CFSU 42-7 Cove Fort, Sulphurdale Unit Initial Flow Test

Union Oil Company of California Geothermal Division Santa Rosa, California

> Brian Maassen July 24, 1978

SUMMARY OF CFSU 42-7 PIT TEST

PRODUCTION TEST

Date .	5/16/78
Start Nitrogen Injection	15:45
Stop Nitrogen Injection	22:45
End Flow Period	7:25 7/17/78
Maximum Rate	47,000 lb/hr
Wellhead Pressure	3 psig
Maximum Bottom Hole Temperature	336°F @ 6900'
Total Fluid Produced	1,800,000 lbs

INJECTION TEST

Date	5/17/78
Injection Rate	53,000 lb/hr
Injection Temperature	70°F
Injection Wellhead Pressure	vacuum
Final Wellhead Pressure	0 psig
KH	±23,000 MDFT

CONCLUSIONS

- The well will produce at a rate of 47,000 lb/hr at a wellhead pressure of 3 psig.
 - The well dies immediately after shutin.
- 2. The reservoir temperature in the vicinity of the wellbore is $\frac{+}{3}30$ °F. This corresponds to a flash of 0% at 100 psig and 4.22% flash at 50 psig.
- 3. The permeability of the formation is in the order of 23,000 md-ft.
- 4. The well should make an excellent injector because the pressure at 5000 ft is 688 psi below the normal hydrostatic gradient of 0.433 psi/ft. Calculations assuming the above permeability and steady-state radial flow indicate the well could take injection rates on the order of 1,000,000 lb/hr before fluid reaches the surface.

INTRODUCTION

A combination production and injection test was performed on CFSU 42-7 in Beaver County, Utah during the week of May 15, 1978. The test was designed to obtain temperature, chemical, production, injection, and permeability data. The results of the test are discussed in the following report.

BACKGROUND

The CFSU 42-7 was completed on March 14, 1978 with 7" tie-back from the surface to 3084' and 7" liner from 3084' to 7610'.

The slotted liner sections are located between 4320' and 7520'

The last temperature survey prior to the flow test was made on April 5, 1978 and indicated a maximum temperature of 325°F at 6050'. A bridge was encountered at 6064' during the survey. Temperatures of 344°F were measured at 7327' during production logging prior to completion of the well. The free standing fluid level during drilling operations was 1310'.

OPERATIONS

STATIC SURVEY

A static continuous temperature and differential survey was run on 5/15/78 prior to the flow test. The survey indicated a maximum temperature of 328°F at 6040' where a bridge was encountered. The 2500 foot isothermal zone from -3600 to -6100 found in surveys run prior to completion of the well was no longer present. A sensitive spinner tool was hung at several points in the zone and no flow was detected.

FLOW TO PIT

The test apparatus was set up as shown in Figure 1. It consists of a two-phase meter run, choke manifold and a flow spreader. The flow rates were calculated using the Murdock 2 phase correlation for orifice meters. The pit was also measured and a table of volume versus depth was prepared to use as a rough check against the metered rates. Flow rates could not be calculated during nitrogen injection because the Murdock correlation does not take the nitrogen into account.

Open ended coiled tubing was run into the well on 5/16/78 at +50 ft/min, while circulating nitrogen at 1500 cubic feet per minute. An obstruction was encountered at 591 feet. When an attempt was made to back off 50 feet, the tubing parted and 591 feet was lost down hole. Coiled tubing was run into the well with a 3" washing

jet on the end to act as a guide shoe. The tubing was run at the same speed and nitrogen rate as above, past the bridge at 6040, until it tagged bottom at 7211'. Several attempts were made to get past 7211' but all were unsuccessful. Fluid appeared at the surface several minutes after the tubing passed the free standing fluid level at 1310'. The well was lifted on nitrogen assist for 6 hours. Nitrogen rates were varied to see what effect it would have on production rates. The results indicated that the higher the nitrogen rate the higher the production rate. At times, the well produced a small amount of black, sandy grit. The nitrogen was shut off at 22:40 on 5/16/68. Flow continued unassisted at a rate of -48,000 lb/hr at 3 psig of wellhead pressure and decreased gradually over the next 9 hours to 43,000 lb/hr. The well was shut-in at 7:25 a.m. on 5/17/78. Shortly after shut-in, a 3" valve was opened on the wellhead, a noncondensible gas head was bled off and the wellhead pressure dropped to 0 psi. A total of 1,822,142 lbs was produced during the entire flow period.

