
144		DO 700 1=2,NK
145		XK(I) = CSGRT(CMPLX(n, - W * XMUO/P(I-1)))
146	700	CONTINUE
147	c	
144	•	
140	c	
149	C	
150		00 702 1=1/NODE2
151		2=22(1)
152		IF(IDX.EG.3)60 TO 250
153		IF(J-1)703,704,703
154	250	IF(J-1)403,804,803
155	704	BC(I) = EE[D(Z)]
156		60 10 702
157	703	
150	100	
100	0.00	
159	804	
160		60 18 762
161 ·	803	BC1(I)=HFLD(Z)
162	702	CONTINUE
163	701	CONTINUE
164		IF(NPRINT.GE.1) GO TO 1009
165		PRINT 495
166	с	····· , / ···
167	č	****
140	č	╶ ╵╵╵ ╹╹╹╹ [┥] ╹╹ [┥] ╹╹ [┥] ╹ [┥] [┥] [┩] ┙ [┿] [┿] [┿] [┿] [┿] [┿] [┿] [┿] [┿] ^{┿[┿][†][†][†][†][†][†][†][†][†][†][†][†][†]}
100	2	THIS CRATTON OFFICIATION IN CHENT PROPORTIONS AND DAMAGED AND THE
102	C C	THIS SECTION DETERMINES ELEMENT DIMENSIONS AND PARAMETERS NEEDED
170	C .	HE SOLVING THE GLOBAL SYSTEM OF EQUATIONS FROM THE INPUT.

171 Ċ 233 172 NBAND=NODEZ+2 173 NNODE=NGDEX*NODEZ 174 NOB=NNODE-NBAND 175 NBAN1=NEANO-1 176 K=1 177 DO 28 1=1+NXX 178 NXI=NX(I) 179 00 28 L=1,NXI 180 DELTAX(K) = DELX(I)181 28 K=K+1 K=1 182 00 38 1=1+NZZ 183 184 NZI=NZ(I) 185 D0 38 L=1,NZI 186 DELTAZ(K)=DELZ(I) 38 K=K+1 187 188 С C 189 ASSOCIATE CONDUCTIVITIES WITH THE MESH INPUT CODE. С 190 191 D0 27 J=1,NODEZ1 192 DO 27 L=1,NODEX1 DO 27 M=1+4 193 K=NPT(J,M+L) 194 195 27 RHO(J,M,L)=Y(K+1) С 196 С ZERO OUT THE SOLUTION VECTOR AND THE GLOBAL MATRIX. 197 С 198 199 DO 16 I=1, NNODE 200 R(I)=ZERO 201 DO 16 K=1,5 202 16 S1(I+K)=2ERO ¢ 203 С 204 THIS SECTION CALCULATES A 4 X 4 ELEMENT MATRIX FOR A RECTANGULAR Ċ 205 ELEMENT MADE UP OF 4 TRIANGULAR ELEMENTS. THE 5 X 5 MATRIX ¢ OBTAINED FROM PROPER COMBINATION OF THE FOUR 3 X 3 TRIANGULAR 206 ¢ 207 ELEMENT MATRICIES IS REDUCED TO A 4 X 4 MATRIX THROUGH A PROCESS C 208 CALLED STATIC CONDENSATION. THIS ELIMINATES THE DEGREE OF FREEDOM С 209 ASSOCIATED WITH THE INTERNAL NODE OF THE RECTANGLE, THUS REDUCING Ç 210 THE SIZE OF THE GLOBAL SYSTEM MATRIX. ¢ 211 212 L1=0. 213 WU≓W*XMUO WE=W*XEO 214 215 00 13 L=1,NODEX1 210 L1=L1+1 217 DO 13 M=1,NODEZ1 DELZX=DELTAZ(M)/(2.*OELTAX(L)) 218 219 DELXZ=DELTAX(L)/(2.*OELTAZ(M)) A=-(OEL2X+DELXZ)/2. 220 221 B=(DELZX-DELXZ)/2. 222 C=DELTAX(L) +DELTAZ(M)/48. С 223 224 CALL SELECT -C 225 226 CK12=(CK(1)+CK(2))/(CK(1)+CK(2))227 CK13=(CK(1)+CK(3))/(CK(1)+CK(3))

220			- デビオカー ナクショナ キャクビ ノカ トキ フィクビ オイト・クレ フィット・
220			CK14-{CK117+CK14772(CK117+CK(477)
229			CK23-(Ck12)+Ck13))/(CK12)-CK13))
230			CK24=(CK(2)+CK(4))/(CK(2)+CK(4))
231			CK34=1CK133+CK143321CK133+CK1433
232			CP12=CP(1)+CP(2)
233			CP23=CP(2)+CP(3)
234			CP34=CP(3)+CP(4)
235			CP14=CP(1)+CP(4)
274			
200			CH1234=CH12+CH34
237	¢		
239	ć		THESE AND THE ELEVENTE AD THE ENDERING
200	Š		THESE ARE THE ELEMENTS OF THE 5 X 5 MATRIX.
239	C		
240			A11=A+CK10+0 +C+CD10
640			
241			A12=-B/CK(2)+C*CP(2)
242			A14 = B/CK(1) + C + C B(1)
24.7			
240			A13=UELX2/CK(1)+DEL2X/CK(2)+C*CP12
244			A22#A*CK23+2.*C*CP23
208			
240			A23-87CK(3)+C*CP(3)
246			A25=0FLX2/CK(3)+0FL2X/CK(2)+C*CP23
247			
641			ADD=A*UK34+2**U*04
248			A34=-R/CK(4)+C*CP(4)
211.0			
243			A33=DECX27CK(3)+DCC2X7CK(4)+C*CP34
250			A44=A*CK14+2.*C*CP14
251			
251			A434066727 CK(1)+066277CK(4)+0+0P14
252			A55=2.*(C*CP1234-DELXZ*CK13-DEL2X*CK24)
253	C		
AE	ž		
204	<u>ل</u>		THESE ARE THE ELEMENTS OF THE 4 X 4 CONDENSED MATRIX.
255	С		
250	•		
200			E227A11-A15*A15/A55
257			G11=A12+A15+A25/A55
260			
400			N24-TA15*A35/A35
259			C22=A14-A15*A45/A55
260			
200			CII-A22-A23*A23/A55
261			C11=A23-A25*A35/A55
262			811=-428+445/455
202			
260			L33=A33-A35*A35/A55
264			G33=434-435+445/455
345			
603			E44=A44-A45*A45/A55
266	С		
267	Ċ		THIS SECTION FORDS THE ELEMENT HATBACTED THTO THE MARKET HATBACT
207	~		THAS SECTION LOADS THE ELEMENT MATRICLES INTO THE GLOBAL MATRIX.
268	- C		
269			51 (1 1 . 1) + 51 (1 1 . 1) + 51 (1
202			
270			S1(L1,2)=S1(L1,2)+G11
271			$51(1)$ 1, $0.1 \pm 51(1)$ 1, 0.1 ± 6.1
A70			
212			51(L1/5)=51(L1/5)+H11
273			L2=L1+1
370			
2/4			21(C2+1)=21(C2+1)+C22
275			\$1(L2,3)=\$1(L2,3)+H22
276			
210			
277			L3=L1+NODE2
278			51 (1 3.1) = 51 (1 3.1) + 523
6 T Q			
279			51(L3,2)=S1(L3,2)+G33
280			$t_{4}=13+1$
201			ne mereta Tati tata suma tatu ata mere
201 102			21/4411221(4411)+644
282		13	L1=L1+1
203			TELTON NE INCO TO IN
200	_		IF (IDX+NC+1)00 10 14
284	Ç		

