Uกำก GEOTHERMAL DIVISION

INDEX

Preface: Organization of Report
Chapter 1: Well Summary
Chapter 2: Geologic Report
Chapter 3: Well History
Chapter 4: Fishing Operations
Chapter 5: Time-Depth Progress Graph
Chapter 6: Logging Data
Chapter 7: Bit Record
Chapter 8: Cementing
Chapter 9: Drilling Fluid Summary (Magcobar)
Chapter 10: Fluid Analysis
Chapter 11: H_{2} S Safety Procedures

PREFACE

Organization of Report

Cove Fort Sulphurdale Unit Well \#14-29 (CFSU \#14-29) was spudded on May 25, 1979, and drilled to a total depth of 2620'. Total. loss of circulation was encountered repeatedly during drilling, resulting in much of the hole being drilled without returns. Unconsolidated formation below 2451' made drilling operations even more difficult. Cements, especially adapted for lost circulation, and consolidation chemicals were employed with limited or no success resulting in abandonment of the well at the total depth of 2620^{\prime} on July 9, 1979.

This report presents the technical details involved in the drilling of Union Oil Company's CFSU \#l4-29. The report consists of the eleven chapters listed in the Index, as well as logs taken by Schlumberger. The contents of each chapter is summarized in the following. All depths in the report refer to rotating kelly bushing (K.B.) unless otherwise indicated. The kelly bushing is 22' above ground level (G.I.).

Chapter 1 presents a summary of the operations required to drill and complete CFSU \#14-29. A listing of contractors is also presented.

Chapter 2 summarizes what was learned about the hydrothermal system intersected by CFSU \#14-29. This includes data on formation lithologies, fluid chemistries, and other geological information.

Chapter 3 contains a well history describing the day to day operations during the drilling of CFSU \#l4-29. Also included are a detailed description of the casing strings, a diagramatic sketch of the well bore, and a listing of deviation surveys with the corresponding maximum reading thermometer results.

The two fishing operations engaged in while drilling this well are described in Chapter 4.

A time-depth progress graph is presented in Chapter 5. This graph also indicates the occurrence of events of major technical interest while drilling CFSU \#14-29.

Chapter 6 lists the various kinds of logging data taken during the drilling of CFSU \#14-29. Copies of each of the individual logs are supplied with the report. Maximum reading thermometer temperature surveys taken at various times when the hole had been static for two or more hours are also listed here.

Chapter 7 presents technical information about the drill bits used in CFSU \#14-29.

Chapter 8 describes cementing operations carried out during casing jobs, while trying to control lost circulation, and while abandoning the hole.

Chapter 9 is a technical summary of the drilling fluids used in drilling this well and the corrosion analysis. This section was prepared by Magcobar, the sales, service and engineering company responsible for the drilling fluids program.

Chapter 10 provides the analysis of the formation fluid obtained from CFSU \#14-29.

Chapter 11 describes the equipment and procedures used on the wellsite to protect personnel from the potential danger of $\mathrm{H}_{2} \mathrm{~S}$.

COVE FORT SULPHURDALE UNIT \#14-29

OUTLINE

I. General Information
A. Well Record
B. Contractors Used
II. Drilling Operations
A. Rig Information
B. Preparation of Location and Setting of Conductor to 38^{\prime} (K.B.)
C. 26" Hole: 38' to 230' (20" Casing Set to 224')

1. General Description of Hole Drilled
2. Problems Encountered and Their Resolution
a. Complete Loss of Circulation: 833' to 1249'
b. Setting 13-3/8" Casing
E. 12年" Hole: 1240' to 2080^{\prime} (9-5/8" Casing Hung from 998' to 2078')
3. General Description of Hole Drilled
4. Problems Encountered and Their Resolution
a. Lost Circulation from 1265^{\prime} to 1429^{\prime}
b. Twisted-off Drill Pipe at 1330'
c. Lost Circulation from 1429^{\prime} to 2080^{\prime}
d. Stuck Drill String at 1460^{\prime}
F. 8-3/4" Hole: 2080' to Total Depth at 2620°
5. General Description of Hole Drilled
6. Problems Encounterod and Their Resolution
a. Intermittent Returns to Surface: 2213' to 2407'
b. Unconsolidated Formation: 2451' to Total Depth at 2620^{\prime}
G. Well Abandonment

COVE FORT SULPHURDALE UNIT \#14-29
I. GENERAL INFORMATION

UNION OIL CO. OF CALIFORNIA
 GEOTHERMAL DIVISION

A.

WELL RECORD

SIZE	WEIGHT	GRADE	THREAD		BOTTOM	REMARKS
30"	375 Wal1	H40	Welded	G. L.		Cemented surf. to 38'
$20^{\prime \prime}$	94\#/ft	K55	Buttress	$20^{\prime} \mathrm{KB}$	$224^{\prime} \mathrm{K} . \mathrm{B}$. Cemented surf. to 224^{\prime}
13-3/8'	54.5半/ft	K55	Buttress	$20^{\prime} \mathrm{KB}$	$1240^{\prime} \mathrm{K} . \mathrm{B}$	Cemented surf. to 1240^{\prime}
9-5/8'	36业/ft	K55	Buttress	998. KB	2078' K. B	Cemented 998'-2078'
WELL HEAD ASSEMBLY						
MAKE TYPE SIZE PRESSURE RATING						
CASING HEAD SPOOL None- Well plugged and abandoned to surface, $5 / 8^{\prime \prime}$ steel						
EXPANSION SPOOL plate welded on $20^{\prime \prime}$ casing						
MASTER VALVE (S)						
CASING HEAD VALVES						
EXPANSION SPOOL VALVES						
SWAB VALVE						
STEAM ENTRIES:			DEPTH		LBS. INCREASE	

Not Applicable - No Flow

B. CONTRACTORS USED

Brinkerhoff-Signal, Inc.
$B \& W$, Inc.
Cove Fort Service
Del Mar Construction
Donham Oil Tool
Dowell
Dresser Industries
Go-International
Grant Oil Tool
Duane Hall Trucking
Halliburton
номсо
Howard Construction
Hughes Tool Company
Marion Kessler
La Sal Oil Company
Mac's Welding
Mid-Continent Supply
Midway Fishing Tool
Mountain States Inspection
Oilwell Supply
Philadelphia Quartz
San Juan Casing Service
Schlumberger
R. F. Smith Corporation
B. CONTRACTORS USED (cont'd)

Smith Tool Company
Thatcher Chemical

West Coast Oil Tool

W-K-M Wellhead Systems

COVE FORT SULPHURDALE UNIT \# 14-29

II. DRITIING OPERATIONS

A. RIG INFORMATION:

Brinkerhoff-Signal rig \#3 is a 133', 700,000\# rated Lee C. Moore with 19^{\prime} substructure and a National 55 Drawworks. The rig is rated to drill to a depth of $12,000^{\prime}$. It is powered by two Caterpillar D-379-TAC diesel engines rated at $1000 \mathrm{H.P}$. at 1000 RPM. The rotary table is $20 \frac{1^{\prime \prime}}{}$ Mid-Continent.
B. PREPARATION OF LOCATION AND SETTING OF CONDUCTOR TO 38' K.B.:

In the Spring of 1979, various operations were conducted to prepare the location for drilling. The location, sump, and roads were built to the specifications of the "Approved Unit Plan of Operations". A $36^{\prime \prime}$ conductor hole was drilled to 16^{\prime} G.I. (38' K.B.) by Dick Howell's Drilling Service. Thirty-inch (30") conductor pipe was run and cemented from surface to 16^{\prime} G.L. ($38^{\prime} \mathrm{K} . \mathrm{B}$.) with Ready-Mix Cement, purchased locally.
C. $26^{\prime \prime}$ HOLE: 38^{\prime} to 230': (20" Casing set to 224^{\prime})

Brinkerhoff-signal rig \#3 moved in, rigged up, and was placed on dayrate at 1800 hours, $5 / 25 / 79$. The well was spudded
at 1800 hours on 5／25／79，and $17 \frac{1}{2} "$ hole drilled to 260^{\prime} （volcanics）．The hole was opened to $26^{\prime \prime}$ from 38^{\prime} to 230^{\prime} when a cone on the hole opener locked．

Two hundred－twenty five feet（225＇）of 20＂，94\＃／ft，K55 buttress casing was set and cemented to surface，through the float shoe at 224＇．The 30＂and 20＂casing were cut off to ground level．A 20＂Hydril GK and Double Shaffer blowout preventer were installed，tested and witnessed by a U．S．G．S．representative to U．S．G．S．specifications．

No problems were encountered in drilling the $26^{\prime \prime}$ hole．

D．17⿰丬⿳八人口又土＂Hole：260＇to 1249＇：（13－3／8＂Casing set to 1240＇）

1．General Description of Hole Drilled：
The $17 \frac{1}{2}{ }^{\prime \prime}$ hole was drilled from 260＇to 1249^{\prime} in hydro－ thermally altered volcanics to 825＇，conglomerate from 825＇to 866＇and dolomite－limestone with interbedded sandstone below 866＇with severe lost circulation problems．

Complete loss of circulation initially occurred at 833＇． Attempts to regain circulation by setting two cement plugs（265ft ${ }^{3}$ each）were unsuccessful and the $17 \frac{1}{2}$＂hole was drilled from 833＇to 1243＇without circulation．Four additional cement plugs（total volume $=810 \mathrm{ft}^{3}$ ）failed to correct lost circulation to total depth．

1240' of $13-3 / 8^{\prime \prime}, 54.5 \# / f t, \mathrm{~K} 55$ buttress casing was run in the hole. A two-stage cement job was performed with the D.V. collar set at 766', with no cement returns reach-. ing the surface. The $13-3 / 8^{\prime \prime}$ casing was cut off to the surface, 12"-3000\# B.O.P. equipment was installed and tested to U.S.G.S. specifications. The 13-3/8" casing was perforated from 800^{\prime} to 801^{\prime} and cemented with water returns reaching the surface prior to equipment failure. A cement bond log indicated no cement above 350^{\prime}.
2. Problems Encountered and Their Resolution:
a. Complete Loss of Circulation: 833' to 1249'

Complete loss of circulation was first encountered at 833'. One thousand barrels of mud were lost attempting to fill the hole. Also unsuccessful was a $265 \mathrm{ft}^{3}$ cement plug pumped through open ended drill pipe hung at 830'. Circulation was lost again while drilling from 833' to 852'. Two hundred (200) barrels of 25% lost circulation material gel mud were pumped but failed to correct lost circulation. An additional $265 \mathrm{ft}^{3}$ cement plug was pumped; however, the formation accepted all the cement and attempts to fill the hole were unsuccessful. The fluid level was approximately 250^{\prime} as indicated on drill pipe.

The $17 \frac{1}{2}$ " drilling assembly was minimized and $17 \frac{1}{2}$ " hole was drilled to 1249^{\prime} while pumping water without
returns. By occasionally (approximately every 30') pumping a high viscosity gel pill, the hole was swept clean and fill problems were solved.

Cement plugs \#3, \#4, \#5, (each $203 \mathrm{ft}^{3}$) were pumped through open ended drill pipe hung at 935', 893', and 872' respectively. Top of cement plug \#5 was located at 787'. The cement was drilled with a $17 \frac{1}{2} "$ drilling assembly from 787' to 854^{\prime} with full. returns until encountering a void at 854' and the loss of complete returns. Plug \#6 (20lft ${ }^{3}$) was pumped through O.E.D.P. hung at 861'. Firm cement was located at 780' following plug \#6 and drilled with a locked drilling assembly to 872^{\prime} with full returns. Circulation was again lost at 890^{\prime} and there was no cement below 915'.
b. Setting 13-3/8" Casing Before running casing the hole was swept out to total depth (1249'), with a gel pill. Because of lost circulation problems a two-stage cement job was performed. The first stage consisted of a $201 \mathrm{ft}^{3}$ cement plug formula followed by $546 \mathrm{ft}^{3}$ of Dowell RFC casing cement. After opening the D.V. collar, set at 766', the casing was found to be on a vacuum. The second stage was pumped through the D.V. collar and consisted of $112 \mathrm{ft}^{3}$ of Spacer 1000 flush followed by $1142 \mathrm{ft}^{3}$ of cement. No cement retumed to the surface. The
cement in the $13-3 / 8^{\prime \prime}$ casing was cleaned out with a l2 $\frac{1}{4} "$ drilling assembly from the D.V. collar at 766' to 1201'.

A cement bond log revealed no cement above 820'. To complete cementing the casing, five $\frac{1}{2}$ " perforations were shot in the $13-3 / 8^{\prime \prime}$ casing from 800^{\prime} to 801' and a 13-3/8" RTTS tool was set at 736'. 371ft ${ }^{3}$ of cement was pumped through the RTIS with water returns to the surface, prior to a cement truck breakdown. One-inch (1") pipe was run into the $20 " \mathrm{x}$ 13-3/8" annulus and indicated no cement to 160^{\prime} depth where the pipe stopped. A slip joint brace was installed between the 20" and 13-3/8" casings.

Cement was drilled out and the $13-3 / 8^{\prime \prime}$ casing was circulation clean from 773' to 1201'. Another cement bond \log indicated good cement bond from 1200', to 350^{\prime} and no cemeṇt above 350^{\prime}, and it was elected to continue without further cementing.
E. 12 $\frac{1}{2}{ }^{\prime \prime}$ Hole: 1240^{\prime} to 2080': (9-5/8" Casing Hung from 998' to 2078')

1. General Discussion of Hole Drilled

The $12 \frac{1}{4} "$ hole was drilled from 1240^{\prime} to 1265^{\prime} before losing all circulation. The hole was drilled through dolomite and dolomitic limestone with continuous lost circulation problems resulting in drilling without retiurns. Twisting off or parting the drill pipe at 1330' and stick-
ing the string in a tight spot at 1416^{\prime} resulted in fishing operations, both of which were successful.

Twelve cement plugs (total volume $=1933 f \mathrm{t}^{3}$) were set while drilling the $12 \frac{13}{4}$ " interval. Plug \#l8 was successful in regaining circulation to 2080^{\prime} allowing 1081' of 9-5/8" $36 \# / f t \mathrm{k} 55$ buttress thread casing to be hung at 998' and cemented.