CHEMICAL ANALYSIS

Several chemical samples were taken during the flow period and analyzed by Research. The complete analysis is shown in Table 1. The fluid had a total dissolved solids content of 3950 ppm. The silica geothermometer was analyzed and indicated a fluid temperature of 334°F. This is very close to the actual measured maximum temperature of 336°F. The Na, K, Ca geothermometer indicated a temperature of 436°F. This is unrealistic when

compared with temperature measured downhole.

POST FLOW SURVEY

Two hours after shut-in, a second continuous temperature and differential temperature survey was run, but the indicated temperatures were unrealistically high. A wireline temperature survey was run with Kuster tools as a check. The Kuster tool indicated a maximum temperature of 332°F at 6900'. The continuous survey was declared a misrun and a second temperature and differential temperature survey was run with a new tool. The results of this agreed with the Kuster run and a maximum temperature of 336°F was measured at 6900'.

INJECTION PERIOD

The produced fluid was injected into the well for 17 hours on 5/17 and 5/18/78. The average injection rate was 53,000 lb/hr with the wellhead on a vacuum. Injection rates were limited by pump capacity. Flow rates were measured by the 3" meter run shown in Figure 1. A spinner survey was run but the results were inconclusive. The fluid level was found at 1370'.

A radioactive tracer survey showed fluid leaving the wellbore at the following locations:

Slotted Interval	Percent
4353'-4473'	51
4860'-4989'	3
5112'-5319'	20
5534'-5660'	13
below 5800'	13

No tracer shots were made below 5800' due to temperature limitations on the tool.

Data from flowing injection survey indicated a 29 psi pressure drop across the sandface at a flow rate of 50,000 lb/hr. A pressure falloff taken after shut-in indicated a permeability of 23,000 md-ft. It should be noted that the small pressure changes (29 psi) measured downhole are at the limits of the tools resolution; therefore, the accuracy of the permeability calculated here could be subject to a significant error. However, the very fact that the pressure drops were so small is an indication of high permeability. More accurate numbers could be obtained by injecting at higher rates in the region of 500,000 lb/hr.

REVISED	DATE	WM:Om	DRAYN
		ATH HOSSIII	FOR: B.W.M.
		CHIME OF CONTRACT OF ORGER CHARACT OF CHARACTER CLASSICION	BY: L.D.C.
AND THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRE			DATE: 6-30-78
		C.F.S.U. 42-7	SCALE: None
······································		PIT TEST EQUIPMENT SCHEMATIC	DRAWING NUMBER
		FIGURE - I	1377

TABLE 1

Cove Fort Well (CFSU42-7) Compositional Analyses 5-16-78

	•		w n		× •
Total	Steam Production.				
	H ₂ S, ppm 97	, 147	(2 separa	ate samples)	
	NH ₃ , ppm 36	, 78	(2 separa	ate samples)	
Separ	ated Water. (pH=8.7)			
	Physical Properties Specific Gravity Conductivity, µS Suspended Solids Total Dissolved	/cm , mg/l	1.0028 5930 392 3950		
	Elemental Analyses Arsenic, mg/l Boron, mg/l Calcium, mg/l Iron, mg/l Magnesium, mg/l		1.90 7 43 <.05 6.0		
`	Mercury, mg/l Potassium, mg/l Silver, mg/l Sodium, mg/l		nd<.0005 209 <.02 1500		, , – – –
<u>!</u>	Anions Bicarbonate, mg/l Carbonate, mg/l Chloride, mg/l Fluoride, mg/l Nitrate, mg/l Sulfate, mg/l Sulfide, mg/l	· .	101 55 1590 5.8 0.03 0.5 3.5		
<u>F</u>	Ammonia, mg/l		5.5	* * *	
5	Silicon, mg/l		190, 200,	200 (3 separat	e samples)
E	mission Spectrographi	c Analyses:			
		TDS		Suspended Soli	ds ·
	Major, >10% Moderate, 1-10% Slight, 0.1-1% Trace = 0.1%	Na K Ca, Si Al, Cu, Ma	Mo. Sr	Ca Fe, Si Al, Na Cu, Mg, Ma, Pb	. Sr

Al, Cu, Mg, Mo, Sr

Cu, Mg, Ma, Pb, Sr.