HERE THE SOURCE TERM(S) IS APPLIED AT THE APPROPRIATE NODE(S) FOR 285 Ć 286 С THE L.S. PROBLEM. A CURRENT AMPLITUDE OF 1 IS ASSUMED. 287 C 288 LINE11=NODEZ*(LINE1-1)+NTART 289 LINE22=NODEZ*(LINE2-1)+NTART 290 R(LINE1:)=CMPLX(1.,0.)' 291 IF(LINE2.NE.0)R(LINE22) = -R(LINE11)292 14 NJI=HNOGE-NODEZ1 NJ1=NJI-1 293 L4=NODEX/2 294 295 L2=L4*NODEZ L1=L2+1 296 ¢ 297 THIS SECTION APPLIES THE BOUNDARY CONDITIONS TO THE MESH EDGES. Ç 298 ¢ 299 **** ***** С TOP LEFT HALF OF MESH GETS VALUE AT TOP LEFT CORNER. 300 С 301 302 DO 12 I=1,L1,NODEZ 303 S1(I,1)=S1(I,1)*ELARGE 304 12 R(I)=BC(1)*S1(I,1) 305 L3=L1+NODEZ 306 ¢ 307 C TOP RIGHT HALF OF MESH GETS VALUE AT TOP RIGHT CORNER. С 308 309 00 1212 1=L3,NJI,NODEZ 310 S1(1+1)=S1(1+1)*ELARGE 311 1212 R(I)=BC1(1)*S1(I,1) С 312 BOTTOM LEFT HALF OF MESH GETS VALUE AT BOTTOM LEFT CORNER. С 313 С 314 315 DO 11 I=NODEZ,L2,NODEZ 316 S1(I+1)=S1(I+1)*ELARGE 11 R(I)=BC(NODEZ)*S1(I,1) 317 318 L2=L2+NODEZ C 319 C 320 BOTTOM RIGHT HALF OF MESH GETS VALUE AT BOTTOM RIGHT CORNER. С 321 322 DO 1111 I=L2,NNODE,NODEZ 323 S1(I,1)=S1(I,1)*ELARGE 324 1111 R(I)=BC1(NODEZ)*S1(I,1) 325 C С LEFT AND RIGHT SIDES GET LEFT AND RIGHT BOUNDARY VALUES. 326 С 327 328 DO 9 I=2,NODEZ1 51(I,1)=51(I,1)*ELARGE 329 330 R(I)=51(I,1)*BC(I) 331 J=NJ1+I 332 S1(J+1)=S1(J+1)*ELARGE 333 9 X(J)=S1(J,1)*BC1(I) С 334 С 335 THIS SECTION LOADS THE APPRUPRIATE SIZE BLOCKS OF THE GLOBAL Ċ 336 MATRIX UNTO FASTRAND DRUM THROUGH THE USE OF THE UNIVAC 1108 I-0 Ċ 337 DEVICE NTRAN. ONLY A SMALL PIECE OF THE GLOBAL SYSTEM WHICH IS С BEING WORKED ON AT ANY ONE TIME DURING THE SOLUTION OF THE 338 С SYSTEM OF EQUATIONS IS STORED IN CORE. 339 С 340 341 L=1

342 343 344 345 346 347 348 347 348 350 351 352 353		901 900	L3=NBANU L2=1+NNGDE/L3 L4=2*IP3*IP3 D0 900 J=1,L2. D0 901 I=1,L3 S(I,1)=S1(L,1) S(I,2)=S1(L,2) S(I,NODE2)=S1(L,3) S(I,NBAN1)=S1(L,4) S(I,NBAN1)=S1(L,5) L=L+1 GALL NTRAN(1,1,L4,S,IERR0,22)
355	ç		CALL SOLVER (NODEZ, NODEX, NGAND)
355 357 358 359	00000		THIS SECTION REORDERS THE ARRAY LABELING FOR THE X AND Z COORDINATES OF THE NODES SO THAT THE UUCC MATHPACK NUMERICAL DERIVATIVE ROUTINES CAN BE USED IN SUBROUTINE AUXFLD.
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 375	c	500 505	L=2 XX(1)=.0 D0 500 I=1.NXX INI=NX(I) D0 500 J=1.INI XX(L)=XX(L-1)+OELX(I) L=L+1 L=2 ZZ(1)=0. D0 505 I=1.NZZ INI=NZ(I) D0 505 J=1.INI ZZ(L)=ZZ(L-1)+DELZ(I) L=L+1 CALL ANNELD
376 377 378 379 380 381 382 383	00000000		THIS SECTION CHANGES THE LOCATION OF X=0 FROM THE LEFT EDGE OF THE MESH TO ITS CENTER FOR PRINTOUT. THE UNIT OF DISTANCE IS KM IF THE DISTANCE FROM THE EDGE OF THE MESH TO THE CENTER IS GREATER THAN 9 KM. IF THE L.S. PPOBLEM IS BEING SOLVED, X=0 IS LOCATED AT THE NODE WHERE THE SOURCE CURRENT IS FLOWING IN THE + DIRECTION.
384 385 386 387 388 389 390 391 392 393 394 395 395	,	101	J=NTART+NODEZ NTART=(NODEX+1)/2 FA=1. XNART=XX(NTART) IF(XNART.GT.9000.)FA=1000. IF(IDX.EQ.1)XNART=XX(LINE1) DO 101 1=2:NODEX1 XX(I)=(XX(I)-XNART)/FA IF(IDX.EQ.1)GO TO 80 CALCULATE MAGNITUDES: PHASES OF FIELD COMPONENTS AND APPARENT RESISTIVITY AND PHASE OF THE IMPEDANCE FOD PRINTOUT WHEN SOLVING
397 398	Ć		FOR THE TE OR TH PROBLEM.

```
00 79 1=2,000EX1
399
               £11=BC(I)
466
401
               Hil=BC1(I)
462
               AV=CABS(E11)
463
               AH=CA85(H11)
464
               A=AV/AH
465
               AF=ATAN2(AIMAG(H11))REAU(H11))
465
               IF(IDX.EQ.3)60 TO 77
               ARH0=RH0(2,3,1)/AH
467
               NOTE THIS IS THE NEGATIVE OF THE PHASE OF THE IMPEDANCE.
408
         C
               PHASE=57,29578*(KH0(2,4,1)+AF)
409
410
               60 TC 76
         77
               ARHO=AH/RHG(2,3,I)
411
412
         С
               NOTE THIS IS THE NEGATIVE OF THE PHASE OF THE IMPEDANCE.
413
               PHASE=57,29578*(AF-RHO(2,4,1))
         78
414
               ARHOLARHU*ARHU/WU
               RE11=REAL(E11)
415
410
               IF (ABS (RE11), LT. 10E-30) RE11=10E-30
417
               AF=57.29578* AF
               FA=57.29576*ATAN2(AIHAG(E11),RE11)
416
419
               RE(I)=REAL(R(J))
420
               AIE(I)=AIMAG(R(J))
421
               J=J+NODEZ
422
               RHODG=RH0(2,4,1)*57.29578
               BEREAL(HII)
425
424
               G=AlMAG(H11)
               DELTZ4=REAL(E11)
425
425
               DELT44=AIHAG(E11)
         79
427
               HEINT 45 XX(I)+DELTZ4+DELT44+AV+FA+B+G+AH+AF+RE(I)+AIE(I)+
              SRHO(2,3,I), RNODG, ARHO, PHASE
420
429
               60 TO 1009
430
         C
431
         C
               CALCULATE MAGNITUDES AND FHASES OF H-FIELD COMPONENTS, NORMALIZED
               MAGNITUDES AND PRIMARY H-FIELD FOR PRINTOUT WHEN SOLVING THE
432
         ¢
455
         С
               L.S. PROBLEM.
434
         C
               FCTR=1./FA
         80
435
               UC 69 1=2,NODEX1
430
               IF (ABS(XA(I)).LT.10E+C4) XX(I)=FCTR/6.283185*10E-20
437
ب ن با
               HPRI=FCTR/(+6.283185*XX(I))
439
               HPRIMEABS(HPRI)
443
               E11=BC(I)
441
               B11=BC1(I)
442
               AV=CA6S(E11)
443
               AH=C/65(H11)
444
               DELTZ4=REAL(E11)
445
               DELT44=AIMAG(E11)
440
               BEREAU (H11)
447
               GEAIMAG(mli)
               AF=57,29578+ATAN2 (DELT44, DELTZ4)
446
449
               FA=57,25078*ATAN2(6/6)
45Û
               AVNOR=AV/HPRIM
               AHNOR=AH/HPRIM
48.2
452
         89
               PRINT 40 XX(I), B, G, AH, FA, DELTZ4, DELT44, AV, AF, AHNOR, AVNOR, HPRI
453
         ¢
454
         ĉ
               450
         C
```

С 456 ******* С 457 C 458 FORMAT (2014) 1 459 FORHAT(214,3F10.0) 2 460 FORMAT(BF10.0) 4 FORMAT(1H , 1DX=1 IMPLIES INF. LINE SOURCE , /, 1DX=2 IMPLIES TE M 461 20 SAGDETUTELLURICS IDX=3 IMPLIES TH MAGNETOTELLURICS PARAME 462 463 STER IOX=1/14) 464 HORMAT (1.4. F8. 3. 12E8. 3, 2F8. 3) 45 465 FURMAT(1X,F9.4,13(1X,E8.3)) 46 460 FORMAT(8011) 467 48 FORMAT(43(2211)) ó2 468 FORMAT(1X,43(11,1X,11)) 63 469 FORMAT(10213.4) 300 47Ŷ NODES VERFICALLY=',14,/,' FORMATCHIL, HODES HORIZONTALLY=', 14, * 410 SULOCKS HORIZUNTALLY=+, 14, 1 BLOCKS VERTICALLY=+, 14, 7, 1 NRES IN MES 471 \$1,14,1 BLOCKS OF AIR=',14,1 UPRINT=',14,/,1 PUS. OF IRST L.S.= \$1,14,1 POS. OF 200 L.S.=',14) 472 473 FORMATCH , INESH CONJUCTIVITIES AND FREQUENCY) 474 FORMAT(1H , HOUNBERS OF LOUAL SIZED INCREMENTS HORIZONTALLY') FORMAT(1H , ISIZE OF THE INCREMENTS IN EACH HORIZONTAL BLOCK(M)') FORMAT(1H , HOUMBERS OF EQUAL SIZED INCREMENTS VERIICALLY') 420 475 436 470 44Û 477 450 476 FORMAT(IN . SIZE OF THE INCREMENTS IN EACH VERTICAL BLOCK(M) .) 46: 479 FORMAT(10 , FFINITE ELEMENT NESH CUNDUCTIVITY CODE) 470 FORMAT(IN FILEFT EDGE INTERFACE DEPTHS(M) AND RESISTIVITIES!) 486 483 FOPPAT(IN , TAIGHT EDGE INTERFACE DEPTHS(M) AND RESISTIVITIES!) 461 +90 462 RE(FTR) IN(RE(FZ) IM(FZ) IFZI PHZ. FORMAT(1H1,1X, OELX 495 485 AP.KES. -PHZ PHZ PHZ RE(FPL) IM(FPL) IFPLI 4FTE) IFIRI 404 \$(Z)!) 485 RE(HZ RE(HTR) IM(HTR) PHZ IHTRL FORMAT(181,1X, * DELX 610 480 HPR 1 PHZ INTR/HPRI INZ/HPRI IHZI \$} 1N(FZ) 467 CONT INUE 1009 460 STOP 469 6N0 490

