GL04450

Page 4

BACA PROJECT

DATA AND REPORTS

GEOLOGY

No.	Transfer Date	Release Date	Title
1.	В	В	Hydrothermal Geology of the Valles Caldera, New Mexico by R.F. Dondanville - 1971.
2.	В	В	Airborne Infrared Geothermal Exploration Valles Caldera, New Mexico Earth Resources Operations, North American Rockwell Corp1972.
3.	В	В	Electrical Resistivity Survey in Valles Caldera, New Mexico by Group Seven, Inc 1972.
4.	В	В	Additional DataElectrical Resistivity Survey in the Valles Caldera, New Mexico by Group Seven, Inc 1972.
5.	В	В	Reconnaissance Resistivity Survey Baca Property, McPhar - 1973.
6.	В	В	Supplemental ReportReconnaissance Resistivity and Schlumberger Depth Sounding Surveys Baca Property - McPhar - 1973.
7.	В	В	Quantitative Gravity Interpretation Valles Caldera Area, New Mexico by R.L. Segar - 1974.
8.	В	В	Mercury Soil Gas Survey Baca Prospect by Allied Geophysics Inc 1974.
9.	A	A	Mercury analysis - 1974 gradient holes.
10.	В	В	Geothermal Geology of the Redondo Creek Area Baca Location by T.R. Slodowski - 1976.
11.	В	В	MagnetotelluricTelluric Profile Survey, Valles Caldera Prospect by Geonomics - 1976.
12.	В	В	Geological Resume of the Valles Caldera by T.R. Slodowski - 1977.

.

Final Report

្ឋ

Sector Sector

1.000

1

1

DECEMBER 10, 1972

ADDITIONAL ELECTRICAL GEOPHYSICAL SURVEYS OF THE VALLES CALDERA AREA, SANDOVAL COUNTY, NEW MEXICO

Carried out by:

GROUP SEVEN, INCORPORATED P. O. Box 374 Golden, Colorado 80401

for:

UNION OIL COMPANY OF CALIFORNIA

GROUP SEVEN

1

ADDITIONAL ELECTRICAL GEOPHYSICAL SURVEYS OF

THE VALLES CALDERA AREA, SANDOVAL COUNTY, NEW MEXICO

ABSTRACT

Group Seven, Incorporated has extended the resistivity surveys originally carried out in the Valles Caldera area of Sandoval County, New Mexico by using one additional source to make both dipole mapping measurements and electromagnetic soundings. These measurements were concentrated along a profile extending up Redondo Creek and into the headwaters of Jaramillo Creek. The patterns of high and low resistivity seen with this survey do not differ essentially from those seen earlier. There is a small area of moderately low resistivity at the head of Redondo Creek, apparently associated with the outcrop of thermal waters. Two major boundaries in electrical structure were recognized. One lies along Jaramillo Creek, separating an area of high resistivity south of Jaramillo Creek from more conductive rocks to the north. The second boundary trends northwestsoutheast at the southwest end of Redondo Creek, and bounds an area with high conductance to the southwest. Along Redondo Creek, resistivities are moderate, and sounding data indicates the presence of a surface layer with a resistivity of 40 to 60 ohm-meters almost a kilometer thick resting on more resistant rocks at depth.

ADDITIONAL ELECTRICAL GEOPHYSICAL SURVEYS OF

THE VALLES CALDERA AREA, SANDOVAL COUNTY, NEW MEXICO

. North

INTRODUCTION

Group Seven, Inc. has carried out additional electrical resistivity surveys in the Valles Caldera area of North Central New Mexico, to further detail an area studied earlier during May and June, 1972. Both surveys were carried out on behalf of the Union Oil Company of California. Field operations covered the first two weeks of October, 1972.

The Valles Caldera prospect occupies an area some 12 miles square in Sandoval county, New Mexico, west of the town of Los Alamos. The area in which the present survey was carried out lies within the limits of four U. S. Geological Survey 7-1/2 minute topographic quadrangle maps; these are the Bland, Valle Toledo, Redondo Peak and Valle San Antonio quadrangles. The results of the current surveys are presented on a basemap at a scale of 1:24000 prepared from these quadrangle maps. Results of the earlier surveys were presented on base maps at the same scale prepared from the 1:62500 scale quadrangles of the same area, the Jemez Springs and Frijoles quadrangles.

The resistivity surveys carried out by Group Seven, Incorporated, during May and June of 1972 delineated an area of moderately low resistivity generally west of Sulfur Creek, along the western edge of the prospect. This trend of low resistivity ran southwestward from Valle Seco, through Mushroom Basin, to the vicinity of Horseshoe Spring. The survey indicated only very limited areas of moderate resistivity along Redondo Creek, where both early and recent drilling has produced geothermal fluids. The additional electrical surveys described in this report were carried out to clarify the possible association of the producing wells with a geothermal reservoir.

The surveys to be described in this report differ to some extent from the surveys described in the earlier report. In the present work, a dipole source with much greater moment than was used in the initial survey was provided. An intense source permits measurements to be made at greater distances, or conversely, permits the source to be located at greater distance from the target area. When this is done, the patterns of apparent resistivity become simpler and more closely related to local changes in resistivity than is the case when the source

is close to the target. At large distances, the proportional change in distance over the area of the target is small, making the normal change in electric field behavior small. Also, at large distances, the current field from a dipole source has a better chance of spreading uniformly over the conductive part of the section, and there is less chance of complications in behavior arising from varying depths of penetration of the current.

A second feature of the current survey was a greater emphasis on electromagnetic sounding. Electromagnetic sounding has several advantages over dipole mapping, despite the fact that reduction of electromagnetic sounding data is considerably more complicated than reduction of dipole mapping data. One advantage is that electromagnetic sounding permits determination of the way in which resistivity varies with depth at a receiver station, while the apparent resistivity recorder in dipole mapping contains no such information. A second advantage is that electromagnetic sounding permits detection of conductive zones lying beneath resistive rock, while dipole mapping may not be able to do this.

For the surveys described in this report, a single dipole source, source 8, was used, located in Valle Grande, near the Ranch headquarters. Most of the measurements, both dipole mapping and electromagnetic sounding, were made along a traverse extending up Redondo Creek and into the headwaters of Jaramillo Creek. Some measurements were also made to the north and west of this traverse, and three electromagnetic soundings were made to the southeast of the source, along the edge of Valle Grande.

The dipole mapping measurements are described in the following section, the electromagnetic soundings in the third section section, and the implications that may be drawn from the studies in the final section of this report.

Figure 1. Map of the southwestern part of the Valles Caldera showing area of relatively low resistivity mapped in earlier surveys.

DIPOLE MAPPING SURVEY

In a dipole mapping survey, an electric field is developed in the earth by passing current between electrode contacts sited in the general vicinity of the target area. As the current flows through the ground from this dipole source, the flow pattern will be governed in detail by variations in the resistivity of the earth to a depth comparable to the offset distance at which measurements are being made, or to resistant basement, whichever depth is less. The general scheme of a dipole mapping survey is shown in Figure 2. For the survey carried out in October at the Valles Caldera prospect, a dipole length of 4290 meters was used, with current amplitudes of 30 to 36 amperes being driven into the ground. Power was provided by a 45 KVA motor generator set. The 235-volt threephase 60 Hz output of the generator was stepped up to 880 volts with a transformer, rectified to form direct current and alternately switched to flow first one way and then the other in the cable connecting the power supply to the electrode con-The period of reversal of the current flow was set at tacts. 24 seconds, so that the frequencies contained in the waveform of the current would be sufficiently low to avoid problems with electromagnetic attenuation. Also, the current waveform was asymmetrical, with the duration of current flow in one direction being about 40 percent greater than the duration in the other; this provided a means for assigning a polarity to the voltage detected at the receiving sites. The amplitude of the current steps was monitored visually with an indicating meter.

The current field from the source dipole was mapped by measuring voltages between electrode pairs at many points about the source dipole. Because the direction of current flow at a receiver station is quite unpredictable, the total voltage drop must be determined by making measurements with two electrode pairs oriented at right angles to one another and adding the voltages vectorially. The electric field is then assumed to be the ratio of voltage drop to the separation between the receiving electrodes. Measurements were made with receiving electrode separations of 30 or 100 meters, with the longer separations being used in areas where the signal strength was low. The receiver consisted of a sensitive preamplifier and battery operated recorder. Recorded deflections as small as 1 microvolt could be recognized, but readings of less than 20 microvolts are not considered to be reliable data.

The primary data obtained using dipole 8 at the Valles Caldera are listed in Appendix I, along with computed values for apparent resistivity and apparent conductance. Apparent resistivity is computed using the formula

 $P_{a} = \frac{.7 \pi R_{1}^{2}}{\left[1 + (R_{1}/R_{2})^{2} - 2(R_{1}/R_{2})^{2} \cos \delta_{1}\right]^{\frac{1}{2}} I}$

under the assumption that the earth is completely uniform. Apparent conductance is computed using the formula

in which the earth is modelled as a thin conducting sheet resting on an insulating substratum. In these formulas, R1 and R2 are the distances from the receiving station to the two ends of the source dipole, I is the amplitude of the current steps driven through the source dipole, E_T is the magnitude of the electric field vector at the receiving station, and the angle δ_{i} is as shown in Figure 2.

When measurements are made at distances from the dipole source greater than the depth to basement, values of apparent conductance are a more meaningful representation of the behavior of the electric field than are values of apparent resistivity. Apparent resistivity values should show a pronounced tendency to increase linearly with distance, at distances greater than the depth to insulating basement, and this behavior may mask local patterns in resistivity which are of interest. Inasmuch as most of the electric field measurements were made at distances of 5 to 10 kilometers from source 8, which is greater than the probable depth to basement, only the apparent conductance values have been used to prepare an iso-conductance map (Plate 1).

The patterns of high and low conductance values shown on Plate 1 differ only in minor ways from patterns developed during the earlier surveys. The larger area of coverage from a single dipole source and the relatively close interval between stations in the headwaters of Redondo Creek provide somewhat better definition of the contours than was obtained in the earlier survey. The principal features of the isoconductance map are as follows:

1. There is a local area of moderately high conductance values along the headwaters of Redondo Creek, with values between 100 and 200 mhos. The relatively sharp boundaries to this zone suggest that the low resistivity material occurs quite near the surface. If the conductive zone had considerable vertical extent, one might expect the effect to be seen at greater distances from the edges. This area of high conductance values may be connected with the more extensive area

- 5 -

of high values extending westward along Valle Seco and into the Sulfur Creek area.

2. The highest values of conductance were measured at the southwest end of Redondo Creek. This was also noted on the earlier surveys, where values as great as 1000 mhos and more were mapped a few miles further to the southwest. Within the area of the present survey, the highest values recoded were slightly over 300 mhos.

3. Very low conductance values were again observed over the central part of the Redondo Border and along Jaramillo Creek. These low values appear to be sharply bounded by an east-west line. Generally, conductance values of less than 50 mhos were observed in these areas.

A histogram giving the distribution of conductance values is shown in Figure 3. The distribution is not particularly log normal, as is expected when a single type of rock is involved in a survey area. The number of measurements made in this survey is too small to allow the resolution of the various parts of this distribution, but one might infer that the median conductances associated with the areas listed above are in the neighborhood of 140 mhos, for the area at the headwaters of Redondo Creek, and 35 mhos for the low conductance areas along Redondo Border and Jaramillo Creek.

A plot of the apparent resistivity values as a function of the distance from the source is shown in Figure 4. As with the earlier surveys, there is very wide scatter to values measured at similar distances from the source, reflecting the high degree of variability of the properties of the conductive surface rocks. The upper limit of the data indicates the presence of a surface layer with a resistivity of 60 to 70 ohm-meters, and a thickness of 1.5 to 1.7 kilometers. It should be noted that the points which define the upper limit of the data were recorded near the source and in the vicinity of Jaramillo Creek; therefore, the interpretation is probably representative only of this area.

The data forming the low side of the scatter plot in Figure 4 do not show a tendency to flatten out to a recognizable value for the first-layer resistivity. This merely indicates that the conductive areas are far removed from the source, being located at the south end of Redondo Creek and in Valle Seco. The earlier surveys indicated that the resistivity of the surface layer in these areas was probably 10 to 20 ohm-meters. The corresponding depths to basement indicated by the lower limit of the conductance data would be 2 to 4 kilometers, for these assumed surficial resistivites.

U.L. Martine

đ

g.

-- 8 --

-9-

ELECTROMAGNETIC SOUNDINGS

In addition to the dipole mapping survey described in the preceeding section, a total of 54 time-domain electromagnetic soundings were carried out, primarily along a traverse extending up Redondo Creek and into the Jaramillo Creek valley. The purpose of the electromagnetic soundings was to provide an independent survey of resistivity patterns in the Redondo Creek area and to provide information about the variation of resistivity with depth that is not obtainable from dipole mapping surveys.

1

In the time-domain electromagnetic sounding method, an electromagnetic field is generated by passing a step-wave of current through a grounded length of wire. The magnetic field from this current is detected at the receiver site with a multiturn loop of wire laid on the ground. The voltage induced in this loop of wire by the electromagnetic field incident at a receiver site was recorded on an analog recorder.

The same source wire was used for both the dipole mapping survey and the electromagnetic soundings. The induction loops used for receivers consisted of 24 or 42 conductor cables, either 1000 or 1240 feet long, laid on the ground in the form of a square and connected so that the conductors were in series to form one continuous loop. The voltage generated in such a loop were filtered to attenuate frequencies above 25 Hertz, and then recorded on an analog oscillograph.

Processing of the recorded data to remove noise and distortion for the recording equipment and to convert the observed voltages to apparent resistivity consisted of the following steps:

1. Synchronous stacking to reduce the level of uncorrelated noise;

2. Deconvolution, to minimize the effect of distortion in the recording equipment;

3. Smoothing with an exponentially time-varying filter, to further reduce uncorrelated noise; and

4. conversion to values of apparent resistivity, for comparison with theoretical models.

In performing the deconvolution, the transfer function of the recording system was computed from a record of the response to a step input voltage. The Fourier transform of each data set was computed and divided by the step-response spectrum. The resulting compensated spectrum was then transformed back to the time domain.

The non-linear filter applied to the data was based on a shape-invariant characteristic of transient electromagnetic sounding curves when they are plotted to logarithmic coordinates, When linearly sampled field data are plotted to logarithmic coordinates, the early part of a signal appears to be sparsely sampled while the late part appears to be densely sampled. The common component of noise has a half-period equal to the distance between two successive data points, so the noise appears to increase in frequency for progressively later parts of the signal, when the data are presented in a logarithmic form. Moreover, the signal to noise ratio is higher in the early part of the signal than in the later part. This variation in signal to noise ratio as the apparent frequency varies provides a basis for separating the signal from noise during the late part of the signal without undoing the effect of deconvolution on the early part. This is accomplished by applying a linear smoothing filter in the logarithmic domain, which is equivalent to applying a logarithmically time-compressed filter in the original linear-time domain.

Conversion to apparent resistivity: The final step in data reduction was the conversion of the measured voltages to values of apparent resistivity. Because there is no unique relationship between observed voltage and apparent resistivity for inductionfield electromagnetic soundings, a value for apparent resistivity can be computed only by assuming some asymptotic condition. An expression given by Vanyan (1967), valid only for the early part of a signal, was used in converted the observed signals to early-time apparent resistivity curves. This expression is:

$$\rho_{a} = \frac{2\pi R^{4}}{3AM \cos \theta} V(t)$$

where M is the moment of the source (product of current and wire length), A is the area of the receiving loop, θ is the angle between the equatorial axis of the source line and the radius vector from the middle of the source line to the receiving station, R is the distance between the center of the source wire and the center of the receiver loop, and V(t) is the recorded voltage as a function of time, t.

The initial data reduction described above is intended primarily to convert the observed data to a standardized form for interpretation. Two approaches to the interpretation of these data in terms of geological features will be described here, the first being an empirical approach designed to point out anomalous areas, and the second a quantitative approach. Inasmuch as quantitative interpretation of electromagnetic soundings is a relatively recent development, such interpretations are subject to an indeterminant amount of personal bias, whereas, the qualitative interpretation procedures should be free of such bias.

The approach to qualitative interpretation used here consisted of picking characteristic points from the electromagnetic sounding curves, and using these to prepare contour maps (Plates2-4). The characteristic points used are indicated on Figure 5, and are as follows:

1. The initial resistivity, recorded at the shortest time interval following the beginning of the transient coupling that can be resolved. This value should be closely associated with the average resistivity of the conductive surface layer.

2. The peak resistivity. Almost all of the recorded curves (plots are shown in Appendix II) show a rise in resistivity to a maximum, and then decreasing apparent resistivity. Consideration of theoretical curves which have been computed for the case of a thin conducting layer resting on a uniform substratum shows that the height of this maximum above the initial value increases in proportion to the ratio R/h, where R is the distance from the source and h is the thickness of the surface layer. This dependence was removed from the plotted values simply by plotting the quantity:

$\frac{0.4 \text{ R}}{\rho_{\text{max}}}$

where ρ_{max} is the apparent resistivity value at the maximum on the electromagnetic sounding curve. The factor 0.4 is used, because according to the theoretical models, if the substratum is a perfect insulator, and if the earth is ideally layered, this product would be equal to the conductance, h_1/ρ_1 , of the surface layer. For lesser contrasts in resistivity, this value will differ from the actual conductance of the surface layer by factors as great as 2.

3. The time at which the electromagnetic sounding curve has dropped to one-half its initial value, normalized by the factor

 $4\pi R^2/\rho_1$

where ρ is the initial resistivity on the sounding curve. For a uniform earth, this value should be 0.23. If resistivity increases with depth, this factor does not change greatly from the value .23, but if resistivity decreases with depth, this value may decrease markedly. Therefore, this quantity provides a measure of the type of resistivity distribution being mapped. This relationship is shown on Figure 6.

The three maps present much the same picture of resistivity distributions as did the electric-field dipole map in Plate 1. There is a small, sharply bounded area at the head of Redondo Creek with anomalously low resistivities, and larger areas of low resistivity at the southwest end of Redondo Creek and in Valle Seco. In the high resistivity areas, the initial resistivity values are in the range 60 to 100 ohm-meters, as also was indicated by the dipole mapping data. In the anomalous areas, the initial resistivities are 20 ohm-meters or less. All data appear to indicate a relatively thin conductive surface layer with high resistivity at depth.

Quantitative interpretation was done by comparing the plotted electromagnetic curves with an extensive family of theoretical curves computed for the case of a single layer resting on a uniform substratum. A few examples of such curves for varying resistivity contrasts between the layer and the substratum are shown in Figure 7. The results of such interpretations are given in Table 1.

It may be seen from this table that not all the soundings were interpretable in terms of horizontal layering. A number of sounding curves exhibited a brief negative deflection at the beginnig of the record, as shown by the example in Figure 8. A normal curve is shown in Figure 9 for comparison. This negative deflection occurs when the bulk of conductive material lies to the side of the receiver coil, rather than beneath it. If the negative deflection is short-lived, the disturbing mass of conductive material probably lies close to the surface, at depths less than one kilometer. Such curves cannot be interpreted in terms of horizontal layering because of the distortion, but such measurements are extremely useful in locating the position of sharp lateral changes in resistivity. These stations are indicated by the letter "N" on Plates 2-4.

A section based on these interpretations is shown in Figure 10, for stations along the traverse from Redondo Creek to Jaramillo Creek. The anomalous area at the head of Redondo Creek is evident. Through the rest of Redondo Creek, the data indicate the presence of a relatively thin layer of surficial rock, from 0.8 to 1.2 kilometers thick, having a resistivity of 30 to 60 ohm-meters. Along Jaramillo Creek,

-15-

8anA 10 -

Figure 8. Example of a time-domain electromagnetic sounding curve with an initial negative deflection. This record was obtained at station 837. The vertical scale is 2 microvolts per division, the horizontal scale is 100 milliseconds per division.

GROUP SEVEN

. .

....

. . .

•

. . .

1

¥.

---- • --

· ---- 4

17.1

---- • •

1

1...

.....

~

্য

SANBORN Recording Germapaper

- - - -

Figure 9. Example of a normal time-domain electromagnetic sounding curve. This record was obtained at station 856. The vertical scale is 10 microvolts per division, the horizontal scale is 100 milliseconds per division.

Figure 10. Cross section along Redondo Creek, based on electromagnetic sounding. The upper figures are station numbers, the lower figures are resistivities for the surface layer. The depths plotted are to resistant rock beneath the conductive veneer.

the resistivities are sufficiently high, that the surface layer cannot be identified with any degree of reliability from the electromagnetic soundings. At the southwest end of Redondo Creek, the soundings indicate a sharp lateral change in resistivity, but soundings were not made far enough to the southwest to determine the thickness of the section on the conductive side of this boundary.