A 12"-900 banjo box and rotating head were installed.
2. Problems Encountered and Their Resolution:
a. Lost Circulation from 1265^{\prime} to 1429^{\prime}

Circulation was lost at 1265^{\prime} in the 123/4 hole. Cement plugs \#7 (187ft ${ }^{3}$) and \#8 (181ft ${ }^{3}$) did not regain circulation. However, after pumping plug \#9 (181ft ${ }^{3}$) through open ended drill pipe, hung at 1245', the hole filled with water. The top of cement plug \#9 was located at 1226'. Cement was cleaned out to 1330' with lost circulation recurring at l310'. The 12 $\frac{1}{4}$ " hole was drilled to 1345^{\prime} with no returns and cement plugs \#10 (181ft ${ }^{3}$) and \#11 ($248 \mathrm{ft}^{3}$) were pumped through open ended drill pipe. Cement was located at 1090^{\prime} and circulation was regained following plug \#11.

Cement was drilled out and 12桨" hole was drilled to 1429^{\prime} before losing complete circulation. Open
ended drill pipe was run to 1429^{\prime} and cement plug \#12 (248ft ${ }^{3}$) was pumped. The top of plug \#12 was located at 1265^{\prime} but the hole still could not be filled.
b. Twisted-off Drill Pipe at 1330'

After drilling out plug \#12 from 1265^{\prime} to 1330^{\prime} without returns, the drill pipe was stuck and twisted off at 216'. The complete fish was recovered on the second try, with the proper size slips and fishing tool.
c. Lost Circulation from 1429' to 2080'

12年" hole was drilled through dolomite from 1429' to 1995^{\prime} without returns. Circulation was regained from 1995' to 2075' before again losing returns at 2076'. While pulling out of the hole the drilling assembly was stuck at 1460^{\prime} requiring a simple fishing job. The $12 \frac{1}{4} "$ hole was drilled from 1276^{\prime} to 1280^{\prime} without returns.

A series of four plugs ($764 \mathrm{ft}^{3}$ total) were pumped through open ended drill pipe. None of the last plug (\#16) was lost to the formation and circulation was regained. Firm cement was drilled out from 1155' to 1408^{\prime} and soft cement from 1408' to 1543'. All circulation was lost at 1495'. Cement plug \#17 (191ft ${ }^{3}$), pumped through open ended drill pipe hung at 1543:,
did not stop the lost circulation. Cement plug \#18 (191ft ${ }^{3}$) was successful at regaining circulation. The top of plug \#l8 was located at 1226^{\prime} to 2080'. Ten to fifteen percent of the returns were lost after reaching total depth.

The 9-5/8" liner was hung at 998' with the shoe at 2078'. The liner was cemented without any returns to the surface but a casing bond log revealed fair to good bonding the length of the liner.
d. Stuck Drill String at 1460' While pulling out of the hole, with partial returns, the drill string was stuck at 1416', the top of the 3-blade stabilizer. A free point indicator was run and the drill pipe backed off above the stabilizer. The fish was recovered on the first try using hydraulic jars.
F. 8-3/4" Hole: 2080^{\prime} to Total Depth at 2620^{\prime}

1. General Description of Hole Drilled:

The 8-3/4" hole was drilled through dolomite from 2080' to 2407^{\prime} with intermittent returns. From 2407' to 2620' the hole was drilled with either aerated water or aerated foam. The formation was unconsolidated fractured dolomite from 2415' to 2620'. Four consolidation pills were pumped into the interval in an unsuccessful attempt to consolidate
the formation. Cement plugs \#19 and \#20 failed to cement off the lost circulation zone and fill on connections continued to be a problem. Inability to consolidate the flowing dolomite formation led to the decision to plug back and abandon the well.

Before the well was plugged, various logs were run by Schlumberger. Air was injected through drill pipe and formation fluid (probably contaminated with drilling fluids) was produced for sampling purposes.
2. Problems Encountered and Their Resolution:
a. Intermittent Returns to Surface: 2213' to 2407' Complete loss of circulation occurred at 2213' and 8-3/4" hole was drilled to 2250^{\prime} with no returns and from 2250^{\prime} to 2407^{\prime} with partial (10% to 60%) returns. The hole had 30^{\prime} of fill after making a connection at 2407'. It was not possible to clean the hole without fluid returns with the hole standing full of fluid. This prompted a change to aerated water drilling. A jet sub was installed 1686' above the 8-3/4" bit to aid in lifting the fluid and primarily the cuttings. Drilling with aerated water made it possible to clean the hole to present total depth at 2407'.
b. Unconsolidated Formation 2451' to T.D. at 2620' The formation was unconsolidated fractured dolomite
from 2451^{\prime} to 2620° T.D., resulting in drill fill on connections, plus lost circulation and tight spots. An additional jet sub was added to the drill string 1310' above the bit and the first jet sub was moved to 1873' above the bit. However, it still was not possible to keep the hole clean with aerated water or foam.

While cleaning out the fill to 2580^{\prime}, circulation was partially lost and the drill pipe was stuck. The pipe was worked free after three hours and the jet subs were removed. In an attempt to keep the hole clean the drilling foam was stiffened and high viscosity gel pi.lls or flushes were pumped. The hole was cleaned eut temporarily to 2598^{\prime} before complete loss of circulation occurred and the top of the fill increased to 2498^{\prime}.

Fifty-two barrels of sodium silicate-calcium chloride consolidation material was pumped through the bit hung at 2465'. Fill was cleaned out to 2560^{\prime} but the fill level increased to 2500^{\prime} on a connection. A second consolidation pill was pumped with similar results." Open ended drill pipe was run to 2465^{\prime} and a $290 \mathrm{ft}^{3}$ consolidation pill was pumped. The drill pipe was pulled to 2434^{\prime} and cement plug \#19 (180ft ${ }^{3}$) was pumped. Top of firm cement was located at 2466' and drilled to 2490', top of fill. Again
the hole contained fill on connections.

Open ended drill pipe was hung at 2550^{\prime} and water was pumped to cool the hole. A fourth consolidation pill (207ft ${ }^{3}$) was pumped followed by cement plug \#20 (.l80ft ${ }^{3}$). Firm cement was located at 2466^{\prime} and drilled to 2471'. Fill was encountered on connections and it was decided to abandon the well after running various logs based upon inability to keep the hole clean and drill safely.'
G. Well Abandonment: Surface (851') to T.D. at 2620'

Excess water from the sump was pumped into the hole through open end drill pipe before setting abandonment plug \#1 (250ft ${ }^{3}$) through a HOWCO EZSV 9-5/8" cement retainer set at 2000'. Following abandonment plug \#l, $50 \mathrm{ft}^{3}$ of cement, $280 \mathrm{ft}^{3}$ of drilling mud and abandonment plug \#2 ($180 \mathrm{ft}^{3}$) were pumped. The top of cement was located at 851'. The $20^{\prime \prime} \mathrm{x} 13-3 / 8^{\prime \prime}$ annulus was cemented to surface through l" pipe. Finally the $13-3 / 8^{\prime \prime}$ casing was cemented to surface with $201 \mathrm{ft}^{3}$ of cement and a 5/8" steel plate was welded on the $20^{\prime \prime}$ casing 5' below ground level.

All abandonment procedures were carried out in accordance with U.S.G.S. specifications and witnessed.

LITHOLOGY

The CFSU 14-29 well was drilled to a total depth of 2620 feet where highly fractured dolomite and dolomitic limestone is present. The volcanics and the carbonate units encountered in the CFSU 14-29 well are similar to those found in the CFSU 3l-33 well. Both wells were affected by propylitic alteration of the volcanics and sulfide mineralization along fracture surfaces in the carbonates and volcanics.

The following is a description and discussion of the rock types encountered in CFSU 14-29 from the surface to the total depth. The descriptions are based on examination of the well cuttings by binocular microscope.

```
Interval. . . . . . .30-825'
Formation . . . . . . .Bullion Canyon Volcanics
Age . . . . . . . . .Oligocene
Lithology . . . . . . .Andesite/Latite/Dacite
~ The well penetrated approximately 800 feet of Mid-Tertiary extrusive and minor intrusive (?) volcanics. These rocks are characterized by variable amounts of propylitic alteration of plagioclase to sericite and clays, and hornblende to chlorite and magnetite. This alteration is similar to that encountered in the volcanics from CFSU 31-33.

Intense alteration of several of the volcanic units has destroyed much of the original texture of the samples in addition to altering the composition. Therefore, the classification of the volcanics from CFSU 14-29 is tentative without the aid of thin sections and chemical analysis.

The volcanics are tentatively divided into three units on the basis of difference in color index, texture, and composition. The upper unit (30-310 feet) is characterized by interbedded porphyritic latites and andesites. The latites consist of 35 to \(45 \%\) fine-to-medium grained phenocrysts in a light gray aphanitic groundmass. Subhedral feldspar, hornblende, and minor biotite are the predominant phenocrysts. Quartz is present in rare amounts. The majority of the mafic phenocrysts have been completely altered to hematite and magnetite. The andesites of the upper unit consist of 25 to \(35 \%\) phenocrysts in a dark gray to green or reddish-brown aphanitic groundmass. The groundmass is intensely altered to chlorite, hematite, and clays. The phenocrysts have also been altered in varying
"degrees to chlorite, hematite, and magnetite. Calcite veins and breccia are present in rare to trace amounts in the upper unit. Limonite staining is ubiquitous throughout the interval. between 30 to 140 feet. In addition, pyrite occurs in rare to trace amounts from 70 to 150 feet.

The middle unit of the Bullion Canyon Volcanics (310-650 feet) is characterized by a porphyritic hornblende-bearing andesite with possible flow breccia and minor intercalated prophyritic latites. Although this andesite shows a great variation in texture and phenocryst composition, it is basically similar to the andesite in the upper volcanic unit. Several samples from the middle unit display a parallel orientation of hornblende and/or feldspar phenocrysts suggestive of a flow structure. Many of the volcanics in this interval also contain angular lithic fragments of latite and andesite and extensive interconnecting veinlets indicating the brecciated nature of the rock. There is a wide variation in phenocryst to groundmass ratio in the andesites of the middle unit. The andesites generally consist of 15 to \(35 \%\) fine-grained phenocrysts in a gray-green or reddish-brown altered aphanitic groundmass. Hornblende, biotite, and minor pyroxene are the major phenocrysts. The phenocrysts have been altered in varying degrees to chlorite, magnetite, and hematite. The feldspars are partially replaced by sericite and calcite. Quartz, calcite, and epidote are present in veins and veinlets throughout the middle
unit. In addition, rare to trace amounts of pyrite are present below 420 feet. Chlorite-sericite-clay alteration appears to increase below 520 feet.

The lower-most unit (650-825 feet) of the Bullion Canyon Volcanics consists of interbedded porphyritic latites and andesites. This unit is distinctive because it contains a zone of intense alteration and possible fault gouge. The latites and andesites in the intervals between 650-740 feet and 810-825 feet are similar in texture and composition to the latites and andesites described in the upper unit. The latites are lighter-colored and more phenocryst-rich than the andesites. The mafic phenocrysts in the latites and andesites show signs of bleaching and chloritic alteration, however, magnetite is commonly absent. Pyrite, quartz, calcite, and epidote are present in rare to trace amounts throughout this interval. A zone of intense alteration of the volcanics to clay and quartz extends from 740 to 810 feet. The volcanics (possibly latite and andesite) in this zone are bleached white and contain abundant pyrite and other iron sulfides, clay, quartz, and common calcite. A soft clay, which possibly represents fault gouge, was encountered at 800 feet.

Interval. . . . . . 825-850/866(?)'
Formation . . . . . . . Claron Formation/Price River
Conglomerate
Age . . . . . . . . Upper Cretaceous (?)
Lithology . . . . . . Sandstone \& Conglomerate
^An unconformity between the Bullion Canyon Volcanics and the Claron/Price River Conglomerate was penetrated at 825 feet. Partial lost circulation was encountered near the contact, and full returns were lost at 833 feet. The lost circulation zone was controlled by a cement plug and full circulation was regained from 833 to 850 feet. Another lost circulation zone was encountered at 850 feet. The well was drilled without returns from 850 to 1249 feet. Therefore, the exact thickness and lithology of the Claron/Price River Conglomerate in this area is uncertain. Cuttings adhering to the rock bits were collected when the bits were pulled out of the hole. The cuttings recovered from the bit at 866 feet were predominantly dolomitic limestone with trace conglomerate. The lower contact of the conglomerate is probably located between 850 and 866 feet.

The Claron/Price River Conglomerate consists of poorly-sorted, angular to subrounded limestone and quartzite cobbles in a matrix of calcareous siltstone and sandstone. The conglomerate is moderately well-to well-cemented and contains common calcite veins and trace amounts of pyrite and vein quartz. The Claron/Price River Conglomerate in CFSU 14-29 differs considerably from the Claron formation encountered in CFSU 31-33. The conglomerate from CFSU 14-29 is coarser-grained and more fragmental than the siltstone and sandstone conglomerate from CFSU 31-33.
```