<**>

STODT*PwLS1(1),SELECT

1	С	THIS SUBROUTINE CALCULATES THE APPROPRIATE COEFFICIENTS OF THE
2	С	HELMHOLIZ EQUATION FOR INSERTION INTO THE ELEMENT MATRICIES
3	С	ACCORDING TO WHICH PROBLEM IS BEING SOLVED.
4	С	
5		SUBROUTINE SELECT
6		PARAMETER IP1=27, IP4=57, IP6=30
7		COMPLEX CK(4), CP(4)
8		RFAL 840(191+4+194)
ğ		COMMONZEL KHZWUTWE BRHOLCK CP
10		
îi		IF (10X, F.G. 1, 0B, IDX, F.G. 2) 60, TO 10
12		IF (IDX, Eq. 3)60 TO 20
13	10	
14		
15		
16	100	
17	100	
10	20	
10	20	
72		
20	200	
~1	200	
22	400	
23		END

÷ .

<**>

CTODT DUI CA	(1) 50	
STODT*PWL51	(1).50	LVER This shut distant setups for the state of the setup setup of the state
1		THIS SUBROUTINE SOLVES THE GLOBAL SYSTEM OF EQUATIONS USING
2 1	r r	DELT WITH IN NOAME Y NOAME DISCUSSION TO CONTION. THE GLUDAL MATRIX IS
ц ц	č	MATH TH ADDAY D.H.
5	č	PATH IN ARGAI AVOT
6	•	SUBROUTINE SOLVER (N.M.NI)
7		PARAMETER JP1=27, 1P4=57
8	3	5, IP2=IP1+IP4, IP3=IP1+2, IP5=2+IP3
9		COMPLEX S1, S, R, R1
10		COMMON/BLK1/S(IP3, IP3), S1(IP5, IP3), R(IP2), R1(IP5), NT1, NF1, NCOL1, NS
11	5	51, NEQ1
12		CALL NTRAN(1,10,22)
13		NBNB2=2*IP3*IP3
14 .		NBK=NBNB2
15		CALL NTRAN(1,2,NBK,S,IERRO,22)
16		
10		
10	8000	
20	0000	NM1=N-1
21		NF1=1
22		NCOLIENB
23		NEQITNB
24		NT1=NB
25		NwR2=2*NBK
26		NTOTAL = N*M
27		NHC3=NTOTAL/NB
28		
29		
31		IE(NREST FO. O) NNC3-NNC3-1
32	с	
33	С	**********
34	С	
35		D0 8002 K=2,NNC3
36		CALL NTRAN(1,2,NBK,S,IERRO,22)
37		DO 8003 I=1,NB
38		
29		
40		
42	8003	SI(II.D=S(I.D)
43	0000	CALL GAUSSI
44		CALL NTRAN (1,6,-NWR2,22)
45		LNC2=L-NC2
46		00 8004 I=1,NB
47		II=I+NB
48		LL=LNC2+I
49		K(LL)=K1(I) R1/T)=R1(II)
50		NIVI/#KIVII DO 9000 (=1.NO
52		
53	8004	S1(I,J)=S1(II,J)
54	5501	CALL NTKAN(1,1,NBK,S,IERRO,22)
55	8002	CALL NTRAN(1,6+NPK,22)
56		IF(NREST .EQ. 0) NREST=NB

.

: 47

57		NRK=2*NRFST*IP3
58		CALL NTHAN (1.2. NHK.5. IERPO. 22)
59		DO A005 1-1.NREST
60		
61		
62		
67		
60	0005	
45	0000	31(11)0)-3(1)0)
65		
60		NTT-NR+NKE21
67		
68 .		
69		NBKENENBZ
70		NSI=NTOTAL/NB-1
71		IF(NREST,EQ, NB) NS1=NS1-1
72	_	NREST=NREST+NB
73	C	
74	С	***************************************
75	С	
76		CALL GAUSS2
77		NT1=NB
78		NS1=NS1-1
79		NF1=1
80		CALL NTRAN(1,6,-NBKT,22)
81	8008	IL=NS1*NB
82		CALL NTRAN(1,2,NBK,S,IERRO,22)
83		DO 8009 I=1,NB
84		
85		$R_1(I) = R(IL)$
86		DO 8009 J=1,NB
87	8009	S1(I,J) = S(I,J)
88		CALL GAUSS2
89		N51=N51-1
90		IF(NS1 .FQ1) RETURN
91		CALL NTRAN (1,6,-NVR2,22)
92		GO TO ANNA
93		END

STODT+PWLS	1(1).GA	USS1
1	С	THIS SUBROUTINE PERFORMS THE FORWARD REDUCTION PART OF
2	Ç	GAUSSIAN ELIMINATION.
3	С	
4		SUBROUTINE GAUSSI
5		PARAMETER IP1=27, IP4=57
6		\$,1P2=IP1*IP4,IP3=IP1+2,IP5=2*IP3
7		COMPLEX BISIAISOLUIC
8		COMMON/BLK1/S(IP3,IP3),A(IP5,IP3),SOLU(IP2),B(IP5),NN,NF,NCOL,NS,
9		SHEQ
10		MT=NCOL
11 .		IF (NF.EQ.O) MT=NN
12		DO 300 N=1+NN
13		$\Theta(N) = \Theta(N) / A(N, 1)$
14		MM = MT - (1 - NF) * (N - 1)
15		IF (MM .EG. 1) GO TO 300
16		IF (MM .GT. NCOL) MM=NCOL
17		
18		DO 275 L=2+MM
19		$C = A(N_{1}L) / A(N_{1}L)$
20		
21		
24		DO 250 KELIMM
23	250	
24	250	
26	275	ロメエノーはスエノアバス1875年7月の人行ナー
20	270	CANTINUC
28	200	RETURN
29		
<u> </u>		

STODT*PWLS1	(1).GAUSS2
1	C THIS SUBROUTINE PERFORMS THE DACKWARD SUBSTITUTION PART OF
2	C GAUSSIAN ELIMINATION.
4	SUBROUTINE GAUSS2
5	PARAMETER IP1=27, IP4=57
6	\$,IP2=IP1*IP4,IP3=IP1+2,IP5=2*IP3
7	COMPLEX B, S, A, SOLU, D
8	COMMON/6LK1/S(IP3,IP3),A(IP5,IP3),SOLU(IP2),B(IP5),NN,NF,NCOL,NS,
9	SNEG
10	
11	UO 450 M=1/NN
13	
14	HA-NGUL 1 I INFNISENEO
15	
16	D=B(N)
17	IF (NF .EQ. 0) MM=M
18	IF (MM .EQ. 1) GO TO 450
19	IF (MM .GT. NCOL) MM=NCOL
20	DO 425 K=2/MM
21	L=L+1
22	425 D=D-A(N,K)*SOLU(L)
23	450 SOLU(LL)=D
24	
20	ENU