Measurements made in the Valle Seco area indicate a great depth to basement, about 3.5 kilometers, with an average resistivity of 60 to 80 ohm-meters to that depth. No such deep boundaries had been recognized in the earlier surveys, but none of the previous soundings had been made at a great enough cistance from the source to see to a depth of 3.5 kilometers.

1

	Table 1. Inter sound	pretation lings	of elect	romagnet	ic
Sounding	Initial resistivity	O.4 R Pmax	$\frac{t_o \rho_1}{4\pi R^2}$	ρl	h
801	62. ohm-m	44.3	.105	40.	820 m.
802	71	30.0	.180	46.	750
803	59	31.4	.164	not in	terpreted
804	86	24.3	. 206	55.	830
805	76	25.2	. 200	48.	860
806	67	28.0	.199	41.	720
- 807	no record			(m - c)	010
808	92	21.4	. 266	70.	912
809	59	35.0	.160	58.	1650
810	145	22,0	. 320	140	3620(?)
811	183	17.9	.257	not in	terpreted
812	118	22.0	. 207	1.00	3300(/)
813	49	37.3	.170	not in	terpreted
814	negative de	flection		not in	terpreted
815	34	42.1	.123	28.	810
916	60	26.2	1/10	52	1450
010	03	28 /	1/18	41	1220
01/	52	26.7	160	33	770
010	52	1.1. 8	.100	20	870
819.	45	44.0	.110	29.	780
820	54	33.1	.13/	34.	700
821	122	16.0	.183	high r	esistivity
822	35			high r	esistivity
823	42	35.5	. 104	high r	esistivity
824	negative de	flection			
825	62	28.5	.126	high r	esistivity
9.26	F 1	22 2	171	bich r	esistivity
020		33.J	120	high r	esistivity
. 82/	54	27.5	126	high r	reistivity
828	69	23.2	.130	high r	esistivity
829	159	22.0	. 104	argn r	1810
830	34	28.0	. 150	30.	1010
831	115	26.0	.302	105	2990
832	33	. 27.2	.148	100	2610
833	17	98.	.068	16.	1720
834	58	37.6	.101	37.	1140
835	negative de	flection			
000					

1

GROUP SEVEN

- ^ 1 -

	Table 1 (Continu	ied)			
Sounding	Initial resistivity	<u>0.4 R</u> Pmax	$\frac{t_{\Theta} \rho_{1}}{4\pi R^{2}}$	ρl	^h l
836	21.0	82.	.098	19.0	1090 m
837 838 839 840	negative de 29.5 19.7 24.5	48.0 43.5 94.2	.140 .114 .087	27. 18. 12.	1060 680 810
841 842	23.2 negative de	86.5	.100	23.	2180
843 844 845	26.5 66.5 65.9	106 43.5 43.4	.073 .178 .187	17. 67. 74.	1170 3640 3530
846 847 848 849 850	47.6 58.8 42.7 40.6 130	62.5 48.9 50.2 54.3 77.8	.174 .192 .188 .169 .126	46. 63. no inte no inte no inte	2180 3570 erpretation erpretation erpretation
851 852 853 854 855 855 856	negative de: no record 12.8 74.4 87.0 67.6	flection 49.9 36.0 34.4 40.5	.102 .213 .218 .218	no inte 77. 85. 76.	erpretation 3290 3750 3240

EVALUATION AND RECOMMENDATIONS

Both the dipole mapping data and the electromagnetic sounding data from source 8 substantiate earlier conclusions regarding the small size of the anomalously conductive area in Redondo Creek Valley. Generally, the conductive surface rocks along Redondo Creek are less than one kilometer thick. and have a moderately high resistivity, 40 to 60 ohm-meters. The anomalous area at the head of Redondo Creek has an area of less than one square mile, if the 100-mho contour is considered to be its boundary. Because of this limited area, it is difficult to obtain reliable depth estimates with any of the electrical surveying techniques. However, the electromagnetic sounding data and the dipole mapping data both indicate that the 100 mho conductance contour is associated with an area in which the surface resistivity is 20 ohm-meters or less. The corresponding depth to resistant rock is therefore of the order of 2 kilometers or less.

The source 8 data show clearly two boundaries marking off areas with distinctively different electrical properties. One is an east-west boundary along Jaramillo Creek, south of which the resistivity is quite high. The area along Redondo Creek does not belong to this category, and a boundary must exist to the east of Redondo Creek outside the area where measurements were made. The other major boundary trends northwest-southeast, at the southwest end of Redondo Creek, and bounds an area of high conductance to the southwest.

If the geothermal producing areas at the Valles Caldera are bounded by contours as low as 100 mhos inconductance, these values would then be the lower than those for any producing geothermal field in the world. Most fields have conductances in excess of 1000 mhos, though in some cases, it may be argued that areas with conductances as low as a few hundred mhos comprise part of a geothermal field. The ground water in the Valles Caldera may be quite fresh. However, even fresh water has a reasonable amount of conductivity when it is in contact with minerals because of ion exchange processes . It is unlikely that water in place in the pore structure of a rock can have a resistivity higher than 2 to 5 ohm-meters, even if there is no free salt in so lution, at normal temperatures. At temperatures of 200° to 250° C, thic conduction would be enhanced by the reduced viscosity of the pore water, and resistivities in excess of 0.4 to 1 ohm-meter are unlikely, even in heated rocks. Thus, a resistivity of 20 ohm-meters and a water resistivity of 1 ohm-meter would yield a formation factor of 20; according to Archie's law, the porosity would be approximately 22 percent.

Inasmuch as it appears that even these conductive rocks are relatively thin, part of the geothermal reservoir capacity must exist at greater depths, in higher resistivity rock. The rock beneath the surface veneer must have a resistivity of at least 100 ohm-meters, and more probably, several hundred ohm-meters. The corresponding porosities, if these rocks are saturated with hot water, would be 10 percent or less.

It may be possible to delineate the conductive regions with more resolution by using a very large source moment located at a considerable distance from the prospect areas in the Valles Caldera. As shown by this survey, as the source is taken further from the target area, and as more area is covered with excitation from the same source, better resolution can be obtained in locating the boundaries of areas with different electrical characteristics. Power requirements increase rapidly as one moves the source away from the area in which measurements are being made. This is shown by the data in Figure 11, a plot of the maximum voltage recorded on the various electromagnetic soundings, as a function of the distance from the source. As predicted by theory, this voltage decreases as the fourth power of the distance from the source (this relationship is shown by the solid curve on Figure 11). The least signal that can be measured reliably in electromagnetic sounding is about 30 microvolts. Therefore, in order to double the distance from the source at which measurements can be made (that is, to 20 -25 kilometers), it would be necessary to increase the source moment by a factor of approximately 8. It is quite feasible to conduct such a survey.

GROUP SEVEN

[1] [1]

1

APPENDIX	I: Tabulation of observed data for dipole resistivity surveys.
The	following quantities are listed;
N	Station number, keyed to the maps with plotted results
Rl	Distance from observation point to one end of the source dipole, measured in kilometers
R2	Distance from observation point to the other end of the source dipole, measured in kilometers
D	The angle between the two lines Rl and R2 running from an observation point to the two ends of the source dipole.
T	The angle between the two directions in which electric field measurements were made at each site (nominally 90°)
V1	Voltage measured between one pair of receiver elec- trodes, in microvolts
V 2	Voltage measured between the other pair of receiver electrodes, in microvolts
x	Length of receiver line, in meters
Ĩ	Amplitude of current steps, in amperes (average current was one-half this value)
RT	Apparent resistivity computed using the magnitude of the electric field, in ohm-meters
SA	Apparent conductance computed using the magnitude of the electric field, in mhos

-

Append	lix I.		`					·,		
-										
N	Rl	R2	D	Т	Vl	V2	x	I	RT	SA
801	6-150	8.200	30.	90.	- 75.	-295.	30.	32.0	128.8	42.
802	6.270	8.450	28.	90.	-110.	215.	30.	32.0	108.2	49.
803	6.300	8.600	28•	90.	-170.	-170.	30.	32.0	106.9	50.
804	6.250	8.720	27.	90.	18.	-255.	30.	32.0	110.7	46.
R N 5	6.530	9.070	25.	90.	130.	205.	30.	32.0	117.9	45.
R N 6	6.700	9.280	25.	90.	90.	185.	30.	32.0	105.6	51.
807	6.800	9.480	23.	90.	-235.	-265.	30.	32.0	190.0	28.
R () R	6.950	9.710	22.	90.	45.	135.	30.	32.0	80.4	66.
R () 9	7.520	10.250	20.	90.	-85.	150.	30.	32.0	121.1	47.
810	7.950	10.450	50.	90.	180.	88.	30.	32.0	166.3	37.
811	2.400	2.500	125.	90.	3150.	3550.	30.	32.0	104•9	23.
	· .		•							
812	2.470	2.970	103.	90.	150.	4150.	30.	32.0	124.0	21.
813	3+ 600	3.760	72.	90.	-910.	2050.	30.	32.0	168.9	22.
818	0.750	3.570	165.	90.	16600.	1220.	30.	32.0	58.7	15.
819	1.000	3.320	164.	90.	7900.	3200.	30.	32.0	51.2	23.
820	1.300	3.030	163.	90.	6500.	1620.	30.	32.0	62.9	25.
R 2 1	6• 200	8.020	32.	90.	88.	105.	30.	32.0	58 . ó	97.
						•			•	
822	6.320	8.000	32.	90.	105.	90.	30.	32.0	62.8	93.
823	6.350	7.820	48.	90.	165.	-220.	30.	30•0	104-4	62.
824	6.450	7.730	33.	95.	235.	295.	30.	30•0	203.3	31.
825	6.430	7.540	34.	90.	-105.	-140.	30.	30.0	88•8	71.
826	6.500	7.420	35.	90.	- 40.	-100.	30.	30.0	55.2	118.
827	6.550	7.270	36.	90.	75.	230.	30.	30.0	123.3	54.

ોસ્ટ

ie.

Sec.

المتكلف

č.

<u>ä</u>.

.

أسعاقا

. 1 − 2

Appendix	Ι.							•,			
N	Rl	R2	D	T	VI.	V2	X	I	RT	SA	
828	6.530	7.060	36.	90.	90.	430.	30.	30•0	221.9	30.	
8 2 9	6.690	6.960	37.	90.	24.	- 28 5.	30.	30•0	145.6	47.	
830	6.560	6.800	38 •	90.	320.	-26.	30.	30.0	152.8	43.	
831	1.800	2.560	166.	90.	3850•	4350.	30.	32.0	82.8	25.	
<u>्</u> र 32	5.500	2.200	167.	90.	7600.	3900.	30.	32.0	136.0	16.	
8 3 3	3.420	7.030	26.	93•	-920.	-920.	. 30.	34.5	119.3	22.	
834	3.760	7.320	26.	90.	- 600.	300.	30.	34.5	74.7	38.	
835	4.020	7.680	23.	90.	0.	-1250.	30.	34.5	162.3	18.	
836	4.000	7.850	19.	97.	82.	-1160.	30.	34.5	148.5	19.	
837	6.300	6.500	39.	90	-14.	-108.	30.	36.0	38.7	165.	
R 38	6.700	6.750	37.	101.	- 54.	-15.	30.	36.0	24.8	271.	
839	6.320	6.830	38.	90.	76.	-112.	30.	36.0	50.9	126.	
	•									_	
R 40	6.470	6.900	35.	90.	48.	- 29 5.	31.	36.0	122.3	54.	
841	6.320	7.320	38•	86.	66.	- 56.	30.	30.0	40.6	156.	
842	6.160	6.530	39•	90.	-120.	100.	-30•	30•0	64.9	97.	
843	6.130	.6.210	41.	90.	85.	46.	30.	32.0	34.4	179.	
<u>8</u> 44	5.880	5.920	42.	90.	- 70.	93.	30.	32.0	37.0	160.	
R 45	5.730	5.960	43.	90.	-120-	0.	30.	30.0	38•9	150.	
Q 11 4	5 200	5 600	14	a 0	70	- 1 70	30.	30.0	48 - 4	112.	
040	J• 300	5 400	40.	90.	035	-170+	30.	30.0	83.4	62.	
K 4 7	5.030	3 • 460	41.	90.	015	- 120	30.	30-0	54.9	89.	
X 4X	4. 740	5.320	50.	· 90•	242+ 20	-120+	30.	36.0	30-8	149.	
X 49	4.430	5 1 30	ں کے ج	9U•	070	- 21 2.	30.	30-0	41.2	106	
× 5()	4.200	2.100	54.	90+	210.	- JC= 175	20	30.0	- 53 5	.00.	

₩ 5

	Appendi	< I.				<u></u>					<u></u>	
	* *								•			
				-	_						_	
	N	Rl	R2	D	Τ	VI	V 2	ĽX.	I	RT	SA	
	852	4.030	5.520	52.	90.	260.	933.	30.	30.0	138•5	29 .	
	853	3• 69 0	5.430	52.	116.	8 60•	- 620.	30.	35.0	91.6	40•	
	854	3.610	5.600	50.	117.	1030.	- 480.	30.	36.0	97.8	35.	
	855	3.620	5.880	47.	118.	185.	-250.	30.	34.5	26.3	128.	
	R 56	3.600	6.120	43.	111.	580.	-114.	30.	34.5	59.1	54.	
	857	3.400	6.230	40•	116.	700.	- 710.	30.	34, 5	73.2	40.	
									•			
	8 58	3.450	6.530	36.	115.	770.	-10.	30.	34.5	77.0	37.	
	8 59	3.380	6.680	33.	105.	820.	-1200.	30.	34.5	114.1	24.	
	8 60	3.260	6.760	30.	103.	2625.	-860.	30.	34.5	209.8	12.	-
	861	7.240	7.430	24.	90.	- 52.	10.	30.	36.0	39.6	184.	
	8 62	7.730	7.830	32.	90.	-110.	35.	30.	36.0	73.8	105.	
	R 63	7.820	8.470	30.	90.	-115.	60.	30.	36.0	92.5	85.	
											-	•
	864	8.170	8.620	30.	90.	110.	100.	30.	36.0	115.2	72.	
	R 65	8.820	9.040	27.	90.	90.	-85.	30.	36.0	122.6	73.	
	866	9.230	9.390	26.	90.	38•	110.	30.	36.0	129.9	71.	
	867	9.560	9.620	26.	90.	- 18 •	-90.	30.	36.0	109.2	88.	
	8 68	10.220	10.250	24.	90.	56.	16.	30.	36.0	85.4	120.	
	8 69	10.000	10.000	25.	90.	- 40.	- 50.	30.	36.0	86.0	116.	
erenand the (c)	870	10.700	11.450	22•	90.	-36.	24.	30•	36.0	76.3	139.	
	871	8.100	9.420	56.	90.	72.	12.	30.	36.0	59.7	128.	
	872	7.800	8.700	29•	90.	- 48 •	-22.	30.	36.0	38 • 1	203.	
	873	8.100	8.600	30.	90.	-100.	- 45.	30.	36.0	83.6	98.	
	874	7.900	8.000	31.	90.	-160.	-85.	30.	36.0	124.5	64.	
	875	6.850	7.800	33.	90.	- 500.	-80.	30.	36.0	252.0	27.	

فاشتشاه

S......

Ĺ.,

1.- 1

×.....

I-L

					4					
N	Rl	R2	D	T	Vl	V2	х	I	RT	SA
876	5. 500	7.200	35.	90.	75.	40.	30.	36.0	24.1	212.
R77	5. 500	6.600	40.	30.	-140.	155.	30.	36.0	155.5	35.
873	5.850	6.500	40.	90.	-85.	230.	30.	36.0	75.9	79.
879	7.500	10.300	21.	90.	160.	140	30.	36.0	128.8	45.
880	10.000	11.620	17.	90.	0.	.210.	30.	36.0	336.4	25.
881	8.250	11.500	17.	90.	-270.	60.	30.	36.0	206.9	28.
882	8.150	11.750	13.	90.	355.	360.	30.	36.0	359.7	15.
883	10.480	11.400	22.	90.	- 50.	-22.	30.	36.0	91.0	1.12
884	10.100	11.000	23.	90.	- 60.	0.	30.	36.0	89.5	111.
RR5	9.630	10.800	24.	90.	- 65.	45.	30.	36.0	100.9	92
886	9.270	10.620	25.	90.	- 56.	- 42.	30.	36.0	78.3	112
887	8.900	10.350	25.	90.	60.	- 30.	30.	36.0	68.2	122
					s	ж Э				
888	8.560	10.180	24.	90.	- 55.	-12.	30.	36.0	52.6	147
889	9.050	11.950	23.	90.	- 30.	175.	100.	36.0	48.6	151
890	9.400	11.450	21.	90.	-16.	170.	100.	36.0	59.5	134
891	8.740	10.600	24.	90.	95.	125.	100.	36.0	44.6	174
892	7.540	9.570	26.	90.	-250.	-10.	100.	36.0	47.8	137
										•

1

Ĩ.

10

I-5

GROUP SEVEN

11

APPENDIX II: Listing of electromagnetic sounding data.

The following quantities are tabulated:

TIME

The length of time following the . beginning of a transient at which the voltage is sampled, in seconds

NUMBER

: The number of individual samples added together to form an average (in this survey, NUMBER is 1 because only the single best signal recorded was used).

AVERAGE

: The average voltage at a given time, in millivolts (exponential format)

ST. DEV.

Standard deviation of the voltage . samples from which the average was formed

EARLY RESISTIVITY

Resistivity computed from the formula . valid only for the early part of the transient coupling, in ohm-m.

Listings of the stacked voltages along with statistics developed during stacking are given on the following pages. These data are then followed by listings of the deconvolved and smoothed apparent resistivity curves,

VALLES EM SØUNDING 801 ØFFSET DISTANCE IS 6850. METERS LØØP AREA IS .1664 SQUARE KILØMETERS SØURCE LENGTH IS 4290. METERS CURRENT IS 32.0 AMPERES DEFLECTIØN ANGLE IS 24.0DEGREES DIGITIZING SCALE IS 0.229MICRØVØLTS/DIV

EDITED AND STACKED DATA

1

No. No.

