Selected Flood Summaries and Cost Estimates in Arizona by Susan M. DuBois and Brian R. Parks As explained in the previous Fieldnotes issue (v. 10, n. 4, p. 6), the term "flood" is often used synonomously with runoff and erosion as the cause of major damage related to heavy precipitation. Here it has been loosely applied where excerpts of source material have been quoted. However, all of the events in the chart did include periods of overbank flow (flooding) on portions of the floodptains. Flow rates in the washes or rivers are expressed in cubic feet per second (cfs). A useful analogy for visualizing such quantities of water and rates of flow is a 3 ft wide by 5 ft long by 2 ft deep bathlub, filling to the rim in 30 seconds at 1 cfs; 1 sec at 30 cfs: 1/30 sec at 300 cfs. Flood events presented below were selected with regard to the following criteria: 1) all resulted in either great monetary or human loss (or both); and 2) the events had a wide geographical and temporal distribution. These 15 events comprise only a small portion of the 103 documented floods which occurred between 1872 and 1981. [Other destructive storm runoff (not summarized below) also occurred in the following locations: Yuma -March 1884: Nogales- June 1887, Clifton- December 1906; Upper Gila River September 1926; Safford- September 1944; statewide- December 1965; Phoenix—June 1972; central and eastern Arizona- October 1972; statewide - February 1978]. | DATE | AREA DAMAGED | DRAINAGES | LOSSES (Millions of \$)† | SOURCES | |------------------|---|---|--------------------------|--------------------| | flebruary 1890* | Statewide | All major | \$ 6,636 | 3, 4, 15, 17 | | February 1891 | Statewide | All major | 28,575 | 2, 4, 5, 6, 15, 26 | | January May 1905 | Clifton, Upper
Gila Valley | Gita River
San Francisco River | 37,750 | 5, 9, 13, 16, 20 | | January 1916 | Statewide | Salt River
Gila River
Colorado River
Rillito River | 2,382 | 5, 6, 7, 15, 26 | | August 1940 | fucson | Santa Cruz River | 960 | 2 | | July 1954 | Globe
Miami | Pinal Creek | 3,553 | 10 | | Septombor 1962 | South Central Arizona | Santa Cruz River
Santa Rosa Wash | 9,310 | 2, 12, 22 | | August 1963 | Prescott | Granite Creek | 1.441 | 1 | | September 1964 | Tucson | Rillito River
Santa Cruz River | 6,411 | 14 | | December 1966 | Grand Canyon | Crystal Creck
Chuvar Creek | 5,040 | 8, 19 | | September 1970 | Santa Cruz Basin
North Centra! Arizona | Tonto Creck
Santa Cruz
Verde River
Oak Creek | 10,860 | 18, 21 | | Septomber 1976 | Bullhoad City | Silver Creek | 7.440 | 10 | | October 1977 | Santa Cruz Basin | Santa Cruz River | 56.160 | 2, 22, 23 | | December 1978 | Central and
Hastern Arizona | Gila Rivor
Salt Rivor
San Francisco Rivor | 85,020 | 2, 24, 25 | | February 1980 | Phochix | Salt River | 40.607 | 2, 4, 11 | | | | | | | [†]In this column lesses have ocen adjusted to 1979 dollars using the Gross National Product Implicit Price Deflator. #### February 1890 Heavy rains caused the Santa Cruz, Salt, Gita and Colorado Rivers to everflow. The Tempe bridge and miles of track between Maricopa and Yuma washed out, Farmiand and irrigating systems, mostly in the upper Gita valley, were destroyed. The wood and earther Walnut Grove Dam (130 ft high, 400 ft wide) 20 mil S of Prescott on the Hassayampa River overflowed and burst on 2-22/90. Approximately 50,000 acre it of water were released as a "wave 100 ft high" destroyed everything in its path, including several mining camps and an uncompleted smaller ingation dam. Between 70 and 100 deaths were reported. The dam failed after its spillway became clogged with vegetation and water overflowed its crest. Damage estimate includes only cost of Walnut Grove Dam #### February 1891 Heavy rains starting on 2.15/91 created some of the largest estimated flows on major drainages in Arizona; Bili Williams River ^{*}See summaries of these events be-ow. at Planet on 2/21/91 was 200,000 cfs; San Francisco River at Clifton called the "highest to date"; Salt River at Phoenix was 300,000 cfs; Gila River near present day Gillespie Dam on 2/22/91 was 250,000 cfs (greatest known flow to date); Colorado River at Yuma on 2/25/91 was 300,000 cfs. [In comparison to these flow rates, Salt River Project releases in February 1980 were 78,000 to 180,000 cfs. In 1891, all towns along these rivers were affected. Clifton was under much water; all bridges and nearby irrigation systems were destroyed. At Globe "many buildings were damaged or lost." At Phoenix the Salt River was 18 ft above normal. The railway and its bridges were destroyed. Below Phoenix the Gila River was 2-3 mi. wide in places. At Yuma "every structure of consequence not completely destroyed was surrounded by water." Other localities reporting damage include Prescott, Holbrook, Cottonwood, Ft. Thomas and Ft. Apache. At this time Phoenix and Yuma had populations of 2,000 each. In Arizona no large flood control structures were in existence. The \$28,575,000 damage estimate is for Yuma and its surroundings only. #### January 1905-May 1905 Above average precipitation during this period caused widespread flooding throughout central and eastern Arizona. In January floodwaters damaged many acres of farmland and inundated several towns in the upper Gila River valley. Clifton experienced its "most disastrous flood in history"; the town was heavily damaged; all bridges across the San Francisco River were destroyed and the area was isolated for several weeks. During February, Phoenix had 4.64 in. of rain; Cave Creek overflowed its banks for the second time in two months covering the state capital grounds. The Salt River at Phoenix was reported to be the "highest since the 1891 flood." Heavy rains continued through March and April producing flood stages on the Salt, Gila and Little Colorado Rivers. On May 2, the Norman Dam, located 7 mi. upstream from St. Johns on the Little Colorado River, burst, flooding farmland and drowning livestock downstream from St. Johns. The city itself received fittle damage. Loss of irrigation water impounded behind the dam affected farming throughout the valley until the new and larger Lyman Dam was constructed. [In April 1915, heavy rains caused this new dam to break, inflicting at least 8 deaths and great damage downstream as far as Holbrook.] #### January 1916 January went on record as the wettest month since the establishment of the Arizona Climatological Service in 1892, "Between 4 and 6 in. of rain fell in the Gila valley lowlands. Two separate storm systems converged over Arizona during the month; the first from 1/15/16 to 1/21/16 soaked the ground; the second from the 1/26/16 to 1/30/16 caused heavy damage. The Salt River at Tempe on 1/19/16 was 18.7 ft [flood stage is 7 ft]. Flow on the same day was 100,000 cfs. Other flows for the month include 100,000 cfs in the Salt River below Roosevelt; 90,000 cfs in the San Francisco River at Clifton on 1/19/16; 100,000 cfs on 1/19/16 in the Gila River at Safford; and 130,000 cfs in the Gita River at Coolidge Dam on 1/20/16. Cities damaged along the Salt and Cita River valleys included Chandler, Tempe, Phoenix, Gila Bend and Yuma. Yuma experienced the worst damage; "81 buildings reported consumed". On 1/22/16 Colorado River flow at Yuma was 220,000 cfs; the Gifa River flow at Dome (20 mi, E of Yuma) was 200,000 cfs. The damage figure does not include Yuma's losses. #### August 1940 Summer monsoons brought 2.94 in, of rain to Tueson in August, producing floods on 8/13/40 along Tueson Arroyo and Rillito and Santa Cruz Rivers. Flow data on 8/13/40 show the Rillito at 13,200 cfs and the Santa Cruz at 11,300 cfs. The Rillito River flowed 200 yds beyond its banks in places. Most damage occured near Tueson Arroyo, including flooding of the Tueson Gas and Electric Company which caused a blackout. Southern Pacific track and bridges at Fairbank (near Tombstone) were washed out. [Other damaging floods in Tueson and the surrounding area within this decade include 9/43, 8/45, and 7/48, with a combined loss of \$1,381,100]. #### July 1954 On 7/20/54 and 7/29/54 flash floods caused serious damage to Miami and Globe, Monthly rainfall totals for Miami and Globe were 3.36 in. and 2.77 in. respectively. At Miami the flood piled up cars and damaged a number of business establishments. Globe suffered when a wall of water came down Pinal Creek and flooded the business section with several feet of water. New cars were reportedly washed out of a showroom and destroyed. Twenty-five businesses were destroyed; 40 others damaged, and 126 families claimed losses in a two block section of Globe. #### September 1962 Heavy rains which fell from 9/26/62 to 9/28/62 in Pinal and Pima Counties resulted in severe flooding, predominantly in agricultural areas: Sells received 4-6 in.; Tucson, 3.5 in.; the Tucson Mountains (near the Desert Museum), 5.95 in.; Marana, 4.6 in; and Avra valley, 6 in. Peak stream flows include 17,000 cfs on the Santa Cruz River at Cortaro and an amazing 53,000 cfs on the Santa Rosa Wash. [Estimated peak flow of a 100-yr. flood is 41,200 cfs.] Near Eloy a flat area known as Green Reservoir formed a lake 40 sq. mi. by 8 mi., "five foot cotton disappeared beneath water." The water destroyed dikes while flooding thousands of acres of farmland. The towns of Maricopa and Stanfield were evacuated because of high water in the Santa Cruz River. Sells experienced its "worst flood in memory" and many of the 70 surrounding Indian villages became isolated as a result of the storm. #### August 1963 The third storm of the month hit north-central Arizona on 8/19/63, dropping 1--4 in, of rain on the Prescott area. The four tributaries of Granite Creek poured 7,000 cfs of water into Prescott; "higher flows may have occurred in the past 50 years, but none caused nearly as much damage." In 1963 the