Interval. 850/866 - 2620'
Formation Unknown
Age Paleozoic (?)
Lithology Limestone, Dolomite, Sandstone

```

An unconformity between the Claron/Price River Conglomerate and carbonate unit of probable Paleozoic age was penetrated between 850 and 866 feet.

Several major lost circulation zones were encountered from 850 to 2620 feet. As was previously stated, there were no sample returns from 850 to 1249 feet except for the cuttings adhering to the bit when it was pulled out of the hole. There were intermittent returns from 1250 to 2600 feet. The following lithologic descriptions are based on the intermittent sample returns, Schlumberger logs, and cuttings removed from the rock bits. The Schlumberger logs were run from 1240 to 2078 feet and from 2078 to 2649 feet.

The upper part of the carbonate unit (850-1313 feet) is characterized by interbedded dolomitic limestones, dolomites, sandstones, and quartzites. The carbonates in the interbedded sequence vary in color, texture, and composition. The carbonate at the top of the sequence consists of a dark gray, massive, recrystallized dolomitic limestone containing trace fossil fragments. Below this interval, white to light gray massive dolo-
" mitic limestones with minor chert are interbedded with calcareous sandstones and rare pink quartzites. The sandstone is white to light gray and consists of poorly-sorted, angular to subrounded quartz clasts in a poorly-consolidated calcite matrix. Pyrite and calcite veins are present in rare to trace amounts. Highly-fractured vein quartz and clay were encountered above a major lost circulation zone at 1265 feet.

The lower part of the carbonate unit (1313-2620 feet) is characterized by fractured and brecciated dolomites and dolomitic limestones. The upper part of this interval consists of a light brown to gray, coarsely-crystalline dolomite with minor fine-grained to aphanitic dolomite. Calcite veining and clay are present in rare to trace amounts.

Two major lost circulation zones were encountered at 1330 and 1381 feet. Moderate to high concentrations of hydrogen sulfide gas and carbon dioxide gas were detected in these zones. The well was drilled without returns from 1381 to 1970 feet.

Light gray to light brown finely-crystalline dolomitic limestone occurs below 1970 feet. Pyrite and fracture filling calcite are present in rare to trace amounts.

A major lost circulation zone was encountered at 2035 feet, however, no hydrogen sulfide gas or carbon dioxide gas was
detected in this zone.

The carbonate below the lost circulation zone is predominantly white to light gray, very-fine to fine-grained dolomitic limestone. This limestone is characterized by the presence of galena and pyrite in rare to common amounts and common to abundant soft white clay. The limestone also contains minor brecciated zones.

A sequence of light brown to light gray aphanitic dolomite and dark grayish-brown, fine-grained dolomite with sugary texture occurs from 2280 to 2600 feet. The dolomites contain many brecciated zones with calcite and siliceous veining. Rare to trace amounts of galena, chalcopyrite, and quartz are present intermittently in this interval. Pyrite and calcite occur in rare to common amounts.

The dipmeter log was run from 1268 to 2432 feet. The dips of the carbonates are extremely erratic, indicating the presence of many cavities and fractures. The only consistent formation dips recorded in the carbonate unit occur in a dolomitic interval between 1780 and 1870 feet. The average attitude of the beds in this interval is 42 W and \(21^{\circ} \mathrm{NE}\).

It is difficult to determine the formation and age of the carbonate unit because of the slight returns and the brecci-
"ation and dolomitization of carbonates. The dolomitic limestones and dolomites from CFSU 14-29 are very similar to those encountered in CFSU 31-33 from 1150 to 2770 feet. Those carbonates were also characterized by many fractures and cavities, pyrite and galena mineralization, hydrogen sulfide gas, and carbon dioxide gas. The carbonates from CFSU 31-33 were tentatively assigned to the Pakoon Dolomite and Oquirrh formation of lower Permian and Pennsylvanian age.

GEOCHEMISTRY

The CFSU 14-29 well was drilled with aerated water from 2407 to 2620 feet. Fluid returns were intermittent in this interval, and the flowline temperatures ranged from \(91^{\circ}\) to \(115^{\circ} \mathrm{F}\). While trying to clean out the fill in the hole at 2620 feet, the hole was gaining fluid at a rate of approximately \(100 \mathrm{bbls} /\) hour. The flowline temperature reached a maximum of \(170^{\circ} \mathrm{F}\). It is probable that some of the fluid was formation water, however, these samples were very contaminated with drilling fluid and drilling fluid additives.

In order to obtain a less contaminated sample of the fluid, the well was flowed for approximately two hours after the Schlumberger logs were run at 2620 feet. Samples were col-
^ lected every 30 minutes and checked for chlorides, pH , and calcium. Two samples were selected for analysis to determine the chemical composition of the fluid. The chemical analyses were done by Ford Chemical Laboratory, Inc., in Salt Lake City. The results of these analyses are included in the appendix.

The chemistry of the flowline samples from CFSU 14-29 is considerably different than that of the samples from the CFSU 42-7 and 31-33 wells. Flowline samples that best represent reservoir fluid from CFSU 31-33 and 42-7 have salinities of \(10,000 \mathrm{ppm}\) and 9405 ppm . The salinities of the samples collected from CFSU 14-29 are 4881 ppm and 4776 ppm . These lower salinities are more characteristic of the shallow fluid collected at depths of 2663 and 2700 feet in CFSU 42-7. However, the chemical characteristics other than salinity of the CFSU 14-29 samples differ from those observed in the shallow fluid of CFSU 42-7 and 31-33. Concentrations of sodium, potassium, and chloride in CFSU 14-29 are much lower than those in CFSU 42-7 and 31-33. The samples from CFSU 14-29 contain significantly higher concentrations of calcium, magnesium, silica, and sulfate.

Tables 1 and 2 contain data based on the silica and Na-K-Ca geothermometer calculations of the flowline discharge of CFSU 14-29 at the total depth of 2620 feet. The equation used for the silica calculations was: \(t^{0} \mathrm{C}+\left(1315 / 5.205-\log \mathrm{SiO}_{2}\right)-273.15\). The equation was used for the \(\mathrm{Na}-\mathrm{K}-\mathrm{Ca}\) calculations was:
\({ }^{2}{ }^{0} \mathrm{C}=(1647 / \log (\mathrm{Na} / \mathrm{K})+\beta \log (\sqrt{\mathrm{Ca}} / \mathrm{Na})+2.24)-273.15 . *\)

The Na-K-Ca temperature estimates of \(266^{\circ} \mathrm{F}\) and \(278^{\circ} \mathrm{F}\) appear to be more reliable than the silica temperature estimates of \(605^{\circ} \mathrm{F}\) and \(596^{\circ} \mathrm{F}\). The silica concentration in the CFSU 14-29 diluted samples is anomalously high compared to the silica in diluted samples from CFSU 42-7 and 31-33. The silica concentrations from CFSU 14-29 are 96 ppm and 92 ppm . The concentration of silica in CFSU 42-7 and 3l-33 ranges from 15 ppm to 34 ppm .

The flowline samples from CFSU 14-29 probably represent small quantities of shallow geothermal fluid that have been contaminated with drilling fluid and drilling fluid additives. The large quantity of drilling fluid and additives injected into the formation while drilling without returns undoubtedly contributed to the unusual composition of the flowline samples.
*Proceedings of the Second UN Symposium on the Development and Use of Geothermal Resources, Vol. I, p. lxxiii (1975).

\section*{DISCUSSION}

The CFSU 14-29 well may have penetrated the top of a shallow geothermal reservoir consisting of fractured dolomite and dolomitic limestone. The reservoir characteristics are difficult to determine because of the paucity of fluid and rock sample returns while drilling. The formation temperature is difficult to estimate due to the large amounts of cool drilling fluid loss to fractures while drilling without returns. All of the maximum reading thermometers that were run during deviation surveys recorded temperatures less than \(100^{\circ} \mathrm{F}\) below the lost circulation zone at 850 feet.

Figure 1 is a graph of temperature profiles from surveys taken after reaching the total depth. The first survey was taken after the hole had been static (no circulation of injected water) for 4.5 hours. After the hole had been static for approximately 10 hours, drill pipe was run into the hole and air was injected to start the well flowing. The well was flowed for about 2 hours in order to collect fluid samples. The second temperature survey was run after the well had flowed and the hole had been static for 2 hours.

The temperature gradients are generally low (1-30/100 ft) from 250 feet to the casing at 2078 feet. The temperatures range from \(95^{\circ} \mathrm{F}\) to \(125^{\circ} \mathrm{F}\) in this zone in the first temperature survey.
"In contrast, the temperatures in the second survey range from \(150^{\circ} \mathrm{F}\) to \(180^{\circ} \mathrm{F}\) in the zone above the casing shoe. The discrepancy between the first and second surveys is explained by hot water produced from the lower zone heating up the upper zone before the second survey was taken.

The free water level in the well stands at about 4840 feet above MSL, or approximately 1400 feet below the surface. The. free water level in both CFSU 42-7 adn 3l-33 is about 5100 feet above MSL.

There is a distinct increase in temperature gradient ( \(40^{\circ} / 100\) ft in the first survey) below 2078 feet. The temperature increases to a maximum of \(186^{\circ} \mathrm{F}\) at 2180 feet in the first survey. The increase in temperature gradient below 2078 feet is not as great in the second survey \(\left(15^{\circ} / 100 \mathrm{ft}\right)\). The maximum temperature in the second survey is \(196^{\circ} \mathrm{F}\) at 2180 feet. Both profiles become isothermal below 2200 feet. The increase in temperature gradient below. 2078 feet is probably due to the presence of the casing which had not reached equilibrium with the geothermal system.

In both CFSU 14-29 and 31-33, the Bullion Canyon Volcanics and Claron/Price River Conglomerate were not thick enough to extend to the groundwater table. As a result, dolomite was encountered above the water table in both wells. Hydrogen sulfide gas was
encountered in both wells within the dolomite units above the water table. However, unlike the unconsolidated ("sanded") dolomite that occurred above the water table in the Forminco \#l well, dolomite samples in 14-29 and 31-33 showed no signs of sanding.

Estimation of Subsurface Temperatures from the Silica Content of Water from the Flowline

Discharge, CFSU 14-29 Millard Co., Utah

TABLE 1
-

Total Depth, Ft.
\begin{tabular}{|l|l|l|l|}
\hline 2620 & 155 & 7.03 & 4881 \\
2620 & 157 & 7.41 & 4776 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline  &  &  &  &  \\
\hline  & \[
\begin{aligned}
& 96 \\
& 92
\end{aligned}
\] & \[
\begin{aligned}
& 9: 1 \\
& 9: 1
\end{aligned}
\] & \[
\begin{aligned}
& 960 \\
& 920
\end{aligned}
\] & \[
\begin{array}{r}
605 \\
596
\end{array}
\] \\
\hline
\end{tabular}

Estimation of Subsurface Temperatures from the Empirical Na-K-Ca Geothermoneter for Flowline Discharge, CFSU 14-29 Millard Co., Utah

TABLE 2
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline  &  & IDS & Na & K & Ca &  \\
\hline 2620 & 155 & 4881 & 1280 & 36.5 & 332 & 266 \\
\hline 2620 & 157 & 4776 & 1220 & 41.5 & 332 & 278 \\
\hline
\end{tabular}

\(A P P E N D I X\)

\section*{GEOCHEMICAL DATA}

\begin{tabular}{|c|c|c|c|}
\hline Turbidity & 9 NIU & Lithium as Li & \(265 \mathrm{mg} / 1\) \\
\hline Conductivity & 7350 mhos/cm & Total Haraness as \(\mathrm{CaCO}_{3}\) & \(1310 \mathrm{mg} / 1\) \\
\hline pH & 7.41 Units & Iron as Fe (Total) & . \(8666 \mathrm{mg} / \mathrm{l}\) \\
\hline ToS at \(180^{\circ} \mathrm{C}\) & \(4776 \mathrm{mg} / 1\) & Iron as Fe (Filtered) & . \(380 \mathrm{mg} / 1\) \\
\hline Alkalinity as \(\mathrm{CaCO}_{3}\) & \(\underline{158 \mathrm{mg} / 1}\) & Lead as Pb & . \(.005 \mathrm{mg} / 1\) \\
\hline Arsenic as As & \(.745 \mathrm{mg} / 1\) & Magnesium as Mg & \(115.2 \mathrm{mg} / 1\) \\
\hline Bicarbonate as \(\mathrm{HCO}_{3}\) & \(192.76 \mathrm{mg} / 1\) & Manganese as Mn & . \(520 \mathrm{mg} / 1\) \\
\hline Barium as Ba & \(1.35 \mathrm{mg} / \mathrm{l}\) & Mercury as Hg & <. \(0002 \mathrm{mg} / \mathrm{l}\) \\
\hline Boron as B & \(6.4 \mathrm{mg} / 1\) & Nickel as Ni & . \(.085 \mathrm{mg} / \mathrm{l}\) \\
\hline Cadruium as Cd & \(.310 \mathrm{mg} / 1\) & Nitrate as \(\mathrm{NO}_{3}-\mathrm{N}\) & <. \(01 \mathrm{mg} / 1\) \\
\hline Calcium as Ca & \(332 \mathrm{mg} / \mathrm{l}\) & Nitrite as \(\mathrm{NO}_{2}-\mathrm{N}\) & \(\cdots \mathrm{mm} / 1\) \\
\hline Carbonate as \(\mathrm{CO}_{3}\) & <.01 mg/l & Potassium as K & \(41.5 \mathrm{mg} / 1\) \\
\hline Chloride as Cl & \(2060 \mathrm{mg} / \mathrm{l}\) & Selenium as Se & . \(009 \mathrm{mg} / 1\) \\
\hline Chromium as Cr (Total) & <. \(001 \mathrm{mg} / 1\) & Silica as \(\mathrm{SiO}_{2}\) (diluted) & \(92 \mathrm{mg} / 1\) \\