1

9

- Contraction

 TIME	NUMBER	AVERAGE	ST. DEV.	EARLY R
• 02	5	0.145E-03	0•164E-04	0.324E+02
• 04	5 1	0.203E-03	0•841E-05	0•454E+02
.06	5	0.216E-03	0•929E-05	0.482E+02
• 08	5	0.204E-03	0.833E-05	0•456E+02
• 10	5	0.170E-03	0.162E-04	0.381E+02
.12	5	0.145E-03	0.198E-04	0.325E+02
• 1 4	5	0.123E-03	0.214E-04	0.276E+02
• 16	5	0.108E-03	0.234E-04	0.242E+02
• 18	5	0,977E-04	0.230E-04	0.218E+02
• 20	5	0.734E-04	0.137E-04	0.164E+02
• 22	5	0.550E-04	0•141E-04	0.123E+02
•24	5	0.427E-04	0•189E-04	0.954E+01
• 2.6	5	0.390E-04	0•201E-04	0.872E+01
• 28	5	0.372E-04	0.211E-04	0.831E+01
• 30	5	0•344E-04	0•158E-04	0.769E+01
• 32	5	0•317E-04	0•119E-04	0.708E+01
• 34	5	0•289E-04	0•150E-04	0.6461+01
• 36	5	0•261E-04	0•154E-04	0.585E+01
• 38	5.	0•243E-04	0.123E-04	0.544E+01
• 40	5	0•133E-04	0•967E-05	0.297E+01
• 42 ·	5	0.780E-05	0•109E-04	() • 174E+01
. 44	5	0.596E-05	0°•143E-04	0.133E+01
• 46	5	0.321E-05	0.133E-04	0.7181+00
• 48	5	0•826E-05	0•133E-04	0.185E+01
. 50	5	0.123E-04	0.152E-04	0.2875+01
. 52	5	0•101E-04	0.195E-04	0.2262+01
. 54	5	0•275E-05	0.141E-04	0.615E+00
.56	5	0.367E-05	0.133E-04	0.821E+00
• 58	5 -	0•917E-06	0.140E-04	-0.205E+00
• 60	5	0•917E-06	0.127E-04	0.205E+00
• 62	5 -	0-183E-05	0.922E-05	-0.410E+00
• 64	5 -	0•138E-05	0.1172-04	-0.3032+00
. 66	5 -	0.183E-05	0.171E-04	-0.4100+00
• 68	5	0.550E-05	0.191E-04	0.123E+01
• 70	5	0.229E-05	0.135E-04	
• 72	5 -	0•138E-05	0.105E-04	~ U. JUSE+00
• 74	5 -	0.734E-05	0 + 114E - 04	
• 76	5 -	0.101E-04	0.101E-04	- U. 220E+UI
• 78	5 -	0.826E-05	U.924E-05	~ U. 10 JE+UI

GROUP SEVEN

II = 2
VALLES EM SØUNDING 802 ØFFSET DISTANCE IS 6830. METERS LØØP AREA IS .1664 SQUARE KILØMETERS SØURCE LENGTH IS 4290. METERS CURRENT IS 30.0 AMPERES DEFLECTIØN ANGLE IS 28.0DEGREES DIGITIZING SCALE IS 0.115MICRØVØLTS/DIV

EDITED AND STACKED DATA

3

1

- TIME • 02 • 04 • 06 • 08	NUMBER AVERAGE 3 0.975E-04 3 0.233E-03 3 0.307E-03 3 0.306E-03	ST. DEV. 0.232E-04 0.315E-04 0.161E-04 0.854E-05 0.137E-04	EARLY R 0.239E+02 0.571E+02 0.752E+02 0.749E+02
 10 12 14 16 18 20 22 24 26 	3 0.275E-03 3 0.237E-03 3 0.204E-03 3 0.162E-03 3 0.133E-03 3 0.126E-03 3 0.119E-03 3 0.105E-03 3 0.910E-04	0. 137E-04 0. 120E-04 0. 667E-05 0. 760E-05 0. 109E-04 0. 179E-04 0. 275E-04 0. 255E-04 0. 189E-04	0. 582E+02 0. 499E+02 0. 397E+02 0. 327E+02 0. 308E+02 0. 292E+02 0. 257E+02 0. 223E+02
 26 28 30 32 34 36 38 40 	3 0.787E-04 3 0.703E-04 3 0.580E-04 3 0.530E-04 3 0.465E-04 3 0.388E-04 3 0.323E-04 3 0.300E-04	0. 222E-04 0. 133E-04 0. 130E-04 0. 106E-04 0. 104E-04 0. 680E-05 0. 941E-06 0. 249E-05	0.193E+02 0.172E+02 0.142E+02 0.130E+02 0.130E+02 0.950E+01 0.790E+01 0.734E+01
 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	D. 249E-05 D. 249E-05 O. 249E-05 O. 144E-05 O. 196E-05 O. 144E-05 O. 109E-05 O. 163E-05 O. 163E-05 O. 163E-05 O. 287E-05 O. 287E-05 O. 287E-05 O. 163E-05 O. 543E-06 O. 543E-05 O. 188E-05 O. 188E-05 O. 144E-05	0. 706E+01 0. 593E+01 0. 574E+01 0. 499E+01 0. 442E+01 0. 414E+01 0. 311E+01 0. 263E+01 0. 263E+01 0. 263E+01 0. 263E+01 0. 263E+01 0. 263E+01 0. 263E+01 0. 263E+01 0. 169E+01 0. 169E+01 0. 151E+01 0. 132E+01 0. 13E+01 0. 941E+00

VALLES EM SØLNDING 803 ØFFSET DISTANCE IS 6870. METERS LØØP AREA IS .1664 SOUARE KILØMETERS SØURCE LENGTH IS 4290. METERS CURRENT IS 30.0 AMPERES DEFLECTIØN ANGLE IS 29.0DEGREES DIGITIZING SCALE IS 0.115MICRØVØLTS/DIV

EDITED AND STACKED DATA

TIME	NUMBER	AVERAGE	ST. DEV.	EARLY R
02	4 0.	664E-04	0.140E-04	0•168E+02
• 02	4 0.	194E-03	0.290E-04	0•493E+02
. (14	4 0.	278E-03	0.547E-05	0•706E+02
. 08	4 0	282E-03	0.643E-05	0•715E+02
• 00	4 0.	257F-03	0.751E-05	0.652E+02
• 10		218E-03	0.696E-05	0•553E+02
• 1 C	4 0	178E-03	0.610E-05	0•451E+02
16	4 0	152E-03	0.588E-05	0• 38 5E+ 02
. 18	4 0	126E-03	0.237E-05	0•319E+02
- 20	4 0	.105E-03	0.498E-05	0.267E+02
. 22	4 0	.888E-04	0.319E-05	0.225E+02
- 24	4 0	• 730E-04	0.925E-05	0•185E+02
• 2.5	4 0	·647E-04	0.297E-05	0•164E+02
. 28	4 0	58 0E-04	0.129E-05	0.147E+02
. 30	4 0	• 49 4E-04	0.345E-05	0.125E+02
• 32	4 0	• 431E-04	0.340E-05	0•109E+02
• 34	à Ö	.365E-04	0•483E-05	0.925E+01
• 36	4 0	. 325E-04	0.249E-05	0.823E+01
• 38	4 0	• 310E-04	0.215E-05	0• 78 7E+01
• 40	4 0	•276E-04	0.293E-05	0•699E+01
. 42	4 0	.253E-04	0.390E-05	0•641E+01
. 44	4 0	.250E-04	.0.221E-05	0.634E+01
. 46	4 0	•224E-04	0.330E-05	0.563E+01
• 48	4 0	•193E-04	0.221E-05	0.488E+01
. 50	4 0	• 184E-04	0.813E-06	0• 466E+01
. 52	4 0	•170E-04	0.262E-05	0.430E+01
. 54	4 0	• 141E-04	0.376E-05	0.357E+01
. 56	4 0	•129E-04	0.425E-05	0.328E+01
• 58	4 0	.124E-04	0.541E-05	0.313E+01
• 60	4 0	·112E-04	0.553E-05	0.284E+01
• 62	4 0	•977E-05	0.350E-05	() • 243 E+U1
· 64	4 0	.862E-05	0.263E-05	0.219E+01
. 66	4 0	•747E-05	0.129E-05	0.189E+01
. 68	4 0	•718E-05	0.170E-05	0.182E+01
<u>*</u> 70	4 0	•747E-05	0.172E-05	U.189E+UI
. 72	4 0	•747E−05	0.172E-05	0.1892+01
. 74	4 0	• 776E-05	0.2212=05	0.1972+01
. 76	<i>4</i> 0	•713E-05	0.348E-05	0.132E+U1
• 73	4 0	•718E-05	0.348E-05	0.182E+01

GROUP SEVEN

VALLES EM SØUNDING 804 ØFFSET DISTANCE IS 6950. METERS LØØP AREA IS .1664 SQUARE KILØMETERS SØURCE LENGTH IS 4290. METERS CUPPENT IS 30.0 AMPERES DEFLECTIØN ANGLE IS 31.0DEGREES DIGITIZING SCALE IS 0.115MICRØVØLTS/DIV

EDITED AND STACKED DATA

	TIME	NUMBER	AVERAGE	ST. DEV.	EARLY R
	• 02	5 (0.101E-03	0.321E-04	0.274E+02
•	• 0 4	5	0.260E-03	0.505E-04	0.707E+02
	• 0 5	5	0.347E-03	0.183E-04	0•942E+02
	• 08	5 (0.351E-03	0.145E-04	0•954E+02
	• 10	5	0.317E-03	0.244E-04	0•861E+02
	• 12	5 (0.261E-03	0+219E-04	0•709E+02
	• 1 4	5	0.212E-03	0•245E-04	0.577E+02
	• 1 6	5)	0.175E-03	0•178E-04	0.474E+02
	•18	5	0.145E-03	0.130E-04	0• 39 5E+ 02
	•50	5	Q•126E-03	0.118E-04	0•343E+02
	• 22	5 (0.105E-03	0.111E-04	0•284E+02
	.24	5	0•848E-04	0.722E-05	0•230E+02
	•26	5 (0•718E-04	0.435E-05	0•195E+02
	• 28	5	0•633E-04	0.382E-05	0•172E+02
	•-30	5	0.527E-04	0.331E-05	0•143E+02
	• 32	5 (0•485E-04	0.511E-05	0•132E+02
	• 34	5 (0•411E-04	0.298E-05	0•112E+02
	• 36	5 (0•349E-04	0•338E-05	0•948E+01
	• 38	5 (0.291E-04	0.409E-05	0•791E+01
	• 40	5 (0.219E-04	0.273E-05	0• 59 6E+01
	• 42	5 (0.194E-04	0.267E-05	0.527E+01
	• 44	5 (0.176E-04	0.382E-05	0•477E+01
	• 46	5 (0.182E-04	0.572E-05	0• 49 6E+01
	• 48	5 (0.173E-04	0.551E-05	0.471E+01
	• 50	5 (0.125E-04	0•403E-05	0•339E+01
	• 52	5 (0.102E-04	0.277E-05	0.276E+01
	. 54	5	0.947E-05	0•199E-05	0.257E+01
	• 56	5 (D.831E-05	0.236E-05	0.226E+01
	• 58	5 (0•808E-05	0.242E-05	0.220E+01
	• 60	5 (0•785E-05	0.267E-05	0.213E+01
	• 62	5 (0•739E-05	0.315E-05	0.201E+01
	• 64	5 (0•739E-05	0.279E-05	0.201E+01
	• 66	5 (D. 554E-05	0.237E-05	0.151E+01
	• 68	5 (0•439E-05	0.287E-05	0.119E+01
	• 70	5 (0•393E-05	0.370E-05	0.107E+01
	• 72	5 (0.185E-05	0•417E-05	0.502E+00
	· 7 /1	5 (0.231E-05	0.343E-05	0.628E+00
	•76	5 (0.346E-05	0.420E-05	0.941E+00
	• 783	5 0	0.277E-05	0°538F=02	U. /JJE+UU

VALLES EM SØUNDING 805 ØFFSET DISTANCE IS 7180. METERS LØØP AREA IS .1664 SQUARE KILØMETERS SØURCE LENGTH IS 4290. METERS CURRENT IS 30.0 AMPERES DEFLECTIØN ANGLE IS 34.0DEGREES DIGITIZING SCALE IS 0.115MICRØVØLTS/DIV

EDITED AND STACKED DATA

TIME	NUMBER AVERAGE	ST. DEV.	EARLY R
• 02	4 0.825E-04	0.113E-04	0.265E+02
• 0.4	4 0.192E-03	0.136E-04	0.618E+02
• 06	4 0.300E-03	0•583E-05	0•964E+02
• 08	4 0.308E-03	0.813E-06	0•991E+02
• 10	4 0.2905-03	0.363E-05	0•931E+02
.12	4 0.243E-03	0.384E-05	0.783E+02
• 1 4	4 `0.199E-03	0.299E-05	0.641E+02
•16	4 0.165E-03	0.262E-05	0•529E+02
• 18	4 0.137E-03	0.188E-05	0•441E+02
• 20	4 0•118E-03	0.339E-05	0.378E+02
• 22	4 0.966E-04	0.293E-05	0.310E+02
.24	4 0.810E-04	0•995E-06	0.261E+02
• 26	4 0.658E-04	0.262E-05	0.212E+02
• 28	4 0.560E-04	0.205E-05	0.180E+02
• 30	4 0.480E-04	0.221E-05	0•154E+02
• 32	4 0.422E-04	0•249E-05	0.136E+02
. 34	4 0•379E-04	0•453E-05	0.122E+02
• 36	4 0.319E-04	0.953E-06	0•103E+02
• 38	4 0.284E-04	0•149E-05	0•915E+01
• 40	4 0.239E-04	0.221E-05	0.767E+01
• 42	4 0.207E-04	0.282E-05	0.665E+01
• 44	4 0.172E-04	0.244E-05	0•554E+01
• 46	4 0.155E-04	0•995E-06	0.499E+01
· 48	4 0.126E-04	0.000E+00	0.407E+01
• 50	4 0•109E-04	0•995E-06	0.351E+01
• 52	4 0•948E-05	0.125E-Q5	0.305E+01
• 54	4 0.920E-05	0.813E-06	0•296E+01
• 56	4 0•776E-05	0.498E=06	0 • 2 49 E+ 01
• 58	4 0•776E-05	0.125E-05	0.249E+01
. 60	4 0.632E-05	0.172E-05	0.203E+01
• 62	4 0.575E-05	0.215E-05	0.185E+01
. 64	4 0.632E~05	0.575E-06	0.203E+01
. 66	4 0.575E-05	0.813E-06	0.185E+01
• 68	4 0.460E-05	0.813E-06	0.148E+01
• 70	4 0.489E-05	0.498E-06	0.15/E+01
• 72	4 0.287E-05	0.299E-05	0.9246+00
• 74	4 0.259E-05	0.170E-05	0.832E+00
• 76	△ 0.345E-05	0.182E-05	$\bigcup \bullet I I J E + \bigcup I$
• 78	4 0.316E-05	0.205E-05	0.1056+01

GROUP SEVEN

.

VALLES EM SØUNDING 806 ØFFSET DISTANCE IS 7200. METERS LØØP AREA IS .1664 SOUARE KILØMETERS SØURCE LENGTH IS 4290. METERS CURRENT IS 30.0 AMPERES DEFLECTIØN ANGLE IS 36.0DEGREES DIGITIZING SCALE IS 0.115MICRØVØLTS/DIV

EDITED AND STACKED DATA

TIME	NUMBER	AVERAGE	ST. DEV.	EARLY R
• 02	6 0.	•730E-04	0•295E-04	0.244E+02
• 0 4	6 0	• 158E-03	0•316E-04	0• 528 E+ 02
• 06	6 0.	•249E-03	0.208E-04	0•833E+02
• 08	6 0	•275E-03	0.355E-05	0•920E+02
• 10	5 0.	256E-03	0.921E-05	0•855E+02
.12	6 0	•227E-03	0.131E-04	0.759E+02
• 1 4	6 0.	• 19 5E- 03	0.132E-04	0•650E+02
.16	6 0	•165E-03	0•139E-04	0•550E+02
• 18	6 0.	• 141E-03	0•111E-04	0.471E+02
• 20	6 0,	.120E-03	0•100E-04	0•403E+02
• 22	6 0	•993E-04	0.768E-05	0•332E+02
.24	6 0	•870E-04	0•583E-05	0•291E+02
.26	6 0	•753E-04	0.630E-05	0•252E+02
• 28	6 0.	• 632E-04	0.757E-05	0.211E+02
• 30	6 0	•543E-04	0.607E-05	0•182E+02
. 32	6 0	• 48 4E-04	0•628E-05	0.162E+02
• 34	6 0.	• 426E-04	0.610E-05	0.143E+02
.36	6 0.	• 371E-04	0•607E-05	0.124E+02
• 38	6 0.	• 305E-04	0•414E-05	0.102E+02
 ∠i0 	6 0.	•269E-04	0.414E-05	0.899E+01
. 42	6 0	•253E-04	0.346E-05	0•848E+01
• 2121	6 0	•202E-04	0.392E-05	$0 \cdot 674E + 01$
• ∠16	6 0	•194E-04	0:463E-05	0•649E+01
. 48	6 0	•171E-04	0.373E-05	0.572E+01
• 50	6 0	•146E-04	0.414E-05	0.488E+01
• 52	6 0	•131E-04	0.445E-05	0.437E+01
.54	6 0	•127E-04	0•333E-05	0.424E+01
. 56	6 0	•106E-04	0.293E-05	0.353E+01
• 58	6 0	•104E-04	0.240E-05	0.3472+01
. 60	6 0	•979E-05	0.303E-05	0.327E+01
• 62	6 0	•845E-05	0.343E-05	0.283E+01
• 64	6 0	•806E-05	0.258E-05	0.270E+01
• 66	6 0	• 768E-05	0.310E-05	0.2572+01
. 68	6 0	• 614E-05	0.440E-05	0.205E+01
• 70	6 0	• 538E-05	0.310E-05	0.180E+01
.72	6 0	• 480E-05	0.278E-05	U = 161E + 01
• 74	6 0	• 557E-05	0.335E-05	$U = 1 \otimes 0 E + U I$
• 76	5 0	• 760E-05	0.255E-05	U+254E+UI
• 7K	6 0	• 614E-05	0.5515-02	しゅ どいうビキ せす

GROUP SEVEN

工1-7

VALLES EM SØUNDING 808 ØFFSET DISTANCE IS 7600. METERS LØOP AREA IS .1664 SOUARE KILØMETERS SØURCE LENGTH IS 4290. METERS CURRENT IS 30.0 AMPERES DEFLECTIØN ANGLE IS 39.0DEGREES DIGITIZING SCALE IS 0.116MICRØVØLTS/DIV

EDITED AND STACKED DATA

TIME	NUMBER	AVERAGE	ST. DEV.	EARLY R
• 02	5 0	•703E-04	0.101E-04	.0•306E+02
• 04	5 0	•172E-03	0.126E-04	0•748E+02
•06	5 0	257E-03	0.142E-04	0.112E+03
.08	5 0	•299E-03	0.325E-05	0.130E+03
• 10	5 0	• 297E-03	0.157E-05	0•129E+03
• 12	5 0-	271E-03	0.517E-05	0.118E+03
• 1 4	5 , 0	234E-03	0.835E-05	0.102E+03
• 1 6	5 0.	•206E-03	0.714E-05	0•895E+02
• 18	5 0-	•176E-03	0.642E-05	0.764E+02
• 20	5 0	146E-03	0.532E-05	0.634E+02
• 55	5 0.	125E-03	0•514E-05	0.545E+02
•24	5 0.	107E-03	0• 69 5E-05	0•467E+02
•26	5 0.	935E-04	0•789E-05	0•407E+02
• 28	5 0	• 78 4E-04	0•659E-05	0•341E+02
• 30	5 0.	677E-04	0.239E-05	0•295E+02
• 32 -	5 0.	589E-04	0•868E-06	0.256E+02
• 34	5 0.	506E-04	0.157E-05	0•220E+02
• 36	5 0.	429 E-04	0.127E-05	0•187E+02
• 38	5 0.	346E-04	0.278E-05	0.150E+02
• 40	5 0.	320E-04	0.215E-05	0•139E+02
. 42	5 0.	276E-04	0.355E-05	0.120E+02
• 44	5 0.	223E-04	0•398E-05	0•969E+01
• 46	5 0.	206E-04	0.455E-05	0.898E+01
• 48	5 0.	195E-04	0.347E-05	0•847E+01
•, 50	5 0.	172E-04	0.370E-05	0•747E+01
• 52	5 0.	160E-04	0.472E-05	0• 69 6E+01
• 54	5 0.	142E-04	0.315E-05	0.615E+01
• 56	5 0.	130E-04	0.355E-05	0.565E+01
• 58	5 0.	128 E-04	0.208E-05	0.555E+01
• 60	5 0.	111E-04	0•118E-05	0.484E+01
• 62	5 0.	998E-05	0.271E-05	0•434E+01
• 64	5 0.	928 E-05	0.220E-05	0•404E+01
.66	5 0.	812E-05	0.265E-05	0.353E+01
• 68	5 0.	789E-05	0.114E-05	0.343E+01
• 70	5 0.	835E-05	0•135E-05	0.363E+01
• 72 -	5 0.	766E-05	0•308E-05	0.333E+01
. 74	5 0.	673E-05	0.306E-05	0•293E+01
• 76	5 0.	673E-05	0.315E-05	0.293E+01
• 78	5 0.	557E-05	0.323E-05	0.242E+01

GROUP SEVEN

п-8

VALLES EM SØUNDING 809 ØFFSET DISTANCE IS 7880. METERS LØ0P AREA IS .1664 SOUARE KILØMETERS SØUFCE LENGTH IS 4290. METERS CURRENT IS 40.0 AMPERES DEFLECTION ANGLE IS 0.0DEGREES DIGITIZING SCALE IS 0.115MICRØVØLTS/DIV