population of Prescott was 13,000 [by 1978-19,000]. Much of the damage occurred in residences along the narrow valleys. The creek channels were constricted by developments. When rains came, drainages were of insufficient size to carry the runoff. In places the creeks were 200 ft wide, whereas before the flood their channels were only 20-30 ft wide. Two miles of sewer line were completely washed out and another section, 6 mi. long, was damaged. Residential, commercial and business properties were also damaged. The governor declared Prescott a disaster area. #### September 1964 The storm of 9/9 to 9/11/64 resulted in a maximum total precipitation of 6.73 in, over the Santa Catalina foothills and Sahuarita, Peak discharges on local streams include 13,000 cfs at Tucson and 14,000 cfs at Continental, both on the Santa Cruz River; 9,420 cfs at Tucson on the Riflito River; and 9,960 cfs near Vail on Pantano Wash. Flooding occurred predominantly in two areas: 1) from Continental to Sahuarita the Santa Cruz River was one mile wide over half the distance, inundating many areas of ripe unpicked cotton 2) from Marana to Chuico, water overflowed dikes and flooded 35 sq. mi. of floodplain. Much lateral erosion and downcutting occurred along the Santa Cruz River. For example, at the Ajo Way Bridge the river bed was 2–3 ft lower than the level after the 9/61 flood and 8 ft lower than it was in 1958 when the bridge was constructed. #### December 1966 The sparsely populated eastern Grand Canyon experienced flooding of a rare magnitude from 12/4-12/7/66. Although few gaging stations are located in the area, rainfalf totals collected during the storm indicate that great precipitation occurred in several localized areas: at Tuweep, 6.05 in.; at Jacob Lake, 6.60 in.: at Bright Angel Ranger Station, an estimated 12 in.; and at the North Rim entrance station, an estimated 14 in. Peak discharges include 3,000 cfs on Nankoweap Creek and 4,000 cfs on Bright Angel Creek, which destroyed the gaging station. Extensive mud and debris flows along the uninhabited drainages of Dragon, Crystal, Lava, Nankoweap, Kwagunt and Shinumo Creeks caused little economic loss but damaged several archeological sites and altered stream geometries. Other flood related losses, mainly in the Bright Angel Creek dramage, included a powerhouse, pumping station, newly constructed water line, camp grounds and facilities. Mudiflows occurred on the undeveloped and unpopulated Crystal Creek. Loss of life and many more buildings would have been expected it similar muditows had occurred along Bright Ange: Creek. Cooley (1977) states, "the floods of December 1966 probably were greater than any since the general abandonment of the eastern Grand Canyon by the Pueblo Indians about A.D. 1150." #### September 1970 On 9/4-9/6/70, an intense storm resulted in flooding throughout the Santa Cruz River bastn, in the Four Corners area, and especially central Arizona. The Mogolion Rim area and the Santa Catalina Mountains each received more than 5 in, of rain; Payson reported 5.36 in, on 9/3/70; Tonto Creek fish hatchery received 5.63 in. on 9/6/70; and Sasabe reported 4.36 in. on 9/4/70. Peak discharge data includes 53,000 cfs and 44,000 cfs on the Tonto Creek near Hoosevelt and Gisela, respectively: 24,700 cfs on Oak Creek near Cornville: 7,750 cfs on Sabino Creek near Tucson and 19,000 cfs on the Agua Fria River near Mayer, The cities of Buckeye, fucson, Payson, Wickenburg, Phoenix and Scottsdale (where 250 homes were evacuated) reported damages. Twentythree deaths occurred along Tonto Creek where many people were vacationing over Labor Day weekend. On 9/8/70 the Mesa Tribune reported, "Tonto Creek exploded into a chuming boiling mass of water, rocks and full grown trees which crested at over 30 It in depth in the flat areas." Also the fish hatchery, summer cabins, mobile homes and nearby roads were destroyed along Tonto Creek #### September 1976 Tropical storm Kathicen dropped 2, 5 in, of rain on Butlhead City and the surrounding area, 9/11/76. Flash flooding and roud flows occurred on 8 major washes leading into Bullhead City from the surrounding mountains. The Silver Creek crossing of state route 95 was cut into "a 20, 40 ft deep canyon by the raging waters." The rains cut off all overland assistance to the city and caused an estimated \$3 million in damages, \$2.5 million of which was private property loss. The Governor's office declared the city a disaster area on 9/21/76. A second storm on 9/24/76 dropped an additional 2, 5 in, of rain, causing another \$2, 3 million in damages. #### October 1977 Heavy rains of 10/6, 10/40/77 brought by tropical storm Heather caused severe flooding in the Santa Cruz and San Pedro River basins. The heaviest rains felt in the vicinity of Nogales where the official total was 8.3 in. [Unofficial totals reported for the area are 12 m.) Peak discharges on the Santa Cruz River were the largest ever recorded at USGS gaging stations: 12,000 cfs near Lochiel: 33.000 cfs near Nogales: 28,000 cfs at Continental; 23,700 cfs at Tucson and 24,500 cfs at Cortaro. Other peak flow data include 23,700 cfs on the San Peoro River near Tombstone and 4,000 cfs on the Nogales Wash at the Old Tudson highway. Santa Cruz. Pima and Pinal Counties were declared disaster areas on 10/9/77. Damage was concentrated along the Santa Cruz River floodplain and its tributaries. A total of 12,000 acres of agricultural land was damaged in these counties. In Negates, flooding displaced 54 families. arong Nogales Wash. A total of 160 residences were damaged or destroyed along the Santa Cruz River. Coronado National Forest suffered over \$1 million damage to roads and pringes. Tudson, Green Valley, Sahuarita and Marana also reported damages que to fiobaing. #### December 1978 Predibitation in the Gifa River dramage basin on 12/16, 12/20/78 ranged 1, 10 in, causing the most costly runoff event in Arizona's history. Reported stream discharge data for 12/19/78 include 56,000 cfs on the San Francisco River at Officer: 100,000 cfs on the Gifa River near Safford: 140,000 cfs on the Sas River at Phoenix, and 126,000 cfs on the Gifa River at Painted Rock Reservoir Graham, Otennies, Navajo and Maricopa Counties were declared tederal disaster areas. Serious damage occurred in the upper Gifa River ivalley between Pima and Duncan where 75 homes were destroyed. Sixty eight percent of the homes in Little Hollywood (near Safford) were destroyed; 2,000 people in Safford were evacuated and \$12 million worth of damage to agricultural tand was reported. The Phoenix metropolitan area was also affected by heavy runoff where a total of \$56 million of damage occurred; 30% of this damage was caused to roads and bridges. Also damaged were Tudson, Summerhaven. Green Vatley, Marana, Clifton, Thatcher. Pima, Scottsdale, Glendale, Tempe, Winstow, Williams and Gila Bend. There were 12 reported deaths from the storm. #### February 1980 Damage totals for the mio-February "flood" are still incomplete, but expected to be higher. The Phoenix metropolitan area experienced its second major runoff event in two years, resulting in the evacuation of 6,000 people, and leaving only two of the ten area bridges open. Discharges for the Sait River at Phoenix ranged between 78,000 cfs and 180,000 cfs during the peak flow. Mesa, Scottsdale, Tempo, Glendale and Buckeye also reported damage. ## REFERENCES FOR FLOOD SUMMARIES - Aldridge, B. N., 1963, Floods of August 1963 in Prescott. Arizona: U.S. Geological Survey Open File Report, n.2, 12 p. - 2. Arizona Daily Star, Tucson - 3. Arizona Journal Miner, Prescott - 4. Arizona Republic, Phoenix - 5. Arizona Republican, Phoenix - Arizona Sentinel, Yuma - 7. Chandler Arizonan - Cooloy, M. E.; Aidridge, B. N. and Euler, R. C.: 1977. Effects of the catastrophic flood of December 1966, north rim area, eastern Grand Canyon, Arizona: U.S. Geological Survey Professional Paper 980, 43 p. - 9. Copper Era. Clifton - Durrenberger, R. W. and Ingram, R. S., 1978, Major storms and floods in Arizona 1862–1977: Office of the State Climatologist. Precipitation Series, n. 4, 44 p. - Emergency Services (Division of), personal communication, January, 1981 - Lewis, D. D., 1963. Desert floods, a report on southern Arizona floods of September, 1962: Arizona State Land Department, Water Resources Report 13, 30 p. - 13. Mohave County Miner - 14 Moosburner, O. and Aldridge, B. N., 1970. Floods of Soptember 9-11 in the Santa Cruz River basin, Arizona: U.S. Geological Survey Water Supply Paper 1840-C, p. 69-74. - 15. Monthly Weather Review - Phoenix Enterprise - 17. Prescott Courier - Boeske, R. H., Cooley, M. E. and Aldridge, B. N., 1978, Floods of September 1970 in Arizona, Utan, Colorado and New Mexico: U.S. Geological Survey Water Supply Paper 2052, 135 p. - Rostvedt, J. O., 1971, Summary of floods in the United States during 1966; U.S. Geological Survey Water Supply Paper 1870 D. p. 56–58 - 20. St. John's Herald. - Phorud, D. B. and Folliott, P. L. 1973, Comorehens've analysis of a major storm and associated flooding in Arizona; University of Arizona Agricultural Experiment Station, Technical Buildin 202, 30 p. - 22. Tudson Citizen - U.S. Army Corps of Engineers, 1978, Flood damage report on storms and floods on Santa Cruz. Gra and San Pedro Bivors. Arizona, 19 o. - 1979 Flood damage report. Phoenix metropolitan area, Docember 1978 flood, 41 p. - -- 1980, flood damage report- south central Arizonal and southwestern New Mexico, December 1978 flood, 39 b. ⋈ ## Index to Fieldnotes: March 1971 to March 1981 The following data indicate references listed under Volume-Number, Page; for example, 11-1, 1 represents volume 11, number 1, page 1. Absorption refrigeration: 9-4, 1 Abstracts: 10-4, 11 Allen, W. E.; 7-3, 10 American Institute of Professional Geologists: 10-1, 4American Mining Congress: 2-3, 7 Anderson uranium mine: 7-1, 1; 8-1, 24 Anhydrite: 3-2, 1 Annual Reports: 6-3, 11; 7-3, 9 Anschutz Corporation:
8-1, 17; 8-4, 7; 9-1, 10; 10-1, 1; 11-1, 1 Anthony, John W.: 7-1, 20 Archaeology; 3-1, 1; 4-4, 4; 5-2, 4 Arid Lands Studies (U of A): 1-3, 10; 5-4, 3; 7-1, 5; 7-2, 1; 9-2, 8; 9-3, 8 ARIZONA BUREAU OF GEOLOGY AND MINERAL TECHNOLOGY (**U of A**): 7-2, 1, 11; 7-3, 4, 7, 9; 8-1, 16; 8-4, 11; 9-2, 8; 10-4, 10 ARIZONA BUREAU OF GEOLOGY AND MINERAL TECHNOLOGY PUBLICATIONS (U of A): 7-2, 12; 7-3, 6, 8, 9, 11; 8-1, 8, 17; 9-1, 16; 9-3, 11; 9-4, 7; 10-1, 12; 10-2, 5, 6; 11-1, 8 ARIZONA BUREAU OF GEOLOGY AND MINERAL TECHNOLOGY **STAFF** (U of A): 7-3, 6, 7, 8; 8-1, 16, 22, 23; 8-3, 3; 9-1, 16; 9-2, 8 Arizona Bureau of Mines: 1-1, 1, 3; 1-2, 1, 2, 5, 12; 1-3, 1, 3; 2-1, 3; 2-2, 6; 2-4, 6; 3-1, 3, 4, 5; 3-2, 8; 3-4, 6, 10; 4-3, 1, 2, 4, 6, 7; 5-1, 3; 5-2, 7; 5-3, 12; 5-4, 6, 11; 6-2, 15; 6-3, 11; 7-2, 1, 11; 7-3, 9 Arizona Bureau of Mines publications: 1-2, 5, 11, 12; 1-3, 8; 1-4, 7; 2-2, 2; 3-1, 8; 3-3, 8; 3-4, 3; 4-3, 3; 5-2, 12; 6-1, 8, 16; 6-3, 11; 7-1, 5, 12; 7-2, 12 Arizona Bureau of Mines staff: 1-1, 1, 3, 4, 5; 1-3, 1, 3, 8; 2-1, 3; 2-2, 4, 6; 2-4, 6; 3-1, 3, 4; 3-2, 8; 3-4, 6; 4-3, 4; 5-1, 3; 5-4, 3; 6-3, 12, 7-2, 11 Arizona Department of Mineral Resources: 1-3, 12; 5-4, 11; 6-2, 15; 7-3, 6 Arizona Geological Society: 1-2, 12; 1-4, 8; 2-2, 2; 5-1, 12; 6-2, 14; 7-1, 19; 10-2, 8 Arizona Geological Society publications: 2-2, 2; 6-2, 14; 7-1, 19; 9-3, 11; 10-1, 9 Arizona Historical Society: 1-2, 11; 9-1, 7, 8; Arizona Mining Association: 1-1, 5, 9; 1-3, 3 Arizona Oil and Gas Commission: 7-3, 10; 9-3, 11 Arizona-Sonora Desert Museum: 5-1, 12; 10-4, 9 Arizona State University: 1-1, 8; 1-2, 11; 2-1, 7; 2-4, 5; 3-2, 3; 3-4, 5; 4-2, 7; 4-3, 7; 4-4, 2, 9; 5-3, 10; 8-4, 9; 9-2, 8 Arizona Water Commission: 5-1, 12; 6-2; 2; 6-3, 16; 7-2, 2; 9-1, 16; 9-2, 1 Asbestos: 10-1, 11 Association of Women Geoscientists: 10-1, 9 Atomic Energy Commission: I-1, 10; 6-3, 2 Atmospheric Analysis Lab (U of A): 1-1, 5; 1-3, 3 Barber, G.A.: 4-2, 2 Basin and Range Province: 3-2, 1; 3-4, 2, 9; 5-4, 9; 6-2, 1, 15; 6-3, 5; 7-1, 5; 7-2, 11; 8-1, 21; 8-3, 6; 9-1, 10; 9-2, 1, 3; 9-3, 1; 10-4, L Beane, Dick: 9-2, 3 Bedrock shoulders: 3-4, 1 Bisbec: 1-2, 7 Bitumen: 4-3, 3 Black Mesa: 3-2, 6; 4-1, 8; 5-4, 1; 7-1, 5; 7-2, 3; 7-3, 9; 10-1, 10 Bolsa Quartzite: 6-2, 15 Boyd, James: 5-2, 10 Brown, Brent W.: 6-3, 8 Buckskin Mts.; 10-2, 8 Bureau of Land Management (U.S.): 9-1, 10 Bureau of Mines (U.S.): 1-3, 11; 1-4, 10; 9-4, 7, 8; 10-2, 8 Bureau of Reclamation: 9-2, 7 Cabeza Prieta Mountains: 5-4, 4 California Division of Mines and Geology: 1-1, 2 Campbell, Alice; 9-2, 7 Candea, Anne: 9-3, 10 Carboniferous rocks: 7-3, 5 Casa Grande: 10-3, 10; 11-1, 9 Casi Cuatrocientos Mountains: 4-4, 14 Catalina Mountains: 2-3, 4 Caving: 1-3, 11 Cenozoic: 9-3, 1, 11; 10-1, 11 Central Arizona Project (CAP): 6-2, 2; 6-3, 9; 9 - 2.6 Chapin Wash Formation: 7-1, 3 Chemical engineers and mining: 1-4, 2 Chemical hazards: 8-4, 8 Childs, Orlo: 10-4, 11 Chrysocolla: 5-2, 9 Cinder: 10-2, 3 Clay: 10-2, 10 Climate: 7-3, 7 Coal gasification: 1-4, 5; 9-3, 7 Coal in Arizona: 5-4, 1; 6-3, 14; 7-1, 5 Cochise County: 1-1, 10; 3-4, 3 Coconino Sandstone: 4-4, 8; 6-2, 15 College of Architecture (U of A): 9-3, 8 College of Earth Sciences (U of A): 1-3, 9; 3-2, 3; 4-2, 7; 4-3, 7; 4-4, 2; 5-1, 5; 5-4, 3; 9-1, 14 College of Mines (U of A): 1-2, 10; 1-3, 4, 10; 1-4, 2; 2-1, 3, 5, 8, 10; 2-4, 1; 4-2, 7; 4-3. 2, 7; 4-4, 3; 7-3, 9; 10-2, 9 Colorado Plateau: 6-1, 6; 7-1, 5; 9-1, 10, 12; 9-2, 1, 7; 9-4, 3; 10-4, 1 Colorado River: 4-4, 11 Conferences and seminars: 1-4, 10; 2-1, 5; 6-3, 9; 7-3, 5, 9; 8-1, 17; 8-4, 7; 9-2, 3; 10-1, 9; 10-2, 5, 12; 10-3, 12; 10-4, 5 Conley, J. N.: 7-3, 10 Conservation: 6-3, 10; 8-3, 1 Copper 1-1, 9; 1-2, 1, 3; 1-4, 1; 2-3, 10; 2-4, 1; 3-2, 7; 3-4, 1; 4-2, 1; 4-3, 1; 4-4, 12; 5-2, 4; 8-1, 1, 2, 7, 9, 14, 16; 9-1, 10; 9-2, 3; 9-3, 6 Copper industry: 1-4, 9; 2-1, 3; 8-1, 2 Copper production in Arizona; 1-3, 11; 2-1, 10; 7-2, 2; 8-1, 7, 14 Copper recovery systems: 1-4, 1; 2-1, 10; 3-4, 11; 4-3, 1; 5-3, 6; 6-3, 16; 7-2, 2; 7-3, 9 Cordy, Gail E.: 10-3, 10 Cornetite: 1-1, 3 Cosart, William P.: 2-1, 3 Cotera, Augustus S., Jr.: 4-4, 2 Cox, Neil D.: 2-1, 8 Cyanide: 8-4, 8 Damon, Paul E.: 7-1, 5; 7-3, 6 Degrees in Geology: 1-2, 10; 1-3, 9 Department of Chemical Engineering (U of A): 9-2, 8 Department of Energy (U.S.): 9-4, 7 Department of Geosciences (U of A): 1-3, 9; 3-2, 3; 4-4, 2; 5-1, 5; 9-1, 14; 9-3, 1; 10-1, 9Department of Interior (U.S.): 9-2, 8 Department of Metallurgical Engineering (U of A): 9-2, 8 Department of Mining and Geological Engineering (U of A): 1-3, 10; 2-1, 12; 2-4, 1; 4-4, 2; 9-3, 8; 10-2, 9 Dickinson, William R.: 10-1, 11 Displays: 10-1, 12; 10-4, 9 Dos Cabezas Mining District: 1-4, 5 Dotson, Jay C.: 1-3, 4; 5-2, 1; 10-2, 9 Drainage: 2-3, 2; 2-4, 11 Dresher, William H.: 1-3, 1; 2-1, 1; 2-3, 1; 2-4, 1, 9; 3-2, 4, 8; 3-3, 6; 3-4, 6; 4-1, 1; 5-2, 1; 5-3, 12; 5-4, 3, 7; 6-3, 12; 7-3, 7; 8-1, 2; 9-2, 8; 9-3, 8; 10-2, 4; 10-4, 12 Drilling activity; 1-1, 2; 1-3, 10, 12; 2-1, 8; 9-1, 10; 10-1, 1 Dubois Susan: 8-4, 11; 9-1, 1; 9-2, 4; 9-4, 7; 10-1, 9, 10, 12; 10-2, 4; 10-3, 4; 10-4, 6; 11-1, 12 Dwyer, Dan: 8-1, 17, 23 Earthquake control: 6-1, 4 Earthquake hazards: 9-1, 1, 6; 10-1-11; 10-3, 10 Earthquake measurement: 9-1, 2, 8; 9-4, 7; 10-1, 12 Earthquake prediction: 6-1, 4; 9-1, 4 Earthquakes: 6-1, 1; 9-1, 1; 11-1, 12 Earthquakes in Arizona: 5-2, 5; 6-1, 1; 6-3, 2; 7-3, 1; 8-4, 11; 9-1, 6, 7; 10-1, 11; 10-2, 4; Earth Resources Test Satellite (ERTS): 2-2, 1; 2-3, 1; 5-4, 3 Edwards, Richard M.: 1-1, 1; 1-3, 1; 1-4, 4 Electron microscope; 2-2, 4 Energy: 2-3, 9; 4-1, 7, 11; 6-3, 8 Energy policy: 5-1, 3 Energy resources in Arizona: 4-1, 3; 5-4, 1; 9-3, 7Energy sources: 2-2, 9; 3-3, 8; 4-1, 1, 7; 5-2, 1, 3, 12; 5-4, 1; 6-3, 1, 14 Energy shortage: 4-1, 1 Environment: 1-1, 5; 1-2, 7; 1-3, 3; 1-4, 4; 2-1, 8; 2-3, 11; 4-3, 6; 5-1, 1; 5-2, 10; 6-3, 15; 7-1, 5; 8-4, 7 Environmental control: 1-1, 5; 1-4, 4; 2-1, 9; 2-2, 6, 12; 4-3, 6; 7-2, 3; 8-4, 8 Environmental Education Act (1970): 8-3, 1 Environmental Impact Statement: 3-1, 7; 6-3, 2, 15; 8-3, 1 Erosion: 2-2, 2; 4-4, 13; 5-1, 1, 3; 6-2, 5; 7-3, Evaporite: 3-2, 1 Exxon: 3-2, 1; 9-1, 10; 11-1, 1 Eyde, Ted H.: 8-4, 1 Fansett, George R.: 2-2, 4 Faults: 1-4, 11; 2-2, 1; 6-1, 1, 14; 6-3, 2; 9-1, 1, 4, 11; 9-2, 2 Fellows, Larry D.: 9-1, 16; 10-2, 8; 10-4, 10; 11-1, 12 Field Equipment: 3-4, 12 Fieldnotes: 11-1, 8 Field reconnaissance: 2-1, 8 Field Trip: 9-4, 3; 10-1, 10, 11; 10-2, 8 Fisher, Walter, W.: 3-1, 3, 4-3, 1; 5-3, 6; 6-3, 12, 16; 7-3, 9 Flood control: 3-1, 6; 