Trace, <0.1%

APPENDIX

KH DETERM	INATION FROM	FALLOFF ON	CFSU 42-7
DETERMINE	AVERACE	INTECTION	BATE OF TEST 5/18/18 RATE
RAIE_	HRS	64,800	AVERAGE RATE = 59000 LB/HR
1,75	64,800	134,050	FLOW TIME = 9.5 HRS
0.50	74, 60°	37,000	
9.5	52,000	286000 565,350	

AT	THAT	PRESS
(MINUTES)	DT	(PS16)
.6		1966
1	57/	1904
2	286	1962
3	191	1900
4	143	1900
5	115	1900
10	58	1898
15	39	1898
60	10.5	18 95
120	5, 75	1894
180	4.17	1892
240	3,38	1890
300	2.90	1888
360	2.58	1888
420	2.36	1388
1439	2,30	1888

$$\mu = 0.23$$

$$S = 1.151 \left[\frac{1906 - 1891}{7} - \frac{109}{(200)(0.13)(12 \times 10^{-6})(.1329)} + 3.23 \right]$$

$$EFF = \frac{P_{we} - P_{ws}}{P_{we} - P_{ws}} = \frac{1906 - 1880 - (-19)}{1906 - 1880} = 1.73$$

FAlloFF ON CFSU 42-7 5/18/18

CHECK STENDY STATE KH AGAINST BUILD UT

leh = 603, 86 W(SPro1)(W) ln (PE/EW)

 $T_{WS} = 1877 \text{ Fm } 5/9/78$ PWF = 1906 $\Delta P = 1906 - 1877 = 29$

Ah = 603.86 (5900) (0.017006) (0.73) (7.06) = 19600 md FT

46 5490

M42 SEMI-LOGARITHMIC • 3 CYCLES X 70 DIVISIONS

CESU 43-7 PIT TEST

5/16 - No INJECTION & FLOW TEST

TIME

OPOD SAFETY MEETING

0913 BLEED-OFF PRESSURE

0915 OPEN VALVE

0930 ATTEMPT TO RUN THEING INTO WELL

0935 PULL TUBING OUT & DISCONNECT BOPE TO INSTALL CENTRALIZER ON TUBING

CONTINUOUS ATTEMPTS TO RUN TUBING UNJUCCOSSFUL,
APPARENTLY CATCHING ON 7" TIEBACK LAP AT WELLICHD.
RUN FROE STINGER OF TUBING PAST LIP, THEN CONNECT IT TO
TUBING ON SPOOL.

1338 ATTEMPT TO RUN TUBING INTO HOLE, INTECTING NOC 1200 CFM

1349 AT OBSTRUCTION - DROPPED 591' of TURING INTO HOLD

1518 USING SAME METHOD, START RUNNING TUBING INTO HOLD

1545 THEING ENTERED FLUID LEVEL (APPROX (300))

1550 FLORE TO BURFACE - FROTHY, LOTHITE FLORD

1600 2500 Thems Depth - GRAY Fill TO SURFACE

1600 FAINT S.Well OF 455 PRESENT

1635 Reack 5000, HOLD AT 5000 TO VARY INJECTION PATE

CPSU 42-7 PITTEST

2010 Shirt-CFF, No , Dut of Hore

3350 OPEN INJECTION LINE TO BUSED-OFF WELL

CPSU	42-7 Pit Test
Time	
1640	INCREASE N. INJECTION RATE TO 15000FM
1655	Begin to Meter from WITH BARTON #1 - NO BACK AZESZUR
1657	CONTINUE RUNNING INTO HOLE PAST 5000'
1705	BARTOR * METER FAILED
1750	NO SIGN OF BRIDGE-TUBING IZEPTH = 6000'
1723	BARTONILI METER RUNNING AGAIN
	GRIT PRODUCED THROUGOUT TEST
17135	BIT DESTRUCTION AT 7011, PHURO TO TIGO LHELD. STILL INSECTING ISODOFM PRODUCING MILKY WHITE FLUID AGAIN ALSO PRODUCING LARGER AMOUNTS OF GRIT
1835	Run Slowly INTO HOIC TO 7211, HIT OBSTRUCTION PULL BACK TO 7160' & HOLD
1840	CUT NO INJECTION RATE TO 500 CFM
81191	INCREASE NO INJECTION TO 750 CFM
.3100	CUT NO INJECTION RATE TO 300 CFM
9130	START PHUNG THOMAS OUT OF HOUR