EDITED AND STACKED DATA

TIME	NUME	ER AVERAGE	ST. DEV.	EARLY R
• 02	4	0.869E-04	0.929E-05	0.246E+02
• 04	4	0.164E-03	0.108E-04	0.463E+02
.06	4	0.253E-03	0.120E-04	0.717E+02
• 08	4	0.292E-03	0.852E-05	0.825E+02
• 10	4	0.291E-03	0.540E-05	0.823E+02
.12	4	0.271E-03	0.128E-04	0.766E+02
• 1 4	4	0.240E-03	0.110E-04	0.679E+02
•16	4	• 0•204E-03	0.587E-05	0.576E+02
• 18	4	0.180E-03	0.754E-05	0.508E+02
• 20	4	0.154E-03	0.879E-05	0•435E+02
• 22	4	0.131E-03	0.132E-04	0.371E+02
•24	4	0.110E-03	0.128E-04	0.310E+02
•26	4	0.903E-04	0.848E-05	0.255E+02
• 28	4	0.757E-04	0.831E-05	0.214E+02
• 30	4	0.648E-04	0.620E-05	0.183E+02
• 32	4	0.568E-04	0.576E-05	0.161E+02
• 34	4	0.502E-04	0.205E-05	0.142E+02
• 36	4	0.430E-04	0.298E-05	0.122E+02
• 38	4	0.370E-04	0.338E-05	0.105E+02
• 40	4	0.290E-04	0.509E-05	0•819E+01
• 42	4	0.235E-04	0.448E-05	0•665E+01
• 44	4	0.198E-04	0.375E-05	0•559E+01
• 46	4	0.181E-04	0.384E-05	0.511E+01
. 48	4	0•138E-04	0.556E-05	0•389E+01
• 50	- 4	0.129E-04	0.439E-05	0.365E+01
• 52	4	0.106E-04	0.375E-05	0.300E+01
• 54	4	0.103E-04	0•437E-05	0.292E+01
• 56	4	0.975E-05	0.367E-05	0.276E+01
• 58	4	0.774E-05	0.273E-05	0.219E+01
• 60	4	0.745E-05	0.309E-05	0.211E+01
. 62	4	0.545E-05	0.261E-05	0.154E+01
• 64	4	0.602E-05	0.220E-15	0.170E+01
• 66	4	0.573E-05	0+353E- 5	0.162E+01
• 68	Zi	0.516E-05	0.4171-,	0.146E+01
.70	4	0.344E-05	0.1406- 0	0.973E+00
• 72	4	0.315E-05	0.125E- >	0+892E+00
• 74	4	0.172E-05	0.339E-05	0.486E+00
• 76	4	0.258E-05	0.220E-05	0.730E+00
. 78	Ζį	0•315E-05	0.125E-05	0•892E+00

GROUP SEVEN

VALLES EM SØUNDING 810 ØFFSET DISTANCE IS 8050. METERS LØØP AREA IS .1664 SQUARE KILØMETERS SØURCE LENGTH IS 4290. METERS CURRENT IS 30.0 AMPERES DEFLECTIØN ANGLE IS 40.0DEGREES DIGITIZING SCALE IS 0.230MICRØVØLTS/DIV

EDITED AND STACKED DATA

	TIME	NUMI	BER AVERAGE	ST. DEV.	EARLY R
	.02	5	0.116E-03	0.192E-04	0.644E+02
•	• 0 4	5	0.190E-03	0.303E-04	0.106E+03
	.06	5	0.232E-03	0.147E-04	0.129E+03
	.08	5	0.242E-03	0.122E-04	0.135E+03
	.10	5	0.242E-03	0.163E-04	0.135E+03
	.12	5	0.227E-03	0.181E-04	0.126E+03
	.14	5	0.206E-03	0.222E-04	0.114E+03
	• 16	5	0.184E-03	0.206E-04	0.103E+03
	• 18	5	0.155E-03	0.191E-04	0•862E+02
	.20	5	0.135E-03	0.113E-04	0.754E+02
	.22	5	0.127E-03	0.967E-05	0.705E+02
	.24	5	0.103E-03	0.113E-04	0.572E+02
	• 26	. 5	0.959E-04	0.113E-04	0.533E+02
	• 28	5	0.779E-04	0.159E-04	0.433E+02
	• 30	5	0.627E-04	0.143E-04	0.349E+02
	. 32	5	0.516E-04	0.857E-05	0.287E+02
	. 34	5	0.419E-04	0.269E-05	0.233E+02
	• 36	5	0.410E-04	0•396E-05	0.228 E+02
	• 38	5	0.346E-04	0.785E-05	0.192E+02
	• 40	5	0.295E-04	0.422E-05	0.164E+02
	• 42	5	0.286E-04	0•779E-05	0•159E+02
	. 44	5	0.221E-04	0.661E-05	0.123E+02
	. 46	5	0.263E-04	0.102E-04	0.146E+02
	• 48	5	0.203E-04	0.116E-04	0.113E+02
	• 50	5	0.226E-04	0.817E-05	0.126E+02
	• 52	5	0.180E-04	0.492E-05	0.100E+02
	• 54	5	0.120E-04	0.690E-05	0.667E+01
	• 56	5	0.111E-04	0•915E-05	0.615E+01 .
	• 58	5	0.829E-05	0.116E-04	0.462E+01
	• 60	5	0.922E-05	0•967E-05	0.513E+01
	• 62	5	0.147E-04	0•779E-05	0.821E+01
	• 64	5	0.124E=04	0.766E-05	0.692E+01
	. 66 ,	5	0.124E-04	0.832E-05	0.692E+01
	. 68	5	0.106E-04	0.101E-04	C. 590E+01
	• 70	5	0.922E-05	0.811E-05	0.513E+01
	÷ 72	5	0.691E-05	0.944E=05	0.385E+01
	• 74	5	0.599E-05	O≈940E-05	0.333E+01
	• 76	5	0.876E-05	0.817E-05	0.437E+01
	• 78	5	0•968E-05	0.817E-05	0.539E+01

VALLES EM SØUNDING 811 ØFFSET DISTANCE IS 8180. METERS LØØP AREA IS .1664 SQUARE KILØMETERS SØURCE LENGTH IS 4290. METERS CURRENT IS 30.0 AMPERES DEFLECTIØN ANGLE IS 43.0DEGREES DIGITIZING SCALE IS 0.230MICRØVØLTS/DIV

EDITED AND STACKED DATA

TIME	NUMBER	AVERAGE	ST. DEV.	EARLY R
• 02	5 0.	171E-03	0.235E-04	0•107E+03
• 0.4	5 0.	199E-03	0.127E-04	0.124E+03
• 0 6	5 0.	209E-03	0.122E-04	0.131E+03
• 08	5 . 0.	197E-03	0.137E-04	0.123E+03
• 10	5 0.	176E-03	0.226E-04	0.110E+03
•12	5 0.	140E-03	0.273E-04	0•878E+02
• 1 4	5 '0.	112E-03	0.110E-04	0.702E+02
• 16	5 0.	947E-04	0•990E-05	0.593E+02
• 18	5 Q.	818E-04	0.235E-04	0.512E+02
• 20	5 0.	800E-04	0.314E-04	0.501E+02
• 22	5 0.	763E-04	0.310E-04	0•481E+02
.24	5 0.	777E-04	0.287E-04	0•486E+02
•26	5 0.	68 5E-04	0•166E-04	0•429E+02
• 28	5 0.	492E-04	0.256E-04	0.308E+02
• 30	5 0.	382E-04	0•268E-04	0•239E+02
• 32	5 0.	234E-04	0.118E-04	0•147E+02
• 34	5 0.	690E-05	0.149E-04	0•432E+01
• 36	5 0.	460E-06	0•279E-04	0.288E+00
• 38	5 0.	598E-05	0.297E-04	0•374E+01
• 40	5 0.	189E-04	0.317E-04	0.118E+02
. 42	5 0.	271E-04	0.274E-04	0.170E+02
• 44	5 0.	345E-04	0.234E-04	0.216E+02
• 46	5 0,	372E-04	0.235E-04	0.233E+02
• 48	5 0.	244E-04	0•206E-04	0.153E+02
• 50	5 0.	189E-04	0•187E-04	0.118E+02
• 52	5 0.	368E-05	0.213E-04	0.230E+01
• 54	5 -0.	276E-05	0•398E-04	-0.173E+01
• 56	5 ~0.	920E-05	0•408E-04	-0.576E+01
• 58	5 -0.	322E-05	0•317E-04	-0.202E+01
. 60	5 -0.	460E-06	0.254E-04	-0.288E+00
• 65	5 0.	147E-04	0.307E-04	0.921E+01
• 64	5 0.	262E-04	0•249E=04	0.164E+02
6 6	5 0.	368 E-04	0•186E-04	0.230£+02
• 68	5 0.	308 E= 0.4	0•184E-04	0.193E+02
• 70	5 0.	202E-04	0•194E-04	0.127E+02
• 72	5 0.	129E-04	0.262E-04	0.806E+01
• 74	5 0.	736E-05	0.276E-04	0.461E+01
• 76	5 -0.	782E-05	0.290E-04	- (), 489E+ 01
• 78	5 -0.	874E-05	0.258E-04	- U. 347E+UI

VALLES EM SØUNDING 812 ØFFSET DISTANCE IS 8250. METERS LØØP AREA IS .1664 SOUARE KILØMETERS SØURCE LENGTH IS 4290. METERS CURRENT IS 30.0 AMPERES DEFLECTION ANGLE IS 45.0DEGREES DIGITIZING SCALE IS 0.115MICRØVØLTS/DIV

EDITED AND STACKED DATA

TIME	NUME	ER AVERAGE	ST. DEV.	EARLY R
• 02	5	0•869E-04	0.115E-04	0.585E+02
• 6.4	5	0.128E-03	0.132E-04	0•864E+02
• 0.6	5	0.185E-03	0.160E-04	0.125E+03
• 08	5	0.194E-03	0.102E-04	0.131E+03
• 1.0	5	0.187E-03	0•179E-04	0.126E+03
.12	5	0.162E-03	0.244E-04	0•109E+03
• 14	5	0.133E-03	0.270E-04	0•893E+02
•16	5	`0•106E-03	0.219E-04	0.712E+02
. 18	5	0.869E-04	0•711E-05	0•585E+02
• 20	5	0.761E-04	0.526E-05	0.513E+02
• 55	5	0•777E-04	0•798E-05	0•524E+02
•24	5	0.791E-04	0•122E-04	0.533E+02
•26	5	0.805E-04	0.155E-04	0.542E+02
• 23	5	0•779E-04	0•114E-04	0.525E+02
·· • 30	5	0.708E-04	0.880E-05	0.477E+02
• 32	5.	0.490E-04	0•144E-04	0.330E+02
• 34	5	0.237E-04	0.224E-04	0.160E+02
• 36	5	0.828E-05	0•204E-04	0.558E+01
• 38	5	-0.161E-05	0 • 1 58 E-04	-0.108E+01
• 40	5	-0.230E-06	0.130E-04	-0.155E+00
• 42	5	0.805E-05	0.178E-04	0.542E+01
• 44	5	0.251E-04	0.256E-04	0.169E+02
• 46	5	0.317E-04	0.175E-04	0.2146+02
• 48	5	0.395E-04	0.136E-04	0.2662+02
• 50	5	0.326E-04	0.547E-05	0.220E+02
. 52	5	0.126E-04	0.191E-04	0.852E+01
• 54	5	0.230E-05	0.218E-04	$0 \cdot 155E + 01$
• 56	5	-0.828E-05	0.222E-04	-0.5355+01
• 58	5	-0.152E-04	0.211E-04	- 0. 102E+02
• 60	5	-0.138E-04	0.185E-04	= 0.9292+01
• 62	5	-0.575E-05	0.246E~04	-0.017E+01
. 64	5	0.3228-05	0+253E-04	0.2170+01
• 66	5	0.110E-04	0.223E-04	0.101E:02
• 68	5	0•149E-04	0.160E-04	0.116E+02
. 70	5	().172E-04	0.1736-04	0 + 1 + 0 = 0 = 0
• 72	5	0.1036-04	$0 \cdot 10 / E - 04$	0. 07 /ET 01 0. 420E±01
• 74	5	0. /13E-05	0.028 - 04	- 0. 18 AF± 01
• 76	5	-0.276E-05		$= 0.710 \text{F} \cdot 01$
· /·3	5	~U.1U6E-U4	U. 10 0E- 04	

VALLES EM SØUNDING 813 ØFFSET DISTANCE IS 6800. METERS LØØP AREA IS .1664 SQUARE KILOMETERS SØURCE LENGTH IS 4290. METERS CURRENT IS 30.0 AMPERES DEFLECTIØN ANCLE IS 20.0DEGREES DIGITIZING SCALE IS 0.223MICRØVØLTS/DIV

EDITED AND STACKED DATA

TIME	NUMBER	AVERAGE	ST. DEV.	EARLY R
• 02	5 0.	620E-04	0.261E-04	0.139E+02
• 04	5 0.	177E-03	0.167E-04	0•398E+02
.06	6 0.	252E-03	0.141E-04	0.565E+02
• 08	6 0.	255E-03	0.151E-04	0.572E+02
• 10	6 0.	240E-03	0.214E-04	0•538E+02
.12	5 0.	200E-03	0.177E-04	().449E+02
. 14	6 • 0•	180E-03	0.196E-04	0•404E+02
•16	6 0.	153E-03	0•139E-04	0.342E+02
• 18	6 0.	137E-03	0.159E-04	0•308E+02
• 20. ··	6 '0.	119E-03	0.196E-04	0.267E+02
• 22	6 0.	105E-03	0•167E-04	0.236E+02
•24	6 0.	885E-04	0.145E-04	0•198E+02
.26	6 0.	744E-04	0•945E-05	0.167E+02
• 28	6 0.	699E-04	0.653E-05	0.157E+02
30	6 0.	661E-04	0.372E-05	0•148E+02
• 32	6 0.	585E-04	0.9275-05	0.131E+02
• 34	6 0.	573E-04	0.111E-04	0•129E+02
• 36	5 0.	592E-04	0.108E-04	0.133E+02
• 33	6 0.	497E-04	0.127E-04	0.115E+05
• 40	6 0.	463E-04	0.140E-04	0.104E+02
• 42	6 0.	39 5E- 0 4	0.150E-04	0.886E+01
• 44	5	319E-04	0.140E-04	0•715E+01
• 46	5 0.	273E-04	0.120E-04	0•623E+01
• 43	5 0.	241E-04	0.123E-04	0•542E+01
• 50	5 0.	232E-04	0.101E-04	0.521E+01
• 52	6 0.	258E-04	0.102E-04	0•579E+01
• 54	6 0.	235E-04	0.849E-05	0• 528 E+01
• 56	6 0.	216E-04	0.470E-05	0•485E+01
• 58	6 0.	235E-04	0.553E-05	0• 528 E+ 01
• 60	6 0.	228E-04	0.671E-05	0.511E+01
. 62	6 0.	213E-04	0•101E-04	0.477E+01
• 64	6 0.	197E-04	0•104E-04	0.443E+01
. 66	6 0.	190E-04	0.111E-04	0.426E+01
• 68	6 0.	201E-04	0•119E-04	0.451E+01
• 70	6 0.	209E-04	0.119E-04	0.468E+01
• 72	6 0.	201E-04	0.140E-04	0.451E+01
• 7 4	6 0.	190E-04	Q.150E-04	0.426E+01
• 76	5 0.	114E-04	0 • 1 61 F 0 4	0,255E+01
• 73	6 0.	152E-04	0.157E-04	0.341E+01

VALLES EM SØUNDING 814 ØFFSET DISTANCE IS 6820. METERS LØØP AREA IS .1664 SQUARE KILØMETERS SØURCE LENGTH IS 4290. METERS CURRENT IS 30.0 AMPERES DEFLECTIØN ANGLE IS 18.0DEGREES DIGITIZING SCALE IS 0.115MICRØVØLTS/DIV

EDITED AND STACKED DATA

•	TIME	NUM	BER AVERAGE	ST. DEV.	EARLY R
•	• 02	5	-0.225E-04	0.252E-04	-0.503E+01
	• 04	5	0•140E-04	0.132E-04	0.313E+01
	• 06	5	0.830E-04	0•974E-04	0.186E+02
	• 08	5	0.124E-03	0.156E-03	0•278E+02
	• 10	5	0.130E-03	0.170E-03	0•290E+02
	.12	5	0.122E-03	0.164E-03	0.274E+02
	• 1 4	5	`0.105E-03	0.143E-03	0.235E+02
	• 16	5	0.867E-04	0.123E-03	0•194E+02
	• 18	5	0.743E-04	0.105E-03	0.166E+02
	• 20	5	0.663E-04	0•890E-04	0.148E+02
	• 22	5	0.573E-04	0.763E-04	0.128E+02
	• 24	5	0.507E-04	0.675E-04	0.113E+02
	• 2.6	5	0•479E-04	0•638E-04	0.107E+02
	• 28	5	0.415E-04	0.572E-04	0•929E+01
	• 30	5	0.360E-04	0.504E-04	0.806E+01
	• 32	5	0.271E-04	0•400E-04	0.606E+01
	• 34	5	0.280E-04	0•348E-04	0.627E+01
	• 36	5	0.264E-04	0.312E-04	0.591E+01
	• 38	5	0.211E-04	0•282E-04	0.472E+01
	• 40	. 5	0•158E-04	0.221E-04	0.354E+01
	• 42	5	0.133E-04	0•212E-04	0.298E+01
	• 44	5	0.124E-04	0•208E-04	0.277E+01
	• 46	5	0.110E-04	0•167E-04	0.246E+01
	• 48	5	0.103E-04	0•164E-04	0.231E+01
	• 50	5	0•963E-05	0.125E-04	0.2162+01
	• 52	5	0.8.49 E-05	0.135E-04	0.190E+01
	. 54	5	0.757E-05	0.131E-04	0.169E+01
	• 56	5	0•894E-05	0.125E-04	0.200E+01
	• 58	5	0.803E-05	0.108E-04	0.180E+01
	• 60	5	0.711E-05	0.101E-04	0.159E+01
	• 62	5	0.665E-05	0.101E-04	0.149 ± 01
	• 64	5	0.573E-05	0.102E-04	0.128E+01
	• 66	5	0.550E-05	0.119E-04	0.123E+01
	• 68	5	0.459E-05	(0.915E-05)	0.1032+01
	• 70	5	0.482E-05	0.8412-05	0.103E+01
	• 72	5	0.459E-05	U. 191E-US	$0 \neq 103C \neq 01$
	• 74	5	0.206E-05	U. 654E-U5	0 + 4022 + 00
	• 76	5	0.321E-05	U. JY JE- UD	$0 \cdot 1 \circ 1$
	• 78	5	0.459E-05	0. 202F02	Un IUSETUI

VALLES EM SØUNDING 815 ØFFSET DISTANCE IS 6750. METERS LØØP APEA IS .1664 SOUARE KILØMETERS SØURCE LENGTH IS 4300. METERS CURRENT IS 36.0 AMPERES DEFLECTION ANGLE IS 15.0DEGREES DIGITIZING SCALE IS 0.115MICRØVØLTS/DIV

EDITED AND STACKED DATA

TIME	NUMBER	AVERAGE	ST. DEV.	EARLY R
• 95	5 0	•538E-04	0.126E-04	0•944E+01
• 0.4	5 0	•164E-03	0•184E-04	0•287E+02
• 06	5 0	•282E-03	0•149E-04	0• 49 4E+ 02
• 08	5 0	• 317E-03	0.460E-05	0.557E+02
• 10	5 0	•303E-03	0.721E-05	0.532E+02
.12	5 0	•269E-03	0.703E-05	0•473E+02
• 1 4	5 0	•225E-03	0.733E-05	0•395E+02
.16	5 0	• 186E-03	0•529E-05	0•327E+02
• 18	5 0	• 154E-03	0.561E-05	0.271E+02
• 20	5 0	•133E-03	0•709E-05	0•234E+02
• 22	5 0	•112E-03	0.396F-05	0•197E+02
. 24	5 0	•101E-03	0.703E-05	0•178E+02
•26	5 0	•853E-04	0.521E-05	0.150E+02
• • 28	5 0	•754E-04	0.278E-05	0.132E+02
• 30	5 0	•660E-04	0.338E-05	0•116E+02
• 32	5. 0	•572E-04	0.266E-05	0.100E+02
. 34	5 0	• 492E-04	0.456E-05	0.863E+01
• 3.6	5 0	425E-04	0.163E-05	0•746E+01
• 38	5 . 0	•372E-04	0.213E-05	0.654E+01
• 40	5 0	•354E-04	0.211E-05	0.621E+01
• 42	5 0	•310E-04	0.163E-05	0.545E+01
• 44	5 0	•285E-04	'0.303E-05	0.500E+01
. 46	5 0	.246E-04	0.156E-05	0.432E+01
• 43	5 0	.225E-04	0.156E-05	0.395E+01
. 50	5 0	•198E-04	0.285E-05	0.347E+01
• 52	5 0	•177E-04	0.225E-05	0.311E+01
• 54	5 0	•149E-04	0.218E-05	0.262E+01
• 56	5 0	• 140E-04	0.134E-05	0.246E+01
• 58	5 0	•136E-04	0•113E-05	0.238E+01
• 60	5 0	•126E-04	0.163E-05	0.555E+01
• 62	5 0	•117E-04	0.211E-05	0.206E+01
• 64	5 0	•106E-04	0.352E-05	0.186E+01
. 66	5 0	989E-05 ·	0.415E-05	0.174E+01
• 63	5 0	•805E-05	0.333E-05	0.141E+01
• 70	5 0	•713E-05	0.245E-05	0.125E+01
• 72	5 0	• 644E-05	0.172E-05	0.113E+01
• 7 4	5 0	•598E-05	0.266E-05	0.IU5E+01
• 76	5 0	•598E-05	0.294E-05	$0 \cdot 105 t + 01$
• 78	5 0	• 598 E- 05	0.223E-05	0.105E+01