5-1, 1; 10-4, 6 Flooding, damages: 11-1, 2 Floodplains: 2-3, 2; 2-4, 11; 4-4, 5; 5-1, 2, 6; 5-3, 2; 10-4, 6; 11-1, 2 Forrester, James, D.: I-1, 1, 5 Fort Lowell Formation: 6-2, 5 Fossil fuels: 1-2, 3; 1-4, 5; 4-1, 3, 7; 5-2, 3, 12; 5-4, 1; 6-2, 5; 6-3, 14; 7-1, 5; 7-3, 10; 8-1, 17; 9-1, 10 Fossils: 1-2, 6; 4-4, 4, 7 Foster Kennith E.: 2-2, 1; 7-1, 5; 9-3, 8 Gasoline: I-1, 5 Gas storage: 1-3, 11; 2-1, 7; 3-2, 2 Geiger, Gordon H.: 7-3, 7 Geochemistry: 4-4, 7 Geochronology: 4-4, 13; 7-1, 19 Geologic hazards: 2-3, 1; 2-4, 12; 3-3, 1; 5-1, 1, 6; 5-3, 1, 11; 5-4, 8; 6-1, 1; 6-2, 5; 6-3 1; 7-3, 9; 8-1, 18; 9-1, 1; 9-2, 1; 9-4, 7; 10-1, 12; 10-2, 4; 10-3, 4; 10-4, 6; 11-1, 2 Geologic maps: 1-1, 6, 10; 1-2, 8; 1-3, 6, 12; 1-4, 10; 2-1, 6; 2-2, 1, 3; 2-4, 4; 3-2, 2; 3-4, 4; 4-2, 6; 4-3, 6; 5-1, 10, 11; 5-3, 6; 6-3, 7; 7-1, 6; 7-2, 12; 7-3, 6, 12; 8-1, 17; 8-3, 4; 8-4, 4, 8; 9-1, 15, 16; 9-2, 1, 8; 9-4, 7; 10-2, 8; 10-4, 1, 10 Geologic publications: I-1, 3, 6; I-2, 8, 11, 12; 1-3, 6, 7; 1-4, 6, 10; 2-1, 6; 2-2, 2; 2-4, 4; 3-2, 2, 3; 3-4, 4; 4-2, 6, 7; 4-3, 7; 5-1, 12; 5-2, 12; 5-4, 12; 6-1, 8; 6-2, 14; 6-3, 7, 11, 16; 7-1, 5, 6, 19, 20; 7-2, 12; 7-3, 6, 7, 8, 9; 8-1, 17, 24; 8-3, 5; 8-4, 8, 9, 12; 9-1, 15, 16; 9-4, 3; 10-2, 5, 12 Geological Society of America: 8-1, 17; 10-1, 10; 10-4,11 GEOLOGICAL SURVEY BRANCH: 3-4, 10; 5-3, 2, 5, 11, 12; 5-4, 6; 6-3, 11, 15, 17; 7-2, 1; 7-3, 8, 9; 8-3, 6; 8-4, H: 9-1, 8, 16; 9-2, 8 Geological Survey (USGS): I-1, 11; I-3, 7, 12; 1-4, 10; 2-3, 1, 10; 3-2, 3; 5-3, 5, 11; 6-1, 8; 6-3, 11; 7-2, 12; 8-3, 5; 9-1, 8, 16; 10-2, 5, 8; 11-1, 9, 12 Geology: 4-4, I, 10; 6-2, 8 Geology Department (U of A): 2-1, 3; 4-2, 7; 4 - 3.7Geomorphology: 6-2, 7 Geophysics: 4-4, 6 Geoscience Daze: 5-1, 5; 10-1, 9; 10-4, 5 Geostationary Operational Environmental Satellite (GOES); 9-2, 4 Geothermal energy: 1-1, 5; 1-2, 7; 2-2, 9; 4-1, 3; 4-4, 5; 5-1, 4; 7-2, 11; 7-3, 4, 9; 8-1, 17, 21; 8-4, 6; 9-2, 7; 9-3, 12; 9-4, 1; 10-1, 5 Giardina, Sal, Jr.: 9-3, 11 Gila River: 2-4, 11 Glacial activity in Arizona: 1-1, 2; 2-1, 9 Gold: 3-2, 7 Grand Canyon: 1-2, 9; 1-3, 3; 4-2, 7; 4-4, 4, 8; 6-3, 7; 7-3, 8 Grants: 8-3, 6; 9-4, 7, 8 Groundwater withdrawal: 1-3, 12; 4-4, 5; 6-2, 2; 6-3, 9; 7-2, 2; 9-1, 16; 9-2, 1 Guilbert, J. M.: 4-4, 12; 9-2, 3 Hahman, W. Richard, Sr.: 7-2, 11; 7-3, 4, 9; 8-1, 17, 21, 23; 8-4, 6 Hancy, Dick: 7-1, 5 Harquahala Mountains: 6-2, 15; 7-3, 8 Harshbarger, John W.: 2-2, 9 Haury, Emil: 9-1, 9 Heidrick, Tom L.: 9-2, 3 Hemihedrite: 1-1, 3 Heylmun, Edgar B.: 10-1, 8 Highway construction: 3-1, 6; 3-3, 1 Hilltop; 1-2, 10 Holzer, Tom L.: 9-2, 1; 10-3, 10; 11-1, 9 Hydrogen sulfide: I-4, 4 Hydrologic studies: 3-3, 11; 6-3, 11 Hydrology field camp: 1-3, 10 Hydropower: 4-1, 3 Hydrothermal: 3-3, 8; 4-4, 12 Index to Fieldnotes: 5-1, 5; 9-4, 4; 11-1, 5 Industrial Materials: 10-2, 1 Institute of Desert Ecology: 2-2, 4 Interagency Energy Planning Office: 6-3, 8 International Carboniferous Congress: 7-3, 5 Jenny, Philip C.: 4-2, 8 Jett, John H.: 5-4, 11 Johnson, Jack D.: 9-3, 8 Jones, Nile O.; 6-1, 6; 7-1, 19; 9-3, 12 Kaibab Limestone: 3-3, 9; 6-2, 15 Keith, Stanley B.: 8-1, 7, 9, 14, 16; 9-1, 10; 9-2, 3; 10-1, 1, 11; 10-3, 1; 11-1, 1 Keith, Stanton B.: 1-2, 1; 1-3, 8; 3-4, 3; 4-3, 3; 4-4, 1; 5-2, 12, 6-1, 8; 6-3, 11, 12; 7-2, 11; 8-1, 16 Kinoite: 1-1, 3 Kresan, Peter: 9-1, 2; 9-2, 5; 10-4, 5, 9 Laboratory Techniques: 2-2, 3, 4, 5 Lacy, Willard C.: 1-3, 10; 2-1, 10 Land: 9-3, 4 Land
management: 9-3, 8 Landsat: 5-4, 3; 7-3, 5 Landslides: 6-2, 5 Land status: 9-3, 5 Land use: 1-3, 1; 2-1, 8; 2-2, 7; 2-3, 1; 2-4, 1; LaVoie, Joseph: 1-1, 6; 3-4, 7; 8-3, 3; 8-4, 7 6-2, 8; 7-3, 6; 8-1, 18; 9-1, 4 3-1, 1; 3-3, 1, 6; 3-4, 1; 4-2, 1; 5-1, 1, 3, 7; Learning, George F.: 1-3, 1; 2-2, 7; 2-3, 10 Lepley, Larry K.: 2-2, 1 Limestone: 10-2, 2 Lingrey, Steven: 10-4, 5 Malach, Roman: 9-4, 8 Manganese: 3-2, 7 Maricopa County: 3-4, 2; 4-4, 5; 6-2, 2; 6-3, 1; 8-4, 7; 9-1, 16 Matter, Fred S.: 9-23, 8; 9-3, 8 McCullough, Edgar J.: 4-4, 2; 7-3, 7; 9-3, 10 McDowell Mountains: 4-4, 5; 8-4, 7; 9-1, 16; 9-2, 8; 9-4, 7 McGarvin, Tom: 3-1, 4; 5-4, 6 Meinel, Aden B.: 4-1, 7 Mercury: 1-2, 7 Merrill, Robert K .: 7-3, 6 Mescal Mountains: 4-4, 13 Metal recovery: 9-4, 8 Metal recycling: 7-3, 9 Meteorites: 4-4, 7 Meteorology: 9-2, 4 Mexican Property Law: 1-3, 11 Michael, Mary Jane: 9-3, 8 Mineral consumption: 2-1, 1; 2-3, 7; 2-4, 9; 3-2, 3; 7-2, 2; 9-2, 8 Mineral exploration in Arizona: 1-2, 1, 6; 1-3, 1; 2-2, 7; 3-4, 1; 4-2, 5; 6-1, 8; 9-2, 8; 10-3, 1; 10-4, 1 Mineral identification: 1-1, 3; 1-2, 5; 1-3, 8; 3-4, 12; 7-1, 20 Mineral Industry and the law: 1-2, 5, 6; 1-3, 11; 2-2, 7; 3-2, 4; 4-2, 9; 4-3, 6; 9-2, 8 Mineral Industry Location System (MILS): 10-2.8Mineral processing: 1-4, 1; 2-1, 10; 3-4, 11; 4-3, 1: 9-2, 8 Mineral resources: 1-1, 10; 1-2, 1, 3, 4, 6, 7, 10; 1-3, 1, 9; 1-4, 1, 5, 7; 2-1, 1, 4, 10; 2-2, 1, 5, 6, 7; 2-3, 7; 2-4, 9; 3-2, 1, 3; 4-1, 3; 4-2, 1; 5-2, 1, 10, 12; 5-3, 5; 5-4, 11; 6-1, 6, 8; 7-1, 5; 7-2, 12; 8-4, 1; 9-1, 10; 9-2, 3, 8; 10-1, 4; 10-2, 1; 10-3, 1 Minerals: 1-1, 3; 1-3, 8; 1-4, 10; 2-2, 6; 3-1, 4; 3-4, 12; 5-2, 4, 9; 7-1, 19, 20; 7-2, 1 Mineral technology: 1-2, 10; 2-1, 1; 2-2, 12; 2-3, 7; 2-4, 1; 3-2, 3; 3-4, 11; 4-3, 1; 4-3, 4; 5-2, 1; 6-3, 12; 9-2, 8 MINERAL TECHNOLOGY **BRANCH:** 3-4, 12; 5-3, 6, 12; 7-2, 1; 7-3, 9Mineral waste products, use of: 1-2, 4; 1-3, 1; 2-2, 12; 4-3, 1; 5-3, 6 Mine Reclamation Center (U of A): 9-2, 8; 9-3.8Mine reclamation: 9-4, 8 Mine Safety and Health Program: 10-2, 9 Mine tours: 1-1, 9 Mining: 1-1, 3; 1-2, 3; 10, 11, 12; 1-4, 7, 10; 2-1, 10, 11; 2-3, 7; 2-4, 1; 3-4, 11; 4-2, 1, 9; 5-4, 11; 6-1, 8; 6-2, 15; 7-2, 1; 7-3, 4; 10-1, 9:11-1.8 Mining Act of 1892: 1-2, 6; 2-2, 7; 8-1, 15 Mining and Mineral Resources Research Institute (U of A): 9-2, 8; 9-3, 8; 10-4, 12 Mining and the environment: 1-1, 5; 2-1, 5, 8; 2-3, 11; 2-4, 9; 3-2, 4; 4-2, 11; 4-3, 6; 5-2, 10; 7-1, 5; 9-2, 8; 9-4, 8 Mining camps: 1-2, 7 Mining Club of the Southwest: 1-3, 10; 5-2, 6 Mining, hazards of: 1-2, 5; 1-4, 10; 10-2, 9 Mining industry employment: I-1, 4; 1-3, 5; 2-2, 3; 2-3, 10 Mining properties: 7-3, 4, 9; 6-1, 8; 9-2, 7 Mining, solution: 3-4, 11 Mining, surface: 4-2, 11; 4-4, 15; 7-1, 5; 8-1, 4 Modified Mercalli Intensity Scale: 9-1, 2, 4 Moenkopi Formation: 3-3, 9 Mogollon Rim: 4-3, 7; 4-4, 8; 5-3, 5; 6-1, 6; 7-1, 5; 7-2, 12; 7-3, 6; 9-2, 1; 9-3, 3 Mohave County: 9-4, 8 Molybdenum: 9-3, 10; 10-3, 1 Moore, Richard T.: 3-1, 8; 3-3, 1; 4-2, 1; 5-3, 12; 6-3, 1, 11, 12; 7-1, 5; 7-2, 1; 7-3, 8, 9; 8-3.3Morenci: 4-2, 11; 8-1, 7, 9; 8-4, 6 Morrison, Roger: 9-4, 7 Mount Lemmon: 6-2, 5 Multiple Surface Use Act of 1955: 1-2, 6 Murphy, Bruce J.: 5-4, 8; 6-2, 5; 6-3, 13 Museum of Northern Arizona: 1-3, 3; 10-4, 10 Nagy, Bartholomew: 1-2, 4 NASA: 1-2, 4; 1-3, 11; 2-2, 1; 2-3, 1; 5-4, 3 National Environmental Policy Act of 1969: 3-1, 7; 5-2, 10 National Industrial Materials Commission: 1-1, 10; 3-3, 6 National Materials Policy Act of 1970: 5-2, 3 National Science Foundation: 1-4, 9 Nations, J. Dale: 9-3, 11 Natural gas resources: 9-1, 10 Northern Arizona University: 1-1, 2; 1-3, 3; 4-4, 1, 2; 5-3, 9; 8-4, 9 Norton, Dennis: 4-4, 12 Nuclear energy: 1-1, 10; 3-2, 7; 4-1, 3, 7; 6-3, Nuclear explosives: 2-1, 7 Nuclear Regulatory Commission: 9-4, 7 Nuclear resources: 4-1, 3; 5-1, 4; 5-2, 12; 5-3, 5; 6-1, 6; 6-3, 1; 7-1, 1; 7-3, 4; 8-1, 24 Oak Creek Canyon: 7-3, 6 Office of Economic Planning & Development (AZ): 10-2, 8; 10-4, 8 O'Haire, Robert T.: 1-1, 3; 2-4, 6; 5-2, 4, 9; 6-3, 13; 7-3, 9 Oil and Gas Conservation Commission: 1-3, 11; 7-3, 10 Oil and gas exploration: 1-4, 6; 9-1, 10; 10-1, Oil and gas leasing: 8-1, 17; 9-1, 10 Oil and gas resources: 1-1, 2, 4, 5; 1-2, 3; 1-4, 6; 2-1, 7; 3-2, 7; 4-1, 1, 3, 7; 4-3, 1, 3; 5-1, 4; 7-3, 4, 10; 8-1, 4; 9-1, 10; 9-3, 7; 10-1, 8 Olivine: 4-4, 9; 7-2, 1, 6; 7-3, 9 O'Neil, Thomas J.: 2-4, I; 4-4, 3; 9-3, 8 Open File Reports: 3-2, 3; 4-2, 7; 8-3, 9; 9-3, 11; 10-1, 11 Optical Science Center (U of A): 4-1, 7 Orme Dam: 6-3, 15 Palo Verde Nuclear Generating Sta.: 6-3, 1 Panczner, William D.: 5 1, 12 Paradise Valley: 4-4, 5 Parks, Brian: 10-4, 6; 11-1, 2 Particulate processes: 2-1, 11 Peirce, H. Wesley: 1-1, 1, 10; 1-3, 8; 2-1, 4; 2.2, 4, 6; 2.3, 1; 2.4, 6, 11; 3.2, 1; 3-4, 1; 4-3, 3, 6; 5-1, 1; 5-2, 5, 12; 5-3, 5; 5-4, 1; 6-2, 1; 6-3, 11; 7-1, 1, 5; 7-2, 12; 7-3, 6, 8, 9; 8 1, 21; 8-3, 1, 3; 8 4, 11; 9 2, 1; 9-3, 4, 10; 10-1, (0; 10-2, 1; 11-1, 8 Peridot Mesa: 4-4, 7; 7-2, 1 Perry, Albert J.: 4-2, 4 Peters, W. C.: 3-2, 11 Péwé, Troy L.: 1-2, H; 4-4, 2; 7-3, 6; 8-1, 18; 8.4, 7Phillips Petrolcum: 11-1, 1 Phoenix: 8-1, 18; 9-2, 2 Phosphatic materials: 2-2, 6 Picacho Basin: 9-2, 1; 10-3, 10 Picacho Mountains: 3-4, 10 Pima Association of Governments: 4-3, 1 Pima County: 3-4, 1; 4-3, 3; 5-1, 1; 6-2, 2, 5; 7-2, 2Pinal County: 9-2, 1 Plate