-

STODT*PWLS1(1).AUXFLD

· - · 1	(C	THIS SUBROUTINE CALCULATES THE VERTICAL FIELD AND THE FIELD
2	2 (0	PERPENDICULAR TO STRIKE. THESE FIELDS ARE PELATED TO THE
	5 (C	APPROPRIATE DERIVATIVES OF THE FIELD PARALLEL TO STRIKE WHICH
L	; (Ç	WAS SOLVED FOR WITH THE FINITE ELEMENT METHOD. THE PROPER
5	5 (C	RELATIONS ARE OBTAINED FROM MAXWELLS EQUATIONS IN THE PROPER
É	, (Ĉ –	COORDINATE SYSTEM. THE AUXILIARY FIELD VALUES ARE RETURNED TO
7	, (5	MAIN IN ARRAYS BC(I) (VERTICAL FIELD) AND RC1(I) (FIELD
ε	, (<u> </u>	PERPENDICULAR TO STRIKE).
5) (2	
10	}		SUBROUTINE AUXFLD
11			PARAMETER IP1=27+IP4=57+IP6=30
12	2	1	\$,IP2=IP1*IP4,IP3=IP1+2,IP5=2*IP3
13	5		COMPLEX UC/BC(IP4),BC1(IP4),R(IP2)
14	¥		COMPLEX DUM1(IP3,IP3), DUM2(IP5,IP3), DUM3(IP5), DUM9(4), DUM10(4)
15	j i		REAL RHU(IP1+4+IP4)+XX(IP4)+ZZ(IP4)+RE(IP4)+AIE(IP4)
16	b		COMMON/BEK1/DUM1+DUM2+R+DUM3+DUM4+DUM5+DUM6+DUM7+DUM8
17	7		COMMON/BEK4/WU,WE,RHO,DUM9,DUM10
18	1		COMMON/BLK5/XX,ZZ,BC,BC1,NTART,NODEX,NODEX1,NODEZ
19			COMMON/DEKE/IDX+LDUM+MOUM
20)		IF(IDX,EQ.4)GO TO 100
21		-	NTAR=NTART
22		-	THIS AT THEME DUALINES FOR A DEPENDENCIAL AS AS AN ALL MED
23		ž	THIS STATEMENT PROVIDES FOR E PERPENDICULAR TO BE CALCULATED
24		-	I NODE BELOW THE AIR-EARTH INTERFACE IN THE TH PROBLEM TO AVOID
23		-	NUMERICAL INSTABILITIES IN CALCULATION OF THE APPROPRIATE
21		-	DERIVATIVE. PUTTING THE NODE IM BELOW THE SURFACE APPEARS TO
21		-	WORK AT THE HIGHER FREQUENCIES, THIS MUST BE DEEPENED AS
20			FREQUENCT DECREASES.
25	, \ \	•	
30	•		
ين مح			
22	5		
31)		$\Delta T \in (T \to \pi) A A C \cap (L, T) $
26			
36	,		$\Re(0(2, \mu, 1)) = CROS(R(0))$
37	,		
30		10	CONTINUE
30			
4	, c	c	
41	(ē	DERIVI IS A UUCC MATHPACK SYSTEM ROUTINE WHICH CALCULATES
42	2 (Ĉ	DERIVATIVES FROM THE COEFFICIENTS OF A SPLINE FIT TO THE SET
43	Š (C	OF DATA POINTS.
40	t (С	
- 4 5	5		AH=DERIV1(XX;RE;NODEX;XX(J);\$1009)
46	5		AV=DERIV1(XX,AIE,NODEX,XX(J),\$1009)
- 47	7		IF (IDX,EQ.3)GO TO 70
48	3		UC=CMPLX(0.,WU)
49)	_	GO TO 75
50	ינ	70	UC=CMPLX(RHO(NTART,1,J-1),WE)
53		75	BC(J)=CMPLX(AH,AV)/UC
<u>5</u> 2	2 2	20	CONTINUE
5.	3		L1=1+NODEZ
54	ł		DO 30 J=2,NODEX1
53	2 Q		
56	5		UO 40 I=1+NODEZ

57		RE(I)=REAL(R(L))
58		AIE(I) = AIMAG(R(L))
59		L=L+1
60	40	CONTINUE
61		AH=DERIV1(ZZ,RE,NODEZ,ZZ(NTAR),\$1009)
62		AV=DERIV1(ZZ;AIE+NODEZ;ZZ(NTAR);\$1009)
63		IF(1DX,EG,3)GO TO 80
64		UC=-CMPLX(0,,WU)
65		GO TO 85
66	80	UC=+CMPLX(RHO(NTART,1,J-1),WE)
67	85	BC1(J)=CMPLX(AH+AV)/UC
68		L1=L1+NODEZ
69	30	CONTINUE
70	1009	CONTINUE
71	100	RETURN
72		END

STODT*PWLS1(1).EFIELD

1	С	THIS SUBROUTINE CALCULATES THE AMPLITUDE COFFEICIENTS FOR THE
2	č	DOWN AND APROVING WAVES IN FACH LAYER. THE COEFFICIENTS ARE MADE
3	č	AVAILABLE TO EURCTIONS FELD AND HELD THROUGH ARRAY F(T) AN
ŭ	č	INCIDENT FEETED AND THOSE OF A IN THE A Y DIDECTION AT THE
5	č	ATSEEATE THERE ARE TO ACCOUNTD
2	č	ATTEART INTERFACE IS ASSOMED.
0	<u> </u>	
1		SUBROUTINE EFICU
8		PARAMETER NLAYR=3
9		PARAMETER NLYP=NLAYR-1,MDIM=2*NLAYR,NDIM=MDIM+1,NK=NLAYR+1
10		COMPLEX XE(MDIM,NDIM);E(MUIH);XK(NK);EXPN(NK);Z(NLAYR);
11		\$DUM(MDIM,MDIM),TEN,TEM1,SOURCE,VAR,OPT
12		DIMENSION H(NLYR)+JC(MDIM)
13		COMMON/BLK2/DUM+E+XK
14		COMMON/BLK3/H,W
15		EQUIVALENCE (E,XE(1,NCIM))
16		DATA $TEM + TEM + Z(0, +0, +) + (1, +0, +) Z$
17	с	
18	ē	THIS IS THE HALT AND ITHE INCIDENT SUCTOON SOLOGS TON IT IS
19	č	FASTLY MANER CO THAT SCALING MAY OF DOME OD COMPACTOR ANTH
19	č	CASICI CHANGED SO THAT SCALING MAT BE DUNE FOR COMPARISON WITH
20	č	OTHER SOLUTIONS.
21	L.	
22		DATA SOURCE/(1.0.)/
23		OPT=CMPLX(6.,0.)
24	C	
25		SN=1.
26		L=1
27		L1=2
28		11=1
29		IJ=3
30		J2=4
31	С	
32		DO 10 IIIINLYR
33		DQ 20 J=1.2
34		
35		VAR-CAD Y (0
36		FYDRI DEVISE FYDIWDD
37	20	
20	10	
20	<u> </u>	CONTINCE
37	•	
40		U SU JELINEATR
41	* •	$2(3) = 2 \times (3 + 1) / 2 \times (3)$
42	30 20	CONTINUE
43	Ç	
44		DO 40 I≕1,MDIM
45		DO 40 J=1,NDIM
46		XE(I,J)=TEM
47	40	CONTINUE
48	С	
49		XE(1,1)=-TEM1
50		XE(1,2)=TEM1
51		XE(1:3)=TEM1
52		XE(2,1)=TEM1
53		XE(2/2)=Z(1)
54		XE(2,3)=-Z(1)
55		XE(1,ND1M)=SOURCE
56		XE(2+NDIM)=SOURCE

57	С	
58		00 100 M=1+NLYR
59		$DO 70 I = 11 \cdot I J \cdot 2$
60		VAR=EXPN(L)
61		
62		UQ 90 K=1.2
63		XF (J+ T+K) = VAR + SN
64		
65 65		
60 66		
67	90	
b7 c0	90	CONTINUE
58	av	
69		
70		SNE-SN
71	-	
72	70	CONTINUE
73		XE(J2,J2)=XE(J2,J2)*Z(L1)
74		XE(J2,J2+1)=XE(J2,J2+1)*Z(L1)
75		
76		I1=I1+2
77		IJ=IJ+2
78		
79	100	CONTINUE
80		XE(MDIM-1,NDIM)=TEM
81		XE(MDIM,NDIM)=TEM
82	С	WRITE(6,300)
83	300	FORMATLING, SYSTEM OF EQUATIONS FROM THE BOUNDARY CONDITIONS ()
84	C	WRITE(6,400) ((XE(T,J))J=1,7), I=1,6)
85	400	FORMAT(a(1X,7(1P2E9,2),7/1))
86	C	
87	ē	COUR IS A ULICE MATHPACK SYSTEM ROLITINE FOR APPLYING GAUSS-JORDAN
88	č	SEDUCTION TO COMPLEX MATRICIES, OPT-6 SOLVES THE SYSTEM OF
89	č	FOUNTIONS AND EVALUATES THE DETERMINATION THE COEFFICIENT MATTIN
90	č	EGONITING AND ETACONIES THE DETERMINATION THE COLFFICIENT MARKIN.
Q1	¥	
02	C	
26	č	
9 0	200	RATELOJZOVJET Rodnatiloga instedninat og system natdivet (dogin 2)
24	400	FORMATING, DETERMINATION SISTEM MATRIX= (1221012)
99 04	1000	
90	5000	MAILERSJUUJUCIIJUUT Errandiau tokari on or Starou Arty from Eveter Europoutive or ot
91	200	FORMATING OVERFLOW OR SINGULARITT FROM STEEM SUBROUTINE (GUR')
20		P/TIXTILAST CORRECTLT REDUCED ROWETTISTSXTTEN(DET)PARTIALETT
99	0.00	
100	333	
101		