GROUP SEVEN

11 -15

VALLES EM SØUNDING 816 ØFFSET DISTANCE IS 6600. METERS LØØP AREA IS .1664 SQUARE KILØMETERS SØURCE LENGTH IS 4300. METERS CURRENT IS 34.5 AMPERES DEFLECTIØN ANGLE IS 12.0DEGREES DIGITIZING SCALE IS 0.230MICKØVØLTS/DIV

EDITED AND STACKED DATA

•	TIME	NUMBER	AVERAGE	ST. DEV.	EARLY R
·	• 02	5 0	•1,43E-03	0.186E-04	0•235E+02
	• 0 4	5 0	•298E-03	0.119E-04	0•492E+02
	• 0 6	5 0	• 374E-03	0•138E-04	0•617E+02
	• 08	5 [.] 0	• 39 3E- 03	0•889E+05	0•648E+02
	.10	5 0	•355E-03 .	0•138E-04	0•587E+02
	.12	5 0	•288E-03	0.137E-04	0•476E+02
	• 1.4	5 '0	•225E-03	0•953E-05	0•372E+02
	• 16	5 0	• 191E-03	0.980E-05	0•316E+02
	• 18	5 Q	•156E-03	0•106E-04	0•258E+02
	• 50	5 0	•133E-03	0.840E-05	0•219E+02
	• 22 ·	5 0	•112E-03	0.761E-05	0•185E+02
	.24	5 0	•989E-04	0•106E-04	0•163E+02
	•26	5 0	•814E-04	0.971E-05	0•134E+02
		5 0	•653E-04	0.982E-05	0•108E+02
	• 30	5 0	• 625E-04	0.761E-05	0•103E+02
	• 32	5 0	• 570E-04	0•840E-05	0•941E+01
	• 34	5 0	• 492E-04	0•938E-05	0•812E+01
	. 36	5 0	• 409 E- 0 4	0.640E-05	0•675E+01
	• 38	5 0	• 368 E- 04	0•544E-05	0.607E+01
	• 40	5 0	• 317E-04	0.512E-05	0•524E+01
	• 42	5 0	•267E-04	0.736E-05	0•440E+01
	• 44	5 0	•248E-04	0.102E-04	$0 \cdot 410E + 01$
	• 46	5 0	•234E-04	0.853E-05	0•387E+01
	• 48	5 0	•253E-04	0.727E-05	0• 41 7E+ 01
	• 50	5 0	•216E-04	0.592E-05	0•357E+01
	• 52	5 0	•166E-04	0.761E-05	0.273E+01
	. 54	5 0	•147E-04	0.804E-05	0.243E+01
	• 56	5 0	•133E-04	0.788E-05	0.220E+01
	• 58 • . *	5 0	•106E-04	0.721E-05	0.175E+01
	• 60	5 0	.120E-04	0.673E-05	0•197E+01
	• 62	5 0	•106E-04	0.592E-05	0.175E+01
	· 64	5 0	• 106E=04	0.312E-05	0•175E+01
	. 66	5 0	•966E-05	0.571E-05	0•159E+01
	• 68	5 0	•736E-05	0.958E-05	0.121E+01
	• 70	5 0	•736E=05	0.733E-05	0.121E+01
	• 72	5 0	• 506E-05	0.688E-05	0.835E+00
	• 74	5 0	• 414E-05	0.703E-05	0.683E+00
	• 76	5 0	•736E-05	0.512E-05	0.121E+01
	• 78	4 0	• 690E-05	0.276E-05	0•114E+01

GROUP SEVEN

VALLES EM SØUNDING 817 ØFFSET DISTANCE IS 6430. METERS LØØP AREA IS .1664 SOUARE KILØMETERS SØURCE LENGTH IS 4300. METERS CUERENT IS 34.5 AMPERES DEFLECTIØN ANGLE IS 8.0DEGREES DIGITIZING SCALE IS 0.229MICRØVØLTS/DIV

EDITED AND STACKED DATA

•	TIME	NUM	BER AVERAGE	ST. DEV.	EARLY R
•	• 02	4	0.123E-03	0•864E-05	0.181E+02
	• 04	4	0.280E-03	0.103E-04	0.410E+02
	• 0 6	4	0.382E-03	0.413E-05	0.560E+02
	· 08·	4	0.403E-03	0•993E-05	0•590E+02
	• 10	4	0.373E-03	0.573E-05	0.547E+02
	.12	4	0.321E-03	0.106E-04	0•471E+02
	• 1 4	4	0.259E-03	0.636E-05	0•379E+02
	•16	4	0.207E-03	0•833E-05	0.304E+02
	• 18	4	0-171E-03	0.121E-04	0.251E+02
	• 20	4	0.146E-03	0.819E-05	0.214E+02
	• 22	4	0.124E-03	0•973E-05	0.182E+02
	.24	Zį.	0.106E-03	0.987E-05	0.155E+02
	• 26	4	0.935E-04	0.676E-05	0.137E+02
	• 28	4	0.803E-04	0.903E-05	0.118E+02
	• 30 .	4	0.705E-04	0.767E-05	0.103E+02
	• 35	4	0•631E-04	0.925E-05	0•925E+01
	• 34	4	0.573E-04	0.873E-05	0•841E+01
	• 36	4	0.505E-04	0.843E-05	0•740E+01
	• 38	4	0.424E-04	0.769E-05	0.622E+01
	• 40	4	0.413E-04	0.628E-05	0.605E+01
	. 42	4	0.373E-04	0.819E-05	0.555E+01
	. 44	4	0.367E-04	0.707E-05	0.538E+01
	• 46	4	0.321E-04	0.111E-04	0.471E+01
	• 48	4	0.287E-04	0.819E-05	0.420E+01
	• 50	4	0.275E-04	0.585E-05	0.404E+01
	. 52	4	0.235E-04	0•469E-05	0.345E+01
	.54	4	0.183E-04	0.429E-05	0.269E+01
	• 56	4	0.206E-04	0.707E-05	0.303E+01
	• 58	4	0.155E-04	0.107E-04	0.227E+01
	• 60	4	0•149E-04	0.678E-05	0.219E+01
	• 62	4	0.149E-04	0.573E-05	0.219E+01
	. 64	4	0.132E-04	0.409E-05	0.193E+01
	• 66	4	0•138E-04	0.585E-05	0.202E+01
	. 68	<i>Z</i> 1	0.120E-04	0.767E-05	$0 \cdot 177E + 01$
	• 70	4	0.917E-05	0.562E-05	U. 135E+U1
	• 72	4	0.860E-05	10.571E-05	U+126E+01
	• 74	4	0.917E-05	0.562E-05	0.1352+01
	• 76	4	0.803E-05	0.526E+05	0.118E+01
	• 78	4	0.631E-05	0.522E-05	0.925E+00

VALLES EM SURVEY 818 ØFFSET DISTANCE IS 6400. METERS

LOOP AREA IS • 1664 SQUARE KILOMETERS SQURCE LENGTH IS 4300• METERS CURFENT IS 34•5 AMPERES DEFLECTION ANGLE IS 4• ODEGREES DIGITIZING SCALE IS 0• 229MICROVOLTS/DIV

EDITED AND STACKED DATA

TIME	NUME	BER AVERAGE	ST. DEV.	EARLY R
• 02	5	0.122E-03	0.247E-04	0.175E+02
• 0.4	5	0.295E-03	0.281E-04	0.422E+02
.06	5	0.404E-03	0.167E-04	0.576E+02
• 08·	5	0•428E-03	0.956E-05	0.612E+02
• 10	5	0.394E-03	0.151E-04	0.562E+02
.12	5	, 0.329E-03	0.172E-04	0•469E+02
• 1 4	5	0.269E-03	0.124E-04	0• 38 4E+02
.16	5	0.219E-03	0.120E-04	0.312E+02
• 18	5	0.180E-03	0.120E-04	0•257E+02
• 20	5	0.148E-03	0.990E-05	0.211E+02
• 55	5	0.122E-03	0.901E-05	0.175E+02
.24	5	0.106E-03	0.626E-05	0.152E+02
•26	5	0•908E-04	0.690E-05	0.130E+02
• 28	- 5	0.844E-04	0.745E-05	0.120E+02
• 30 .	5	0•706E-04	0.887E-05	0.101E+02
• 32	5	0.619E-04	0.711E-05	0•884E+01
• 34	5	0.573E-04	0•598E-05	0.818E+01
• 36	5	0.555E-04	0•838E-05	0.792E+01
• 38	5	0.427E-04	0.111E-04	0•609E+01
• 40	5	0•394E-04	0.813E-05	0•563E+01
• 42	5	0•372E-04	0.911E-05	0.530E+01
• 44	5	0.362E-04	0.109E-04	0.517E+01
• 46	5	0.317E-04	0.142E-04	0.452E+01
• 43	5	0.298F-04	0.134E-04	0.426E+01
. 50	5	0.252E-04	0.124E-04	0.360E+01
• 52	5	0.229E-04	0.110E-04	0.327E+01
. 54	5	0.202E-04	0•988E-05	0.288F+01
• 56	5	0.206E-04	0.106E-04	0.295E+01
a 58	5	0.188E-04	0 • 8 38 E - 0 5	0.268 ± 01
• 60	5	0 • 1 79 E-04	0•933E-05	0.255E+01
• 62	5	0.174E - 04	0.853E-05	0.249E+01
· F4	5	0.142E-04	0.813E-05	0.203E+01
• 66	5	0.124E-04	0.748E-05	$0 \cdot 1 / 7E + 01$
• 68	5	0.124E-04	0.674E=05	$U_{*} [/ / E + U]$
• 70	5	0.917E-05	0.523E-05	$0 \circ 1 3 1 E + 0 I$
. 72	5	$0 \cdot 101 F - 04$	D. 373E-05	U+144E+U1
- 74	5	0.872E-05	()。445년~()5	$0 \circ 124t + 01$
• 76	5	0.688E-05	0.5025-02	0 851E100
• 78	5	0.596E-05	0.183F-02	0.001E+00

VALLES EM SØUNDING 819 ØFFSET DISTANCE IS 6200. METERS LØØP AREA IS .1664 SQUARE KILØMETERS SØUPCE LENGTH IS 4300. METERS CURRENT IS 34.5 AMPERES DEFLECTIØN ANGLE IS 5.0DEGREES DIGITIZING SCALE IS 0.229MICRØVØLIS/DIV

EDITED AND STACKED DATA

	TIME	NUMBER	AVERAGE	ST.	DEV.	EARLY R
	.02	5	0.129E-03	0.162E-	04	0.162E+02
	. 64	6	0.284E-03	0.236E-	04	0.358E+02
	.06	6	0.374E-03	0. 688E-	05	0.471E+02
	• 0'8	6	0.375E-03	0.113E-	04	0.472E+02
	• 10	6 .	0.330F-03	0.159E-	04	0.416E+02
	.12	6 .	0.268E-03	0.190E	04	0.337E+02
	• 1 4	6	0.209E-03	0.143E-	0.4	0.263E+02
	• 16	6	0.176E-03	0.175E-	04	0.555E+05
	. 18	5	0.151E-03	0.106E-	04	0.190E+02
	.20	6	0.120E-03	0.781E-	05	0.152E+02
	.22	6	0.982E-04	0.142E-	04	0.124E+02
	. 24	6	0.849E-04	0.116E-	04	0.107E+02
	.26	6	0.791E-04	0.769E-	05	0.996E+01
	. 28	6	0.677E-04	0.632E-	05	0.852E+01
	• 30	6	0.543E-04	0.791E-	05	0.683E+01
	• 32	5	0.528E-04	0.562E-	05	0.664E+01
	• 34	6	0.436E-04	0.737E-	05	0.549E+01
	• 36	5	0.404F-04	0.950E-	05	0.508E+01
	. 38	6	0.325E-04	0.765E-	05	0.409E+01
	. 40	6	0.298E-04	0.419E-	05	0.375E+01
	. 42	6	0.268E - 04	.0.745E-	05	0.3375+01
	. 44	6	0.229E-04	0•713E-	05	0.289E+01
	. 46	6	0.218E-04	0.632E-	05	0.2742+01
	• 48	6	0.183E-04	0. 688E-	05	0.2312+01
	• 50	6	0.172E-04	0.734E-	05	0.2176.+01
	. 52	6	0.141E - 04	0.668E-	05	0.178E+01
2	. 54	6	0.145E-04	0.524E-	05	0.183E+01
	. 56	6	0.119E-04	0.553E-	05	0.149E+01
	. 58	6	0.103E-04	0.473E-	- (15	0.1302+01
	• 60	6	0.994E-05	0.587E-	05	0.125E+01
	• 62	6	0.688E-05	0.701E-	05	0.866E+00
	· 64	6	0.765E-05	0.8346-	05	0. 7705+00
	. 66	6	0.612E-05	0.733E-	05	0. 500 E+00
	• 69	6	$() \cdot 420E = 05$	0.8211-	05	0. 1165+01
	• 70	5	0.9172-05	0 7025	05	0.578E+00
	• 72	f	0.4591 - 05	0. 2005	05	0. 4335+00
	• 7 21	6	0. 2045-05	0. 377E	05	0.335+00
	• 76	6	0. 4501 05	0. 6495-	05	0.578F+00
	• /55	C	(10 4241-(12)	U. 000 C	00	0. 5192.00

VALLES EM SØUNDING 820 ØFFSET DISTANCE IS 6000, METERS LØØP AREA IS .1664 SOUARE KILØMETERS SØURCE LENGTH IS 4300, METERS CURRENT IS 34.5 AMPERES DEFLECTIØN ANGLE IS 3.0DEGREES DIGITIZING SCÀLE IS 0.231MICRØVØLTS/DIV

EDITED AND STACKED DATA

TIME	NUMBER	AVERAGE	ST. D	EV. EARLY R
• 02	5 0.1.	46E-03	0.157E-0	4 0•161E+02
• 0 4	5 0.39	99E-03	0•285E-0	4 0• 439 E+ 02
• 06	5 0.5	18E-03	0.145E-0	4 0• 570E+02
• 08	5 0.5	14E-03	0.106E-0	4 0•566E+02
• 10	5 0.42	26E-03	0.277E-0	4 0• 469 E+ 02
.12	5 0.32	21E-03	0.269E-0	5 0.354E+02
.14	5 0.2.	44E-03	0.129E-0	4 . 0 • 2 69 E+ 02
•16	5 0.19	99E-03	0.905E-0	5 0.219E+02
• 18	5 .0 • 1 (62E-03	0.527E-0	5 0.178E+02
• 20	5 0.13	32E-03	0•514E-0	5 0•145E+02
• 22	5 0.1	12E-03	0•539E-0	5 0.124E+02
.24	5 0.92	24E-04	0.462E-0	5 0•102E+02
• 5.6	5 0.81	1.3E-04	0.554E-0	5 0.895E+01
. 28	5 0.72	21E-04	0.707E-0	5 0•794E+01
• 30	5 0.6	14E-04	0.647E-0	5 0• 677E+01
• 32	5 0.5	50E-04	0.592E-0	5 0.605E+01
• 34	.5 0•50	D3E-04	0•609E-0	5 0.554E+01
.36	5 0.4	71E-04	0.647E-0	5 0• 519E+01
• 38	5 0.4	11E-04	0.736E-0	5 0• 453E+01
• 40	5 0.30	65E-04	0•493E-0	5 0.402E+01
• 42	5 0.33	37E-04	0.428E-0	5 0• 371E+01
. 44	5 0.28	32E-04	0.370E-0	50•310E+01
• 46	5 0.2	73E-04	0.423E-0	5 0• 300E+01
• 48	5 0.2	54E-04	0• 38 6E- 0	5 0.280E+01
• 50	5 0.2	40 E- 0 4	0.346E-0	5 0.265E+01
• 52	5 0.2	12E-04	0.306E-0	5 0.234E+01
• 54	5 0.18	35E-04	0.327E-0	5 0.203E+01
• 56	5 0.18	35E-04	0.253E-0	5 0.203E+01
• 58	5 0.18	39E-04	0.173E-0	5 0.209E+01
• 60	5 0•1	71E-04	0.313E-0	5 0.188E+01
• 62	5 0.1	57E-04	0.226E-0	5 0.173E+01
. 64	5 0.13	34E-04	0.306E-0	5 U. 148E+UI
.66	5 0.13	39 E-04	0.146E-0	5 0.1538+01
• 68	5 0.1	62E-04	0.413E-0	5 U. I /8E+UI
• 70	5 0•1•	48 E- 0 4	0.313E-0	5 U+163E+U1
• 72	5 0.12	20E-04	0.3066-0	5 U+132E+UI
• 74	5 0•10)2E-04	0.5366-0	5 U+1128+01
• 7.6	4 0.1.	39 E- 0 4	0.277E-0	5 U+153E+U1
• 73	5 0.1	15E-04	0.292F-0	D U 1276+01

VALLES EM SØUNDING 821 ØFFSET DISTANCE IS 6550. METERS LØØP AREA IS .1664 SQUARE KILØMETERS SØURCE LENGTH IS 4300. METERS CURRENT IS 34.0 AMPERES DEFLECTIØN ANGLE IS 0.0DEGREES DIGITIZING SCALE IS 0.230MICRØVØLTS/DIV

EDITED AND STACKED DATA

TIME	NUMBER	AVERAGE	ST. DEV.	EARLY R
. 02	4 0	.199E-03	0.601E-04	0•316E+02
•04	4 0	.655E-03	0•484E-04	0•104E+03
• 0.6	4 0	•718E-03	0•169E-04	0•114E+03
• 08	4 0	•628E-03	0.342E-04	0•995E+02
.10	4 0	•454E-03	0.438E-04	0.719E+02
.12	4 .0	• 320E-03	0.375E-04	0.507E+02
• 1 4	4 0	•222E-03	0.193E-04	0.352E+02
.16	4 0	• 179 E- 03	0.166E-04	0.284E+02
. 18	4 0	•141E-03	0.815E-05	0.223E+02
•20	4 0	•117E-03	0•983E-05	0.1856+02
• 22	4 0	•933E-04	0.528E-05	0.148E+02
.24	4 0	•812E-04	0.771E-05	0.1296+02
•26	4 0	• 691E-04	0.862E-05	0.110E+02
. 28	4 0	• 588E-04	0.104E-04	0.931E+01
• 30	4 0	• 472E-04	0•109E-04	0.748E+01
• 32	4 0	• 403E-04	0.115E-04	0.639 ± 01
.34	4 0	• 300E-04	0.107E-04	0.475E+01
• 36	4 0	• 248E-04	0.698E-05	0.393E+01
• 38	4 0	•213E-04	0.550E-05	$0 \cdot 338E + 01$
• 40	4 0	• 225E-04	0.913E-05	0.356E+01
• 42	4 C	•230E−04	0.991E-05	0.3650+01
• 44	4 C	• 167E-04	0.996E-05	0.265E+01
• 46	4 C	• 132E-04	0.158E-04	0.2102+01
• 48	- 4 - C).138E-04	0.152E-04	0.2192+01
• 50	4 C).127E-04	0.124E-04	0.2012+01
• 52	4 ()•138E-04	0.515E-05	0.2192+01
. 54	4 0)•156E-04	0.618E-05	0.2402+01
• 56	4 ()•138E-04	().747E-05	0.2172+01
• 58	4 0)•167E-04	().411E-05	0.183E+01
• 60	4 0).115E-04	0.282E-05	0.192F+01
• 62	4 ()-1211-04	0.299E=05	0.183E+01
• 64	2) ().115E-04	(1, 5640 - 05)	0.137E+01
• 66	4 ().864E-05	0.596E-05	0.128 F+ 01
• 68	4 (J. 806E-05	0 413E-05 0 709E-05	0.146F+01
• 70	4 (1. 422E-US		0.100F+01
• 72	4 (1.634E=UD	0.9138-05	-0.456E+00
• 74	4 -(J• どやみた= U >	0.8985-05	- 0. 639 E+ 00
• 76	4 - (J. 4038-03	0.102E - 04	0.913E-01
• 78	4 (J. 376E~U6	UNIDGE UM	0

VALLES EM SØUNDING 822 ØFFSET DISTANCE IS 5430. METERS LØØP AREA IS .1664 SQUARE KILØMETERS SØURCE LENGTH IS 4290. METERS CURRENT IS 36.0 AMPERES DFFLECTIØN ANGLE IS 5.0DEGREES DIGITIZING SCALE IS 0.231M1CRØVØLTS/DIV

