CFSU 42-7
Cove Fort, Sulphurdale Unit Initial Flow Test

Union Oil Company of California
Geothermal Division
Santa Rosa, California

Brian Maassen
July 24, 1978

```
SUMMARY OF CFSU 42-7 PIT TEST
```

PRODUCTION TEST

Date	$5 / 16 / 78$
Start Nitrogen Injection	$15: 45$
Stop Nitrogen Injection	$22: 45$
End Flow Period	$7: 25 \quad 7 / 17 / 78$
Maximum Rate	$47,000 \mathrm{lb} / \mathrm{hr}$
Wellhead Pressure	3 psig
Maximum Bottom Hole Temperature	$336^{\circ} \mathrm{F} @ 6900^{\prime}$
Total Fluid Produced	$1,800,000 \mathrm{lbs}$

INJECTION TEST

Date
Injection Rate
Injection Temperature
Injection Wellhead Pressure
Final Wellhead Pressure
KH
5/17/78
$53,000 \mathrm{lb} / \mathrm{hr}$
$70^{\circ} \mathrm{F}$
vacuum
0 psig
${ }^{-} 23,000 \mathrm{MDFT}$

CONCLUSIONS

1. The well will produce at a rate of $47,000 \mathrm{lb} / \mathrm{hr}$ at a wellhead pressure of 3 psig. The well dies immediately after shutin.
2. The reservoir temperature in the vicinity of the wellbore

- is $\pm 330^{\circ} \mathrm{F}$. This corresponds to a flash of 0% at 100 psig and 4.22% flash at 50 psig.

3. The permeability of the formation is in the order of 23,000 md-ft.
4. The well should make an excellent injector because the pressure at 5000 ft is 688 psi below the normal hydrostatic gradient of 0.433 psi/ft. Calculations assuming the above permeability and steady-state radial flow indicate the well could take injection rates on the order of $1,000,000 \mathrm{lb} / \mathrm{hr}$ before fluid reaches the surface.

INTRODUCTION

A combination production and injection test was performed on CFSU 42-7 in Beaver County, Utah during the week of May 15, 1978. The test was designed to obtain temperature, chemical, production, injection, and permeability data. The results of the test are discussed in the following report.

BACKGROUND

The CFSU 42-7 was completed on March 14 , 1978 with 7" tie-back from the surface to 3084^{\prime} and $7^{\prime \prime}$ liner from 3084^{\prime} to 7610'. The slotted liner sections are located between 4320' and 7520' The last temperature survey prior to the flow test was made on April 5, 1978 and indicated a maximum temperature of $325^{\circ} \mathrm{F}$ at 6050^{\prime}. A bridge was encountered at 6064' during the survey. Temperatures of $344^{\circ} \mathrm{F}$ were measured at 7327^{\prime} during production logging prior to completion of the well. The free standing fluid level during drilling operations was 1310'.

OPERATIONS

STATIC SURVEY

A static continuous temperature and differential survey was run on $5 / 15 / 78$ prior to the flow test. The survey indicated a maximum temperature of $328^{\circ} \mathrm{F}$ at 6040^{\prime} where a bridge was encountered. The 2500 foot isothermal zone from ± 3600 to ± 6100 found in surveys run prior to completion of the well was no longer present. A sensitive spinner tool was hung at several points in the zone and no flow was detected.

FLOW TO PIT
The test apparatus was set up as shown in Figure l. It consists of a two-phase meter run, choke manifold and a flow spreader. The flow rates were calculated using the Murdock 2 phase correlation for orifice meters. The pit was also measured and a table of volume versus depth was prepared to use as a rough check against the metered rates. Flow rates could not be calculated during nitrogen injection because the Murdock correlation does not take the nitrogen into account.

Open ended coiled tubing was run into the well on $5 / 16 / 78$ at $\pm_{50} \mathrm{ft} / \mathrm{min}$, while circulating nitrogen at 1500 cubic feet per minute. An obstruction was encountered at 591 feet. When an attempt was made to back off 50 feet, the tubing parted and 591 feet was lost down hole. Coiled tubing was run into the well with a $3^{\prime \prime}$ washing
jet on the end to act as a guide shoe. The tubing was run at the same speed and nitrogen rate as above, past the bridge at 6040, until it tagged bottom at 7211'. Several attempts were made to get past 7211 ' but all were unsuccessful.