STODT+PWLS1(1).EFLD

1	c	EFED IS A COMPLEX FUNCTION WHICH GIVES THE VALUE OF E AT DEPTH 2
2	С	USING THE AMPLITUDE COEFFICIENTS GENERATED IN SUBROUTINE FFIFLD.
3	С	THIS FUNCTION REQUIRES DEPTH TO LAYER INTEPFACES FROM THE
4	с	SURFACE Z=0 (NOT LAYER THICKNESSES) FOR ITS PROPER OPERATION
5	Ç	
6		CONPLEX FUNCTION EFLD(Z)
7		PARAMETER NLAYR=3
8		PARAMETER NLYRENLAYR+1, MOLME2*NLAYR, NKENLAYR+1
Ģ		COMPLEX F (MDTM) XK (NK) · DUM (MDTM, MDTM) · FYPN
10		DIMENSION HINI YAY
11		COMMONIAL KZZDUM, F, XK
12		COMMON/61 K3/H.W
13	с	
14	-	$IE(Z_{1} T_{1},0_{1})60$ TO 10
15		
16		IE (2-H(1))15,15,20
17	15	
18		GO TO 30
19	20	CONTINUE
20		EXPN=CMPLX(0,,-1,)*XK(NK)*7
21		EXPL=CFXP(FXPN)
22		EFLD=F(ADIM)*FXPN
23		GO TO 40
24	30	EXPN=CMPLX($0, +-1, $) *XK($1,1+1$) *Z
25		EXPN=CEXP(EXPN)
26		EFLD=F(/+,JJ)+FXPN+F(2+,JJ+1)/FXPN
27		GO TO 4D
28	10	EXPN=CMPL $X (0, +-1,) * X K (1) * 2$
29		EXPN=CEXP(EXPN)
30		EFLD=FXPN+E(1)/FXPN
31	40	RETURN
32	-	END

<**>

ST(0	T+PWLS1	(1).HF	LO
	1	¢	HELD IS A COMPLEX FUNCTION WHICH GIVES THE VALUE OF H AT DEPTH Z
	2	¢	USING THE AMPLITUDE COEFFICIENTS GENERATED IN SUBROUTINE EFIELD.
	3	С	THIS FUNCTION REQUIRES DEPTH TO LAYER INTERFACES FROM THE
	4	° C	SURFACE Z=0 (NOT LAYER THICKNESSES) FOR ITS PROPER OPERATION.
	5	C	
	6		COMPLEX FUNCTION HFLD(Z)
	7		PARAMETER NLAYR=3 -
	8		PARAMETER NLYR=NLAYR-1+MDIM=2+NLAYR+NK=NLAYR+1
	9		COMPLEX E(MD1M),XK(NK),DUM(MD1M,MD1M),EXPN
	10		DIMENSION H(NLYR)
	11		COMMON/BLK2/DUM+E+XK
	12		COMMON/BLK3/H,W
	13	Ç	
	14		XMU0=3,14159 *0.0000004
	15		IF(Z.LT.0.)GO TO 10
	16		DO 20 J=1/NLYR
	17		IF(Z-H(J))15,15,20
	18	15	ل=U
	19		GO TO 30
	20	20	CONTINUE
	21		EXPN=CMPLX(0,,-1,)*XK(NK)*Z
	22		EXPN=CEXP (EXPN)
	23 .		HFLD=XK(NK)*(E(MDIM)*EXPN)/(W*XMUO)
	24		GO TO 40
	25	30	EXPN=CMPLX(0.,-1.)*XK(JJ+1)*Z
	26		EXPN=CEXP(EXPN)
	27		HFLD=XK(JJ+1)*(E(2*JJ)*EXPN=E(2*JJ+1)/EXPN)/(W*XMU0)
	28		GO TO 40
	29	10	EXPN=CMPLX(0,,-1,)*XK(1)*2
	30		EXPN=CEXP(EXPN)
	31		HFLD=XK(1)*(EXPN-E(1)/EXPN)/(W*XMU0)
	32	40	RETURN
	33		END

.

•

Appendix IV - Sample Runs

Note: FORTRAN library function ATAN2, which is used in this program, returns a value for the inverse tangent in the range -180,+180. Therefore, a suitable addative adjustment to the phase as printed by the program may have to be made to obtain the correct phase values for the convention the user happens to be using.

<mark>5</mark>8

.

DELX	RE (HŤK)	1M(B1R)	INTRI	PHZ	PE (H7)	IM(HZ)	IH21	PHZ	IHTR/HPRI	INZ/HPRI	FIPR
-7.5600	103-05	406-06	.111-05	.159+03	943-07	778-09	.943-07	180+03	.522-01	.444-02	-212-04
-4.5000	171-06	.169-05	.170-05	.958+02	.267-06	.179-05	.181-05	P15+02		-512-01	.354-04
-1.500J	299-64	.148-04	.333-04	.154+03	40A-04	.341-04	.532-04	.140+03	-314+00	.502+00	106-03
-,5000	121-63	411-04	,128-03	161+03	288-03	466-04	.292-03	.171+03	.401+00	.916+00	.318-03
2000	199-03	104-03	190-03	147+03	817-03	.233-04	-617-03	.178+03	-239+08	-103+01	.796-03
1000	+.179-03	130-03	.222-03	144+03	- 155-02	225-05	155-02	180+03	.139+00	-975+00	.159-02
0750	174-03	-,138-03	221-03	142+03	203-02	- 129-04	-203-02	180+03	104+00	-959+00	212-02
÷.0500	176-03	144-03	.227-03	141+03	323-02	272-04	.323-02	160+03	.715-01	.102+01	314-02
C25u	206-03	150-03	.255~03	144+03	646-02	446-04	-646-02	140+03	-400-01	-102+01	.637-02
0200	209-03	151-63	.257-03	144+93	790-02	- 487-04	.790-02	1A0+03	.324-01	.993+00	-796-02
D150	262-03	152-03	.303-03	150+03	107-01	534-04	.107-01	180+03	-285-01	-100+01	-106-31
0100	463-03	153-03	.487-03	162+03	159-01	586-04	.159-01	160+03	A 306-01	-998+00	159-01
-,0075	-,554-03	153-03	.574-03	165+03	210-01	614-04	.210-01	180+03	.271-01	.991+00	.212+01
0050	238-03	154-03	.284-03	-,147+03	334-01	645-04	.334-01	180+03	.891-02	.105+01	.318-01
0025	.154-02	→.154-u3	.154-02	572+01	803-01	680-04	.803-01	160+03	-242-01	.125+01	637-01
.0600	.225-02	153-03	.226-02	369+01	,226-03	724-04	.237-03	178+02	226-21	237-22	100+20
.0025	.153-02	152-63	154-02	568+01	.808-01	- 768-04	.808-01	545-01	.242-01	.127+01	- 637-01
.0050	246-03	151-03	289-03	+.148+03	.340-01	804-04	-340-01	136+00	-906-02	.107+01	- 318-01
.0075	584-03	149-03	603-03	166+01	.220-01	834-04	.220-01	217+00	-284-01	-104+01	212-01
.0125	362-03	146-03	.390-03	158+03	.135-01	889-04	.135-61	377+00	-306~01	-106+01	127-01
.0175	228-03	142-03	.269-03	148+03	+101-01	936-04	.101-01	533+00	.296-01	.111+01	909-02
.0425	214-03	124-03	.248-03	150+03	.422-02	112-03	.422-02	153+01	+661-01	.113+01	374-82
.0675	224-03	104-03	,247-03	+.155+03	.254-02	127-03	.255-02	286+01	105+00	108+01	236-02
.0525	256-03	821-04	.269-03	-,162+03	194-02	137-03	.194-02	406+01	+156+00	+113+01	172-02
.1425	332-03	-,320-64	.333-03	174+03	+138-02	144-03	▲139-02	597+01	.298+00	.124+01	112-02
.1925	506-03	.259 - 04	.507-03	.177+03	.111-02	124-03	.111~02	638+01	·613+00	+135+01	827-03
.2175	697-03	.402-04	.698-03	.177+03	∗987-03	981-04	.992-03	567+01	·954+00	.136+01	-,732-03
.2225	748-03	.383-04	.749-63	.177+03	.954-03	919-04	.958-03	550+01	.105+01	. 134+01	715-03
.2275	803-03	.345-04	.803-03	.178+03	.910-03	868-04	.914-03	545+01	•115+01	+131+01	700-03
.2325		.292-04	.856-03	.176+03	.353-03	830-04	•857 − 03	~61+01	125+01	.125+01	685-03
.23/3		-233-04	.909-03	.179+03	.782-03	839-04	.787-03	612+01	•136+01	+117+01	670-03
.2423		188-04	949-03	.179+03	•660-03	871-04	.703-03	711+01	•145+01	+107+01	656-03
• 2470 2675	970-03	·1/5-64	.970-03	,179+03	+603-03	925-04	.610-03	872+01	+151+01	.948+00	643-03
2.75		∎∠05≂04 274-04	.970-03	.179+03	.504-03	933-04	+514-03	-,110+02	•154+61	+615+00	630-03
2625		371-64	.946-03	.178+03	.411-03	103-03	.423-03	140+02	.153+01	685+00	618-03
2675	- 452-03	+ 371=04 H70-00	-905-03	.1/0+03	.324-03	104-03	.345-03	176+02	•149+01	•56 ⁸ +00	606-03
2725	796-03	550-04	-200-03	170103	+261-03	102-03	.281-05	-,214+02	-143+01	.471+00	595-03
.2775	- 740-03	626-04	703-03	176103	.209-03	9/4=04	.231-03	249+02	+137+01	- 397+00	
.2825	688-03	672-04	+143-03	170403	+1/1-03	- 906-04	.193-03	250+02	130+01	.337+00	574-03
.3075		-658+64	.672~03	172403	.145403	- £30-04	+167-03	- 700+02	+123+01	296+00	563-03
.3325	176-03	512-04	390-03	172403	- 10 - 00	- 301-04	.945-04	- 322+02	.962+00	•183+00	518-05
.4575	301-03	370-04	303-03	171403	+014-04 +07.00	- 300-04	.084-04		.194+00	•14.5+00	479-03
-4075	213-03	175-04	214-03	176103	.387~04	- 167 04	+023-04	196+02	+681+00	.144+00	-,445-03
.4575	-105-03	705-04	165-07	.170.04	-397-04 For 04	-,157-04	+617-04	148+02	•547+00	·158+00	391-03
- 5575	-117-03		117-03	- 190-04	.548-04	-165-04	.621-04	154+02	•475+00	+178+00	348-03
6575	- 421-DB	- 161-07	111/-03	-,100103	.551-04	205-04	548-04	204+02	•408+00	•50 <u>0</u> +00	285-03
.7676	- 767-04	• JDJ=00	·921-04	-100+03	.4/1-04	230-04	.524-04	260+02	•381+00	+217+00	242-03
.857-	101-04	•120-05	./0/-04	122-01	.387-04	- 237-04	454-04	314+02	•365+00	-216+00	210-03
.9575	655-04	+333~US	+636-04 E46-09	+175+03	.313-04	231-04	.389-04	-,365+02	+354+00	+210+00	186-03
1.0575	101-04	- 523-45 601-4F	*20A-04	170.07	-251-04	219-04	.333-04	410+02	.342+00	.201+00	166-03
1.2575	-16-16-1 	P027-02	*493-04	11/2+03	.203-04	202-04	286-04	449+02	·329+00	·190+00	151-03
2.2575		•00/-US	121-04	,106+03	-141-04	168-04	-219-04	501+02	+298+00	·173+00	127-03
5.257-		-113-05	101-05	100103	.30/-05	- 410 05	./68-05	665+02	+171+00	+109+00	705-04
8.2575	586-06	.386-05	.702-04	1174703	1107-06	- 100-04	+628-06	802+02	-632-01	+207-01 -	303-04
		2000 00		4471700	1666-01		+103-06	//3+02	+364~41	• 334-02 ·	193-84