EDITED AND STACKED DATA

	TIME	NUM	BER AVERAGE	ST. DEV.	EARLY R
•	• 02	4	0.147E-03	0•387E-04	0.105E+02
	• 0 4	4	0.403E-03	0.213E-04	0•287E+02
	• 06	4	0.529E-03	0.150E-04	0•377E+02
	. 08	4	0.470E-03	0.294E-04	0•334E+02
	• 10	4	0.3578-03	0.381E-04	0•254E+02
	.12	4	0.263E-03	0.279E-04	0•187E+02
	.14	4	0.204E-03	0.998E-05	0.145E+02
	• 16	4	0.162E-03	0•139E-04	0.115E+02
	• 18	4	Q.131E-03	0.189E-04	0•933E+01
	• 20	4	0.113E-03	0•998E-05	0.801E+01
	• 22	4	0.803E-04	0.915E-05	0•571E+01
	. 24	4	0.722E-04	0.106E-04	0•514E+01
	• 26	4	0•647E-04	, 0• 589 E - 0'5	0•460E+01
	213	4	0.560E-04	0.412E-05	0•399E+01
	• 30	4	0.462E-04	0.432E-05	0•329E+01
	• 32	4	0.381E-04	0.622E-05	0.271E+01
	.34	4	0.312E-04	0.115E-05	0.555E+01
	• 36	4	0.300E-04	0.163E-05	0•214E+01
	• 39	4	0.260E-04	0.681E-05	0•185E+01
	• 40	4	0.231E-04	0•849E-05	0•164E+01
	. 42	4	0.173E-04	0•258E-05	0.123E+01
	. 44	4	0•144E-04	0.412E-05	0•103E+01
	• 46	4	0.156E-04	0•597E-05	0•111E+01
	• 48	4	0 • 1 39 E- 0 4	0.432E-05	0•986E+00
	• 501	4	0•104E-04	0.346E-05	0•739E+00
	• 52	4	0.866E-05	0.526E-05	0•616E+00
	.54	4	0.866E-05	0.500E-05	0.616E+00
	• 56	4	0.924E-05	0•589E-05	0.657E+00
	• 58	4	0.751E-05	0.252E-05	0.534E+00
	. 60	4	0.751E-05	0.252E-05	0.534E+00
	• 62	4	0.808E-05	0.115E-05	0.575E+00
	. 64	4	0.924F = 0.5	0.233E-05	0.657E+00
	. 66	4	0.808F-05	0.503E-05	0.575E+00
	• 63	4	0.693E-05	()• 490E-05	(). 49 3E+ 00
	• 70	4	0.404E-05	0.379E-05	0.288E+00
	• 72	4	0. 635E-05	0. 500F-05	0.452E+00
	. 74	4	0.693E-05	0.589E-05	0.493E+00
	. 76	4	0.751F-05	0.500E-05	0.534E+00
	• 7 8	4	0.462E-05	0.490E-05	0.329E+00

GROUP SEVEN

ł

VALLES EM SØUNDING 823 ØFFSET DISTANCE IS 5300. METERS LØØP AREA IS .1664 SOUARE KILØMETERS SØURCE LENGTH IS 4290. METERS CURRENT IS 36.0 AMPERES DEFLECTIØN ANGLE IS 8.0DEGREES DIGITIZING SCALE IS 0.230MICRØVØLTS/DIV

EDITED AND STACKED DATA

.

ゆうく

-	TIME	NLMBER	AVERAGE	ST. DEV.	EARLY R
	.02	4 0.	157E-03	0.177E-04	0.102E+02
	.04	4 0.	551E-03	0.328E-04	0.358E+02
	• 06	4 0.	680E-03	0.991E-05	0.442E+02
	. 08	4 '0.	59 4E-03	0.324E-04	0•386E+02
	• 10	4 0.	437E-03	0.263E-04	0•284E+02
	.12	4 0.	302E-03	0.118E-04	0.197E+02
	• 1 4	4 `0.	221E-03	0.525E-05	0.143E+02
	• 16	4 0.	176E-03	0.528E-05	0.115E+02
	• 18	4 0,	134E-03	0.442E-05	0.873E+01
	• 20	4 0.	116E-03	0.755E-05	0•757E+01
	• 22	4 0.	922E-04	0.431E-05	0•599E+01
	.24	4 0.	801E-04	0•596E-05	0.521E+01
	.26	4 0.	709E-04	0.191E-05	0.461E+01
	• 28	4 0.	588E-04	0.346E-05	0•382E+01
	• 30	4 0.	501E-04	0.837E-05	0.326E+01
	• 32	4 0.	490E-04 ,	0.659E-05	0•318E+01
	• 34	4 0.	444E-04	0.341E-05	0•288E+01
	• 36	4 0.	38 6E-04	0.341E-05	0.251E+01
	• 38	4 0.	300E-04	0.540E-05	0•195E+01
	• 40	4 '0.	276E-04	0.431E-05	0•180E+01
	• 42	4 0.	253E-04	0.631E-05	$0 \cdot 1.65E + 01$
	. 44	4 0.	207E-04	0.431E-05	0.135E+01
	• 46	4 0.	213E-04	0.442E-05	0•139E+01
	• 48	.4 0.	207E-04	0.230E-05	0.135E+01
	• 50	4 0.	207E-04	0.282E-05	0.135E+01
	• 52	4 0.	173E-04	0.115E-05	0.112E+01
	• 54	4 0.	104E-04	0.502E-05	0.674E+00
	. 56	4 0.	121E-04	0.442E-05	0.7871.+00
	• 58	4 0.	115E-04	0.364E-05	0.749E+00
	• 60	4 0.	121E-04	0.341E-05	0.787E+00
	• 62	4 0.	979E-05	0.37%E-05	0.637E+00
	• 64	4 0.	121E-04	0.525E-05	0.787E+00
	. 66	4 0.	806E-05	0.599E-05	0.5248+00
	• 68	4 0.	576E-05	0.346E-05	0.375E+00
	• 70	4 0.	806E-05	0.415E-05	0.5241+00
	. 72	4 0.	634E-05	0,299E-05	0.4126+00
	• 74	4 0.	461E-05	0.431E-05	0.3001+00
	• 76	4 0.	691E-05	0.672E-05	U. 4491+UU
	• 78	4 0.	922E-05	0.587E-05	U. 599E+00

GROUP SEVEN

11-23

VALLES EM SØUNDING 824 ØFFSET DISTANCE IS 5100. METERS LØØP AREA IS .1664 SOUARE KILØMETERS SØUFCE LENGTH IS 4290. METERS CURRENT IS 36.0 AMPERES DEFLECTIØN ANGLE IS 11.0DEGREES DIGITIZING SCALE IS -0.230MICKØVØLTS/DIV

EDITED AND STACKED DATA

•	TIME	NUM	BER AVERAGE	ST. DEV.	EARLY R
•	• 02	4	-0.145E-03	0.163E-03	-0.817E+01
	• 0 4	4	0.167E-03	0•658E-04	0.940E+01
	• 0 6	4	0.358E-03	0•411E-03	0.202E+02
	• 08	4	0.285E-03	0.520E-03	0.160E+02
	• 10	4	0.229E-03	0•414E-03	0.129E+02
	.12	4	0.171E-03	0•315E-03	0•960E+01
	.14	4	0.126E-03	0.239E-03	0.707E+01
	• 16	4	0•945E-04	0.176E-03	0.532E+01
	• 18	4	0.• 703E-04	0.146E-03	0• 39 6E+ 01
	• 20	4	0.634E-04	0.124E-03	0.357E+01
	• 22	4	0•559E-04	0.102E-03	0.315E+01
	.24	4	0.484E-04	0.813E-04	0.272E+01
	• 26	4	0.380E-04	0.626E-04	0.214E+01
		4	0.374E-04	0.623E-04	0.211E+01
	• 30	凵	0.323E-04	0.520E-04	0.182E+01
	• 32	4	0•311E-04	0.460E-04	0.175E+01
	• 34	4	0.259E-04	0•417E-04	0.146E+01
	• 36	4	0•219E-04	0.401E-04	0.123E+01
	• 38	4	0.190E-04	0.370E-04	0.107E+01
	. 40	4.	0•179E-04	0.297E-04	0.101E+01
	. 42	4	0•190E-04	0•258E-04	0•107E+01
	. 44	4	0•144E-04	0.260E-04	0.811E+00
	. 46	4	0 • 1 38 E- 0 4	0•248E-04	0•778E+00
	• 48	4	0.132E-04	0•260E-04	0•746E+00
	. 50	4	0.109E-04	0.194E-04	0.616E+00
	• 52	∠ļ	0•109E-04	0•196E-04	0.616E+00
	• 54	4	0.864E-05	0.147E-04	0•486E+00
	. 56	4	0.115E-04	0.112E-04	0•649E+00
	. 58	4	0.115E-04	0.147E-04	0.649E+00
	• 60	4	0.461E-05	0.157E-04	0•259E+00
	• 62	21	0.576E-05	0.957E-05	0.3248+00
	. 64	21	0.749E-05	0.898E-05	0.422E+00
	• 66	Ζ.	0.806E-05	0.599E-05	0.454E+00
	. 68	- 4	0.104E-04	0.929E-05 ·	0.584E+00
	• 70	<i>Z</i> }	0.979E-05	0.573E-05	0.551E+00
	• 72	4	0.749E-05	0,81)4E-05	0.422E+00
	.74	<i>4</i> ·	0.346E-05	0.957E-05	0.195E+00
	• 76	Ź4	0.288F=05	0.927E-05	0.1621.+00
	± 78	21	0.346E-05	0.125E-04	0.195E+00

GROUP SEVEN

VALLES EM SØUNDING 825 ØFFSET DISTANCE IS 5180. METERS LØØP AREA IS .1664 SOUARE KILØMETERS SØURCE LENGTH IS 4290. METERS CURRENT IS 36.0 AMPERES DEFLECTION ANGLE IS 17.0DEGREES DIGITIZING SCALE IS -0.230MICRØVØLTS/DIV

EDITED AND STACKED DATA

TIME	NUMI	BER AVERAGE	ST. DEV.	EARLY R
.02	4	0.345E-03 ·	0•453E-04	0.213E+02
• 0.4	4	0.7735-03	0•168E-04	0•477E+02
• 06	4	. 0. 797E-03	0-117E-04	0.492E+02
• 08	4	0.595E-03	0.693E-04	0.367E+02
• 10	4	0.400E-03	0.176E-04	0•247E+02
•12	4	0.287E-03	0•171E-04	0.177E+02
• 1 4	4	0.198E-03	0.107E-04	0.122E+02
• 16	4	0.1602-03	0•868E-05	0•986E+01
• 18	4	-0.128E-03	0.129E-04	0•787E+01
• 20	4	0.106E-03	0•107E-04	0.653E+01
• 22	4	0.891E-04	0•109E-04	0.550E+01
.24	4	0.776E-04	0•548E-05	0• 479 E+ 01
• 26	4	0.661E-04	0•803E-05	0,408 E+01
• 28	4	0.546E-04	0•803E-05	0.337E+01
• 30 .	4	0.506E-04	0•586E-05	0.312E+01
• 32	4	0.425E-04	0•575E-05	0.262E+01
• 34	4	0.356E-04	0•474E-05	0.220E+01
• 36	4	0.345E-04	0•282E-05	0.213E+01
• 38	Zi	0.316E-04	0• 441 E- 05	0•195E+01
• 40	4	0.253E-04	0.905E-05	0.156E+01
. 42	4	0.270E-04	0.716E-05	0.167E+01
• 44	4	0.241E-04	'0•474E-05	0•149E+01
• 46	4	0.224E-04	0.410E-05	0 • 1 38 E+01
• 43	4	0.184E-04	0.563E-05	0.113E+01
• 50	4	0.172E-04	0.474E-05	0.106E+01
• 58	4	0.149E-04	0• 59 7E-05	0.9225+00
• 54	4	0.126E-04	0.883E-05	0.780E+00
. 56	4	0.115E-04	0.709E-05	0.709E+00
• 58	∠i	0.109E-04	0.548E-05	0.6745+00
. 60	4	0.977E-05	0•658E-05	0.603E+00
• 62	_ <u></u>	0.920F-05	0.727E-05	0.5675+00
64	· 4	0.362E-05	0.678E-05	0.532E+00
• 66	Zi	0.690E-05	0.7628-05	0.4261+00
• 63	4	0.690E-05	0.709E-05	0.4261+00
• 70	4	0.747E-05	0.441E-05	0.461E+00
• 72	4	0.747E-05	.0.410E-05	0. 461E+00
. 74	4	0.632E-05	0.340E-05	0.3405+00
• 76	4	0.517E-05	(1 - 44) = 05	0.319E+00
• 73	4	0.517E-05	0.191E-05	0.319F+00

VALLES EM SØUNDING 826 ØFFSET DISTANCE IS 5670. METERS LØØP AREA IS .1664 SOUARE KILØMETERS SØURCE LENGTH IS 4290. METERS CURRENT IS 36.0 AMPERES DEFLECTIØN ANGLE IS 15.0DEGREES DIGITIZING SCALE IS 0.231MICRØVØLTS/DIV

EDITED AND STACKED DATA

•	TIME	NIMBER	AVERAGE	ST. DEV.	EAFLY R
	- 02	5 0	158E-03	0.604E-04	0•138E+02
	• 0 £	5. 0.	.480E-03	0.825E-04	0.421E+02
	.06	5 0	•577E-03	0.477E-05	0•506E+02
	.03	5 0	• 503E-03	0.262E-04	0•441E+02
	.10	5 0	• 379E-03	0.206E-04	0.332E+02
	.12	5.0	•277E-03	0.151E-04	0•243E+02
	• 1 4	5 0	• 212E-03	0• 79 7E- 05	0•136E+02
	•16	5 0	.165E-03	0.741E-05	0.145E+02
	. 18	5 0	•129E-03	0.628E-05	0•113E+02
	• 20	5 0	•110E-03	0.429E-05	0•961E+01
	• 22	5 0	•894E-04	0.726E-05	0.783E+01
	.24	5 0	• 796E-04	0.236E-05	0.697E+01
	•26	5 0	•644E-04	0.340E-05	0.564E+01
	. 28	5 0	• 58 3E-04	0•449E-05	0.511E+01
	• 30	5 .0	• 523E-04	0.314E-05	0.458E+01
	• 32	5 0	• 468 E-04	0.340E-05	0.410E+01
	. 34	5 0	• 380E-04	0.429E-05	0.3335+01
	• 36	5 0	•366E-04	0.307E-05	0.320E+01
	• 38	5 0	• 324E-04	0.528E-05	0.234E+01
	• 40	5 0	• 306E-04	0.575E-05	0.268E+01
	. 42	5 0	•269E-04	0.314E-05	0.235E+01
	. 44	5 0	•222E-04	0.314E-05	0.195E+01
	. 46	5 0	•227E-04	0.398E-05	0.199E+01
	. 48	5 . 0	• 190E-04	0.536E-05	0.166E+01
	• 50	5 0	• 167E-04	0.340E-05	0.1400+01
	• 52	4 0	•162E-04	0.926E-06	0.142E+01
	.54	5 0	• 139E-04	0.254E-05	0.1222+01
	. 56	5 0	• 120E-04	0.340E-05	0.105E+01
	• 58	5 0	120E-04	0.370E-05	0.1205401
	• 60	5 0	• 1 48 E- 0 4	0.376±-05	$0 \bullet 130E \pm 01$
	• 62	5 0	•926E-05	0.6388-05	0.6112 ± 00
	• 64	5 0	• 787E-05	0.477E-00	$0 \cdot \cos 9 E + 00$
	. 66	5 0	102E-04	0.631E=05	$0 \circ 0 9 Z E + 00$
	• 68	5 0	972E-05	0.3702-05	0.0322+00
	• 70	5 C	•926E-05	0.2546-05	0.6308+00
	•.72	5 C). 787E-05	U = 18 3E= U2	
	. 74	5 C). 69 4E-05	0 + 20 R = 03	0.639 F + 0.0
	• 76	5 C	1. 7371-05	0.407E 05	0.3246+00
	. 73	5 0	1.370E-05	U. AU4E-US	

VALLES EM SØUNDING 827 ØFFSET DISTANCE IS 5270. METERS LØØP AREA IS .1664 SOUARE KILØMETERS SØUFCE LENGTH IS 4290. METERS CUERENT IS 36.0 AMPERES DEFLECTIØN ANGLE IS 23.0DEGREES DIGITIZING SCALE IS 0.230MICRØVØLTS/DIV

EDITED AND STACKED DATA

:

TIME	NUMBER	AVERAGE	ST. DEV.	EARLY R
.02	4	0.200E-03	0.615E-04	0.138E+02
• 0.4	4	0.662E-03	0.552E-04	0•457E+02
• C 6	4	0.842E-03	0.224E-04	0.581E+02
• 08	4	0.706E-03	0•289E-04	0•488E+02
• 1.0	4	0.484E-03	0.515E-04	0.334E+02
.12	4	0.328E-03	0.283E-04	0.226E+02
.14	4.	0•239E-03	0.150E-04	0.165E+02
.16	4,	0.176E-03	0.738E-05	0.122E+02
.18	4	0.142E-03	0•868E-05	0.982E+01
• 50	4	0.113E-03	0.107E-04	0•779E+01
• 22	4	0•870E-04	0.341E-05	0.600E+01
.24	4	0.778E-04	0.341E-05	0.537E+01
• 2.6	4	0•691E-04	0.364E-05	0.477E+01
• 23	4	0.507E-04	0.587E-05	0.350E+01
• 30	4	0.472E-04	0.475E-05	0.326E+01
• 32 -	4	0.455E-04	0.499E-05	0.314E+01
• 34	4	0.351E-04	0•499E-05	0.243E+01
• 36	4	0.282E-04	0•659E-05	0•195E+01
• 38	4	0.259E-04	0.525E-05	0.179E+01
• 40	4	0•248E-04	0.659E-05	0.171E+01
. 42	4	0.225E-04	0.698E-05	0.155E+01
• 44	4	0.202E-04	0.341E-05	0 • 1 39 E+ 01
• 46	4	0.173E-04	0•258E-05	0.119E+01
• 43	4	0•167E-04	0.299E-05	0.115E+01
. 50	4	0.115E-04	0•431E=05	0.795E+00
• 52	4	0.121E-04	0.499E-05	0.835E+00
• 54	4	0•104E-04	0.415E-05	0.716E+00
• 56	∠j	0.864E-05	0.191E-05	0.596E+00
• 58	21	0.864E-05	0.191E-05	0.5966+00
. 60	4	0•749E-05	0.251E-05	0.517+00
• 62	4	0.518E-05	0.596E-05	0.358E+00
• 64	4	0•461E-05	0.282E-05	0.3181400
•-66	4	0.518E-05	0.411E-05	0.358E+00
• 68	4	0.576E-05	U.346E-05	U. 398 E+UU
.70	4	0.634E-05	0.4112-05	U. 4371+00
• 72	4	0.634E-05	U. 442E-U5	$0 + 437 \pm 00$
• 7 4	4	0.1/32-05	0.2991-05	0 250 E ± 00
• 76	4	0+51SE=05	U. 341E-05	0 218E+00
• 71	4	し。461と-05	U. 3266-US	

GROUP SEVEN

11-27

VALLES EM SØUNDING 828 ØFFSET DISTANCE IS 5300. METERS LØØP AREA IS .1664 SOUARE KILØMETERS SØURCE LFNGTH IS 4290. METERS CURRENT IS 36.0 AMPERES DEFLECTION ANGLE IS 30.0DEGREES DIGITIZING SCALE IS 0.228MICRØVØLTS/DIV