tectonics: 7-3, 3; 8-1, 9; 9-1, 4; 9-2, 6; 10-1, 11 Platinum group metals: 2-2, 5 Pollution: 1-1, 5; 1-2, 7; 1-4, 4; 3-4, 11; 4-3, 6; 4-4, 5 Pollution control equipment: 2-1, 9; 2-2, 12; 4-3, 6; 7-2, 3 Porphyry copper: 9-2, 3; 9-3, 11 Portland Cement: 6-3, 14 Potassium-Argon dating: 4-4, 12 Prescott College: 1-2, 10 Prospecting: I-2, I, 5, 6, 11; 2-1, 8; 4-2, 10 Rabb, David D.: 1-3, 3; 2-4, 6; 6-3, 13; 7-3, 9; 8-4, 8; 9-4, 7, 8 Radiation: 1-4, 10 Radioactive minerals: 9-4, 7 Radiocarbon dating: 4-4, 4 Raymond, Richard H.: 10-3, 10 Reclamation: 3-2, 4; 9-2, 8 Red Lake salt mass: 2-1, 4 Redwall Limestone: 4-4, 6; 6-2, 15 Remote sensing: 5-4, 3 Resnick, Sol: 6-3, 9 Resource and Land Information Program (RALI): 2-3, I Richard, Kenyon: 4-2, 9 Richardson, Carl: 4-3, 6 Richter Magnitude Scale: 9-1, 2, 4 Rillito River: 5-1, 2 Rincon Mountains: 1-4, 8; 4-4, 13 Robinson, Douglas J.: 9-3, 10; 9-4, 7, 8 Rocks, world's oldest: 1-2, 4; 4-4, 7, 14 Roseveare, George H.: 1-1, 3; 1-4, 1; 3-2, 8 Rubidium-Strontium dating method: 4-4, 14 Rudy, Samuel: 4-3, 7; 6-3, 13, 16; 7-3, 9 Runoff: 10-4, 6; 11-1, 2 Sacaton Mountains: 3-4, 8 Salt: 1-1, 1; 1-3, 9; 2-1, 7; 3-2, 1; 4-1, 10; 5-3, 5; 7-3, 9; 10-2, 10 Salton Sea: 3-2, 1 Salt River: 11-1, 12 San Andreas Fault: 6-1, 4: 9-1, 4 San Bernardino Valley: 1-1, 10; 9-1, 1 San Carlos Apache Reservation: 4-4, 7; 7-2, 1, 7; 7-3, 9 Sand & Gravel: 10-2, 2 San Francisco Peaks: 1-1, 2; 4-4, 6, 9, 10 Santa Catalina Mountains: 5-1, 7; 6-2, 5, 13; 7-3, 9; 9-2, 4 Santa Cruz County: 6-1, 8 Santa Cruz River: 5-1, 3, 7 Santa Rita Mountains: 4-4, 9 Shar, Marc: 7-3, 1; 8-4, 11; 9-1, 1; 9-2, 5 Scarborough, Robert B.: 4-4, 12; 9-3, 1, 11; 9-4, 7; 10-1, 11; 10-2, 5; 10-4, 1 Schaefer, John P.: 7-2, 1 School of Renewable Natural Resources (U of A): 9-3, 8 Scott, John D.: 6-3, 1 Sedimentary: 1-2, 4 Seismic Cross Section: 9-4, 6 Seismic network: 4-4, 6; 5-2, 8; 6-1, 8 Seismic observations: 6-1, I; 6-3, 6; 7-3, I; 8-4, 11; 9-1, 3, 8; 9-2, 4; 9-4, 7; 10-1, 12 Seismograms: 9-1, 3; 10-1, 12 Seismologic siting criteria: 6-3, 3; 7-3, 9 Sells: 9-2, 4 Shafiqullah, M.: 7-1, 5; 7-3, 6; 10-1, 11 Silver: 3-2, 8 Slag: 1-4, 2 State Mountains: 1-4, 11 Slezak, Marie: 9-3, 10 Slope stability; 6-2, 5; 7-3, 9 Smith, Ann: 10-3, 4; 11-1, 12 Socorrow Peak: 7-3, 8 Sofor energy in Arizona: 4-1, 7, 12 Sonic booms: 9-2, 4 Southwestern Minerals Exploration Association: 2-1, 11 Special Papers: 7-3, 6; 8-1, 17; 11-1, 12 Specific gravity: 2-2, 3 State Trust Lands: 11-1, 12 Steele, H. J.: 4-2, 3 Stone: 10-2, 3 Stone, Claudia: 7-3, 5; 8-1, 17, 23; 10-2, 5 Subsidence: 1-3, 12; 2-3, 4; 5-4, 8; 6-2, 3; 9-2, 1; 10-3, 10; 11-1, 9 Subsurface data acquisition: 1-1, 1 Sulfide deposits: 3-3, 8 Sulfur: 1-3, 11; 1-4, 4; 2-1, 9; 3-3, 8 Sulfur dioxide: 1-2, 12 Sulfurie acid: 1-2, 4; 1-4; 4; 2-1, 9; 2-2, 6 Summer, John S.: 6-1, 1: 10-4, 9 Supai Sandstone: 3-3, 9; 6-2, 15 Superstitions: 2-2, 3 Surface Environment and Mining Information Dissemination Program (SEAM): 7-1, 5; 9-3, 8 Surface Mining Control and Reclamation Act of 1977: 8-1, 13; 9-2, 8 Tar: 4-3, 3 Tectonics in Arizona: 3-4, 9; 6-1, 3; 6-2, 14; 7-1, 19; 8-1, 24, 9-1, 4, 14 Theses on Arizona geology: 1-1, 8; 1-4, 6; 2-1, 7; 2-4, 5; 3-2, 3; 3-4, 5; 4-2, 7; 4-3, 7; 5-3, 9; 8-4, 9; 9-3, 11 Tilasite: 1-1, 3 Titley, Spencer R.: 2-4, 1; 4-4, 12; 9-2, 3 Tortolita Mountains: 6-2, 13 Tueson: 2-3, 2; 3-4, 1; 5-2, 5; 5-3, 11; 6-1, 8; 7-3, 1; 8-4, 7; 9-1, 4, 7, 8, 10 Turquoise: 5-2, 9 Tuttle, Gregory M.: 10-3, 40 Udall, Morris K.: 9-2, 8 University of Arizona: 1-1, 8; 1, 2, 4, 7, 10; 1-3, 3, 4, 5, 9, 10; 1-4, 4, 5; 2-1, 3, 5, 8, 12; 2-4, 5; 3-2, 3; 4-2, 7; 4-3, 2, 6, 7; 4-4. 2, 3, 14; 5:1, 3; 5:3, 9; 5-4, 3; 7:2, 1; 8-4, 9; 9, 2, 8; 10-2, 9 University of Arizona publications: 1-4, 9; 7-1, Uranium; 1-4, 10; 6-1, 6; 7-1, 1; 7-2, 12; 7-3, 9; 9-3, 1, 7, 11 Uranium exploration in Arizona: 4-3, 7; 5-3. 5; 7-1, 1; 7-2, 12; 8-1, 21, 24; 8-3, 6; 9-3, 1; 10 4, 14; 10-4, 1 Valencia, Mercy A.: 7-1, 5 9:8-4.8 Vandalism: 3-1, 6 Varga, Robert J.: 6-2, 15; 7-3, 8 Virgin River Gorge: 3-1, 1; 3-3, 1 Vivian, R. Gwinn: 3-1, 1 Volcanoes in Arizona: 1-1, 2; 2-1, 9; 4-4, 7; 7-3, 6; 9-3, 2 Vuich, John S.: 2-2, 6; 3-3, 8, 11; 3-4, 1, 8; 5-1, 1; 5-2, 12; 5-3, 1; 6-2, 8; 7-2, 1 Waste processing: 3-3, 6; 5-3, 6; 6-3, 16; 7-3. Water & Power Resources Service (U.S.): 10-3, 10; 10-4, 8; 11-1, 12 Water depletion: 7·2, 2 Water harvesting: 6·3, 10 Water supply in Arizona: 4-4, 5; 6-2, 1; 6-3, 9; 7-2, 2, 12; 9-1, 16 Water treatment: 2-1, 9; 4-3, 1; 6·3, 16; 7-3, 9 Well samples: 1-3, 12; 2-3, 2; 9-1, 16 Whipple Mts.: 10-2, 8 White, D. H.: 4-1, 7 White Mountains: 4-4, 6: 7-3, 6
Willeox: 10-1, 8 Williams, S. A.: 1 4, 10 Wilt, Jan Carol: 1-1, 4; 1-2, 9; 1 3, 8; 5-2, 12; 8-4, 7; 9-3, 10, 11; 9-4, 3; 10-1, 9; 10 2, 12; 10-3, 1 Witcher, Jim: 8-1, 17, 23; 9-4, 1 Wood, Richard A.: 9-2, 4 Zapatalite: 1-4, 10 Zeolite: 8-4, 1; 10-2, 10 ## A Decade of Fieldnotes by H. Wesley Peirce The first issue of our quarterly publication, Fieldnotes, rolled off the presses ten years ago in March 1971. At the rate of 48 pages each year, we have published 480 pages over this ten year span. One of the reasons for developing Fieldnotes was to give wider visibility and recognition to the Bureau as a research and service agency of the state of Arizona. Our contacts with newspapers, television and radio stations, state and federal agencies, companies, universities, various civic groups, individual scientists and lay persons, have substantially increased over the past decade. We attribute much of this to recognition gained through Fieldnotes. Also, it provides a mechanism for timely response, as well as an outlet for selected geologic and mineral or energy related information that might otherwise be greatly delayed, never compiled or remain puried in files. As with most endeavors there have been both pains and pleasures. In general, we are very pleased with the way *Fieldnotes* has been received and supported. The effort seems worthwhile. Ten years ago, filling a 12-page quarterly issue was a burden. We retated the editorship among our small cadre of professional staff and published many short items, some original and some greaned from our readings and contacts with other organizations. Finally, along with the growth in federal agency research grants, came a full-time, permanent editor. More recently, the emphasis has been on the sharing of original research done by Bureau personnel. Once in a while we slip in an item intended to re-emphasize the extent to which we humans are wedded to mother earth. Philosopher Will Durant wrote: "Civilization exists through geological consent...." This is an important ecological truism too easily forgotten in the everyday hustle of modern life. Its meanings and implications should be probed and the results widely shared. Thinking ecologically, we in the Bureau recognize that Arizona, like any other state, is not an independent entity capable of self-support. What happens elsewhere might significantly affect Arizonans, Perhaps the best recent example is OPEC (Organization of Petroleum Exporting Countries), a totally foreign entity. Have we been immune from their actions? Is there a connection between OPEC pricing and the fact that more of Arizona is under petroleum lease and associated intensive geologic investigation than ever before? Fieldnotes is the vehicle we use to share such geologically related "goings on" with the citizens of Arizona. To us, this is an exciting place. Great gaps remain in our knowledge of the real, three dimensional Arizona. Over the next decade, through *Fieldnotes*, we will attempt to share some of the excitement that inevitably accompanies the search for and acquisition and application of new knowledge and insights about this special piece of earth. In large part, the shape of the state's future depends upon it. #### NATIONAL/REGIONAL EVENTS ## American Association of Petroleum Geologists and Society of Economic Paleontologists & Mineralogists: Rocky Mountain Section Meeting, Albuquerque, April 12, 15, 1981 Annual Meeting, San Francisco, May 31-June 3, 1981 Geological Society of America: Rocky Mountain Section Annual Meeting, Rapid City, April 16–17, 1981 Annual Meeting, Cincinnati, Nov. 2-5, 1981 New Mexico Bureau of Mines—Forum on the Geology of Industrial Minerals, Albuquerque, May 13–15, 1981 American Geophysical Union—Spring Meeting. Baltimoro, May 25–29, 1981 **Association of Earth Science Editors**—Annual Meeting, Denver. Oct. 4 7, 1981 #### **PUBLICATIONS** "On May 3, 1887, a major earthquake shock much of the south west United States and Mexico, an area of nearly two million square kilometers. This seismic event, with an estimated magnitude of 7.2 caused 51 deaths in northern Sonora, and major destruction of property in southeast