60

NURMAL EXIT.

TIME:

GASG.T 1.,U///95000

EARTH MODEL:

EXETIOF PHESILABSI 10X=1 IMPLIES INF. LINE SOURCE 1LX=2 IMPLIES TE MAGNETOIELEURICS A/R **IDX=3 IMPLIES TH MAGNETOTELLURICS** EARTH PARAMETER IDX= 2 NODES HORIZONTALLY= 57 NODES VERTICALLY= 27 BLOCKS MONIZONTALLY= 13 BLOCKS VERTICALLY= 14 10 л-м 1000 n-M NRES IN MESHE 3 BLOCKS OF AIRE 6 NPRINTE 0 PCS. OF INST L.S.= 0 PCS. OF 2ND L.S.= 0 MESH CONDUCTIVITIES AND FREQUENCY .1000+01 .000u +1000+00 .1000-02 NUMBERS OF EQUAL SIZED INCREMENTS HORIZONTALLY 1 1 1 1 1 3 2 8 2 16 1 1 SIZE OF THE INCREMENTS IN EACH HUFIZONTAL BLUCK (M) +2000+04 .1000+06 ·2500+P3 .1250+03 .2500+03 . .5000+03 .3000+05 .1000+05 .2000+04 .5000+03 .1200+05 .3000+05 .1000+06 NUMBERS OF EQUAL SIZED INCREMENTS VERTICALLY 1 1 1 1 1 4 4 7 1 1 1 1 1 SIZE OF THE INCREMENTS IN EACH VERTICAL BLOCK (M) .3008+03 .1000+04 .3000+05 .1000+05 .3000+04 .1000+03 .2000+03 .1000+04 .3000+03 +1000+03 .3006+04 .1000+05 .3000+05 .1000+06 FIGHTE ELEVENT NECH CONDUCTIVITY CODE JAU/ Ú. L. 0 U.

<u>o</u>___

 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1</t

 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1

 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 LEFT ELGE INTERFACE DEPTHS(M) AND RESISTIVITIES .1000+03 ·2000+03 .1000+02 +1000+0∠ .1000+02

RIGHT EDUE INTERFACE DEPINSING AND RESISTIVITIES

.1006+03 .2000+03

·1000+04 ·1000+04 .