Fluid appeared at the surface several minutes after the tubing passed the free standing fluid level at 1310'. The well was lifted on nitrogen assist for 6 hours. Nitrogen rates were varied to see what effect it would have on production rates. The results indicated that the higher the nitrogen rate the higher the production rate. At times, the well produced a small amount of black, sandy grit. The nitrogen was shut off at 22:40 on $5 / 16 / 68$. Flow continued unassisted at a rate of $\pm 48,000 \mathrm{lb} / \mathrm{hr}$ at 3 psig of wellhead pressure and decreased gradually over the next 9 hours to $43,000 \mathrm{lb} / \mathrm{hr}$. The well was shut-in at 7:25 a.m. on $5 / 17 / 78$. Shortly after shut-in, a $3^{\prime \prime}$ valve was opened on the wellhead, a noncondensible gas head was bled off and the wellhead pressure dropped to 0 psi. A total of $1,822,142$ lbs was produced during the entire flow period.

CHEMICAL ANALYSIS

Several chemical samples were taken during the flow period and analyzed by Research. The complete analysis is shown in Table 1. The fluid had a total dissolved solids content of 3950 ppm . The silica geothermometer was analyzed and indicated a fluid temperature of $334^{\circ} \mathrm{F}$. This is very close to the actual measured maximum temperature of $336^{\circ} \mathrm{F}$. The $\mathrm{Na}, \mathrm{K}, \mathrm{Ca}$ geothermometer indicated a temperature of $436^{\circ} \mathrm{F}$. This is unrealistic when
compared with temperature measured downhole.

POST FLOW SURVEY
Two hours after shut-in, a second continuous temperature and differential temperature survey was run, but the indicated temperatures were unrealistically high. . A wireline temperature survey was run with Kuster tools as a check. The Kuster tool indicated a maximum temperature of $332^{\circ} \mathrm{F}$ at 6900'. The continuous survey was declared a misrun and a second temperature and differential temperature survey was run with a new tool. The results of this agreed with the Kuster run and a maximum temperature of $336^{\circ} \mathrm{F}$ was measured at 6900'.

INJECTION PERIOD
The produced fluid was injected into the well for 17 hours on $5 / 17$ and 5/18/78. The average injection rate was $53,000 \mathrm{lb} / \mathrm{hr}$ with the wellhead on a vacuum. Injection rates were limited by pump capacity. Flow rates were measured by the 3 " meter run shown in Figure 1. A spinner survey was run but the results were inconclusive. The fluid level was found at 1370'. A radioactive tracer survey showed fluid leaving the wellbore at the following locations:

Slotted Interval	Percent
$4353^{\prime}-4473^{\prime}$	51
$4860^{\prime}-4989^{\prime}$	3
$5112^{\prime}-53199^{\prime}$	13
$5534^{\prime}-5660^{\prime}$	13

No tracer shots were made below 5800' due to temperature limitations on the tool.

Data from flowing injection survey indicated a 29 psi pressure drop across the sandface at a flow rate of $50,000 \mathrm{lb} / \mathrm{hr}$. A pressure falloff taken after shut-in indicated a permeability of $23,000 \mathrm{md}-\mathrm{ft}$. It should be noted that the small pressure changes (29 psi) measured downhole are at the limits of the tools resolution; therefore, the accuracy of the permeability calculated here could be subject to a significant error. However, the very fact that the pressure drops were so small is an indication of high permeability. More accurate numbers could be obtained by injecting at higher rates in the region of $500,000 \mathrm{lb} / \mathrm{hr}$.

TABLE 1

Cove Fort Well. (CFSU42-7) Compositional Analyses.

5-16-78

Total Steam Production.

$\mathrm{H}_{2} \mathrm{~S}, \mathrm{ppm}$	97,147	(2 separate samples)
$\mathrm{NH}_{3}, \mathrm{ppm}$	36,78	(2 separate samples)

Separated Water. ($\mathrm{pH}=8.7$)
Physical Properties
Specific Gravity 1.0028
Conductivity, $\mu \mathrm{S} / \mathrm{cm} 5930$
Suspended Solids, mg/l 392
Total Dissolved Solids, mg/l 3950
Elemental Analyses
Arsenic, mg/l
1.90

Boron, mg/l
7
Calcium, mg/l
Iron, mg/l
43
Magnesium, mg/l
<. 05
Mercury, mg/l
6.0

Potassium, mg/l
Silver, mg/l
nd<. 0005

Sodium, mg/l
<. 02 1500

Anions
Bicarbonate, mg/1
101
Carbonate, mg/l
55
Chloride, mg/l 1590
Fluoride, mg/l
5.8

Nitrate, mg/l
0.03

Sulfate, mg/l
0.5

Sulfide, mg/l
3.5

Ammonia, mg/l
5.5

Silicon, mg/l
190, 200, 200 (3 separate samples)
Emission Spectrographic Analyses:

TDS
Major, $>10 \%$
Moderate, 1-10\%
Slight, 0.1-1\%
Trace, $<0.1 \%$

Suspended Solids
Ca
Fe, Si
Al, Na
$\mathrm{Cu}, \mathrm{Mg}, \mathrm{Ma}, \mathrm{Pb}, \mathrm{Sr}$.