\hline Chromium as Cr (Hex) & S.001 \(\mathrm{mg} / 1\) & Silver as Ag & <. \(001 \mathrm{mg} / 1\) \\
\hline Copper as Cu & \(\underline{.010 \mathrm{mg} / 1}\) & Sulfate as \(\mathrm{SO}_{4}\) & \(900 \mathrm{mg} / 1\) \\
\hline Surfactants MBAS & \(\ldots \mathrm{mg} / \mathrm{l}\) & Sodium as Na & \(1220 \mathrm{mg} / 1\) \\
\hline Fluoride as F & \(2.50 \mathrm{mg} / 1\) & Zinc as Zn & \(\underline{.350 \mathrm{mg} / 1}\) \\
\hline
\end{tabular}

WELL: Union Oil Company of California Cove Fort-Sulphurdale Unit \#14-29 Millard County, Utah

Sample Information
\begin{tabular}{|c|c|}
\hline Source & Flowline \\
\hline Collection Date and Tim & 7-7-79 1315 hr . \\
\hline Depth of Well at Time o & 2620 feet \\
\hline Temperature of Sample. & \(155{ }^{\circ} \mathrm{F}\) \\
\hline Date Analysis Begun. & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Turbidity & 25 NTU & Lithium as Li & . \(357 \mathrm{mg} / 1\) \\
\hline Conductivity & 7500 umhos/cm & Total Hardness as \(\mathrm{CaCO}_{3}\) & \(1250 \mathrm{mg} / \mathrm{l}\) \\
\hline pH & 7.03 Units & Iron as Fe (Total) & \(1.336 \mathrm{mg} / 1\) \\
\hline TDS at \(180^{\circ} \mathrm{C}\) & \(4881 \mathrm{mg} / 1\) & Iron as Fe (Filtered) & . \(410 \mathrm{mg} / \mathrm{l}\) \\
\hline Alkalinity as \(\mathrm{CaCO}_{3}\) & \(144 \mathrm{mg} / \mathrm{l}\) & Lead as Pb & \(.002 \mathrm{mg} / \mathrm{l}\) \\
\hline Arsenic as As & . \(660 \mathrm{mg} / \mathrm{l}\) & Magnesium as Mg & \(100.8 \mathrm{mg} / 1\) \\
\hline Bicarbonate as \(\mathrm{HCO}_{3}\) & \(175.68 \mathrm{mg} / \mathrm{l}\) & Manganese as Mn & \(.450 \mathrm{mg} / 1\) \\
\hline Barium as. Ba & \(1.20 \mathrm{mg} / 1\) & Mercury as Hg & <.0002. \(\mathrm{mg} /\) 1 \\
\hline Boron as B & \(6.0 \mathrm{mg} / \mathrm{l}\) & Nickel as Ni & . \(080 \mathrm{mg} / 1\) \\
\hline Cadmium as Cd & \(.235 \mathrm{mg} / \mathrm{l}\) & Nitrate as \(\mathrm{NO}_{3}-\mathrm{N}\) & \(<.01 \mathrm{mg} / \mathrm{l}\) \\
\hline Calcium as Ca & \(332 \mathrm{mg} / 1\) & Nitrite as \(\mathrm{NO}_{2}-\mathrm{N}\) & ---- mg/l \\
\hline Carbonate as \(\mathrm{CO}_{3}\) & \(<.01 \mathrm{mg} / \mathrm{l}\) & Potassium as K & \(36.5 \mathrm{mg} / \mathrm{l}\) \\
\hline Chloride as Cl & \(2030 \mathrm{mg} / \mathrm{l}\) & Selenium as Se & . \(012 \mathrm{mg} / \mathrm{l}\) \\
\hline Chronium as Cr (Total) & <. \(001 \mathrm{mg} / 1\) & Silica as \(\mathrm{SiO}_{2}\) (diluted) & \(96 \mathrm{mg} / 1\) \\
\hline Chromium as Cr (Hex) & <. \(001 \mathrm{mg} / \mathrm{l}\) & Silver as Ag & \(<.001 \mathrm{mg} / \mathrm{l}\) \\
\hline Copper as Cu & . \(008 \mathrm{mg} / 1\) & Sulfate as \(\mathrm{SO}_{4}\) & \(1020 \mathrm{mg} / \mathrm{l}\) \\
\hline Surfactants MRAS & _...- mg/l & Sodium as Na & \(1280 \mathrm{mg} / \mathrm{L}\) \\
\hline Fluoride as F & \(2.43 \mathrm{mg} / 1\) & Zinc as Zn & . \(336 \mathrm{mg} / 1\) \\
\hline
\end{tabular}

\section*{Well History}

Union Oil Company of California

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{MARKERS - HORIZONS}} \\
\hline & \\
\hline & \\
\hline - & \\
\hline & ....... ............................................ \\
\hline & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline DATE & DEPTH & PROGRESS HISTORY \\
\hline 5/25/7 & 9. & Moved in and rigged up. Brinkerhoff-Signal Rig \#3. . Center \\
\hline & & ...punched....hole with 26"' hole opener and \(1.7 \frac{1}{\prime \prime}{ }^{\prime \prime}\), bit from 38' \\
\hline & & to 4. \({ }^{\prime}\). Drilled \(171^{\prime \prime}\) " hole from \(42^{\prime \prime}\) to \(49^{\prime \prime}\). Commencement \\
\hline & & of drilling was witnessed by U.S.G.S representatives. \\
\hline & & Andrew H. Carpenter and Frank S. Dalton. \\
\hline 5/26/7 & 9 & Drilled 17\%'" hole from 49' to 158... \\
\hline 5/27/7 & 9 & Drilled "17\%" hole from 158 \\
\hline & & 26.' from 38' to 84', \\
\hline & & \\
\hline 5/28/7 & 9 & Opened 1712" hole to \(26^{\prime \prime}\) from...84' to 162 \({ }^{\prime \prime}\) \\
\hline 5/29/7 & 9 & Opened 17\%'" hole to 26" from. 162 ' to \(230^{\prime}\), \({ }^{\prime \prime}\) Cone on hole \\
\hline & & opener locked....... Circulated hole clean.................. \\
\hline \(5 / 30 / 7\) & &  \\
\hline & & ing. Total length \(=224.61 . \ldots\), Shoe set at \(2240 \%\), Cemented \\
\hline & &  \\
\hline & & mixed with \(2 \% \mathrm{CaCl}_{2}\). Displaced with \(403 \mathrm{ft}^{3}\) mud......... Had good .- \\
\hline & & returns throughout job. Pumped \(97 \mathrm{ft}^{3}\) cement to sump............... \\
\hline & & off \(30^{\prime \prime}\) conductor. Nippled up \(20^{\prime \prime}\) B.O.P. \\
\hline & & \\
\hline & & \\
\hline \(\cdots\) & & \\
\hline & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 5／31／79 & Installed 20＂Double Shaffer，B．O．P．and 20＂Hydril． Installed choke manifold，kill line，and hydraulic connection lines plus remote B．O．E．control in dog house．Attempted B．O．E．test．Tightened leaks． \\
\hline 6／01／79 & \begin{tabular}{l}
Tested blind and pipe rams and Hydril to 500 psi for \(\frac{1}{2}\) hour each．Held O．K．Test witnessed by Andrew H．Carpenter，Frank S．Dalton，and John Reeves with the U．S．G．S．Tested kelly cock．R．I．H．to wiper plug at 202＇．Drilled plug and cement to shoe at \\
 to 273＇．
\end{tabular} \\
\hline 6／02／79 &  hole from 303＇to 480＇． \\
\hline 6／03／79 & Drilled \(17 \frac{1^{\prime \prime}}{\prime \prime}\) hole from \(480^{\prime}\) to \(670^{\prime}\) ．Performed \(\mathrm{H}_{2} \mathrm{~S}\) drill．Drilled \(17 \frac{1}{2} "\) hole from 670＇to 795＇． \\
\hline 6／04／79 & Circulated hole while holding \(\mathrm{H}_{2} \mathrm{~S}\) school．Drilled 173／＂hole from 795＇to 833＇．Lost circulation at 833＇．P．O．H．Lost 1000 bbls mud attempting to fill． hole． \\
\hline 6／05／79 & \begin{tabular}{l}
Filled hole with mud．Lost small amount of mud．R．I．H． with O．E．D．P．to \(830^{\prime}\) ．HOWCO pumped \(56 \mathrm{ft}^{3}\) water followed by \(265 \mathrm{ft}^{3}\)＂ B ＂cement premixed with \(1: 1\) perlite， \(40 \%\) SSAl， \(3 \%\) gel and \(0.5 \%\) CFR－2． \(5 \%\) Flo－Cele with \(2 \%\) \(\mathrm{CaCl}_{2}\) added at mixer．Displaced cement with \(18 \mathrm{ft}^{3}\) water and \(31 \mathrm{ft}^{3}\) mud．C．I．P．at 0545 hours．P．O．H． Filled hole－stood full．W．O．C．R．I．H．with \(17 \frac{1}{2}{ }^{\prime \prime}\) B．H．A．to cement at 777＇．Cleaned out cement from \\
 Lost returns．Mixed 200 bbls \(25 \%\) LCM gel mud．Drilled without circulation from 852＇to 866＇，while pumping LCM．Attempted unsuccessfully to fill hole．
\end{tabular} \\
\hline 6／06／79 & Hung O．EsD．P．at \(866^{\prime}\) ．HowCo pumped \(56 \mathrm{ft}^{3}\) water followed by \(265 \mathrm{ft}^{3}\)＂B＂cement premixed with \(1: 1\) perlite， \(40 \%\) SSAl， \(3 \%\) gel and \(0.5 \% \mathrm{CFR}-2.5 \%\) Flo－Cele and \(2 \% \mathrm{CaCl}_{2}\) plus 1\％nut hull added at mixer to first \(100 \mathrm{ft}^{3}\) of slurry．Displaced with \(45 f^{3}\) water．C．I．P．at 0120 hours．Attempted unsuccessfully to fill hole．P．O．H． W．O．C．R．I．H．with \(17 \frac{1}{2}{ }^{\prime \prime}\) drilling assembly to \(866^{\prime}\) ． No cement in hole．Drilled 17 \(\frac{1}{2}\)＂．hole without circulation from \(866^{\prime}\) to 973＇．Removed stabilizers from assembly． Washed fill from 913＇to T．D．at 973＇．Drilled without circulation from 973＇to \(1000^{\prime}\) ． \\
\hline 6／07／79 & Drilled 17⿺𠃊⿳⺈⿴囗十一⿱一土儿＂hole with no circulation from \(1.000^{\prime}\) to 1103＇． \\
\hline 6／08／79 & Drilled \(17 \frac{1}{2}\)＂hole without circulation from 1103＇to 1209＇with no circulation． \\
\hline
\end{tabular}

6/09/79. Drilled 17\% \({ }^{\prime \prime}\) hole without circulation from 1209' to 1243'. P.O.H. for locked drilling assembly. Reamed 17㘶" hole from 240' to \(1000^{\prime}\).

6/10/79

6/11/79

6/12/79

6/13/79
 hole from 1243' to 1249'. P.O.H. R.I.H. with O.E.D.P. to \(935^{\prime}\). Dowell mixed and pumped plug \#3 of \(203 \mathrm{ft}^{3}\) class "G" cement mixed with \(20 \%\) silica flour, \(22 \%\) kolite, \(8 \% \mathrm{D}-53\) and \(3 \% \mathrm{CaCl}_{2}\). Displaced with \(47 \mathrm{ft}^{3}\) mud. P.O.H. W.O.C. 4 hours. R.I.H. with O.E.D.P. to top of cement at 893'. Dowell mixed and pumped plug \#4 of \(203 \mathrm{ft}^{3}\) same slurry. P.O.H. W.O.C. 4 hours. R.I.H. with O.E.D.P. to cement at 872'. Dowell mixed and pumped plug \#5 of \(203 \mathrm{ft}^{3}\) same slurry. P.O.H. W:O.C. 4 hours.
R.I.H. with O.E.D.P. to cement at 787'. Filled hole with mud. R.I.H. with \(17 \frac{1}{2}\) " drilling assembly to 787'. Cleaned out cement to 854'. Lost all returns. P.O.H. R.I.H. with O.E.D.P. to firm cement at 861'. Dowell mixed and pumped plug \#6 of \(201 f t^{3}\) class "G" cement mixed with \(20 \%\) silica flour, \(22 \%\) kolite, \(8 \% \mathrm{D}-53\) and 3\% \(\mathrm{CaCl}_{2}\). Displaced with \(45 \mathrm{ft}^{3}\) water. P.O.H. W.O.C. 4 hours. R.I.H. with O.E.D.P. to cement at 780'. Filled hole with mud.
R.I.H. with \(17 \frac{1}{2}\) " drilling assembly to 780'. Cleaned out cement to 872'. Lost all returns. Reamed to 1249'. Pumped high viscosity gel pill. P.O.H. Rigged and ran 29 joints 13-3/8" 54.5\#/ft K55 buttress casing. Hung casing with shoe at 1240', insert float at 1199' and HOWCO D.V. Collar at \(766^{\prime}\). Dowell mixed and pumped first stage of \(203 \mathrm{ft}^{3}\) class "G" cement mixed with \(20 \%\) silica flour, \(22 \%\) kolite and \(8 \%\) RFC followed by \(546 \mathrm{ft}^{3}\) class "G" cement mixed l:1 perlite with \(40 \%\) silica flour, \(3 \% \mathrm{gel}\) and \(0.5 \% \mathrm{TIC}\) followed by \(120 \mathrm{ft}^{3}\) class "G" cement with \(40 \%\) silica flour and \(0.75 \%\) TIC. Displaced with \(1041 f^{3}\) water. Bumped plug with 500 psi. C.I.P. at 1630 hours. Opened D.V. collar and found casing on vacuum. W.O.C. 4 hours. Dowell mixed and pumped preflush for second stage of \(112 \mathrm{ft}^{3}\) spacer 1000 followed by \(1142 \mathrm{ft}^{3}\) class "G" cement mixed l:l perlite with \(40 \%\) silica flour, 3\% gel and 0.5\% TIC. Displaced closing plug with \(666 \mathrm{ft}^{3}\) water. Bumped plug with 1000 psi. No cement returns to surface. C.I.P. at 2330 hours.
W.O.C. Removed \(20^{\prime \prime}\) B.O.P.'s. Cut off \(20^{\prime \prime}\) and 133/8" casings. Installed 13-3/8" x 12"-900 W-K-M S.O.W. casing head. Tested weld to 1000 psi. Installed two 12"-900 Cameron G.R.C. B.O.P.'s; 12"-900 Hydril and Grant rotating head.

6/18/79, R.I.H. with \(12 \frac{1}{4}{ }^{4}\) drilling assembly to cement at \(1226^{\prime}\). Cleaned out cement to \(1330^{\prime}\). Lost all returns at 1310'. Drilled 12 \(\frac{1}{4}{ }^{\prime \prime}\) hole from 1330' to \(1345^{\prime}\) with no returns. P.O.H. R.I.H. with O.E.D.P. to 1344'. Dowell mixed and pumped plug \#l0 of l8lft \({ }^{3}\) class "G" cement mixed 10-0 RFC with \(12 \%\) kolite and \(2 \% \mathrm{CaCl}_{2}\). C.I.P. at 0515 hours. P.O.H. to 781'. W.O.C. 4 hours. R.I.H. to cement a̧t 1343'. Dowell mixed and pumped plug \#ll of \(248 \mathrm{ft}^{3}\) class "G" cement mixed 8-0 RFC 3 with \(21 \%\) kolite and \(2 \% \mathrm{CaCl}_{2}\). Displaced with \(78 \mathrm{ft}^{3}\) water. P.O.H. to 748'. W.O.C. 4 hours. R.I.H. to cement at 1090'. P.O.H. R.I.H. with l2 \(\frac{1}{4}\) " drilling assembly to l090'. Cleaned out cement to l345'. Drilled \(12 \frac{1}{4}{ }^{\prime \prime}\) hole to \(1348^{\prime}\).
6/19/79 Drilled \(12 \frac{1}{4} "\) hole from 1348' to l429'. Lost all returns at l381'. P.O.H. R.I.H. with O.E.D.P. to 1429'. Dowell mixed and pumped plug \#12 of \(248 f t^{3}\) class "G" cement mixed 8-0 RFC with \(26 \%\) koliţe, \(20 \%\) silica flour and \(2 \% \mathrm{CaCl}_{2}\). Displaced with \(92 \mathrm{ft}^{3}\) watex. P.O.H. to 1054'. F.O.H. R.I.H. with 1212" drilling assembly to cement at 1265'. Unable to fill hole. Cleaned out cement to \(1330^{\prime}\) with no returns. Twisted off drill pipe. P.O.H. Top of fish at \(216^{\prime}\). R.I.H. with overshot dressed with 61/4" grapple. Fish had fallen down hole to 320'. Unable to engage fish. P.O.H. R.I.H. with overshot dressed with 5-3/4" grapple. Engaged fish at 320'. Chained out of hole.
6/20/79 Recovered complete fish. Found bit pinched \(\frac{1}{2}\) ". Changed bit. R.I.H. to 1330'. Reamed from \(1330^{\prime}\) to 1429' with no returns. Drilled 12 \(\frac{1}{4}\) " hole from 1429' to 1532' with no returns.
\(6 / 21 / 79\)
\(6 / 22 / 79\)
Drilled \(12 \frac{13}{4} "\) hole from \(1532^{\prime}\) to l829' with no returns.
Drilled \(12 \frac{1}{4} "\) hole from 1829' to 1903'. Stuck drill pipe at 1903'. Worked free (one hour). Reamed from 1832' to 1903'. Drilled 12 \(\frac{1}{4}{ }^{\prime \prime}\) hole from 1903' to 2076'. Regained partial returns from 1995' to 2035'. Pumped 75 bbls High-Vi.s gel slurry with \(25 \%\) LCM flush. P.O.H. Experienced a tight place at 1676'. Stuck drill pipe at 1460'. Worked pipe and pumped gel pill every hour.
6/23/79
Continued to work stuck pipe. Regained 30\% returns. Rigged up and ran Go-International Free Point Indicator. Found pipe free at 1377'. Stuck at 1416', top of three blade stabilizer. Backed off drill pipe at 1224'. P.O.H. R.I.H. with screw-in sub, bumper sub, hydraulic jars and accelerator. Screwed into fish. Jarred and worked fish free in three hours. P.O.H. Recovered fish completely. R.I.H. with RR bit \#5. Washed to 2076'. Drilled 12㘶" hole from \(2076^{\prime}\) to 2080' with no returns.