.1060+04

DELX	RE(FZ) IM(FZ)	IFZI PHZ	RE(FTR) TM(FTR)	IFTRT PHZ	RE (EPL)	IN(FPL)	IFPLI	PHZ	AP.RES.	-PHZ(2)
-52.000	.740-06107-04	.107-04860+02	.523-02-,885-64	.523-02968+00	-335-69	.333-04	.472-04	.449+02	10.309	45.870
-22.000	.725+05514-04	.519-04820+02	.550-02324-03	.551+02337101	.367-04	336+04	498-04	.424+02	10.339	45.789
-12,000	.153-04968-04	.980-04610+02	.593-02655-03	-597-02-630+01	-418-04	343-04	501-00	39/1+02	10.300	45 604
-10.000	.203-04116-03	.118-03798+02	.009-02770-03	-614-02721+01	.434-04	- 346-04	.555-04	385+02	10 340	45 715
-9.500	.226-04123-03	.125-03795+02	-614-02803-03	-619+02745+01	- 439-04	- 347-04	-559~na	383+02	10.334	45 751
-9.000	.239-04131-03	.133-03796+02	.618-02838-03	-624+02771+01		. 347-04	564-04	381402	10 330	444731
-6.500	.238-04140-03	-142-03804+02	.624-02875-03	-630-02-799+01		340-04	566-00	370402	10.330	431771
-6.000	.222+04152-03	.154-03817+02	.625-02+.917-03	-636=02=.629+01	- 455-04	300-00	570-04	375102	10 310	43.193
~7.500	.190-04167-03	.168-03835+02		-642-02-062-062	-461-04	350-04	570-04	373402	10.347	47.013
~7.000	.143-04188-03	-189-03656+02	-642+02-101-02	-650-02- 807+01	460-04	351-04	505-04	360.03	10,257	43.030
-6.500	.803-05217-03	-217-03577+02	.650-02- 107-02	-650-02- 036+01	176-04	351-04	502-04	140102	10.202	47.027
-6.600	.405-05258-03	-258-63-891+02	h6u→02= 113→02	670-02- 076-01	495-04	152-04	500-04	360102	14.200	47.785
-5.560	.315-05315-03	315-63- R9#+02	677-02-120-02	+070-02-101-01 601-02- 101-02	+400-04 006-00	352-04	1333-04	-339+02	10.132	43.672
-5.000	-117-04394-03	390-03-003402	-B7-02-127-02	+08-02-+101+02	610-04	*3.72*04	420-04	-353+02	10.052	45,447
-4.500	-386-04500-03	501-03- 656402	705-02-143-02	313-02- 103:02	·510-04	+ 302-04	.020~04	- 346402	9.970	47.057
-4.000	-982-04636-03	644-03- 812102	777-02-130-02	740-02-+107+02	• 57 / ~ 04	-373-04	-0.34-04	-336+02	a*a(iá	.44.447
+3.560	210+03-806-03	832-03- 754402	754-02-130-02	366-02-107402	+370-04 670 AM	+325-04	-034-04	.329+02	¥1904	9.5.574
-3.000	.399-03100-02	100-02- 693+02	784-02-134-02	•765-02- 005+02	+5/8-04	.300-04	.581-04	.320+02	10.008	47.429
-2-560	-702+03121-02	140-02- K90+02	17-02-106-02	877-82-67-441	+613-04	•3/1-04	-/1/-04	• 312+02	10-290	41.058
-2.000	-115-02139-02	181-02- 504402	450m02- 107m02	+827-02-4876+U1	• 6 0 7 - 0 4	.3~2-04	.765-04	-308+02	10.843	34.582
-1.500	180-02-189-02	230-02-307.02	076-02-170-02	+007-02710+01	.709-04	.427+04	-827-84	•311+uz	11.205	34.208
-1.000	-264-02-145-02	301-02- 205+02	-070-02-1772-03	+081*02*+02+01	+/6/-04	+483-04	906-04	+322+02	13.399	37.225
750	.316-027.130-02	341-02-205-02	.837-02-,397-03 .892-02- 196-n3	+8907027+205+01 003-02-120+01	• BZ /= 04	-569-04	-100-03	.345+02	16-111	3/.085
500	.374-02-196-02	-389-02-158402	862-02- 267-04	+040-02-171+00	•804~04 076_04	+0<0-U4	-105-03	• 362+02	14.250	37.495
375	.406-02894-03	415-02~.120+02	484-02 336-04	- 0H2-02 - 111+01	+8/8-04	130 04	112-03	-383+02	21.334	38.472
250	.449-02693-03	.445-02495+01	-321-02 -540-04	-820-02 \$78+00	· 094-04	.732-04	•110-03	+395+02	23.314	39.273
··· 125	.476-02445-03	-475-02534+01	.780=02618=05	786-02-450-01	-001-04	-173-04	122-03	-408402	20.307	40.437
.000	-499-02254-03	.499-02292+01	.740-02278-03	-740-02215+01	.001-04	.867-04	125-03	4422402	405 40	42.492
.125	.490-02275-03	.496-62318+01	-682-02476-03	-684-02 199+01	-906-04	.917~04	120-03	453407	45 029	41,707
.250	.460-02396-03	-482-02471+01	.651-02649-03	+654-02569+01	.910~04	965-04	.133-03	+467+02	52.061	52 108
.375	.465-02481-03	.467-02592+01	.023-02719-03	·627-02-,659+01	414-04	.101-03	-136-03	.479+02	59.898	50.489
+500	.450-02555-03	.454-02703+01	.599-02754-03	-604-02717+01	919-04	.106-03	.140-03	490+02	68.133	56.158
.750	+425-02688-03	.431-02920+01	.563-02784-03	.568-02793+01	.932-04	.114-03	.147-03	-508+02	85.275	59.752
1.000	.403-02794-03	.411-02111+02	.530-02791-03	.542-02838+01	.947-04	.122-03	.155-03	+523+02	103.213	60.688
1.5ûD	.365-02939-03	.377-02144+02	.541-02766-03	.506-02670+01	+981-04	+138-03	.169-03	.545+02	141.028	63,200
2.000	.331-02103-02	.347-02172+02	.477-02715-03	.4A2+02+.a52+01	102-03	+151+03	.182-03	.560+02	181.245	64.517
2,500	-302-02-,108-02	.321-02197+02	.460-02653-03	.465-02007+01	+106-03	+164-03	.195-03	.570+62	223.180	65.090
3.000	.277-02111-02	.298-02218+02	.440-02587-03	.452-02746+01	.111-03	.175-03	.207-03	.577+02	266.020	65,191
3.500	·255-02→.113-02	.279-02230+02	.439-025?2-03	.442-02578+01	-115-03	+180-03	.218-03	.582+02	309.008	64.991
4.065	-236-02114-02	+262-62-,257+02	.432-02459-03	+435-02606+01	.119-03	.195-03	·229-03	+585+02	351.517	64.602
4.500	.219-02114-02	.247-02275+02	.427-02400-03	·429-02~.536+01	.124-03	.204-03	.239-03	.587+02	393.052	64.097
5.000	-204-02114-02	.234-02292+02	.423-02346-03	.425-02467+01	.128-03	+213-03	.248-03	.588+02	433.237	63 522
5,500	-190-02114-02	.222-02305+02	.421-02296+03	.422-02402+01	.133-03	.220-03	.257-03	.589+02	471.823	62,910
6.000	.178-02113-02	.211-02324+02	.419-02250-03	+420-02341+01	.137-03	.228-03	.266-03	.589+02	50A.627	62.282
6.500	.167-02112-02	.201-02339+02	.410-02208-03	.418-02~.284+01	·142-03	234-03	+274-03	.588+02	543.559	61.652
7.000	.157-02112-02	.193-02254+02	.417-02169-03	418-02232+01	-146-03	+241-03	.282-03	+587+02	576.571	61.029
7.500	.148-02110-02	.185-02368+02	.417-02133-03	418-02193+01	.151-03	.247-03	.289-03	.586+02	607.672	60.419
8.000	.139-02109-02	.177-02381+02	.418-02-,101-03	+418-02138+01	.155-03	.252-03	·296→03	.584+02	636.886	59.625
8.500	.131-02108-02	.170-02394+02	.418-02709-04	+419-02970+00	+159-03	-258-03	.303-03	-583+02	664.2A1	50,260
9.000	.124-02107-02	.164-02407+02	.419-02434-04	.419-02→.592+00	-164-03	.263-03	.310-03	+581+02	689.916	58.604
9.500	.117-02105-02	.158-02419+02	.421-02180-04	+421-02-+245+00	-168-03	.268-03	.316-03	-579+02	713.879	58.159
10.000	.111-02104-02	.152-02430+02	.422-02 .551-05	.422-02 .748-01	.172-03	.272-03	.322-03	.577+02	736.244	57.643
12.000	.921-03973-03	.134-02466+02	.429-02 .836-04	.430-02 .112+01	.188-03	+288-03	.344-03	-569+02	811,160	55.765
22.000	.403-03680-03	.790-03594+02	.472-02 .204-03	.472-02 .248+01	251-03	.330-03	.415-03	.527+02	976.458	50.206
52,000	.146-04238-03	.239-03865+02	.529-02 .499-04	.529-02 .541+00	-324-03	.334-03	·466-03	+59+02	981.200	45.368

HORMAL EXIT.

EARTH MODEL:

GASG.T 1.,0///95000

EXGT. OF PRESI ABSI IDX=1 IMPLIES INF. LINE SOURCE ILX=2 IMPLIES TE MAGNETOTELLURICS AIR IDX=3 IMPLIES IM MAGNETOTELLURICS EARTH PARAMETER IDX= 3 NODES HORIZONTALLY= 57 HODES VERTICALLY= 27 BLOCKS HURIZONTALLY= 13 BLOCKS VERTICALLY= 15 1000 Ω-M TAKES IN ALSHE 3 BLOCKS OF AIRE 2 NPRINTE 0 10 Ω-M PCS. OF BEST LISTE O POS. OF 2ND LISTE O HESH CONDUCTIVITIES AND FREQUENCY .1000+01 .0000 .1060+00 ,1000-02 NUMBERS OF EQUAL SIZED INCREMENTS HORIZONTALLY 1 1 1 1 18 2 8 2 18 1 1 1 1 SIZE OF THE INCREMENTS IN EACH HORIZONTAL BLOCK (M) .3000+05 .1000+05 .2000+04 .5000+03 .2500+03 .1250+03 .2500+03 .5000+03 .2000+04 100Ú+06 .1000+05 .3000+05 .1000+06 NUMBERS OF EQUAL SIZED INCREMENTS VERTICALLY 1 1 1 1 1 1 3 4 7 1 1 1 1 3 SIZE OF THE INCREMENTS IN EACH VERTICAL BLOCK(N) .300/+03 .1000+02 .3030+01 ,1000+01 .3000+01 .6000+01 .2500+02 .6500+02 .1000+03 .2000+03 .1090+04 .3000+05 .1000+05 .2000+04 .1006+05 FINITE ELLMENT MESH CONDUCTIVITY CODE n n Ð Û 0 0 0 6 6 6 6 6 2 2 2 1

2 2 2 2 2 2 222 22 2 2

 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 LEFT EUGE INTERFACE DEPTHS(M) AND RESISTIVITIES .1000+03 ·2008+03

.1000+02 .1000+02

.1000+02 RIGHT EDGE INTERFACE DEPTHS(M) AND RESISTIVITIES

.1600+03 -2000+03

.1006+04 .1000+04 .1000+04

6.