APPENDIX

KH Derbemination FRom FalloFF on CFSU 4Z.7
$D_{A T E}$ OF TEST $5 / 10 / 7 \%$
Determine Average ruction rate

AVERAGE RATE $=59000 \mathrm{CB} / \mathrm{HR}$
FLow TIME $=9.5$ HeS

ΔT $(m$ mINUTES $)$	$\frac{T+\Delta T}{\Delta T}$	PRESS
6	-	1966
1	571	1904
2	286	1962
3	191	1900
4	143	1900
5	115	1900
10	58	1898
15	39	1898
60	10.5	1895
120	5.75	1894
180	4.17	1892
240	3.38	1890
300	2.90	1888
360	2.58	1888
420	2.36	1888
439	2.30	1888

Fallowe on CFSU 42-7 5/18/T8 CONT

$$
\begin{aligned}
& \text { SLOPE }=7 \text { PSI/ } \\
& \text { RATE }=59000 \mathrm{LR} / \mathrm{HR} \\
& \text { TEMP }=250^{\circ} \quad \text { SPVOL }=0.017006 \quad \mu=0.23
\end{aligned}
$$

Conveat rate to bBl/DAy

$$
\begin{aligned}
& \frac{(59000)(0.017006)(24)}{5.615}=4288 . \mathrm{BPS} \\
& k h=\frac{(162.6)(0.23(4288)}{7}=22900 \text { mor } \\
& S=11151\left[\frac{P_{\omega F} \cdot P_{1 H R}}{m}-\log \left(\frac{k h}{\phi H \mu C H_{\omega}{ }^{2}}\right)+3.23\right] \\
& P_{U F}=1906 \quad \phi H=200 \quad \omega_{\omega}{ }^{2}=0.1329 \\
& P_{\text {iHe }}=189 \% \\
& \mu=0.23 \\
& m=7 \\
& K / t=9960 \quad C=12 \times 10^{-6} \\
& S=1,151\left[\frac{1906 \cdot 1891}{7}-\log \left(\frac{22900}{(200)\left(0.233\left(12 \times 10^{-6}\right)(.1329)\right.}\right)+3.23\right] \\
& S=-3.6 \quad \Delta P_{s}=0.87(\mathrm{~m})(\mathrm{s}) \quad=0.87(7)(-3.12)=-18 P S I \\
& \text { EFF }=\frac{P_{\omega_{E}}-P_{\omega S}-\Delta P_{S}}{P_{\omega F}-P_{\text {WS }}}=\frac{1906-1880^{\prime}-(-19)}{1906-1880}=1.73 \\
& P_{\text {ws }}=1800
\end{aligned}
$$

Fallofre an Cosu 42-7 5/10/78
Dheak Smand smate KiA AGANST BuId UD

$$
\begin{aligned}
& k h=\frac{603.06 \quad \omega(\text { SProl })(\mathrm{cu}) \ln (R \theta / \operatorname{low})}{\Delta P E} \\
& P_{\text {War }}=1077 \mathrm{Fm} 5 / 9 / 78 \\
& P_{\omega} F=1906 \\
& \Delta P=1906-7877=29 \\
& \text { feh }=\frac{603.06(59000)(0.017006)(0.3)(7.06)}{29(1.75)}=19600 \mathrm{mdFT}
\end{aligned}
$$

保
-6s4 40-7 PIT TEST
5/16-Na INJCCTION to FLOW TEST
Time
030 Sarety Meeting
O913 Bueeo-off Pressure
Q913 OPON VALVE
o900 ATtompt to Run Tueng mio vou
0735 PUL TughG OLT t DISCONNECT BOPE TO INSTALL centrauzer ol tubing
continudis Attemets to Run Tubing unjuccossful, apparently catching on T" Theback lap at weuhcho. Run frec. Stinger of Tubing past lip, then connect it to Turing on Spool.