EDITED AND STACKED DATA

TIME	NUMBER	AVERAGE	ST. DEV.	EARLY R
• 02	4 0.	246E-03	0•605E-04	0.186E+02
• 0.4	4 0.	741E-03	0.753E-04	0•561E+02
• 0 6	4 0.	799E-03	0.319E-04	0•604E+02
• 08	4 0.	612E-03	0.467E-04	0•463E+02
• 1 0	4 0.	390E-03	0•450E-04	0•295E+02
.12	4 0.	283E-03	0.250E-04	0•214E+02
• 1 4	4 0	199E-03	0.165E-04	0.151E+02
.16	4 0.	152E-03	0.815E-05	0.115E+02
•18	4 0	123E-03	0•839E-05	0•933E+01
• 20	4 0.	976E-04	0•189E-05	0•739E+01
• 22	4 0.	839E-04	0•438E-05	0•635E+01
.24	4 0.	679E-04	0•189E-05	0.514E+01
• 26	4 0.	•559E−04	0•471E-05	0.423E+01
• 23	. 4 0.	479E-04	0.532E-05	0•363E+01
• 30	4 0.	439 E-04	0•189E-05	0• 333E+01
• 32	4 0.	400E-04	0•471E-05	0.302E+01
• 34	4 0.	365E-04	0.361E-05	0.276E+01
• 36	4 0.	325E-04	0•249E-05	0.246E+01
• 38	4 0	268E-04	0•338E-05	0.203E+01
• 40	4 0.	245E-04	0.297E-05	0•186E+01
. 42	4 0.	217E-04	0.342E-05	0.164E+01
• 44	4 0.	200E-04	.0• 189 E- 05	0.151E+01
. 46	4 0.	194E-04	0.198E-05	0.147E+01
. 43	4 0.	160E-04	0.511E-05	0.121E+01
• 50	4 0.	148E-04	0• 59 3E- 05	0.112E+01
. 52	4 0.	143E-04	0.520E-05	0.108E+01
. 54	4 0.	114E-04	0.427E-05	0.864E+00
• 56	4 0.	114E-04	0.582E-05	0.864E+00
• 53	4 0.	108 E-04	0•297E-05	0.821E+00
• 60	4 0	114E-04	0.395E-05	0.864E+00
• 62	4 0.	742E-05	0.374E-05	0.562E+00
. (-4	4 0.	856E-05	0.467E-05	0.643 ± 00
• <i>E</i> 6	4 0.	856E-05	0.338E-05	0.648E+00
• 63	4 0.	742E-05	()•374E-05	0.562E+00
• 70	Δ Ο.	742E-05	0.2491-05	U. 3621+00
• 78	4 0.	628E-05	0.297E-05	0.475E+00
.74	4 0.	457E-05	0.427E-05	0.3402+00
.76	2 _i 0 i	400E-05	D. 249E-05	0.3026+00
• 73	4 0.	.342E-05	0.4121-02	U• ≥ 59 ピ+ 00

GROUP SEVEN

I1-28

VALLES EM SØUNDING 829 ØFFSET DISTANCE IS 5500. METERS LØØP AREA IS .1664 SQUARE KILØMETERS SØURCE LENGTH IS 4290. METERS CURRENT IS 36.0 AMPERES DEFLECTIØN ANGLE IS 38.0DEGREES DIGITIZING SCALE IS 0.576MICRØVØLTS/DIV

EDITED AND STACKED DATA

- TIME	NIMBER	AVERAGE	ST.	DEV.	EARLY R
. 02	3 0.	509 F - 03	0.437E-	04	0•498E+02
• 0 <i>2</i> .	3 0.	117E-02	0.815E-	05	0.114E+03
• 0 4	3 0	908E-03	0.503E-	04	0.888E+02
• 00 08	3 0.	589 F-03	0•411E-	04	0.577E+02
• 00	3 0.	.359F-03	0.340E-	04	0.351E+02
• 10	3 0	.252E-03	0.118E-	04	0.246E+02
• 1 2.	3 0	.175E-03	0.165E-	04	0.171E+02
. 1.6	3 0	•119E-03	0•144E-	· 0 4	0.116E+02
- 18	3 0	• 9 79 E- 0 4	0.470E-	05	0•953E+01
• 10	3 0	826E-04	0.272E-	·05	0.808E+01
. 22	3 0	• 634E-04	0.470E-	05	0.620E+01
- 24	3 0	.576E-04	0.124E-	04	0•563E+01
. 26	3 0	• 461E-04	0.470E-	• 0 5	0.451E+01
. 28	3 0	•518E-04	0.815E-	05	0• 507E+01
. 30	3 0	. 403E-04	0.470E-	05	0• 39 4E+ 01
. 32	3 0	• 326E-04	0.718E-	-05	0.319E+01
• 34	3 0	.238E-04	0.470E-	• 0 5	0.282E+01
• 36	3 0	.211E-04	0.272E-	-05	0.207E+01
• 38	3 0	• 192E-04	0•979E-	• 0 5	0.188E+01
• 40	3 0	.173E-04	0.815E-	• 0 5	0•169E+01
. 42	3 0	·154E-04	0•718E-	-05	0•150E+01
. 44	3 0	•115E-04	0.815E-	- 0 5	0•113E+01
. 46	3 0	.115E-04	0.815E-	-05	0.113E+01
• 43	3 0	•768E-05	0•718E	-05	0.751E+00
. 50	3 0	•960E-05	0.543E	-05	0•939E+00
. 52	3 0	•768E-05	0.718E	-05	0.751E+00
.54	3 0	• 576E-05	0.470E	-05	0.563E+00
• 56	3 0	• 384E-05	0.272E	-05	0.376E+00
. 53	3 0	•768E-05	0.272E	-05	0.751E+00
. 60	3 0	•768E-05	0.272E	-05	0.751E+00
. 62	3 0	.576E-05	0.470E	-05	0.5631+00
· 6.4	3 0	.576E-05	0.470E	-05	0.563E+00
. 66	3 0	•576E-05	0.470E	- 0 5	0.5631+00
• 68	3 0	• 576E-05	0.470E	-05	0.563E+00
. 70	3 0	• 576E=05	0.470E	- 05	0.5632+00
. 72	3 0	576E-05	0.470E	- ().5	U. 563E+UU
• 74	3 0	• 576E-05	0'. 470E	-05	0.503E+00
• 76	3 0	• 576E-05	0.470E	-05	0.5632+00
• 78	3 0	• 576E-05	0.470E	-05	U. 203E+UU

GROUP SEVEN

VALLES EM SØUNDING 830 ØFFSET DISTANCE IS 4900. METERS LØOP AREA IS .1664 SOUARE KILØMETERS SØURCE LENGTH IS 4300. METERS CURRENT IS 36.0 AMPERES DEFLECTION ANGLE IS 18.0DEGREES DIGITIZING SCALE IS 0.231MICRØVØLTS/DIV

EDITED AND STACKED DATA

TIME	NUMBER	AVERAGE	ST. DEV.	EARLY R
• 02	5 0.	294E-03	0.355E-04	0•146E+02
• 0 4	5 0.	500E-03	0.185E-04	0.248E+02
•05	5 0.	501E-03	0•386E-05	0•249E+02
• 03	5 0.	429 E-03	0.216E-04	0•213E+02
•10	5 0.	307E-03	0 • 1 59 E- 0.4	0.152E+02
.12	5 0.	234E-03	0.206E-04	0•116E+02
• 1 4	5 ,0.	179E-03	0.109E-04	0•886E+01
•16	5 0.	124E-03	0.153E-04	0•615E+01
• 18	5 0.	949E-04	0.154E-04	0•471E+01
• 50	5 0.	69 4E-04	0.107E-04	0.344E+01
• 22	5 0.	620E-04	0.723E-05	0.308E+01
.24	5 0.	58 3E-04	0.871E-05	0.239E+01
• 26	5 0.	523E-04	0•967E-05	0•259E+01
• 28	5 0.	477E-04	0.107E-04	0.237E+01
• 30	5 0.	389E-04	0.723E-05	0•193E+01
• 32 ·	5 0.	347E-04	0.111E-04	0.172E+01
• 34	5 0.	306E-04	0.820E-05	0.152E+01
• 36	5 0.	222E-04	0.664E-05	0•110E+01
• 38	5 0.	194E-04	0.520E-05	0•965E+00
. 40	5 0.	190E-04	0.398E-05	0•942E+00
. 42	5 0.	181E-04	0.516E-05	0•896E+00
. 44	5 0.	162E-04	0.• 439 E= 05	0•804E+00
. 46	5 0.	176E-04	0•429E-05	0•873E+00 ·
• 48	5 0.	167E-04	0.645E-05	0•827E+00
• 50	5 0.	153E-04	0•559E-05	0.758E+00
. 52	5 0.	125E-04	0•429E-05	0• 620E+00
. 54	5 0.	106E-04	0.346E-05	0•528E+00
• 56	5 0.	972E-05	0.393E-05	0.482E+00
• 58	5 0.	116E-04	0.207E-05	0•574E+00
• 60	5 ೧.	125E-04	0.314E-05	0.620E+00
• 62	5 0.	926E-05	0.207E - 05	0•459E+00
• 64	5 0.	972E-05	0.307E-05	0.432E+00
• 66	5 0.	125E-04	0.278E-05	0.620E+00
• 6 8	5 0.	106E-04	0.314E-05	0.528E+00
. 70	5 0.	111E = 04	0.472F-05	0. 551E+00
• 72	5 0.	648E-05	0.449E-05	0.322E+00
. 74	5 0.	643E-05	0.270E-05	0.322E+00
• 76	5 0.	69 4E-05	0.327E-05	0.344E+00
• 73	5 0.	737E-05	0.578E-05	0.390E+00

GROUP SEVEN

VALLES EM SØUNDING 831 ØFFSET DISTANCE IS 7470. METERS LØØP AREA IS .1664 SOUARE KILØMETERS SØUPCE LENGTH IS 4290. METERS CUPRENT IS 36.0' AMPERES DEFLECTIØN ANGLE IS 44.0DEGREES DIGITIZING SCALE IS 0.231MICRØVØLTS/DIV

EDITED AND STACKED DATA

•	TIME	NUMBER	AVERAGE	ST. DEV.	EARLYR
÷	. 02	7 0.1	43E-03	0.435E-04	0.527E+02
	• 04	7 0.2	21E-03	0.343E-04	0.819E+02
	.06	7 0.2	72E-03	0.329E-04	0.100E+03
	• 08	7 0.30	06E-03	0.308E-04	0•113E+03
	.10	7 0.3	10E-03	0.221E-04	0•115E+03
	.12	7 .0.28	36E-03	0.277E-04	0•106E+03
	.14	7 0.2	64E-03	0.231E-04	0.975E+02
	.16	7 0.2	30E-03	0.180E-04	0.852E+02
	.18	7 0:20	08 E - 0 3	0.243E-04	0.763E+02
	. 20	7 0•1	71E-03	0•196E-04	0.632E+02
	• 22	7 0.1	43E-03	0•143E-04	0.530E+02
	.24	7 0.1	14E-03	0.170E-04	0.421E+02
	.26	6 0.9	74E-04	0.152E-04	0.360E+02
	• 23	7 0•9	57E-04	0•799E-05	0.354E+02
	• 30	7 0.7	69 E- 0 4	0.123E-04	0•284E+02
	• 32	7 0.6	73E-04	0.885E-05	0•249E+02
	• 34	7 0.5	91E-04	0•845E-05	0.218E+02
	• 36	7 0.4	68 E-04	0.124E-04	0.173E+02
	• 38	7 0.4	22E-04	0.970E-05	0•156E+02
	• 40	7 0.3	79 E 0 4	0.507E-05	0.140E+02
	. 42	7 0.3	73E-04	0.850E-05	0.138E+02
	. 44	7 0.3	43E-04	0.841E-05	0.127E+02
	. 46	7 0.3	04E-04	0.598E-05	0.112E+02
	. 48	7 0.2	67E-04	0.4EOF-05	0•939E+01
	• 50	.7 0.2	08 E- 04	0.370E-05	0.769E+01
	. 52	7 0•1	45E-04	0•489E-05	0.537E+01
	. 54	7 0.1	85E-04	0.617E-05	0.683E+01
	• 56	7 0.1	81E-04	0.585E-05	0.671E+01
	• 58	6 0•1	92E-04	0.536E-05	0.712E+01
	• 60	7 0.1	62E-04	0.524E-05	0.598E+01
	• 62	7 0•1	32E-04	0.816E-05	0.433E+01
	. 64	7 0.9	57E-05	0.775E-05	$0 \cdot 354E + 01$
	. 66	7 0•1	19E-04	0.692E-05	0.4398+01
	. 63	7 0•1	02E-04	0.889E-05	0.378E+01
	. 70	7 0.7	92E-05	0.708E-05	0+293E+01
	• 72	6 0•1	04E-04	0.686F-05	(), 384 + 01
	.74	6 0•1	12E-04	0.670E-05	0.413E+U1
	.76	7 0.8	91E-05	0.6921-05	0.1305101
	· 75	7 ()• 4	62E-05	0.972E-05	U. 1/12+01

GROUP SEVEN

11-31

VALLES EM SØUNDING 832 ØFFSFT DISTANCE IS 7070. METERS LØØP AREA IS .3951 SOUARE KILØMETERS SØURCE LENGTH IS 4290. METERS CURRENT IS 36.0 AMPERES DEFLECTION ANCLE IS 48.0DEGREES DIGITIZING SCALE IS -0.230MICRØVØLTS/DIV

EDITED AND STACKED DATA

TIME	NUMBER	AVERAGE	ST. DEV.	EARLY R
• 02	5 - 0	• 415E-04	0•954E-04	-0.564E+01
• () 4	6 0	• 305E-03	0.775E-04	0•414E+02
.06	6 0	• 509E-03	0•674E-04	0.693E+02
• 08	6 0	• 68 5E-03	0.351E-04	0•932E+02
.10	6 0	•742E-03	0.166E-04	0.101E+03
.12	6 0	•728E-03	0.349E-04	0.991E+02
. 14	6,0	• 649E-03	0.324E-04	0•883E+02
• 16	5 0	• 525E-03	0.351E-04	. 0• 71 4E+02
• 18	6 0	• 446E-03	0•167E-04	0.607E+02
• 20	6 0	• 362E-03	0•364E-04	0.493E+02
• 22	6 0	• 304E-03	0.281E-04	0.413E+02
•2.4	6 0	.255E-03	0.208E-04	0.347E+02
• 26	6 0	•213E-03	0.242E-04	0.289E+02
• 23	6 0	•167E-03	0.115E-04	0.228 E+02
. 30	6 0	• 145E-03	0.119E-04	0.198E+02
• 32	6 0	.121E-03	0.869E-05	0.164E+02
• 34	6 0	• 106E-03	0.199E-04	0.144E+02
• 36	6 0	• 8 68 E- 0 4	0.189E-04	0.118E+02
• 38	6 0	•718E-04	0.173E-04	0•977E+01
• 4()	6 . 0	• 622E-04	0•148E-04	0.846E+01
• 42	6 0	• 515E-04	0.168E-04	0.700E+01
• 44	6 0	• 480E-04	D•133E−04	0.653E+01
• 46	6 0	• 434E-04	0.211E-04	0•590E+01
• 48	6 0	• 365E-04	0.191E-04	0• 49 6E+01
• 50	6 0	•296E-04	0•193E-04	0.402E+01
• 52	6 0	•257E-04	0.137E-04	0.350E+01
• 54	6 0	•246E-04	0•174E-04	0.334E+01
• 56	6 0	•223E+04	0.182E-04	0.303E+01
• 58	6 0	•211E-04	0.176E-04	0.287E+01
• 60	6 0	• 169E=04	0•196E-04	0.230E+01
• 62	6 0	150E-04	0•189E-04	0.204E+01
• <i>62</i>	6 0	•127E-04	0.188E-04	0.172E+01
• 66	6 0.	• 111E-04	0.173E-04	0.152E+01
• 68	6 0.	• 108 E- 04	0•194E-04	0•146E+01
• 70	6 0	■ 103E=04	0.201E-04	0•146E+01
• 72	6 0.	883E=05	0•191E-04	0.120F+01
• 74	6 0.	806E-05	0.203E-04	0 • 110E+01
• 76	6 O ₃	883E-05	0.224E-04	0.120E+01
• 78	6 0.	• 461E-05	0.192E-04	0.627E+00

GROUP SEVEN

VALLES EM SØUNDING 833 ØFFSET DISTANCE IS 4300. METERS LØOP AREA IS .1664 SOUARE KILØMETERS SOURCE LENGTH IS 4300. METERS CURRENT IS 36.0 AMPERES DEFLECTIØN ANGLE IS 16.0DEGREES DIGITIZING SCALE IS 0.115MICRØVØLTS/DIV

EDITED AND STACKED DATA

TIME	NUMBER	AVERAGE	ST.	DEV.	EARLY R	·
.02	5 0.2	45E-03	0.367E-	04 0	• 712E+01	
• 64	5 0.4	25E-03	0.146E-	04 0	•124E+02	
.06	5 0.4	44E-03	0.396E-	05 0	• 129 E+ 02	
• 08	5 0.4	09E-03	0.156E-	04 0	• 119 E+ 02	
• 10	5 0.3	33E-03	0.135E-	04 0	• 9 69 E+ 0 1	
.12	5. 0.2	47E-03	0.754E+	05 0	• 717E+01	
• 1.4	5 .0.2	06E-03	0.101E-	04 0	• 600E+01	
.16	5 0.1	69 E- 03	0.548E-	05 0	• 491E+01	
• 18	5 0.1	28 E-03	0.133E-	04 0	• 373E+01	
• 20	5 0.1	05E-03	0.651E-	05 0	• 305E+01	
• 22	5 0.9	35E-04	0.532E-	05 0	1.272E+01	
•24	5 0.8	15E-04	0.279E-	05 0	• 237E+01	
• 2.6	5 0.6	70E-04	0.293E-	05 0	• 19 5E+ 01	
• 28	5 0.5	89E-04	0.163E-	05 0	• 171E+01	
• • 30	5 0.5	20E-04	0.462E-	05 0	• 151E+01	
• 32 ·	5 0.4	83E-04	0.247E-	05 0	• 1 40E+01	
.34	5 0.4	36E-04	0.382E-	05 0	127E+01	
• 36	5 0.3	93E-04	0•379E-	05 0	• 1 1 4E+ 01	
• 38	5 0.3	39 E- 0 4	0.226E-	05 C	• 98 7E+00	
. 40	5 0.2	96E-04	0.214E-	05 0	• 8 59 E+ 00	
. 42	5 0.2	77E-04	0.163E-	0.5 0	• 805E+00	
. 44	5 0.2	47E-04	0.331E-	0,5 0	• 718 E+ 00	
. 46	5 0.2	17E-04	0.224E-	05 0	• 631E+00	
• 48	5 0.2	26E-04	0.173E-	05 0	• 658E+00	
• 50	5 0•2	06E-04	0.236E-	05 0	• 59 7E+00	
• 52	5 0•1	80E-04	0•238E-	05 0	• 524E+00	
• 54	5 0.1	66E-04	0•298E-	05 C	• 43 3E+00	
• 56	5 0•1	27E-04	0.372E-	05 0	• 369 E+00	
. 58	5, 0 • 1	25E-04	0.313E-	05 0	1.362E+00	
. 60	5 0.1	34E-04	0.315E-	05 0	1. 389 E+ 00	
• 62	5 0.1	39 E-04	0.327E-	05 C	• 403E+00	
. 64	5 0.1	29 E-04	0.396E-	05 0	1. 376E+00	
• 66	5 0.1	09 E- 04	0.269E-	05 0	1.315E+00	
• 68	5 0.8	55E-05	0-173E-	05 0	1.248E+00	
• 70	5 0.8	31F-05	0.170E-	C5 C	1.242E+00	
• 72	5 0.8	31E-05	0.305E-	05 C	1.242E+00	
• 7 4	5 0.1	11E-04	0.384E-	05 C	J. 322E+00	
• 76	5 0*9	93E-05	0.315E-	05 0	1°58AF+00	
• 78	5 0.8	78 E- 0 5	0.331E-	05 0	1.255F+00	

GROUP SEVEN

VALLES EM SØUNDING 834 ØFFSET DISTANCE IS 6000. METERS LØOP ARFA IS .1664 SOUARE KILØMETERS SØURCE LENGTH IS 4290. METERS CURRENT IS 35.0 AMPERES DEFLECTIØN ANGLE IS 26.0DEGREES DIGITIZING SCALE IS C.228MICRØVØLTS/DIV