DELX	RELFZI	IM(FZ)	1FZ1	PHZ	RE (ETR)	IM(FTP)	TUTOT	PHZ	PUTERLY INTERLY	TEPLT	PHZ	AP.PES.	+PHZ(Z)
-52.000-	+537-14	.274-14	.003-14	153 ≠03	1330-04	.333~04	.471-04	.450+02	-531-02885-07	531-02- 0	356-03	0 940	1000 44
-22.000-	.262-12-	184-14	.262-12-	.180+03	.333-04	333-04	071-04	450+02	531-02- uBb=07	531-02-0	56-01	0 005	4-1990
-12.000-	.766-12	427-14	.786-12	.180+03	.334-04	333-04	471-04	450+02		• 501-02-+5 • 631-02- 7	166-01	0.070	44+707
-10.000	.100-10-	.381-14	.166-10-	-131-01	.133-04	.333-04	.471-04	450+02	-531-02-+8-5-01 -531-02- v85-07	531-02-0	155-03 155-03	0.067	4 71000
-9.500	.467-11-	.254-14	.407-11-	.357-01	.333-04	.333-04	.471-04	-450+02		-531-02- 6	156-03	7,707	45.013
-9.000	.175-11	364-15	175-11	.119-01	.332-04	.333+04	.071-04	-450+02	-531-02-685-07	-531-02- 0	166-03	7.70J 0.058	45.012
-E.5C0	.233-11-	628-16	233-11-	.219-02	.333-04	.333-04	.471-04	-450+02	-531-02885-07	.531-02- 0	355-03	7+730 0 0 5 8	4 1 004
-8.000-	.582-11	+133-15	.582-11	.180+03	.333-04	.332-04	.471-04	450+02	-531+02885+07	.531-029	155-03	9,951	64 956
-7.500	.582-12-	+266-16	.582-12-	.262-02	.333-04	.332-04	471-04	.449+02	-531-02885-07	.531-029	355-03	9,952	44.914
-7.000-	.98-26-	-178-16	-178-16-	.900+02	.334-04	.332-04	471-04	.449+02	-531-02885-07	.531-029	155+03	9,961	44,714
-6.500	.494-26	.888-17	.838-17	.900+02	.334-04	.332-04	.471-04	.446+02	+531-02-+895-07	.531-029	155-03	9,981	44.793
-6.060	.000	.000	.000	.000	.335-04	.332-04	.472-04	.447+02	·5-1-02885-07	-531-029	955-03	10-020	44.732
-5.500	.000	- 600 .	.000	.000	.337-04	.333-04	.474-04	.447+02	+531-02-+885-07	.531-029	955-03	10.082	44.698
-5.000	.000	-000	.000	.000	.338-04	.335-04	.476-04	.447+02	.531-02895-07	.531-029	955-03	10.173	44.733
-4.500	.000	.000	.000	.000	.339-04	.338-04	.479-04	.449+02	-531-02895-07	.531-029	955-03	10.292	44.896
-4.000	.000	.000	.000	.000	.339-04	.342-04	.482-04	.453+02	+531-02-,885-07	.531-029	355-03	10.432	45.272
-3,500	.000	.000	.000	.000	.337-04	.349-04	.405-04	.460+02	.531-02895-07	.531-029	955-03	10.566	45.967
-3.000	+494-26	.288-17	-898-17	.900+02	.331-04	.356-04	.4P7-N4	.471+02	+531-02895-07	.531-029	955-03	10.639	47.107
-2.500	.494-26	·566-17	.888-17	•900+02	.319-04	+365-∩4	•485-04	+488+02	·531-02845-07	.531-029	955-03	10.556	40,830
-2.000-	.582-12	.169-15	.582-12	. 180+03	.297-04	.371-04	.475-04	.513+02	+531-02885-07	.531-029	955-03	10.156	51.275
-1.500	.233-11-	613-15	.233-11-	+151-01	.262-04	+369-04	452-04	.546+02	+531-02-+885-07	.531-029	955-03	9.200	54.574
-1.000-	.194-10	.165-13	+194-10	. 180+03	.210-04	.346-04	.405-04	.588+02	.531-02885-07	.531-029	955-03	7.358	50.810
/50-	• 598-11-	+647-13	.699-11-	-179+03	.175-04	.320-04	.365-04	•ú13+02	.531-02885-07	.531-029	955-03	5.977	61,273
-,500-	-553-10	-1/2-11	.683~10	+179+03	.130-04	.276-04	.308-04	+639+02	+531-02805-07	.531-029	955-03	4.252	63.856
- 360	.2/9-10-	**/28-11	.289-10-	-165+03	+114-04	244-04	.269-04	.651+02	+531-02885-07	.531-029	955-03	3.260	65.057
- 135-	•329-10 370×00-	.442-10	./69-10	.351+02	904-05	.202-04	·221-04	•659+02	·531-028P7-07	.531-029	957-03	2.201	65.898
123-	-279-09-	- 114 - 07	-309-09-	.136+03	.060-05	.145-04	.160-04	+656+02	-531-02874-07	.531-029	943-03	1.147	65.588
.125-	-316-05-	· 316-07	-447-07-	.132+03	.414-05	.405-05	-579-05	.444+02	.531-02955-07	.531-021	03-02	.151	44.404
.250-	.258-07-	.271-07	376-07-	130+03	107-02	. 341-03	•551-03	+437+82	-531-02-8/8-06	.531-029	948-021	364+126	43,750
.375	.582-08	-446-08	.733-08	. 375+02	399-03	+079-03	• 3 3 U = U 3	+435+02	+531-02-+846-06	.531-029	957-021	361.043	43.462
.SLO	.380-09-	-156-0A	.113-09-	.696+02	- 190-03	370-03	- 340-03 542-03	-432702	-531-02- 0806	•331-02-•9	175-021 164 001	339.190	43.253
.750	.552-09	.397-10	.583-09	.391+01	192-03	364-03	.535+03	120+02	-501-0260-0-00 	+331-02-0	200-021 265-021	320.072	43.112
1.000	.128-08-	.101-10	.128-08-	450+00	.3903	.360-03	.530-03	4429102		• 531-02-• 9 • 531-02-• 0	1007021	200.744	42.912
1.560-	.+06-09	.446-12	.466-09	.180+03	.389-03	.354-03	-522-03	-420-02	-531-02-1045-06	-531-02- 6	700-021 165-021	202+211	47.190
2.000	.524-09-	.135-12	.524-09-	.148-01	.390-03	.350-03	-516-03	-427+02	-531+02885-06	-531~029	555-021	107 499	42,001
2.560	.349-09-	.712-14	.349-09-	117-02	.376-03	.347-03	-512-03	.427+02	-531-02885-06	.531-029	55-021	176 620	47.000
3.000-	.233-09	.355-13	.233-09	-190+03	.373-03	.344~03	-508-03	.427+02	-531-02885-06	.531-029	355-021	159.443	42.720
3.500	.233-09-	-,284-13	.233-09-	.700-02	.371-03	.343-03	.505-03	+28+02	-531-02805-06	.531-029	355-0 21	145.560	42.779
4.000-	-233-09	+426-13	.233-09	+180+03	.368-03	.341-03	.502-03	.428+02	.531-02865-06	.531-029	955-021	134.264	42.839
4.500	.000	•000	.000	.000	.360-03	.240-03	.508-03	.429+02	.531-028P5-06	.531-029	955-021	124.761	42,902
5.000	.000	•000	.000	.000	.160-03	.340-03	.498-03	+430+02	-531-02885-06	.531-029	55-021	116.432	42.973
5.500	.000	.00ŭ	.000	.000	.363-03	.339-03	.497-03	.430+02	+51-02-+8P5-06	.531-029	55-021	109.623	43.035
6.000	.791-21	.142-13	.142-13	.900+02	.362-03	.338-03	.495-03	.431+02	.531-02685-06	.531-029	955-021	103.516	43.102
6.500	.000	.000	.000	.000	.361-03	,338-03	.494-03	.432+02	.531-02885-06	.531-029	955-021	098.132	43.167
7.000	.000	.000	.000	.000	.359-03	.338-03	•493-N3	+432+02	+531-82885-06	.531-029	955-021	093.530	43.227
7.500	.000	.000	.000	.000	.350-03	.337-03	.492-03	.433+02	-531-028A5-06	.531-029	955-021	089.498	43.284
8.000	.000	• 000	.000	.680	.353-03	.337-03	+491-03	+433+02	·531-02885-06	.531-025	55-021	085.854	43.341
8.5.5	.000	•000	.000	.000	.357-03	.337-03	-491-03	.434+02	-531-02885-06	.531-029	255-021	082.534	43.396
9.000	.233-09-	-284-13	.233-09-	700-02	.:50-03	.337-03	.490-03	+434+02	.531-02885-06	.531-029	955-021	079.698	43.445
9.500-	128-08	.135-12	.128-08	+180+03	.350-03	.337-03	. 489−03	.435+02	.531-02685-06	,531-029	55-021	076.967	43.497
10.050-	.235-08	-289-12	-235-08	.180+03	.350-03	.337-03	.489-03	+435+02	.531-02885-06	.531-029	955-021	074.881	43.536
12.000	502-09	-881-13	-302-09	.167-01	.352-03	.337-03	.487-03	.437+02	+531-02885-06	.531-029	155-021	066.990	43,706
22.000	•471=18= • 372=11	6/4-13	-471-10-	-821-01	.347-03	.337-03	•484-03	•441+02	.531-02885-06	.531-029	955-023	051.778	44.138
52.uu0-	-2/2-11	-860-13	.2/2-11	178+03	,342-03	.338-03	481-03	.446+02	.531-02885-06	.531-029	955-021	040.224	44.615