6/24/79 - P.O.H. R.I.H. with O.E.D.P. to 2070'. Dowell mixed and pumped through drill pipe at 2070', plug \#13, 191ft \({ }^{3}\) class "G", premixed with \(8.2 \%\) RFC, \(20 \%\) silica flour, \(25 \%\) kolite and \(2 \% \mathrm{CaCl}_{2}\). Displaced with \(95 \mathrm{ft}^{3}\) water. C.I.P. at 0400 hours. \({ }^{2}\) Pulled drill pipe to 1220'. W.O.C. 4 hours. R.I.H. with drill pipe. Found top of cement at 1885'. Pumped plug \#14, same as \#13. C.I.P. at 0900 hours. Pulled drill pipe to 1220'. W.O.C. 4 hours. R.I.H. with drill pipe. Top of cement at 1698'. Pumped plug \#15, same as \#14. C.I.P. at 1400 hours. Pulled drill pipe to \(1220^{\prime}\). W.O.C. 4 hours. R.I.H. with drill pipe. Found top of cement at 1490'. Pumped plug \#16, same as \#15. C.I.P. at 1900 hours. Pulled drill pipe out of hole. W.O.C. 4 hours. R.I.H. with drill pipe. Round top of cement at 1155'. Filled hole with water.

6/25/79

6/26/79
\(6 / 27 / 79\)
\(6 / 28 / 79\)
R.I.H. with RR bit \#5 to 1155'. Drilled firm cement from 1155' to 1408' and soft cement from 1408' to 1543'. Lost \(\frac{1}{2}\) bbls water/minute from 1415' to 1495'. Lost all returns at 1495'. P.O.H. R.I.H. with O.E.D.P. to 1543'. Mixed and pumped plug \#17, l91ft \({ }^{3}\) class "G" cement, premixed with \(20 \%\) silica flour, \(25 \%\) kolite, 8.2\% RFC and \(2 \% \mathrm{CaCl}_{2}\). C.I.P. at 2130 hours. Allowed cement to fall out of drill pipe. pulled drill pipe to \(1081^{\prime}\). Pumped 35 bbls water through drill pipe. Did not fill hole. W.O.C.
W.O.C. to 0130 hours. Attempted to fill hole with water, without success. R.I.H. with O.E.D.P. to top of cement at \(1466^{\prime}\). Mixed and pumped plug \#18, same as \#17. C.I.P. at 0300 hours. Pulled drill pipe to \(1000^{\prime}\). Filled hole with water. Circulated hole. P.O.H. W.O.C. 9 hours. R.I.H. with RR bit \#5. Found top of cement at 1226'. Drilled firm cement from 1226' to 1480'.

Drilled firm cement with \(12 \frac{1}{4} "\) bit from \(1480^{\prime}\) to 2080'. Lost \(10 \%\) to \(15 \%\) returns. P.O.H. Ran Schlumberger DIL Log from 2080' to \(1240^{\prime}\), FDC-CNL,-GR from 2080' to \(1240^{\prime}\), and HDT from \(2080^{\prime}\) to \(1240^{\prime}\). Maximum temperature \(=134^{\circ}\) after 5 \(\frac{1}{2}\) hours. R.I.H. with RR \#5 to 2080', circulated. P.O.H.

Ran 26 joints 9-5/8" 36\# K55 buttress casing, total of 1080.54', with shoe at 2078', float at 1994', Midway \(9-5 / 8^{\prime \prime} \times 13-3 / 8^{\prime \prime}\) hanger at \(998^{\prime}\). Hung finer. Mixed and pumped through shoe at 2078', \(338 \mathrm{ft}^{3}\) "G" cement premixed with 10-0 RFC, \(12 \%\) kolite. Followed by \(275 \mathrm{ft}^{3}\) class "G" cement with \(1: 1\) perlite, \(40 \%\) silica flour, \(3 \%\) gel and. \(05 \% \mathrm{TIC}\), followed by \(99 \mathrm{ft}^{3}\) "G" cement with \(40 \%\) silica flour and \(.05 \%\) TIC. Bumped plug with 500 psi. Floats O.K. No returns to surface throughout job. C.I.P. at 0900 hours. P.O.H. Fluid \(20^{\prime}\) from surface. W.o.C. Removed Grant Rotating Head and

Hydril. Installed \(12^{\prime \prime}-900\) banjo box and rotating head.

6/29/79 Ran RR bit \#5. Found cement at 920'. Drilled cement out of \(13-3 / 8^{\prime \prime}\) from 920' to 998', top of hanger. P.O.H. R.I.H. with bit \#6. Drilled cement from 998' to 1000'. R.I.H. to 1975'. Drilled cement with 8-3/4" bit from 1975' to \(1994^{\prime}\) plus wiper plug, float and cement to 2043'. P.O.H. Ran Schlumberger CBL. Tool failed. Repaired tool.

6/30/79

7/01/79
7/02/79

7/03/79

7/04/79

Reran CBL, indicated good cement from 1500' to 2030' and fair cement from 1200' to 998'. R.I.H. with bit \#7. Drilled cement from 2043' to 2078'. Drilled 9-5/8" shoe. Cleaned out open hole from 2078' to 2080'. Drilled 8-3/4" hole from 2080' to 2213' with fluid returns. Lost circulation at 2213'. Drilled 8-3/4" hole from \(2213^{\prime}\) to \(2250^{\prime}\) with no returns and from \(2250^{\prime}\) to \(2407^{\prime}\) with partial (10-60\%) returns. Had \(30^{\prime}\) fill on connection at 2407'. Unable to clean hole with no returns and hole standing full. P.O.H. Rigged for aerated water drilling.

Continued rigging for aerated water drilling.
R.I.H. with 8-3/4" drilling assembly to 2050'. Installed jet sub \(1686^{\prime}\) above bit. Broke circulation with aerated water. R.I.H. to 2347'. Cleaned out fill to 2407'. Drilled \(8-3 / 4^{\prime \prime}\) hole from 2407 ' to \(2620^{\prime}\) with aerated water. From 2451' to 2620', formation was unconsolidated. P.O.H. Worked pipe through tight spots from 2620' to 2500'. Picked up additional jet sub \(1310^{\prime}\) above bit and moved other to 1873' above bit. R.I.H. to top of fill at 2510'. Cleaned out fill to 2550'. Unable to keep hole clean with aerated water or foam.

Cleaned out fill to 2580'. Lost circulation. Stuck pipe at \(2580^{\prime}\). Worked pipe free after 3 hours. P.O.H. and checked tools. Removed jet subs. R.I.H. to top of fill at 2565'. Had 65' fill on connection. Stiffened foam. Had 65' fill remaining. Pumped high viscosity gel pills with stiff foam. Had 65' fill on attempted connection. While circulating with aerated stiff foam, hole thiefed \(100 \mathrm{bbls} / \mathrm{hour}\) of fluid.

Cleaned out fill with foam and gel pills to \(2598^{\circ}\). Stuck pipe. Worked free. P.O.H. Changed bit and drilling assembly. R.I.H. to 2050'. Pumped 1000 bbls at 650 gpm . Unable to fili hole. R.I.H. to top of fill at 2498'. P.O.H. to 2465'. Dowell pumped 52 bbls sodium silicate-calcium chloride consolidation pill. R.I.H. to 2498'. Cleaned out fill to \(2560^{\prime}\). Had 60' fill on connection. P.O.H. to 2050'. Mixed


7/08/79 . . Continued -
and pumped \(201 \mathrm{ft}^{3}\) "G" cement mixed with \(8.6 \% \mathrm{RFC}\), \(20 \%\) silica flour and \(12 \%\) kolite, to surface.

7/09/79 Welded 5/8" steel plate on \(20^{\prime \prime}\) casing covering 133/8" casing, \(5^{\prime}\) below ground level. Well number indicated on casing. Released rig at 0800 hours, 7/9/79.

Abandonment program witnessed and approved by the U.S.G.S.

CASING DETAIL


\section*{DEVIATION SURVEYS}
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l} 
MEASURED \\
DEPTH \\
\hline
\end{tabular} & DRIFT ANGLE & \begin{tabular}{l}
TRUE \\
VERTICAL, DEPTH
\end{tabular} & MAXIMUM POSSIBLE COURSE DEVIATION & TEMPERATURE MAXIMUM-READING THERMOMETER \\
\hline \(60^{\prime}\) & \(0^{\circ} 45^{\prime}\) & 59.99 & . 79 & -- \\
\hline J. \(30^{\prime}\) & \(0^{\circ} 45^{\prime}\) & 129.98 & 1.71 & -- \\
\hline \(190^{\prime}\) & \(1^{\circ}\) & 189.95 & 2.75 & -- \\
\hline \(246^{\prime}\) & \(0^{\circ} 45^{\prime}\) & 245.97 & 3.49 & -- \\
\hline 3031 & \(0^{\circ} 15^{\prime}\) & 302.97 & 3.74 & -- \\
\hline \(375^{\prime}\) & \(0^{\circ} 45^{\prime}\) & 374.96 & 4.68 & -- \\
\hline \(543^{\prime}\) & \(1^{\circ} 15^{\prime}\) & 542.92 & 8.34 & \(108^{\circ} \mathrm{F}\) \\
\hline \(637^{\prime}\) & \(0^{\circ} 45^{\prime}\) & 636.92 & 9.57 & \(108^{\circ} \mathrm{F}\) \\
\hline 804 ' & \(1^{\circ} 45^{\prime}\) & 803.84 & 14.67 & \(126^{\circ} \mathrm{F}\) \\
\hline 1153 \({ }^{\prime}\) & \(1^{\circ} 45^{\prime}\) & 1152.67 & 25.33 & \(100^{\circ} \mathrm{F} *\) \\
\hline \(1480^{\prime}\) & \(3^{\circ} 45^{\prime}\) & 1478.97 & 46.71 & -- \\
\hline \(1641^{\prime}\) & \(3^{\circ} 45^{\prime}\) & 1639.63 & 57.24 & \(<100^{\circ} \mathrm{F} *\) \\
\hline \(1850^{\prime}\) & \(4^{\circ} 15^{\prime}\) & 1848.06 & 70.91 & \(100^{\circ} \mathrm{F}\) \\
\hline \(2360^{\prime}\) & \(5^{\circ} 15^{\prime}\) & 2355.92 & 117.58 & - \\
\hline \(2620^{\prime}\) & \(5^{\circ} 15^{\prime *} *\) & 2614.82 & 141.37 & -- \\
\hline
\end{tabular}
*Little or no circulation
**No survey taken at total depth of \(2620^{\prime}\) so the previous drift angle of \(5^{\circ} 15^{\prime}\) was used to extrapolate to total depth.


\section*{FISHING OPERATIONS}

\section*{Overview}

It was necessary to perform fishing operations twice during the drilling of CFSU \#14-29. The first incident was caused by torguing and backing off or unscrewing a tool joint.

In the second instance the pipe was stuck in a tight spot caused by formation on top of a stabilizer. The first fish was recovered with only minor difficulty and the second fish was recovered quickly.

Fishing Job \#l

Well Depth: \(1429^{\prime}\)
Date: 6/19/79
Cause: Twisted-off Drill Pipe (Unscrewed)
Results: Fish Recovered with an Overshot and Grapple

While drilling out cement plug \#12 at \(1330^{\prime}\) the drill pipe twisted off two stands into the hole at \(216^{\prime}\). The fish consisted of the entire \(12 \frac{1}{4} "\) drilling assembly (12 \(\frac{1}{4} "\) bit, \(12 \frac{1}{4} " 3\)-point reamer, 8" drill collar, \(12 \frac{1}{4} "\) stabilizer, shock sub, ten \(8^{\prime \prime}\) drill collars, cross-over sub \(=556.24^{\prime}\) ) and \(558^{\prime}\) of \(4 \frac{1}{2}{ }^{\prime \prime}\) drill pipe. An 113/4" overshot with a \(6 \frac{1}{4} "\) grapple was run into the hole and worked over the top of the fish at \(320^{\prime}\). The drill string had apparently
dropped through the cement plug into the hole. Efforts to engage the fish were unsuccessful. The ll-3/4" overshot was pulled out of the hole and a 7-3/4" overshot with 5-3/4" grapple was run in the hole. The fish was engaged at \(320^{\prime}\) and pulled out of the hole.

\section*{Fishing Job \#2}

Well Depth: 2076'
Date: 6/22/79
Cause: Stuck Drill String
Results: Backed Off and Jarred Free with Overshot and Jars

While pulling out of the hole to change the \(12 \frac{1}{4}\) " bit the drill string was first worked through a tight spot at \(1675^{\prime}\) and then stuck at 1460'. While waiting for fishing tools the hole was swept, with no circulation to surface, with gel pills. \(30 \%\) returns were regained before Go-International ran a free point and determined the tools were free down to \(1377^{\prime}\) and stuck at 1416', the top of the \(12 \frac{1}{4} "\) three blade stabilizer. The drill pipe was backed off at \(1224^{\prime}\) between two 8" drill collars leaving the fish in the hole. The 236' fish consisted of a bit, bit sub, 8" drill collar, three blade stabilizer, and six 8" drill collars. A screw-in sub, bumper sub, hydraulic jars and accelerator were run in the hole. The fish was engaged, jarred, and worked free in three hours with complete recovery of the fish.


\section*{COVE FORT SULPHURDALE UNIT \#14-29}

LOGGING DATA \({ }^{(1)}\)

\section*{MAXIMUM READING \({ }^{(2)}\) THERMOMETERS}

HOURS SINCE FLUID INJECTION
\(2-1 / 2\)
\(3-1 / 2\)
\(5-1 / 2\)
\(4-1 / 2\)
\(6-1 / 2\)
\(7-3 / 4\)
\(9-1 / 4\)
2
(1) Copies of all these logs are supplied with the Technical Report.
(2) Three maximum reading thermometers were run simultaneously with each logging tool.
(3) Actual depth was \(2540^{\prime}\) because of fill on bottom.
(4) Well was flowed for approximately 2 hours before log was run.


\section*{CEMENTING}

\section*{Introduction}

Two major forms of cementing operations were performed during the drilling of CFSU \#14-29. The first type of operation involved attempts to seal off lost circulation zones to enable casing to be competently cemented, and the abandonment of the well. The second type of operation was the cementing of the \(20^{\prime \prime}\) and 13-3/8" casings and the 9-5/8" liner.

A total of \(4072 \mathrm{ft}^{3}\) of cement was mixed, pumped and set in 20 separate plugs while attempting to plug lost circulation zones. These efforts occupied approximately 13 days of rig time and accounted for a total of approximately \(\$ 270,000.00\).

The cementing of the 20", 13-3/8" casing strings and 9-5/8" liner required an additional \(3920 \mathrm{ft}^{3}\) of cement.

Abandonment of the well called for cementing the hole to the surface. This operation required an additional \(904 \mathrm{ft}^{3}\) of cement.

\section*{Lost Circulation}

A significant amount of effort was required in attempting to plug lost circulation zones prior to cementing the \(13-3 / 8^{\prime \prime}\) casing and 9-5/8" liner. These efforts were necessary to insure that the annulus between the hole and casing would contain a column
of cement without loss to the formation. Voids in the cement, where water might accumulate, can cause casing collapse when the wellbore is heated to high temperatures.

Table 1 presents a description of all cement operations carried out while attempting to control lost circulation in CFSU \#14-29. A summary of the logic used in determining cement compositions for the lost circulation plugs is given below. Table 2 presents a summary and description of cement additives used on CFSU \#14-29.

Halliburton Services was used for the first two lost circulation plugs and Dowell was employed for all others. Halliburton used API classification "Class B" cement while Dowell employed "Class G" cement in all of their cement plugs. Class "B" is a Portland cement intended for use to a depth of 6000', where moderate sulfate resistance is required. Class "G" cement, similar in composition to Class "B" is intended for use to 8000 ' and is compatible with accelerators or retarders for use over the complete range of API Classes "A" through "E". A major consideration in choosing a cement class is compatability with the additives.