Arizona, as well as adjacent portions of Mexico ..." So begins the 112-page Social Paper No. 3, recently completed by the Bureau of Geology and Mineral Technology. The study is entitled, The 1887 Farthquake in San Bernardino Valley, Sonora: Historic Accounts and Intensity Patterns in Arizona, co-authored by Susan M. DuBois and Ann W. Smith. The cost is \$6.00. This volume may be ourchased from the Bureau's Publication Desk. 845 N. Park Ave.. Tucson (near the Ulof Alcampus) or by mail (with a handling charge of 20% of the total order). The research project was funded by the U.S. Goological Survey the U.S. Nuclear Regulatory Comprission and the State of Arizona. ARIZONA TREASURES — Mining, Mining Camps, Mines (fact and fable), Prospecting and Treasure Hunting: A selected bibliography of materials in the Arizona Department of Library, Archives and Public Records, Research Division. This 43-page document was compiled by Marianna Handin while she was a graduate student in Library Science at the University of Arizona. Cooles may be cotamod, at no charge and while the supply lasts, from the Department of Library, 1700 West Washington, 3rd Floor, Phoenix, AZ 85007. ## UPS and ### A Reply to "is There a Casa Grande Bulge and Will to Cause Earthquakos in Arizona?" #### , DOWNS #### by Thomas L. Holzer U.S. Geological Survey, 345 Middlefield Rd., Monlo Park, CA 94025 milate 1979 an article by Dr. Fnomas Holzer, "Flastic Expansion of the Lithesphere Caused by Groundwater Depletion, appeared in the *Journal of Geophysical Research*, This frontier scientific work relates to man-induced land revements in Arizona, especially near the well-known subsidence region of south-central Arizona. A response to certain ideas presented in Rolzer's paper written by personnel of the U.S. Water and Power Resources Service (formerly the Bureau of Reciamation), appeared in a recent issue of *Fieldhotos* under the neading: Its Frere a Casa Grande Burge and Will It Cause Earthquakes in Arizona? The Bureau of Geology and Mineral Technology offered Dr. Holzer an opportunity to reply to this and no has done so in the following article. Although the subject matter is both technical and interpretive, relying as a does on the precision of measurement as well as theoretical considerations, it was the Bureau's decision to share this ongoing frontier work with its readers even though the last word has yet to be written. Such is the nature of new knowledge. #### INTRODUCTION In the September 1980 issue of *Fieldnotes*, Raymond and others (1980) question the hypothesis of crustal expansion caused by depletion of groundwater in south-central Arizona (Holzer, 1979). In particular, they question the analysis of leveling data that supported the hypothesis. Their questions, however, appear to be based on 1) misunderstandings of how geodetic data are collected and reduced and 2) misinterpretation of Holzer (1979). Before responding in more detail to the issues they raise, a review of the original article is in order. In Holzer (1979), the mass of water impounded behind Lake Mead, where measurement showed an elastic crustal depression of 17.8 cm in response to the load imposed by the water, was compared to the masses of groundwater that have been removed from several areas in the United States. The comparison revealed that in two areas, south-central Arizonal and the southern High Plains of Texas, more water had been removed than was impounded at Lake Mead. Hence, crustal uplift of a few centimeters caused by elastic crustal expansion was anticipated in these two areas. Because actual magnitudes of uplift depend on the area over which unloading is distributed as well as the mass change, Holzer (1979, equation 2) derived an index to take this into consideration. Comparison of Indices (Holzer, 1979. Table 1) suggested that a maximum uplift approximately equal in magnitude to half (actually 58%) of the maximum depression at Lake Mead occurred in south-central Arizona from 1915 to 1973. Raymond and others (1980) propose that the theoretical uplift is larger, equal to 74%, but this is based on their comparison of a value of uplift computed from the index formula with the measured depression at Lake Mead. On the basis of this comparison. Holzer (1979) evaluated precise leveling data from south-central Anzona to determine if such an uplift could be detected. Leveling data collected in 1948 and 1967 suggested that indeed detectable uplift had occurred in areas near Casa Grande and possibly near Florence. Analysis of potential random and systematic surveying errors suggested that the observed uplift was statistically significant at least near Casa Grande. The magnitude of uplift measured at these two locations was also compatible with theoretically computed estimates of uplift based on the distribution of groundwater pumpage in south-central Arizona (Holzer, 1979, table 5). Raymond and others (1980) question the geodetic evidence for uplift, claiming the surveying was not sufficiently accurate to measure it. They question it on the following bases: "1) unadjusted data with varying degrees of accuracy are compared. 2) data points are widely spaced and may have been disturbed or destroyed in some cases, 3) elevational changes are computed in relation to a single bench mark, and most importantly, 4) leveling errors were evaluated by nominal accuracy methods which yield minimal values of one half of the permissable error." #### DISCUSSION OF LEVELING DATA Before I respond to their questions, it is instructive to review briefly how precise leveling data are collected and the nature of errors associated with their collection. The leveling data at issue were collected by the U.S. Geological Survey and the National Geodetic Survey (formerly U.S. Coast and Geodetic Survey) from 1905
to 1977. The leveling process used by these agencies adheres to rigorously defined procedures and uses special precise equipment. The leveling is assigned an order and class on the basis of the standards used. The intent of the procedures is to minimize systematic error and to cause random error to self cancel. In the leveling process, the survey lines are divided into sections defined by adjacent bench marks. In the leveling considered here, each section is double run, i.e., leveled back and forth between each bench mark pair. The difference between the backward and forward runnings is the misclosure. The misclosure must be less than a certain value defined by the order and class of leveling, or the section must be releveled. The accuracy of the leveling, if errors are truly random, will tend to be better than the allowed misclosures because of the tendency of these errors to self-cancel rather than to accumulate. For example, First order, Class I leveling permits section misclosures of 3 mm (K)¹¹², where K is the length of the section in kilometers. The National Geodetic Survey, however, from analysis of many leveling results, estimates that leveling to First-order, Class I standards currently has a standard error of 0.5 mm (K)1/2 (Federal Goodetic Control Committee, 1974, Table 1). Before publishing the results from these level surveys, both the U.S. Geological and National Geodetic Surveys adjust their data in order to make the new elevations consistent with elevations from pre-existing surveys peripheral to the newly surveyed network or line and to distribute accumulated survey error within the new network, The first and fourth questions raised by Raymond and others (1980) are most easily discussed together. Two separate issues are raised the use of adjusted versus unadjusted data and survey error. Raymond and others (1980) imply that the use of unadjusted data was inappropriate because they use published adjusted elevation data to argue that subsidence rather than uplift occurred during the period, 1948, 1963, in the area near Casa Grande. Evaluation of small crustal movements on the basis of published adjusted elevations is apt to be misleading without careful analysis of the assumptions that were made in the adjustment. For this reason, published, adjusted data are soldom used in investigations of crustal movements. A classic example of how published adjusted data can mask real movement is the discovery of the first example in the United States of land subsidence caused by groundwater withdrawal. Indication of movement due to land subsidence in the Santa Clara-Valley, California, initially was interpreted by the National Geodetic Survey to be survey error and was adjusted out of the published elevation data, it was only after a second relevaling that land subsidence was recognized (Tolman and Poland, 1940). By using unadjusted data as was done in Holzer (1979), computed changes of elevation of a given bench mark depend only on survey error and vertical crustal movements on the leveling line. No other assumptions are hidden in unadjusted data, other than possible rod mis- Raymond and others (1980) are incorrect when they state Holzer (1979) used the "nominal accuracy between points" formula published by the Foderal Geodetic Control Committee (1974) and that Holzer (1979) did not take into account the varying precision of the data over time. Holzer (1979, p. 4694) states that the formula for the "standard deviation for random error" was used, but incorrectly cited Table 4 instead of Table 1. Moreover, the texts in both tables (Holzer, 1979) are explicit about which formula was used. Baymond and others (1980) are correct when they note that the precision of leveling has improved over the 1905-77 time period covered by the data that were used. This improvement resulted from refinements in procedures and equipment. I took this into account by using for all surveys the standard error formula that applied to the carliest (1905) survey. 