CFSU 42-7 PITTEST

```
TIME
 DUST PARTIALLY CLOSE 10" MASTER VALVE TO CHECK FOR THIBING
         CLOSE INTECTION LINE, BEGIN TO METER SLIGHT FOR
 2330
         DUE TO CONNECTORS ON TUBING, UNABLE TO BULL
         NOWSCO TUBBUS COMPLETELY DUT OF WELL-HEAD.
 17/78
 0720
          142,6 9521 2"H50
 0705
         Shat-IN WELL @ 3PZI.
         LUCATION PEST 5 DE1
 ECTO
                P=5 = 7. psi
 5°61-0
 0730
                PTS= KODSI
  805
                 " = 13 px1
  8:15
                 " = 15 PSI
  8:30
                 " = 19 PSI
                 11 = 25 PSI
  8.45
  8:50
                OPENS 3" AND SHOW OFF NON CONSENSATES
                O PST, WELL DIED
         RUN TEMP SURVEY - ....
1025
         REACKED FLUID LEVEL @ 1270'
11135 FESTI CHIP TOOL PAILED AT 1900'
1155 ROW IN HOLE WITEROP ROLLING HARMS
1840 TOOL FAILCON 6750' 5 605'4
1450 KUN TOOL TO USING DIFFERENT PANEL
        Temperature= 6.6 or 36489
```

6700' 372.5 T

KUND TO BOTTOM OF HOLD OF THE ELOS POLING OUT UP THAT

Tout FARCE POHL

CFS11112-7

1622 RUN KUSTER TEMP SURVEY No limb 193 306 3000 305 Fruis Level @ 1070' 4020 321 327 5000 · 6000 330 330 6900

1922 START INTO HOLE WITH GO TEMP SURVEY

1935 Teal PAILES - POH

1955 TOOL REPAIRED, START IN HOLE AGAIN

2130 PICK UP DEPTH @ 6919' 336,29 START POH POSSIBLE TOP OF TUBING FISH @ 6500

2230 Begin Injecting Water Scowly
INITIAL PIT LEVEL = 5'

2250 Shut-DOWN PLIMA DUL TO SAND PLUGGING VALVE

2310 RESTART PIMP @ 305PM

5/18 0730 Rung LOST, Primice

+300 KIND RUNNING AGAIN

0825 PUMP BOWN

0855 RUMP RUMNIE

Phino DOWN 0910 POMP ON 9730 DOWN 0138 BACKON 4055 START SONNER BURVEY 1130 Tool Paper - POH 1145. RIH W/SPINNER SURVEY, TOOL FAILED - POZE 199.0 RIH W/SPINNER SURVEY 1245 COMPLETE TEMP SURVEY 同90 START RA SURVEY 1540 COMPLETE RA SURVEY 1700 START CLOCKS FOR FALL-OFF L GRADIENT SURVEY 1830 START IN HOLE W/ABOVE 1850 SHUT DOWN PUMPS to :: BRGIN FAU-OFF SURVEY 2100

· ;	FSU	43-7		Pi		Te	27		F	K Pa	BO	ie T	/s/	J		P.	78/1	5 ves	16	7	8	1 '
'n	Comments		187 201 03 V 181			°3310'			135,40115/AR @4400'		@5020)	N.@1500.F.	\$3000°	6,50,000,	@5X0°				@ (300,			
@ Time of Test 10	Pit	131-	Surface						3/10385613/5					· · · · · · · · · · · · · · · · · · ·	BACK PRESSURE							
1518 Pro @	DIFFERTIAL MCHES (HOC)		OF MOR FARE		•	:	4		כוומאדפ - א			· ·			USE FLOW METER- NO	1	MOTER FAILED				てる	2
TIME START:	Pupstrenk (PSIG)		BOCIN INTERMIT						RATE NOT A		ભેડક	7455			P	t 00 _	~				Ce	435 30
	Wellerano Texa of	л Л	5	<u></u>		0	333.	. 100	223	900	335/228 GLASS	Series 28/23 GLASS	338	. <u>0</u> 20	3 45	0,0	245	908	322	236	33%	334238 CUS
ORIFICE SIZZ: 75" METER RUN: 15"	Probled (124)		00	<u> </u>		50	S0	35/33 case	SC	25	V	1000 N.C.	50	℃	ال ال	٠, در	w W	Ω	ر ا	W 10	J.	ы У
715 Me	1	74.5		10 / 10 / 10 / 10 / 10 / 10 / 10 / 10 /	002 002	<u> </u>	<u></u>	<u> </u>	1602	€3;	1635	OF 9	5591	1650	 - 	000		0 -	25	000	1000	