Lost circulation cement plugs \#1 and \#2 are standard cement plugs modified with additives condusive to curing lost circulation. Plug \#1 was successful, however, plug \#2 was not. No further attempts were made to cure lost circulation until the total depth of the \(17 \frac{1}{2} "\) hole was reached.

Dowell employed Regulated Fill-up Cement (RFC) for their lost
cìrculation plugs. RFC, used by Dowell at CFSU \#14-29, is blend of Portland cement containing 5\% tricalcium aluminate and a controlled amount of gypsum plaster (D53) to give a slurry with thixotropic properties. The slurry is thin when mixed and pumped, but gels quickly into a rigid state when pumping stops. This property theoretically prevents the cement from migrating into fractures making this system a good lost circulation cement.

The system recommended on CFSU \#14-29 consisting of \(8 \%\) RFC, \(25 \# /\) sack Kolite has been effective in combating lost circulation problems at E.G. \&G. geothermal project at Idaho Falls, Idaho. The \(20 \%\) silica was added at the request of Union Oil Company to provide a geothermal cement system. Kolite, ground-up coal, is a lost circulation additive. Only certain additives can be used in Regulated Fill-up Cement.

Cementing lost circulation before running the 13-3/8" casing (6/10 and 6/11/79) was the first attempt at using the \(8 \% \mathrm{RFC}\) 25\#/sack Kolite system. The system did not get the desired fill up probably due to the system being designed for \(175^{\circ} \mathrm{F}\) when a much lower temperature was actually logged.

Dowell recommended to increase the RFC to \(10 \%\) and leave out the \(20 \%\) silica and use the standard amount of Kolite (12 \(\frac{1}{2} \# /\) sack) for cement plugs \#7-\#10 set in the \(12 \frac{1}{4} "\) hole on \(6 / 17\) and \(6 / 18 / 79\). The resulting fill up was again disappointing, and cement supplies were diminishing. It was decided to use the \(8 \% \mathrm{RFC}, 25\) \#/sack Kolite, and \(20 \%\) silica cement left on location from previous. jobs.

The \(8 \% \mathrm{RFC}, 25 \# /\) sack Kolite, and \(20 \%\) silica cement plug \#ll on 6/18/79 was successful. However, when circulation was lost again on 6/19/79, plug \#12, same as plug \#ll, did not regain circulation. All efforts to correct lost circulation in the \(12 \frac{1}{4}\) " hole were put off until immediately prior to running the 9-5/8" liner. The same \(8 \%\) RFC cement was used with limited success for the remaining lost circulation plugs \#13 to \#18. Cement plugs \#19 and \#20 which were preceeded by sodium silicate/calcium chloride consolidation pills also used \(8 \%\) RFC cement and failed to consolidate the formation.

\section*{Cementing Casing}

Table 3 summarizes cementing operations associated with running casing. The \(30^{\prime \prime}\) casing was cemented in place using ready mix cement poured between the \(30^{\prime \prime}\) casing and the hole wall prior to the start of drilling operations, furnished locally.

The \(20^{\prime \prime}\) casing was successfully cemented, by Halliburion, through the shoe with good returns throughout the job. The 13-3/8" casing required perforating and cementing in addition to the two stage cement job. A two stage cement job was performed to reduce the hydrostatic head, or pressure, on the formation allowing the first stage to partially set and support the weight of the second stage thereby reaucing the change of fluid loss to the formation.

Because of a failure in setting lost circulation plugs \#3 to \#6, the Dowell representative recommended adding \(\mathrm{CaCl}_{2}\) to the
mix water to lower the setting time of the \(8 \% \mathrm{RFC}, 0.5 \% \mathrm{TIC}\), 25\#/sack Kolite, and silica sand cement for the first and second stage cement jobs. Upon opening the D.V. collar, after pumping the first stage, the \(13-3 / 8^{\prime \prime}\) casing was on vacuum caused by fluid falling. The second stage was pumped after a four hour intentional delay without returns to the surface. A cement bond log was run by Schlumberger and revealed the top of the cement in the 20" x 13-3/8" annulus at 820'.

The disappointing results of the two stage cement job resulted in the suggestion to increase the RFC to \(10 \%\), leave out the \(20 \%\) silica, and use the standard amount of Kolite (12 \(\left.\frac{1}{2} \# / s a c k\right)\) for cementing through the perforations. This job was successful in gaining returns to surface until pumping stopped when plugging of the mixing hopper on the Dowell cement truck occurred.

The 9-5/8" liner was successfully cemented with \(1: 1\) perlite, \(40 \%\) silica, \(3 \%\) gel and \(0.5 \%\) TIC.

\section*{Abandonment Plugs}

The hole was cemented to surface with the \(8 \% \mathrm{RFC}, 12 \frac{1}{2} \# / \mathrm{sack}\) Kolite, \(20 \%\) silica cement and the \(40 \%\) silica, \(0.5 \%\) TIC cements left on the location from previous jobs.

LOST CIRCULATION CONTROL EFFORTS AT CFSU \(\# 14-29\)


\section*{Table 1/Lost Circulation Control Efforts at CFSU \#14-29/Page 2}

DATE Stuvarto

\({ }^{\frac{124^{\prime \prime}}{} \text { Howe }}\) (Cont'd). 6/24/79 Drille from 1429 to
\(2080^{\prime}\) with no returns \(2080^{\prime}\) with no returns

6/26/79 Still have lost circula-
8-3/4" ноге
7/4/79 Dxilled through unconsoliDrined format
dated
\(241^{\prime}-2620^{\prime}\)

7/5/79 Hole continuing to make fill to 2500 '

7/6/79 \(\underset{\text { Pliug } \# 19}{\substack{\text { petting fill after } \\ \hline \\ \hline}}\)
 OTHER DISPLACEMENT TION (HRS.) (ET.) THEORETCAL
\begin{tabular}{|c|c|c|c|c|c|}
\hline OTHER & DISPLACRMENT & NEXP OPERA-
ITON (HRS.) & \begin{tabular}{l}
TOP OF CMT. \\
(ET.)
\end{tabular} & \[
\begin{aligned}
& \text { THEORETICAL } \\
& \$ \text { PLUG LOST }
\end{aligned}
\] & ReMarks \\
\hline & - \(922 \mathrm{ft}^{3}\) water & 4 & 1265 & 508 & Dia not regain circulation. \\
\hline & \[
\begin{aligned}
& .95 \mathrm{ft}^{3} \text { water } \\
& .95 \mathrm{ft}^{3} \text { water } \\
& .95 \mathrm{3} \text { water } \\
& \hline .95 \mathrm{ft}^{3} \text { water water }
\end{aligned}
\] & \[
\begin{aligned}
& 4 \\
& 4
\end{aligned}
\] & \[
\begin{aligned}
& 1885 \\
& \begin{array}{l}
1698 \\
1695 \\
1490 \\
11165
\end{array}
\end{aligned}
\] & \[
\begin{aligned}
& 168 \\
& 208 \\
& 108 \\
& 108
\end{aligned}
\] & Inmediately pump plug \#14 after waiting 4 hours on cement. Imnediately pump plug \#15 after waiting on cement. Pump plug \#16 after waiting on cement. Regain circulation. \\
\hline & & 4 & \(1466{ }^{\circ}\) & 70\% & Pumped 35 bbls water but could not fill hole after setting plug. \\
\hline & & & 1226 & 0 & Plug successful. Clean out cement to run casing. \\
\hline & & & & & pump Sodium Silicate/Calciur Chloride pills to try and consoliiaate formation. Unable to make connection after pill
punped because of fill. pumped because of fill.
Formation still not conso connections. \\
\hline & - \(224 \mathrm{ft}{ }^{3}\) water & 6 & 2466 & 7958 & Formation took most of plug. \\
\hline & - \(224 \mathrm{ft}{ }^{3}\) water & 6 & 2466 & 908 & Unable to succeed at consolidating formation using \\
\hline
\end{tabular}

Table 1/Lost Circulation Control Efforts at CFSU \#14-29/Page 3

\section*{DATE SITUATION abandongent plugs 7/7/79 Abandon well}
 PLUG \#
1. 2620

2000
 \({ }^{2620} \quad 1100\) 851
851.
\(\begin{aligned} 250 & \begin{array}{l}\text { Class } G \mathrm{cmt} \\ \text { Class } G \\ \text { Clat }\end{array}\end{aligned}\)
 20
40
20
40
\({ }_{40}{ }^{40}\)
\begin{tabular}{ll}
40 & 8 \\
20 & 8 \\
20 & 8
\end{tabular}
 NEXT OPERA-
TIN (HRS.)

THEORETICAL RHEORETICAL
8 RLUG LOST
REMARK
 cement retainer at 2000'. 50 ft \({ }^{\text {cement on top }}\)
of retainer. puylied out of hole to 1700 , and of retainer. Pulted out of hole to 1700 ' and
displaced 280 th
Abandomment plug m \(\#\) pumped and displaced at
\(1^{\prime \prime}\) pipe xun in the \(20 " \times 13-3 / 8^{\prime \prime}\) annulus. Annulus cemented to surface.
\(13-3 / 8^{\prime \prime}\) casing cemented to surface.

TABLE 2
SUMMARY AND DESCRIPTION OF CEMENT ADDITIVES USED BY HALLIBURTON ON CFSU \#14-29
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{ADDIIIVE} & \multirow[b]{2}{*}{DESCRIPTION} & \multicolumn{3}{|c|}{FUNCTION OF ADDITIVE} & \multirow[b]{2}{*}{REMARKS} \\
\hline & & IIGHTEN SLURRY WEIGHT & ACCELERATE SETTING TIME & \[
\begin{gathered}
\text { CONTROI } \\
\text { COST } \\
\text { CIRCUIATION }
\end{gathered}
\] & \\
\hline Periite (expanded) & treated volcanic material & X & & & absorbs water under high pressure \\
\hline Silica Flour & finely powdered silicon dioxide & & & & prevents loss of strength at high temperatures \\
\hline Gel & Wyoming-type bentonite & X & & X & increases suspension of particulate additives; maintains even distribution of other additives reduces slurry weight \\
\hline \(\mathrm{CaCl}_{2}\) & in powder or Elake form & & X & & ```
accelerates early
    strength
``` \\
\hline CFR-2 (*) & a napthalene polymer & & X & & a cement dispersant to reduce viscosity and a friction loss reducer \\
\hline Gilsonite & ```
particulated
 naturally
 occurring
 asphaltite
``` & X & & X & \begin{tabular}{l}
inert - does not absorb water: \\
high cement strength; \\
resists corrosion; granular lost circulation additive
\end{tabular} \\
\hline Flo-Cele (*) & cellulose flakes & & & X & lost circulation additive \\
\hline Nut-Plug (**) & walnut shells & & & X & granular lost circulation additive \\
\hline LCM & any mixture of lost circulation material & & & X & mixture of gilsonite, cellulose flakes, and walnut shells \\
\hline
\end{tabular}
(*) Halliburton trademark
(**) Magcobar trademark

SUMMARY AND DESCRIPTION OF CEMENT ADEITIVES USED BY DOWELL ON CFSU \#14-29

(*) Halliburton trademark
(***) Dowell trademark

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline DATE & \[
\begin{gathered}
\text { CASING } \\
\text { SIZE } \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& \text { HOLE } \\
& \text { SIZE }
\end{aligned}
\] & \begin{tabular}{l}
IEPTH OF \\
CIPEN HOLE
\end{tabular} & \[
\begin{gathered}
\text { CASING FIOAT } \\
\text { SHOE AT } \\
\hline
\end{gathered}
\] & \begin{tabular}{l}
OTHER CASING \\
ACCESSORIES
\end{tabular} & MATERIAL INJECTED & COMPOSITION & VOLUME & REMARKS \\
\hline \multirow[t]{3}{*}{6/12/79} & Cont'd - & & & & & Preflush & - Spacer 1000 & \(112 \mathrm{ft}{ }^{3}\) & begin 2nd stage cement job \\
\hline & & & & & & cement slurry & -Class "G" 1:l perlite, \(40 \%\) silica, 3\% gel, 0.5\% TIC & \(1142 \mathrm{ft}^{3}\) & 100\% excess volume for combination of stages \(1 \& 2\) \\
\hline & & & & & & displacement fluid & -water & \(666 \pm t^{3}\) & displaced second stage and bumped closing plug with 1000 psi; no cement returns to surface; top of cement at 820' \\
\hline \multirow[t]{2}{*}{6/15/79} & & & \(\cdots\) & & HOWCO RTTS at 736' & cement sluxry & \[
\begin{aligned}
& \text { Class "G" } \\
& \text { 10\% RFC } \\
& \text { l2 } 2 \# / \text { /sack } \\
& \text { Kolite }
\end{aligned}
\] & \(371 \pm t^{3}\) & pumped \(371 \mathrm{ft}^{3}\) cement through \(5 \frac{1}{2}\) " perforation in 13-3/8" casing at \(810^{\prime}\), before cement truck malfunctioned; water returns after first \(84 \mathrm{ft}^{3}\) cement pumped \\
\hline & & & - & & & displacement fluid & - water & \(95 f t^{3}\) & displaced cement from tools with water; theoretical top of cement in 17 \(7_{2}\) " hole x 13-3/8" annulus was 315'; actual top of cement \(350^{\prime}\) \\
\hline 6/28/79 & 9-5/8" & 12娄" & \(2080^{\prime}\) & \(2078{ }^{\prime}\) & \begin{tabular}{l}
float collax \\
at 1994', \\
Midway 13-3/8" \\
x 9-5/8" liner \\
hanger at 998'
\end{tabular} & cement slurry & \[
\begin{aligned}
& \text { Class "G" } \\
& 10 \% \mathrm{RFC} \\
& 25 \# / \mathrm{sack} \\
& \text { Kolite }
\end{aligned}
\] & \(338 \pm t^{3}\) & no returns during cement job but fluid level remained at \(20^{\prime}\) throughout \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline DATE & \[
\begin{aligned}
& \text { CASING } \\
& \text { SIZE } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { HOLE } \\
& \text { SIZE }
\end{aligned}
\] & \begin{tabular}{l}
DEPTH OF \\
OPEN HOLE
\end{tabular} & \[
\begin{aligned}
& \text { CASING FLOAT } \\
& \text { SHOE AT } \\
& \hline
\end{aligned}
\] & OTHER CASING ACCESSORIES & MATERIAL INJECTED & COMPOSITION & VOLUME & REMARKS \\
\hline \multirow[t]{3}{*}{6/28/79} & Cont'd- & & & & & cement slurry & \[
\begin{aligned}
& \text { Class "G" } \\
& \text { I:I perlite } \\
& 40 \% \text { silica } \\
& 3 \% \text { gel, } 0.5 \text { ? } \\
& \text { TIC }
\end{aligned}
\] & \(275 \pm \leftarrow^{3}\) & 80\% excess cement volume; good cement job \\
\hline & & & & & ' & cement slurry & -Class "G" 40\% silica & \(99 \pm t^{3}\) & \\
\hline & & & & & & displacement fluid & -water & & ```
displaced fluid until
bumped plug; bumped
plug to 500 psi;
theoretical displace-
ment 500ft }\mp@subsup{}{}{3
``` \\
\hline
\end{tabular}
```

. OILFIEL.D PRODUCTS GROUP.DRESSERINDUSTRIES,INC. 475 17TH STREET, SUITE 1600 DENVER, COLORADO 80202