1336 Attempt to Run Tubing into Hole, intectins nace 1200 cm

1518 unis Same method, Start Running Tubing ints hele

15:- Fink Tb Gurface - Frotay, white flum

1600 fann siwn of $H_{2} 5$ Presint

CFSU YJ-7 PITTEST

Tine
1640 INCRCNSE N_{2} INJECTION RATE TO 1500 CFm
1655 BeGM TOMGTER FIOW WTH BARTON"I - NO BACK Prossure
1657 CoITINHE RUNBING NTO HOLC Past 5000^{\prime}
1705 Bmatantiverer faned
1700 No Sisn of Brigce-Tubinc Depth $=6000^{\prime}$
1723 Barmonil Meter Running Agams
grit Proouced Throngout Test
 STML WJECTMAE 15006 M
Producing Milky white fulld Agflis
Also producing Larger Ampunts of Grit
1835 RUN SLDWL INTO HOLC TO TJIN, HIT DESTRLLCTION Pull Back TO 7160' to HOLD

1840 Cut Na hoJections Rate TO SOOCfm
1918 INCREAJCNコINJCETION TO 750 CFM
2100 Cut No NJ Cection Rate to 300 CFm

ard Shutas No, as of How.
0350 OPEn InJection line To Buged off Well

CFSU 43-7 PIT TEST

Time
057 Pamtially GIOf0 $10^{\prime \prime}$ Mmster Value to Check For Theme
D330 ClOSO InJection line, BORN TO Mater Sucht a a
Due to cunnectors on Tubing, linable to pull Housco Rugns Conpletely dut of wenhered.

0700
1F9G $\partial_{\text {PSI }} 5^{\prime \prime} \mathrm{H}_{2} \mathrm{O}$
0705 Shatin wen edpIi.
0127
-92
0780

$$
805
$$

$8: 16$
$8: 30$
8.45
$8: 50$

1025 Run Temp surver -
Reached fullo level $<1070^{\prime}$
$11: 95$ TGTemp Tru friled AT 1900'

N40 Tool FAllosw 67世0 , 62
145: Kun Thy T
Temacerature=
ushe Dirfuent Pine
$6709 \quad 372.57$
 Tow fander POHL
cFsU 1a -7

1695 Run Kuster Temp Survey

1,	193	no fum
2	306	
3000	300	Flum levete 070
4000	321	
5000	307	
6000	330	
690	332	

$19 \partial g$ Start intu hole with go Temp Survey
1935 Tew finle.d - Por
1955. Twol rephized, Stmkt in hole nghios
d130 Pick UP DEPT\& E 6919'. 336.2F START POH
Possimue Top of Tubins Fishe 6500
$2 \partial 30$ Begin inJecting Water Slemly INITAL PIT LevCl $=5^{\prime}$

2250 Shut-down Rime due te Sand Plugginco Valve
231 Restart Pumpe 30 spm
5佰

- 800 funer Rummios Aghin

O825 Pump Dunn
O855 PRMP RUNNID

Q910 PNMP Down
0930
0136
PMD DN
1055
Down
1136 Start somuse mevey
1145 Toa finco-PN
$1200 \quad R 1$ in w/spmer Survey Toal frived-blot
1245
1800
RII w/spmoer Suevey

1540
complete Teme gurvey

1700
start ra survey
1700 COMPLCTE RA Survey
1830
Start clocks for fallofe l Grabrelt Survey
1859
Start in hole w/azeve
doo Shut down Pumps to \therefore Begin fall-off Survey

Differamial
(incass $\mathrm{H}_{2} \mathrm{O}$)

食苍 Pressume
(pasig)

$$
\begin{aligned}
& \text { Pk } \\
& 5 \quad 167844 \\
& \operatorname{cFs} 49-7 \\
& \text { Somments }
\end{aligned}
$$

$$
\begin{aligned}
& \cosh / \operatorname{sidges} 5 / .5 \\
& \begin{array}{l}
\text { Diffenemtal } \\
\text { (inekes } H z=\text {) }
\end{array} \\
& \begin{array}{c}
5 \\
6 \\
6 \\
5 \\
5
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 岩 } \\
& m m \text { Ir } \quad \text { rm }
\end{aligned}
$$

$$
\begin{aligned}
& 30
\end{aligned}
$$

cesu 42-7 injection TEST

$\begin{array}{lllllllllllllll}1 \\ 1 & -1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}$
系
cc: Vane Suter
Steve Lipman
Del Pyle
Dick Dondanville
Don Ash
Olin Whitescarver
Frank Corbin
Reservoir File

5177802
CFSU-42-7 INJECTION TEST