4

		· · · · · · · · · · · · · · · · · · ·	PK		r	5 16	C 87
PIT COMMENTS LOVELY VOLUME / RATE	15000 11 11/2 11/2/25 11/2/25 11/2/25 11/2/25 11/2/25 11/2/25/25/25/25/25/25/25/25/25/25/25/25/2	PROBUCE :	710N = = =	READING 02 FORBOSE		" " AH/91008/281/ (13 L3C)(), H	
DIFFERENTIAL (INCHES HOO)	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	7 N	7,6	ω ς, Σ,	9	O 15	S.
Phystream (PSIG)	Na 82 Nu 8 28	20 CO	9	N 8	5	6	60 M
(New Park)	240 250 240 240 240 240 240 240 240 240 240 24	67.0 87.0	538	030 850	250	1,1,0	510
Prossiling (Policy)	Y Y Y Y B Y B B B B	м <u>э</u>	М	₩ () ₩	27	0	0
N Z -	25 L C C C C C C C C C C C C C C C C C C	0631	.0	N 8	<u>~</u>	. O	000

							f)K			1					5	16	7	8	3	l
PLT COMMENTS VOULUME/RATE	20103FD #5-8F	=======================================) >	390/621160' D	Tes	START OUT OF HOLE CONTINUE NEW BOOKEN		1239,300 WHR				<i>.</i>	Zea	DING						といっていことの しもの	
Lever								13 /38/28 F					·							12 20d5	
O (PFEDENTIAL)	25	CC.	J.	ัก	٤),	Խ <i>w</i>	36	が多くす	34	36	.)11,	Q, 22	U J	45	07	38	M		91	, N	
PUPSTREAM, (P31G)	a	70	ī	C	\bigcirc	ニェ	51	(5)	1-1	<u></u>	C	Ç	16		<u>~</u>	1,-1	3	201100	9	ア	
Certificato 1907	6.00 C	217/5060055	5,45	hhe	ر د س	93 030	120	232	200	0%0	51(3	1760	220	737	656	100	500	OFF NZ INJECT	208	20N	
PRESSUPE (PEIG)	tu N	()	37/39 GAGG	37/39 GAUGE	ø	W W	Q.	γΛ (M	چ	C m	<u></u>	,)	33	20	ኤ ሌ	٦ 0	V V	SKIT-		0	
₩ ₹	<u>v</u> 0		10 07 07 07	0000	<u>5</u>	0870 0870	0510	の言の	2150	255	300C	5070	0.000	5000	OCCC	2000	SSS	0500	N.500	0.000	

PK

CFSU 42-7

中

000

0000

00

0000

10

0900

Nomen and LEVEY/VOLLIME/RATE DIGFORENTIAL (OZH SOMONI) Pupstación (PSIG) 3 $\langle \hat{\gamma} \rangle$ のままる。 **300** 300 300 Caragoras (Para) 0 10 m n n いがら いもつい 1/5 ひるら

77 -101 9 M

323

1

つさらり 04.00

1-6-

1

CESU	42-7	INJECTION	Test
------	------	-----------	------

. '							-				
Comment		रेसाइडाफर	TO 35 spm								
Priever	5 (MARKOR 14)	Shut Dough Due to P	INCREMSE PLAN KATE			47 (MARKER 15)					
7		1	1 1	/A/	VAC	VAC	\ \ \ \ \ \	VAC	JAN	JA/	747
00				<u>.</u>		世	12	"11	=	12.7	125
Paperte 2 min	- 1)))))	1.)	1	1	1	1	Í)
1200	W J J J Ā	Ñ	6 6 8 8 9 7	N N	W	ja ja	J (Co	3.1	ρ̈́n) · ⁽⁾	7
3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0) () ()	0.500 0.500 0.500 0.500	S)/8	005	0000	0260	· 0 23 0	0200	0000	0000

Steve Lipman
Del Pyle
Dick Dondanville
Don Ash
Olin Whitescarver
Frank Corbin
Reservoir File

										67. N	•	
JONING NTS									& \	10 3(2PM)		
١٥٥٥									01430 21. 7	CH BHCK TO	JA. IN PA	(Residences
7. J.	77	PSRO (0859	18/100	ASAIN 2012	AGNIN P. 1055	3 651	VAC VAC	U/1>	1 1 4 > >	VAC / VAC	J マ	40,73
70	10-1 10-1	75	3 T	O ON AG	2 - C S A C A C A C A C A C A C A C A C A C	; (7		100	o p p o o p	1 2 4	0	かろうか
P. W. STECHEN	1	2680 (S. 2300		000000000000000000000000000000000000000	(B)09 4304)	1 0	100		0 F	やこ	0F 4382
5	70	Park	J M	River		ν. Ο	n n		r v v 0 0 C		 ()	ちコバ
1120					000	00:1	N (00)		000 000 000	0000	13	000