2mm (K)1/2 (Vanicek and others, 1980), rather than using the formula 0.5 mm (K)112 cited in the Federal Geodetic Control Committee (1974, Table 1). This was done because the error formula published in the Committee report applies only to post-1974 surveys. The practical significance of this is that the calculated standard deviations ticited are conservative. i.e., they tend to overestimate the random error. If formulae appropriate to the vintage of leveling are used (Vanicek and others, 1980), smaller random errors are indicated so that the observed uplift becomes even more statistically significant than was originally reported. For example, the 1948–1967 indicated uplifts of 6.3 and 7.5 cm at bench marks W277 and Poston have an uncertainty (two standard deviations) for random error of \pm 2.4 and \pm 4.1 cm, respectively instead of + 3.7 and + 6.4 cm originally reported by Holzer (1979, Table 5). Holzer (1979) also recognized evidence for possible systematic error in the leveling data. Because the analysis of this error is not questioned, the reader is referred to Holzer (1979). for discussion. It is worth noting that even according to the error analysis by Raymond and others (1980), the observed uplift of 6.2 cm of bench mark 1338 is greater than their estimated error of + 4.8 cm. Raymond and others (1980) are incorrect when they imply that Hoizer (1979) noted a crustal uplift of 6.2 cm at bench mark D367 from 1948 to 1967. Bench mark D367 was not set until 1967. The second question raised concerns the wide spacing of bench marks and their disturbance and destruction. The spacing between bench marks for which elevation changes were computed is significant because cumulative distance along the leveling line from the reference bench mark determines the accuracy of computed elevation changes (Raymond, R. H., oral communical tion, 1980). This effect is considered in the formulae for random and systematic errors that were used in the accuracy analysis in Holzer (1979). As noted previously, the observed uplift is statistically significant. Bench-mark destruction should have no effect on the accuracy of surveys, but does decrease the resolution of the observed uplift because the number of bench marks is diminished at which changes of elevation can be computed. Obviously, if the uplift had been observed at a single bench mark, any conclusions would be very tenuous because a single mark might have been unrecognizably disturbed. Uplift is indicated, however, by several bonch masks in both the Casa Grande and Florence areas (Holzer, 1979, Figs. 4A and 5). Raymond and others (1980) also cite bench. mark disturbance as a problem, but mention only one example, bench mark 1338 (also stamped T277). According to National Geodetic Survey records, this mark was disturbed prior to June 1948 when it was recovered. The disturbance was tifting of the pipe on which the tablet was set. The mark, however, presumably was firm. The releveling in 1948 was done in July, and the National Geodetic Survey noted no additional disturbance of the mark during recovery in 1967. Hence, the computed change of elevation at bench mark 1338 from 1948 to 1967 would appear to be unaffeeled by disturbance. Disturbance might affect the change of elevation computed at 1338 for the period 1905, 1948. Unspected this mark on March 6, 1977, finding it in good condition. In any case, the disturbance of this mark should not have affected computed changes of elevation of other marks along the line for both the 1905 48 and 1948-67 periods. Referencing of the elevation changes to a single bonch mark, 1283, also was cuestioned by Raymond and others (1980) on the basis that the mark may have been unstable although no evidence. for such instability was presented. This guestion ignores the evidence to the contrary, namely the observation that bench mark 1283 is part of a 45 km long segment of the leveling line along which movements were small to negligible from 1905 to 1967 (Hofzer, 1979, p. 4693). Any bench mark or an average of several bench marks within this segment could have been used as a refer ence mark. Bench mark 1283 was selected because of its proximity to the area of uplift. The practical effect of selecting a more distant mark would be to diminish the statistical significance of the measured uplift. Raymond and others (1980) also "suggest that bench 1283 should not be considered absolutely stable as Holzer suggested." According to Holzer (1979, p. 4692), "the absolute elevation of bench mark 1283 is unknown, so that the terms uplift and subsidence are relative to bench 1283. Because a presumably localized crustal phenomenon is being examined, however, conclusions from the present investigation should not be affected by lack of an absolute reference." #### SEISMICITY A potential effect from man-induced changes of stress in the earth's crust is to trigger seismicity (Raleigh and others, 1976; Yerkes and Castle, 1976; and Castle and others, 1980). Mechanisms proposed for this seismicity include changes of surface load and changes of effective stress caused by porepressure changes. Particularly relevant to south-central Arizona is an earthquake sequence in New York that was attributed to crustal unloading caused by a quarry operation (Pomeroy and others, 1976). Most examples of man-induced seismicity appear to be triggered phenomena because, in general, the man-induced stress changes are very small relative to the inferred tectonic stress. By analogy to the problem of reservoir-induced seismicity (Castle and others, 1980), evaluation of the potential for maninduced seismicity in south-central Arizona requires consideration. of the present stress state and how it is altered by groundwater withdrawal. Because south-central Arizona has been aseismic historically and the magnitude of the man-induced stress change is small, approximately 1 bar, the probability of man-induced seismicity appears small. However, man-induced
seismicity has been observed in areas of low natural seismicity (e.g., Lake Mead; see Packer and others, 1977). Hence, the level of natural seismicity is not a completely reliable indication of whether or not man-induced seismicity may occur. In addition, as stated in Holzer (1979, p. 4679), "it may be pertinent that previously unexperienced seismicity may have occurred in south-central Arizona in the 1970s. (Peirce, 1975; Yerkes and Castle, 1976). Although the cause of the seismicity is controversial—some have attributed it to sonic booms channeled by the atmosphere (Peirce, 1975) it may be related to the unloading described here." Raymond and others (1980) argue that unloading due to groundwater withdrawal is unlikely to induce earthquakes in south-central Arizona. They argue that "if earthquakes may result from unloading ... then earthquakes should have followed loading at Lake Mead and comparable areas" and cite experience at Lakes Powell and Mead. This reasoning is fallacious. If a stress change in one direction tends to promote failure and seismicity. then a stress change in the opposite direction should tend to promote stability. Accordingly, the decrease of local seismicity observed near Lake Powelf after impoundment or loading (Mickey, 1973), which Raymond and others (1980) cite as evidence against the possibility of man-induced seismicity following unleading in south centra: Arizona, actually supports the possibility of maninduced seismicity in unloading situations. This deduction of course ignores the effects of differences in the state of stress between areas. Loading can increase stability under some stress states and occrease it under others (e.g., see Snow 1972). Lx perience at Lake Mead, where se-smidity increased after impoundment or leading (Carder 1970), is poposite to that at Lake. Power: Although Raymond and others (1980) attribute the seismicty to increased pore pressures caused by hydraulic connection between underlying rocks and the reservoir, other investigators have concluded that "the post-impoundment seismicity may be the result of stresses *generated by the weight* of Lake Mead" (Packer and others, 1977, p. 39–40, emphasis added). These two examples cited by Raymond and others (1980) serve only to demonstrate that our understanding of the seismicity related to the impoundments at Lakes Mead and Powell is incomplete and does not provide an adequate basis for rejecting the possibility of maninduced seismicity in south-central Arizona. #### CONCLUSIONS The questions raised by Raymond and others (1980) concerning the validity of the measured uplift from 1948 to 1967 are without support and are based on misunderstandings of how geodetic data are collected and reduced and on a misinterpretation of Holzer (1979). In fact, even by their own analysis the uplift near Casa Grande is a valid observation. Admittedly, the uplift is small relative to potential error. This concern led to the extensive discussion of error by Holzer (1979). By conventional analysis of error, however, the 1948–67 uplift near Casa Grande is statistically significant. Raymond and others (1980) also have not argued convincingly that man-induced seismicity will not be associated with the unloading in south-central Arizona. Their argument against man induced seismicity in south central Arizona, which is based on experience at Lakes Powell and Mead, can be challenged. In fact, the effect observed at Lake Powell argues for potential man-induced seismicity in south-central Arizona. By analogy to the problem of reservoir-induced seismicity, evaluation of the potential for maninduced seismicity in south-central Arizona requires consideration of the present stress state and how it is altered by groundwater withdrawal. ACKNOWLEDGMENT: The author is grateful for reviews of the original draft by Robert O. Castle, Joseph F. Poland, and Robert E. Yerkes. Tom Bolzer, geologist with the USGS since 1975. His ficid of study is surface deformation related to groundwater withdrawal. He received a B.S.E. in Geological Engineering from Princeton in 1965, a M.S. in Hydrology at Stanford in 1970 and a Ph.D. is Geology from Stanford in 1970. #### REFERENCES - Carder, D. S., 1970, Reservoir loading and local earthquakes. Geological Society of America, Engineering Geology Case (Estories, No. 8, p. 51, 61. - Caste, R. O., Cark, M. M., Granz, A., and Savage, J. C. 1980. Tectonic state. Its sign fidance and characterization in the assessment of seismic effects associated with reservoir impounding. Engineering Geology, v. 15, p. 53, 99. - Federal Geodefic Control Committee, 1974. Classification, standards of accuracy, and general specifications of geodetic control surveys. NOAA, 6.5. Department of Commerce, Washington, D. C., 12 c. - Holzer, I. 1., 1979, East diexpansion of the illhosphere daused by groundwater depiction, Journal of Geophysical research, v. 84, no. 89, p. 4689, 4698. - Mickey, W. V. 1973. Heservoir seismic effects: American Geophysical Jaion, Geophysical Monograph 17, p. 472–479. - Packer, D. R., Lovegreen, J. R., and Born, J. L. 1977, Beservoir Induced seismic sty, v. 6 of the Farthquake evaluation studies of the Auburn Damaireal consulting report submitted by Woodward-Clyde Consultants to U.S. Bureau of Rectamation ρ. 39, 40. - Peirce, H. W., 1975. Rumples and rattles: Fieldhotes, v. 5, no. 2, p. 5 and 8. - Pomprey, P. W., Simpson, D. W., and Spar, M. I. 1976. Harrhquakes Inggered by surface quarrying. The Wappingers halls. New York, sequence of June 1974. Seismological Society of America Bulton, v. 66, no. 3, p. 685, 700. - Raleigh, C. R., Healy J. H., and Bredenbeit, i. D. 1976, An experiment in earth quake control at Rangely Colorado. Science, v. 191, b. 1230–1237. Raymond P. H., Cordy, G. F., and Tuthe, G. M., 1980 is there a Casa Grande - Snow, D. T. 1972. Geodynamics of seismic reservoirs: Preceedings of the symbos union flow through fractured reck. German Society of Scilland Hock Mechanics, Stuttoart, 12-J. p. 1-19 - Mechanics, Stuttgart, 12-J. p. 1-19 *Idintan, C. S., and Poland C. F. 1940. Ground water salt water inflination and ground surface recession in Santa Clara Valley, Santa Clara County, California American Geophysica, Union Transactions, part. p. 23–34. Vanicek, P., Castle, R. C., and Balazs, F. T., 1980. Geodetic loading and its - Varioek, P., Castle, R. C., and Balazs, F. I., 1980. Geodetic loading and its applications. Reviews of geophysics and scace physics, v. 18, no. 2, p. 505, 524. - Yelkes R. E., and Castle, P. O. (1976) Seismoldy and fauting attraction a to fluid extraction. Engineering Generally vinto, ap. 2, 4, 5, 151–167. #### STATE TRUST LANDS — 1979-1980 The State of Arizona, through the Arizona State Land Department, administers the "state trust lands" which amount to 13% of the total lands that make up the state. Income generated by the state trust lands goes to the common schools and 14 other beneficiaries. In fiscal year 1979–1980 (July 1, 1979 to June 30, 1980) \$24,549,917 was generated, representing an increase of 25% over the preceding year. Income is produced from state trust lands by teasing, issuing permits and by selling minerals, land and timber, in addition to other activities. Most of the state lands were under lease during 1979 and 1980. Because the Land Department employs multiple-use practices, some lands were covered by more than one type of lease. In fact, there were 13, 617 active leases in 1979–1980, totaling 17,164,604 acres. The total amount of state trust land is almost 9,582,000 acres. Leases are granted for "minerals," "common mineral materials," oil and gas, geothermal, agriculture, commerce and grazing. Prospecting permits and special use permits are also granted by the Land Department. "Mineral" leases are for metals, such as copper, gold, uranium, etc., whereas "common mineral materials" (also known as industrial minerals) are for sand and gravel, decomposed granite and building stone, etc. "Common mineral materials" are sold by the Land Department at public auction with the highest bidder receiving the right to extract the materials. Revenues from state trust lands that were generated by mineral resources or related activities made up almost half of the total. Copper contributed the largest amount, as can be seen from the summary below: #### MINERAL-RELATED INCOME | Royalties from copper leases | \$7,995,000 | |---|--------------| | Royalties from other mineral leases | 111,926 | | Royalties from common mineral materials | 954,893 | | Oil and gas leases | 1,822,144 | | Mineral leases and prospecting permits | 288,597 | | Geothermal teases | 61,567 | | Rentals on mineral leases | 31,892 | | Total | \$11,266,019 | #### OTHER INCOME. | Agriculture leases | \$2,664,962 | |------------------------|--------------| | Grazing leases | 1,244,578 | | Rights-of-way | 1,100,930 | | Commercial leases | 1,019,330 | | Land sales (principal) | 4,776,553 | | Land sales (interest) | 1,039,899 | | Other | 1,437,646 | | Total | \$13,283,898 | #### STATE TRUST LANDS GRAND TOTAL \$24,549,917 The above information was summarized from the State Land Department's 1979–1980 Annual Report. Additional information may be obtained from the Land Department, 1624 West Adams St., Phoenix, AZ 85007. #### Geology Along the Lower Salt River The Bureau has contracted with Water and Power Resources Service (WPRS, formerly the Bureau of Reclamation) to produce a strip geological map at a scale of 1:24,000 along the Salt River from Roosevelt Dam downstream to just below Granite Reef Dam. The project falls under WPRS' safety of dams program, and is designed to provide basic lithologic and structural data for a mile-wide strip on both sides of the river, to assist in first-order planning procedures for WPRS-related projects on the river. The upstream two-thirds of the project is complete with the final report in preparation, while work on the downstream one-third was
under way in February 1981. | Fieldnot | es | |---|--| | Vol. 11, No. 1 | March 1981 | | State of Arizona | Governor Bruce Babbitt
President Jone P. Schapfer
tody | | Director State Geologist Editor Mustrators Joe LaVole, Kr | | The Bureau of Geology and Mineral Technology is a Division of the University of Arizona, an Equal Opportunity/Affirmative Action Employer State of Arizona Bureau of Geology and Mineral Technology 845 N. Park Ave. Tucson, Arizona 85719 602/626-2733 NON-PROFIT ORG. U.S. POSTAGE PAID PERMIT NO. 190 TUCSON, ARIZONA 5410 DEBBIE STRUHSACKER UURI EARTH SCI LAB 391 CHIPETA WAY, SUITE A SALT ŁAKE CITY UT 84108