```

MAGCOBAR MUD COST SUMMARY
for
UNION GEOTHERMAL PROSPECT
CFSU 14-29
Section 29, 25 South - 6 West Millard County, Utah
\begin{tabular}{|c|c|c|c|}
\hline NUMBER OF UNITS & PRODUCTION DESCRIPTION & & AMOUNT \\
\hline 2,031.00 & Magcogel & \$ & 10,926.78 \\
\hline 42.00 & Kwik Thik & & 258.72 \\
\hline 12.00 & Tannathin & & 138.12 \\
\hline 33.00 & Cottonseed Hull & & 627.35 \\
\hline 97.00 & Mud Fiber & & 1,249.36 \\
\hline 5.00 & Aluminum Stearate & & 346.80 \\
\hline 10.00 & Ben-Ex & & 238.10 \\
\hline 11.00 & Magconol & & 748.88 \\
\hline 215.00 & Caustic Soda & & 6,528.10 \\
\hline 370.00 & Lime & & 2,443.80 \\
\hline 41.00 & Zinc Carbonate & & 3,911.40 \\
\hline 4.00 & Soda Ash & & 113.24 \\
\hline 1.00 & Sodium Bicarbonate & & 24.94 \\
\hline & Mag Parts Supplement & & 26.14 \\
\hline & Trucking Service & & 478.88 \\
\hline & State Sales Tax & & 1,122.42 \\
\hline & Sundry Rebill & & 6,223.54 \\
\hline & Utah County Tax & & 209.92 \\
\hline & TOTAL MUD COST: & \multicolumn{2}{|l|}{\$35,616.49} \\
\hline
\end{tabular}
(Above retyped from Magcobar Mud Cost Summary issued 08/01/79)

\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
Manogad \\

\end{tabular} & DRESSER \\
\hline
\end{tabular}

Magcobar division. dresser industries. inc. 47517 Th street sume 1600 denver. colorado 80202

UNION OIL OF CALIFORNIA GEOTHERMAL DIVISION
for
CFSU 14-29
Section 29, 25 South-6 West Millard County, Utah

CONTRACTOR:. Brinkerhoff/Signal 3

TOOLPUSHER: Mr. Leonard Eshom

CONSULTANT: Union Drilling Foreman Mr. Harold Moss

MUD EQUIPMENT:
PUMPS: \(\# 1\) Gardner Denver PF8AH
\#2 Emsco D-500
SURFACE VOLURIE: 900 bbls

SHALE SHAKER: Double screen 60 mesh - Swaco

DESANDER \& DESILTER: DeSander - Single cyclone Swaco Desilter - 4 cone Swaco

OTHER EQUIPMENT: Two, 22-bbl Caustic mixing tanks and accompanying injection system

FINAL WELL REPORT
for
UNION GEOTHERMAL PROSPECT
CFSU 14-29
Section 29, 25 South-6West
Millard County, Utah

CFSU 14-29, located at Cove Fort, Utah (Section 29, 25S-6W0, was spudded on May 25, 1979. A \(17 \frac{1}{2}\) " hole was drilled to \(262^{\prime}\), then opened to \(26^{\prime \prime}\) to a depth of 231". A Magcoge1-Lime spud mud was used to drill the \(17 \frac{1}{2}\) " pilot hole and had the following characteristics; mud weight of 8.6 \#/gal, funnel viscosity of \(38-40 \mathrm{sec} / \mathrm{qt}\), P.V. of 10 , Y.P. of 8 , gel strengths of \(7 / 11, \mathrm{pH}\) of \(10.5, \mathrm{Pm} / \mathrm{Pf} / \mathrm{Mf}\) of \(2 / .4 / .6\), Ch1orides of 1600 , Calcium of \(280 \mathrm{mg} / 1\), and total solids of \(2 \frac{1}{2} \%\) or less. The average make up water, acquired at a local spring, displayed the following properties; Pf/Mf of \(1.3 / 1.6\), Chlorides of \(2400 \mathrm{mg} / 1\) and Calcium of \(600 \mathrm{mg} / \mathrm{l}\). It was found that a \(38-40 \mathrm{sec} / \mathrm{qt}\) mud would clean the hole while enlarging it to \(26^{\prime \prime}\). Therefore, no changes were made in the mud system until it was converted to a Lime base system at approximately \(200^{\prime}\). This was accomplished on May 29, 1979 while reaming the \(17 \frac{1}{2}\) " hole to \(26^{\prime \prime}\). The Lime base mud displayed the following characteristics; mud weight of 8.7 \#/gal, fumnel viscosity of \(38 \mathrm{sec} / \mathrm{qt}\), P.V. of \(10, \mathrm{Y} . \mathrm{P}\). of 11 , gel strengths of \(8 / 13\), pH of 12.0 , Pm/Pf/Mf of

Page-2-
UNION GEOTHERMAL PROSPECT
CFSU 14-29
FINAL WELL REPORT
\(9.0 / 3.0 / 14.0\), Ch1orides of \(2500 \mathrm{mg} / 1\), Calcium of \(540 \mathrm{mg} / 1\), and total solids of \(2.5 \%\). A Lime base mud was employed because of its' inherently high pH and alkalinities which would be advantageous if hydrogen sulfide gas should be encountered. The hole was opened to \(26^{\prime \prime}\) with no problems and \(20^{\prime \prime}\) casing was set to \(224^{\prime}\) and cemented on May 30 and June 1 . No hydrogen sulfide gas was detected in the mud by the Hach test procedures which was verified by the gas monitoring equipment of the mud logging unit. As a precautionary measure Zinc Carbonate was added to the system as a hydrogen sulfide scavanger. It was found the 5 sacks per tour would maintain \(1.5-2\) 非/bb1 excess Zinc Carbonate. During this period the shaker was run continuously, and the desander and desilter were operated at one half of the drilling time to limit the amount of Zinc Carbonate discarded.

Cement was drilled on June 1 and drilling ahead commenced using a \(17 \frac{1}{2}{ }^{\prime \prime}\) bit. No treatment for cement was necessary due to the Lime base mud being utilized. The drilling fluid displayed the following characteristics; mud weight of 8.6 to 8.7 非/gal, funnel viscosity of \(35-37 \mathrm{sec} / \mathrm{qt}, \mathrm{P} . \mathrm{V}\). of \(8, \mathrm{Y} . \mathrm{P}\). of \(18, \mathrm{pH}\) of \(12.0, \mathrm{Pm} / \mathrm{Pf} / \mathrm{Mf}\) of \(9.5 / 2 / 2.5\), Chlorides of \(3000 \mathrm{mg} / 1\), Calcium of \(800 \mathrm{mg} / 1\) and total solids of \(2.5-3 \%\).

Page-3-
UNION GEOTHERMAL PROSPECT
CFSU 14-29
FINAL WELL REPORT

Drilling continued to \(833^{\prime}\) where total returns were lost on June 4, 1979.

Because of the nature of lost circulation problems in the Cove Fort area, cement squeezes were the common method of remedying the condition. Minimum amounts of Cotton Seed Hulls and Mud Fiber were used until abandonment, but basically cement plugs were used to try to remedy the lost returns.

The casing program called for a 13 / \({ }^{\prime \prime}\) casing to be set at approximately \(2500^{\prime}\). However, lost circulation problems were so severe that it was elected to set this intermediate string at \(1235^{\prime}\). Numerous cement plugs were set with little effect. Basically, the hole was drilled blind using water, alternately, with high viscosity \(50 \mathrm{sec} / \mathrm{qt}\), Magcoge1-Lime-LCM sweeps each kelly down in an attempt to flush the drill cuttings laterally into the formation fractures and honey cone structures. Only minor torque was experienced even though as much as \(60^{\prime}\) of fill was reported on trips. It is believed that a water flow in the neighborhood of \(825^{\circ}\) was flushing the cuttings back into the hole. Numerous attempts were made to seal this zone with cement, unsuccessfu11y.

Intensive monitoring of any return fluid indicated no hydrogen sulfide was present, and the drill string tested negative to the gas.

Page-.4-
UNION GEOTHERMAL PROSPECT
CFSU 14-29
FINAL WELL REPORT

Further, treatments of Caustic Soda and Zinc Carbonate were utilized when drilling ahead with returns to keep the hydrogen sulfide gas under control.

After the \(133 / 8^{\prime \prime}\) casing was set at \(1235^{\prime}\), a cement bond log was run which indicated that the cementing was successful from \(1235^{\prime}\) to \(825^{\prime}\), but above \(825^{\prime}\) there was little cement. The casing was perforated at \(800^{\prime}\) and the cement was deverted into the annulus at this point. Bond logs indicated that the cementing operations were successful to approximately \(500^{\prime}\) below surface. It was elected not to perforate above \(500^{\prime}\) in consideration of possible weak points if the well were produced.

By June 15, the \(133 / 8^{\prime \prime} \mathrm{BOP}^{\prime}\) s were in place and tested. It was decided to drill ahead before building a mud system. This was economic in nature, as the Magcobar Engineer and Union Drilling Foreman did not want to build a system and lose it to the formation.

At \(1265^{\prime}\) all returns were lost. Drilling was continued blind with water to \(1365^{\circ}\) where the drill string was pulled up into the casing in preparation for a cement squeeze. At this time the hole produced 50 ppm hydrogen sulfide gas which was dissipated by a very strong wind. Cement was drilled out and returns lost at \(1310^{\circ}\). While coming out of the
```

Page-5-
UNION GEOTHERMAL PROSPECT
GFSU 14-29
FINAL WELL REPORT

```
hole after setting cement plug \#12, a small discharge of hydrogen sulfide gas and carbon dioxide gas was noted. The drill string reflected minor traces of hydrogen sulfide corrosion. Cement plug \#12 was drilled out. Drilling continued to \(1339^{\prime}\) with watex when the drill string separated due to failure of a pin and box. It was found that 1159 ' fish was left in the hole. The fish was on surface by midnight June 19.

Drilling continued blind using water and high viscosity (\(50 \mathrm{sec} / \mathrm{q} \mathrm{t}\)) sweeps to \(2076^{\prime}\), where the string became stuck. A free point was run, and a shock charge was set at 1224'. The fish (852') was latched onto and jarred free.

Numerous cement plugs were set in an attempt to seal the lost circulation zones between 1235' and total depth of \(2085^{\prime}\) with little success. The hole was cleaned out with water and Magcogel-Lime sweeps at 2085'. At this time, a 9 5/8' liner was set from 906' to 2078'. The liner was cemented, and then drilled out with an 8 3/4" bit. Preparations were made to begin air drilling. Drilling ahead blind continued with water and Magcogel sweeps each kelly down to 2419 ' where air-mist drilling operations began July 2.

While drilling with air-mist, a strong Caustic Soda solution

\section*{Page-6m-}

UNION GEOTHERMAL PROSPECT
CFSU 14-29
FINAL WELL REPORT
(501b/bbl) was injected into the make up water to yield an 11 pH fluid. While drilling with air-mist, the hole produced water and the resulting pH of the return fluid varied from 8.5 to 10.0 with an approximate average of 9.0 .

Drilling continued with air-mist to \(2451^{\prime}\) where incompetent dolomite was encountered. The drill string became stuck at \(2557^{\prime}\); it was worked free and the decision was made to utilize a constant injection of Foam (Whitcolate \& Sulfactex SAL) with a \(50 \mathrm{sec} / \mathrm{qt}\) viscosity pill each kelly down. This did bring cuttings to the surface, however, the dolomite continued to run and no progress was made.

On July 4 and 5, an attempt was made to seal off the incompetent dolomite with Sodium Silicate. A total of 5 Sodium Silicate plugs were run with no success. Hole cleaning problems continued to be a major problem with the probability of stuck pipe increasing hourly. As a result of the above hole conditions a decision was made to abandon the hole at approximately 1700 hr , July 6 (2525'). Magcobar was released.

\title{
UNION GEOTHERMAL PROSPECT \\ CFSU 14-29 \\ CORROSION REPORT
}

CORROSION

The Corrosion program was centered on running a Lime base drilling fluid and maintaining 2 非/bb1 Zinc Carbonate in the mud for \(\mathrm{H}_{2} \mathrm{~S}\) control

A spud mud was prepared using Magcogel and Lime. As soon as drilling commenced, the mud system was converted to a Lime base system, because of the high alkalinities inherent to this type system. High alkalinities keep the \(\mathrm{H}_{2} \mathrm{~S}\) in solution. This system was chosen by Union personnel as a first line defense against corrosion. The alkalinities were as follows: pH - 12.0, Pm - 15, Pf - 4, and Mf - 9 .

Furthermore, 2 to 3 非bbl Zinc Carbonate was run as a \(H_{2} S\) Scavenger. A careful monitoring of pH and Zinc Carbonate levels coupled with Hach tests indicated no \(\mathrm{H}_{2} \mathrm{~S}\) in the fluid that returned to the surface.

After returns were lost, all sweeps, run in an attempt to force the drill cuttings into the formations, were highly alkaline based on Lime and Caustic Soda content.

A large portion of the footage was made drilling blind with water as a drilling fluid. While drilling in this manner, a high pll Caustic

Soda solution was injected directly into the suction line to increase the pH of the water to 11.0 .

Occasionally, minor amounts of fluid returned to the surface. The fluids had \(\mathrm{pH}^{\prime} \mathrm{s}\) in excess of 10. A Hach test was run on any return fluid and constantly displayed negative \(\mathrm{H}_{2} \mathrm{~S}\) content.

After converting to an air-mist-foam drilling fluid, the water that was used was treated with Caustic Soda to yield a \(10-11 \mathrm{pH}\) solution. Unisteam was injected at the air compressor for further corrosion abatement. The returning fluid (foam) displayed a pH in the range of 9.5 .
\(\mathrm{H}_{2} \mathrm{~S}\) was encountered several times; however, it usually occured during cementing operations and while the drill string was out of the hole. In all cases it was short lived. Only small amounts of \(\mathrm{H}_{2} \mathrm{~S}\) were noted on the drill string. It is believed that only minor amounts of \(\mathrm{H}_{2} \mathrm{~S}\) were encountered.

Operotor Union Ofl of Calif
Well GFSU 14-29
Contractor 3rinkerhofe
Engineer Ralph Bowie Jr.
Location Sec. 29,25S-6W
County Milard
Stato Utah
Elevation \(6190^{\circ}\)
\begin{tabular}{|c|c|c|c|}
\hline MAGCOBAR DIVISION & \[
\begin{aligned}
& \text { Hole } \\
& \text { Size }
\end{aligned}
\] & \[
\begin{gathered}
\text { Cosing } \\
\text { Size }
\end{gathered}
\] & \begin{tabular}{l}
Inṭerval \\
Length
\end{tabular} \\
\hline & 26. inch & 20 inch & 230 ft . \\
\hline DRILIING AUD LOG & \(17 \frac{1}{2}\) inch & 13 /8inch & \(\underline{1235} \mathrm{ft}\). \\
\hline & 123 inch & 9 5/8inch & 2078 ft \\
\hline Page 2 of 2 & _inch & __inch & _f. \\
\hline
\end{tabular}

Spud Date May 25, 1979 Under Surface Date June
Finish Date July 6
Total Depth 2525
Total Depth 2525 ft


```

UNION OIL OF CALIF.
LNION GEOTHEFMAL LIV
BOX GEg4
GANTA ROEA, LA 95406

```
 \(79-005463\)
GAMFLE: WATEF DATEL \(7 / 7 / 79\) RECEIVED \(7 / 13 / 7 \%\)
\begin{tabular}{|c|c|c|c|}
\hline & \[
\begin{aligned}
& \# 4 \quad \mathrm{EFEL} \\
& 14-29 \\
& 13.15 \\
& T=155 \mathrm{~F} \\
& \mathrm{DEF}=2620
\end{aligned}
\] & \#5 CFOU
\[
\begin{aligned}
& 14-29 \\
& 13: 45 \\
& T=157 \mathrm{~F} \\
& \mathrm{TEF}=2620 .
\end{aligned}
\] & nistulled WATEF \\
\hline \(\pm=\square:=:=\) & \(=\square=:=\sim=\square=0\) & \(=:=\square \pm=0=0\) & \\
\hline Alkalinity as cocos ma/l & 144.00 & 158.00 & \\
\hline Arsenic as As mg/l & .660 & .745 & \\
\hline Barium as Ea ma/i' & 1.20 & 1.35 & \\
\hline Eicarbonate as Hons me/1. & 175.68 & 192.76 & \\
\hline Earan as B ma/d & 6.000 & 6.400 & , \\
\hline Cadmium as Cd ma/ & . 2 E & .310 & \\
\hline Culcium as Ca ma/i & 392.00 & 332.00 & \\
\hline Garbomate as cos ma/d & <.01 & Q.01 & liman 1 almil \\
\hline Chloride as 61 ma/i & \(2,050\). & 2,060 & \(A \cup G-11979\) \\
\hline Chromium as Cr (0is) ma/1 & \(<.001\) & C.001 & \\
\hline Ctramium as Er (Hex.) ma/l & <.001 & 8.001 & \\
\hline Conductivity umhos/mm & 7,500 & 7,550 & \\
\hline Copper as Eu ma/l & . 008 & .010 & \\
\hline
\end{tabular}

\section*{FAGE: 2 certificate of analysis}
\begin{tabular}{|c|c|c|c|}
\hline & \[
\begin{aligned}
& 14 \mathrm{GEU} \\
& 14-29 \\
& 1315 \\
& \mathrm{~T}=15 \mathrm{~F} \\
& \mathrm{DEF}=2620
\end{aligned}
\] & \[
\begin{aligned}
& \# 5 \mathrm{FEH} \\
& 14-29 \\
& 1345 \\
& T=157 \mathrm{~F} \\
& 1 E F=2620
\end{aligned}
\] & nISTILLEE WATEF: \\
\hline Fluaride as FF ma/l & 2.43 & 2.50 & \\
\hline Hardmess as CaCos me/1 & 1,250 & 1,310 & \\
\hline Iron as Fe (Iissolved) ma/l & . 410 & . 880 & \\
\hline Iron as Fe (Tatal) ma/1 & 1.836 & . 866 & \\
\hline Lead as Fbr ma/l & .002 & .005 & \\
\hline Lithiumias L.j. ms/i & . 357 & .265 & \\
\hline Magmesium as Mg ma/i & 100.80 & 115.20 & \\
\hline Manganese as Mn ma/l & .450 & .520 & \\
\hline Mercurw as \(\mathrm{Hg} \mathrm{ma} / \mathrm{l}\) & c.0002 & c.0002 & \\
\hline Njukel as Ni ma/l & . 080 & n 085 & \\
\hline Nitrate as NOE-N ma/l & <.01 & c.01 & \\
\hline Fotassjumas ド ma/1 & 36.500 & 41.500 & \\
\hline Selenium as Ge ma/1 & .012 & . \(00 \%\) & \\
\hline Sjlica as Eiot ma/l & 96.00 & 92.00 & <.01 \\
\hline Silver as Ag ma/l & c.001 & <.001 & \\
\hline Sodium as \(\mathrm{Na} \mathrm{ma} / 1\) & 1,280.00 & 1,220.00. & \\
\hline Sulfate as 804 ma/1 & 1,020 & 900 & \\
\hline
\end{tabular}

79-005463

\section*{\(\underline{H}_{2} \underline{\text { S SAFETY PROCEDURES }}\)}

Protection of all people on and around the Cove Fort Sulphurdale Unit \#l4-29 location from possible \(H_{2} S\) gas poisoning was of the utmost importance to Union Oil Company of California.

With the help of R. F. Smith Company, Union Oil implemented a state of the art safety program to ensure the safety of everyone. The safety equipment and personnel consisted of:
1. Safety trailer with 15 - 300 C.F. cylinder cascade air supply system.
2. Two thousand feet of low pressure air line hose with quick connects.
3. High pressure air compressor.
4. Five low pressure manifolds.
5. Fourteen air line masks with escape cylinders.
6. Thirteen 30 minute self contained oxygen units.
7. Two head-fixed \(\mathrm{H}_{2} \mathrm{~S}\) monitor systems.
8. Warning sirens and revolving amber light.
9. Three wind socks.
10. First aid kit.
11. Two resuscitators with cylinders (oxygen powered).
12. Flare gun with shells
13. Gas detector (pump type).
14. Safety supervisor.

There were three \(\mathrm{H}_{2}\) S gas monitors on the location: one was located on the rig floor, one under the rig floor at the flow nipple, and one at the mud shakers. The monitors were set to detect \(\mathrm{H}_{2} \mathrm{~S}\) concentrations in excess of 10 ppm and automatically activate a warning siren and revolving amber light. In addition, a sampling system collected vapors at the flow nipple and transported them to the R. F. Smith trailex where they were analyzed continuously by a gạs chromatograph.

In the event of a warning, the men on the rig floor were instructed to immediately put on air breathing apparatus with escape cylinders and alternate reserve air line. Air was supplied to the masks through manifolds from the cascade air supply system. If for some reason there was a malfunction in the air supply system, the masks were equipped with escape cylinders which would supply air for sufficient time to allow a person to leave the area.

After it was determined that everyone was wearing a mask, either a safety supervisor or drilling foreman would check the area for \(\mathrm{H}_{2} \mathrm{~S}\) using a hand operated gas detector. One of the 30 minute self-contained units was worn by the foreman and/or supervisor so that he could move safely around the location while making the check. If an \(\mathrm{H}_{2} \mathrm{~S}\) concentration of over 10 ppm was found in or around the work area, the men were required to work wearing masks. If less than \(10 \mathrm{ppm} \mathrm{H}_{2} \mathrm{~S}\) was found, the men could continue work normally. Constant monitoring was continued until the gas dissipated.

Three wind socks were located strategically around the location. If the warning siren sounded when an employee was away from either f self-contained air unit or air line mask, he could observe the wind sock and move quickly up wind escaping the gas.

In addition to the above, two oxygen resuscitators and a flare gun were on location at all times. The resuscitators were to be employed to revive any individual overcome by \(\mathrm{H}_{2} \mathrm{~S}\). If it was determined that any \(\mathrm{H}_{2} \mathrm{~S}\) leak wàs adequate to endangex human or animal life in an area adjacent to the location, use of the flare gun would be a last resort measure to ignite and eliminate the gas.

All personnel required to be present or perform any type of service on or in the proximity of the CFSU \#14-29 location were given instruction relating to safe operating procedures in the presence of \(\mathrm{H}_{2} \mathrm{~S}\) gas. Safety instruction was conducted in, all cases by a qualified representative of R. F. Smith Corporation. In addition to instruction, an inspection for broken eardrums was made by an M.D. and all personnel were required to be cleanly shaven to ensure an airtight fit of available breathing apparatus.

Many scheduled and unscheduled \(\mathrm{H}_{2} \mathrm{~S}\) drills were conducted, exposing each person associated with the drilling operation to at least one drill. The drills were triggered by manual activation of the \(H_{2} \mathrm{~S}\) alarm system.```