FDITED AND STACKED DATA

	TIME	NUMBER	AVERAGE	ST. DEV.	EARLY R
•	• 02	5	0.179E-03	0.169E-04	0•219E+02
•	• 0.4	5	0.358E-03	0.130E-04	0.438E+02
	• 0.6	5	0.381E-03	0.722E-05	0•467E+02
	• 08	5	0.332E-03	0.133E-04	0•407E+02
	• 10	5	0.261E-03	0.188E-04	0.320E+02
	• 12	5	0.204E-03	0.175E-04	0.250E+02
	. 1 4	5	0•158E-03	0•106E-04	0•194E+02
	• 16	5	0.117E-03	0•728E-05	0•143E+02
	. 18	5	0•918E-04	0.602E-05	0.112E+02
	• 20	5	0. 753E-04	0•116E-04	0.924E+01
	• 55	5	0•584E-04	0.492E-05	$0 \cdot 716E + 01$
	.24	5	0.521E-04	0.266E-05	0•638E+01
	• 26	5	0. 447E-04	0•849E-05	0.549E+01
	• 28	5	0.365E-04	0.677E-05	0•448E+01
	°• 30	5	0•306E-04	0.423E-05	0.375E+01
	• 32	5	0.247E-04	0.336E-05	0.302E+01
	• 34	5	0.247E-04	0.365E-05	0.302E+01
	• 36	5	0•215E-04	0.233E-05	0.263E+01
	• 38	5	0.205E-04	0•408E-05	0.252E+01
	• 40	5	0•178E-04	0.443E-05	0.218E+01
	• 42	5	0•178E-04	0•529E-05	0.218E+01
	. 44	5	0•146E-04	0.655E-05	0.179E+01
	. 46	5	0•128E-04	0.745E-05	0.1571.+01
	. 48	5	0•142E-04	0.443E-05	0.1742+01
	• 50	5	0•114E-04	0• 408 E- 05	0•140E+01
	• 52	5	0•959E-05	0.466E-05	0.118E+01
	. 54	5	0.822E-05	0.606E-05	0.101E+01
	. 56	5	0•731E-05	0.488E-05	0.8962+00
	• 58 _.	5	0•685E-05	0.433E-05	0.8401+00
	• 60	5	0• 59 4E- 05	0.513E-05	0. 728E+00
	• 65	5	0.594E-05	0.6711-05	0.728 2+00
	. 64	5	0 • 68 5E-05	0.4791-05	0 = 840E + 00
	• 66	5	0.457E-05	0.382E-05	0.560E+00
	• 68	5	0.548E=05	0.4701-05	$\bigcup \bullet \bullet I \ge 0 \\ \bullet \bullet \bullet I \ge 0 \\ \bullet \bullet \bullet \bullet \bullet 0 \\ \bullet \bullet \bullet \bullet 0 \\ \bullet 0 \\ \bullet \bullet 0 \\ $
	• 70	5	0.502E-05	U. 4191-05	
	• 72	5	0.548E-05	U= 371E-05	
	• 74	5	0.365E-05		U = 440 L + UU
	• 76	5	U. 457E-05	0.0221F=02	U • J 6U L + UU
	. + 78	5	0+365E-05	U* 233F-05	U. 440 CT UU

VALLES EM SØUNDING 835 ØFFSET DISTANCE IS 9800. METERS LØDP ARFA IS .1664 SOUARE KILØMETERS SØURCE LENGTH IS 4290. METERS CURRENT IS 34.0 AMPERES DFFLECTIØN ANCLE IS 47.0DEGREES DIGITIZING SCALE IS 0.023MICFØVØLTS/DIV

EDITED AND STACKED DATA

	TIME	VIMBER	AVERAGE	ST. DEV.	EARLY R
.•	. 02	-5 0	839E-05	0.373E-06	0.104E+02
,	• 0 <i>4</i>	5 0	. 39 4E-05	0.307E-05	0.487E+01
	• 0.6	5 - 0	. 372E-05	0.326E-05	-0.459E+01
	. 08	5 - 0	.115E-04	0.285E-05	-0.142E+02
	.10	5 -0.	. 188E-04	0.224E-05	-0.232E+02
	. 12	5 -0.	• 263E-04	0.269.E-05	-0.325E+02
	. 1.4	5 -0	• 341E-04	0.286E-05	-0.421E+02
	.16	5 -0.	. 38 0E-04	0.273E-05	-0.469E+02
	• 18	5 -0	· 412E-04	0.356E-05	-0.509E+02
	.20	5 - 0	• 417E-04	0.346E-05	-0.514E+02
	.22	5 -0	• 403E-04	0.251E-05	-0.497E+02
	. 24	5 -0	. 372E-04	0.235E-05	-0.459E+02
	. 26	5 - 0	· 351E-04	0.172E-05	-0.433E+02
	. 28	5 -0	· 318E-04	0.200E-05	-0.393E+02
	. 30	5 -0	• 29 3E-04	0.165E-05	-0.362E+02
	. 32	5 -0	.267E-04	0.140E-05	-0.330E+02
	. 34	5 -0	.245E-04	0.141E-05	-0.303E+02
	. 36	5 -0	•211E-04	0.183E-05	-0.260E+02
	• 38	5 -0	• 187E-04	0.180E-05	-0.231E+02
	. 40	5 - 0	• 167E-04	0.268E-05	-0.2071+02
	. 42	5 - 0	• 1 49 E - 0 4	0.204E-05	-0.184E+02
	• 44	5 - 0	. 128E-04	0.149E-05	-0.158E+02
	• 46	5 - 0	• 109E-04	0.515E-06	-0.1356+02
	• 48	5 - 0	•982E-05	0.121E-05	-0.121E+02
	. 50	5 - 0	• 8 5 3 E- 0 5	0.162E-05	-0.105E+02
	. 52	5 - 0	• 729E-05	0.977E-06	-0.9011.+01
	. 54	5 - 0	• 651E-05	0.137E-05	-0.804E+01
	. 56	5 -0	. 560E-05	0.109E-05	- 0. 69 IE+01
	. 58	5 - 0	• 482E-05	0.139E-05	- 0. 59 5E+ 01
	. 60	5 0	. 472E-05	0.124E-05	- 0. 58 3E+ 01
	. 62	5 - 0	• 417E-05	0.875E-06	- U. 51 5E+ UI
	. 64	5 - 0	• 331E-05	().889E-06	-0.470E+01
	. 66	5 - 0	.289E-05	0.125E-05	= 0.357E+01
	. 63	5 - 0	• 326E-05	0.1628-05	- (). 4021+01
	. 70	5 - 0	. 28 4E-05	0.130E-05	$= (0.3512 \pm 01)$
	. 72	5 -0	. 275E-05	0.1171-05	$= 0 \cdot 340 \text{ LT } 01$
	· 7 Z	5 - 0	- 23 4F-05	0.9241-06	-0.3036+01
	• 76	5 -0	-261E-05	0.9016-06	-0.0955-01
	• 78	5 - 0	- 239 E-05	U. HIDE-UD	- U. C. 7 JE. T UI

GROUP SEVEN

VALLES EM SØUNDING 836 ØFFSET DISTANCE IS 9500. METERS LØØP AREA IS .1664 SOUARE KILØMETERS SØURCE LENGTH IS 4300. METERS CURRENT IS 36.0 AMPERES DEFLECTIØN ANGLE IS 45.0DEGREES DIGITIZING SCALE IS 0.023MICRØVØLTS/DIV

EDITED AND STACKED DATA

1.5 638 .

TIME	NUMBER	R AVERAGE	ST. DEV.	EARLY R
.02	-4	0.826E-05	0.111E-05	0.813E+01
.04	4	0.148E-04	0.276E-05	0.146E+02
• 0.6	4	0.225E-04	0.354E-05	0.221E+02
• 08	4	0.297E-04	0.414E-05	0.293E+02
• 1 0	4	0.358E-04	0.442E-05	0.353E+02
. 12	4	0.419E-04	0.366E-05	0.412E+02
• 1 4	4 .	0.455E-04	0.204E-05	0.448E+C2
.16	4	0.475E-04	0.124E-05	0•468E+02
• 18	4	0.478E-04	0.122E-05	0•471E+02
. 20	4	0.466E-04	0.108E-05	0.459E+02
.22	4	0.439E-04	0.596E-06	0•433E+02
.24	4	0.412E-04	0.169E-05	0.405E+02
• 26	4	0.382E-04	0.172E-05	0.376E+02
• 28	4	0.342E-04	0.206E-05	0.337E+02
• 30	4	0.306E-04	0.240E-05	0.302E+02
• 32	4	0.268E-04	0.261E-05	0.264E+02
• 34	4	0.243E-04	0.273E-05	0.239E+02
• 36	4	0.223E-04	0.247E-05	0.220E+02
• 38	4	0.205E-04	0.118E-05	0.202E+02
• 40	4	0.183E-04	0.186E-05	0•181E+02
• 42	4	0.164E-04	0.835E-06	0.162E+02
• 44	4	0.146E-04	0.769E-06	0.143E+02
• 46	4	0.124E-04	0.122E-05	0.123E+02
• 48	4	0.115E-04	0.197E-05	0.113E+02
• 50	4	0.107F-04	0.172E-05	0.105E+02
• 5:2	4	0.981E-05	0.147E-05	0.9661+01
• 54	4	0.837E-05	0.103E-05	0.8256+01
• 56	4	0.797E-05	0.849E-06	U. 785E+UI
• 58 ·	21	0.6778-05	0.881E-06	0.6666401
• 60	2.	0.579E-05	0.4971-06	0.570E+01
• 62	4	0. 29 3E-05	0.203E-06	0.2055+01
• 6 4	4	0. 201E-05	$0 \cdot 106E = 05$	0.3956+01
• 66	4	0.3672-05	0.623E-00	0.3012+01
• ES	21	U. 333E-05	0.7345-00	0.3285+01
• 70	ZI 4	0. 3271-05	U + 0 04E → U E	
• 12	4	0.2921-05	$0 \circ 750E = 06$	$0 \cdot 200 \pm 01$
• 14	4	0.201E-05	0.8115-04	0 < 2 / 7 = 0
• 10	4	0. 2588-03	0.104E-05	0. 3501+01
• 1M	2	U. SOOF- (15	U. IUCE US	U. 330E+01

GROUP SEVEN

11-36

VALLES EM SOUNDING 837 ØFFSET DISTANCE IS 9160. METERS LØOP AREA IS .1664 SOUARE KILOMETERS SØURCE LENGTH IS 4260. METERS CURRENT IS 36.0 AMPERES DEFLECTION ANGLE IS 44.0DEGREES DIGITIZING SCALE IS 0.023MICRØVØLTS/DIV

EDITED AND STACKED DATA

TIME	NUMBER	AVERAGE	ST. DEV.	EARLY R
. 02	5	0.190E-05	0.470E-05	0.160E+01
• 0 4	5	0.316E-05	0.172E-05	0.266E+01
• 0 6	5).464E-06	0.999E-05	0.391E+00
• 08	5 -	D.162E-05	0.193E-04	-0.137E+01
• 1 0	5 -1	D.371E-05	0.283E-04	-0.313E+01
.12	5 -	0.673E-05	0•394E-04	-0.567E+01
. 14	5 -	0.794E-05	0.466E-04	-0.668E+01
•16	5 -	0.102E-04	0.525E-04	-0.860E+01
. 19	5 -	0•109E-04	0.548E-04	-0•915E+01
• 50	5 -	A.107E-04	0.543E-04	-0.899E+01
• 55	5 -	0•111E-04	0.526E-04	-0.938E+01
.24	5 -	0•116E-04	0.486E-04	-0.973E+01
• 2.6	5 -	0•109E-04	0•441E-04	-0.918E+01
• 28	5 · -	0.104E-04	0.401E-04	-0.875E+01
• 30	5 -	0.896E , 05	0.364E-04	-0.754E+01
• 32	5 -	0.752E-05	0.327E-04	-0.633E+01
• 34	5 -	0.803E-05	0.288E-04	-0.676E+01
• 36	5 -	0•733E-05	0•258E-04	-0.618E+01
• 38	5 -	0.617E-05	0.231E-04	-0.520E+01
• 40	5 -	0•487E-05	0.204E-04	-0.419E+01
. 42.	5 -	0•436F-05	0•177E-04	-0.3672+01
• 44	5 -	0•390E-05	0.146E-04	-0.328E+01
• 46	5 -	0•343E-05	0.131E-04	-0.289E+01
• 43	5 -	0•278E-05	0.11.4E-04	-0.235E+01
• 50	5 -	0.200E-05	0.100E-04	-0.163E+01
• 52	5 -	0.213E-05	0.876E-05	-0.180E+01
. 54	5 -	0•181E-05	0.785E-05	-0.152E+01
• 56	5 -	0.167E-05	0.671E-05	$-() \cdot 141E+01$
. 58	5 -	0•130E-05	0.546E-05	-0.109E+01
• 60	5 -	0•144E-05	0.511E-05	-0.121E+01
• 62	5 -	0.130E-05	0.465E-05	- () • 109 E+ 01
• 64	5 -	0.111E-05	0.403E-05	$-()_{\bullet} 9 36 E + 00$
. 66	5 -	0.882E-06	0.345E-05	=0.1430+00
• 68	5 -	0•696E-06	0.316E-05	-0.5600000000000000000000000000000000000
• 70	5 -	0.650E-06	0.319E-05	-0.3470+00
• 72	5 -	0.371E-06	0.305E-05	- U+ 313C+ UU
. 74	5 -	0.186E-06	0.535F-02	- U. I SOE - 00
• 76	5 -	0.186E-06	0.2072-05	- 0. 100E+00
· 78	5	0.464E-07	U. 136E-03	

GROUP SEVEN

II - 37

VALLES EM SØUNDING 838 ØFFSET DISTANCE IS 8800. METERS LØØP AREA IS .1664 SOUARE KILØMETERS SØURCE LENGTH IS 4300. METERS CURRENT IS 36.0 AMPERES DEFLECTIØN ANCLE IS 45.0DEGREES DIGITIZING SCALE IS 0.057MICRØVØLTS/DIV

EDITED AND STACKED DATA

ne star

TIME	NUM	BER AVERAGE	ST. DEV.	EARLY R
• 02	4	0.188E-04	0.228E-05	0•136E+02
• 0 4	4	0.280E-04	0.224E-05	0•203E+02
• 06	4	0•431E-04	0.270E-05	0•313E+02
• 08	4	0.603E-04	0.340E-05	0•438E+02
.10	4	0.790E-04	0.329E-05	0• 573E+02
.12	4	0.934E-04	0•953E-06	0.677E+02
. 14	4	`0.101E-03	0.252E-05	0•736E+02
•16	4	0•989E-04	0.352E-05	0•717E+02
• 18	4	0.955E-04	0.324E-05	0•693E+02
• 20	4	0.895E-04	0.252E-05	0.649E+02
• 55	4	0.812E-04	0•216E-05	0•589E+02
.24	4	0.723E-04	0.313E-05	0.524E+02
•26	4	0.644E-04	0.211E-05	0.467E+02
• 28	4	0.576E-04	0•248E-05	0•418E+02
• 30	4	0.507E-04	0.224E-05	0.368E+02
• 32	4	0.430E-04	0•179E-05	0.312E+02
• 34	4	0.384E-04	0.209E-05	0•278E+02
• 36	4	0.343E-04	0.174E-05	0.249E+02
• 33	4	0.295E-04	0•179E-05	0.214E+02
• 40	4	0.256E-04	0•184E-05	0.135E+02
• 42	4	0.216E-04	0.643E-06	0.156E+02
• 44	4	0.185E-04	0.213E-05	0.134E+02
• 46	4	0.170E-04	0.271E-05	0.123E+02
• 48	4	0•151E-04	0.192E-05	0.109E+02
S0	4	0.141E-04	0•184E-05	0.102E+02
• 52	4	0.124E-04	0.217E-05	0.896E+01
• 54	4	0•109E-04	0.147E-05	0. 792E+01
• 56	4	0.106E-04	0.643E-06	$0 \cdot 771E+01$
• 53	Zį	0.876E-05	0.124E-05	0.6362+01
• 60	4	0.747E-05	· 0. 406E-06	0.542E+01
• 62	∠ı	0.690E-05	0.122E-05	0.500E+01
• 64	4	0.575E-05	0.147E-05	$0 \cdot 417E + 01$
• 66	21	0.474E-05	0.1432-05	0.3446+01
• 63	4	0.287E-05	0.237E-05	0.2035+01
. 70	4	0.187E-05	0.216E-05	0.102E+01
. 72	4	0.273E-05	0.143E-05	0.198E+01
• 74	4	0.330E-05		
• 76	4	0.287E-05	U. IESEMUS	$0 \circ 2000.01$
• 7:3	4	0.287E-02	U. 168 E- U.S	U+ 200 C+ 01
EDITED AND STACKED DATA

 ~ 2.3

TIME	NIMBER	AVERAGE	ST.	DEV.	EARLY R
. 02	5 0'.	187E-04	0.460E-	06	0.121E+02
. 0.4	5 0.	217E-04	0.231E-	05	0.140E+02
.06	5 0.	463E-04	0.318E-	05	0.299E+02
.08	5 0.	721E-04	0.346E-	05	0•465E+02
.10	5 0.	100E-03	0.248E-	05	0.647E+02
.12	5 0.	114E-03	0.261E-	05	0.737E+02
• 1 4	5 .0.	118E-03	0.285E-	05	0.759E+02
• 16	5. 0.	114E-03	0•338E-	05	0•738E+02
. 18	5 0.	105E-03	0.482E-	05	0.677E+02
.20	5 0.	938E-04	0.311E-	05	0•605E+02
• 55	5 0.	841E-04	0.223E-	05.	0.542E+02
.24	5 0.	737E-04	0.476E-	05	0.475E+02
• 26	5 0.	649 E = 04	0.270E-	05	0•419E+02
•.28	5 0.	566E-04	0.191E-	0.5	0.365E+02
• 30	5 0.	505E-04	0.292E-	05	0.325E+02
• 32	5 0.	405E-04	0.234E-	05	0.261E+02
. 34	5 0.	348E-04	0.303E-	05	0.225E+02
• 36	5 0.	306E-04	0.237E-	05	0•197E+02
• 38	5 0.	263E-04	0.160E-	05	0.170E+02
• 40	5 0.	222E-04	0.251E-	05.	0.143E+02
. 42	5 0.	183E-04	0.228E-	05	0•118E+02
. 04	5 0.	153E-04	0.201E-	05	0.985E+01
. 46	5 0.	138E-04	0.163E-	05	0.889E+01
• 48	5 0.	123E-04	0.194E-	0.5	0• 79 3E+01
. 50	5 0.	989E-05	0.183E-	05	0•637E+01
. 52	5 0.	897E-05	0.113E-	05	0•578E+01
.54	5 0.	621E-05	0.210E-	05	0.400E+01
. 56	5 0.	609 E- 05	0.134E-	05	0•393E+01
• 58	5 0.	598E-05	0•118E-	05	0.385E+01
. 60	5 0.	414E-05	0.123E-	05	0.267E+01
. 62	5 0.	333E-05	0.920E-	06	0.215E+01
. 64	5 0.	241E-05	0.430E-	06	0.156E+01
• 66	5 0.	241E-05	0.563E-	0.6	0.156E+01
. 68	5 0.	161E-05	0.153E-	05	0.104E+01
• 70	5 0.	805E-06	()•129E=	05	0.519E+00
. 72	5 0.	690E-06	0•168E-	05	0.445E+00
. 74	5 -0.	142E-14	0:163E-	-05 -	0.916E-09
. 76	5 - 0.	460E-06	0.670E-	-06 -	-0.296E+00
• 78	5 0.	345E-06	0.780E-	06	0°555E+00

VALLES EM SØUNDING 840 ØFFSET DISTANCE IS 10150. METERS LØØP AREA IS .1664 SQUARE KILØMETERS SØURCE LENGTH IS 4290. METERS CURRENT IS 36.0 AMPERES DEFLECTIØN ANGLE IS 45.0DEGREES DIGITIZING SCALE IS 0.023MICRØVØLTS/DIV

EDITED AND STACKED DATA

-	TIME	NUMBER	R AVERAGE	ST. DEV.	EARLY R
	• 02	5	0.120E-04	0.227E-05	0•154E+02
	• 04	5	0.112E-04	0•198E-05	0.144E+02
	• 0 6	5	0.122E-04	0.116E-05	0•157E+02
	• 08	5	0.161E-04	0.181E-05	0.207E+02
	• 10	5	0.247E-04	0.182E-05	0.317E+02
	.12	5	0.294E-04	0•199E-05	0•379E+02
	• 1 4	5	0.316E-04	0.882E-06	0•407E+02
	• 16	5	0.329E-04	0.112E-05	0•423E+02
	• 18	5	0.333E-04	0.110E-05	0.428E+02
	• 50	5	0.353E-04	0.178E-05	0•455E+02
	• 55	5	0.352E-04	0.188E-05	0.452E+02
	.24	5	0.331E-04	0.245E-05	0•426E+02
	• 26	5	0.309E-04	0.322E-05	0.397E+02
		5	0.271E-04	0.345E-05	0•349E+02
	• 30	5	0.234E-04	0.298E-05	0+302E+02
	• 32	5	0.212E-04	0.387E-05	0•272E+02
	. 34	5	0.185E-04	0.381E-05	0.233E+02
	• 36	5	0.162E-04	0.318E-05	0•209E+02
	• 38	5	0.140E-04	0.260E-05	0•180E+02
	. 40	5	0.121E-04	0.229E-05	0.156E+02
	. 42	5	0.106E-04	0.205E-05	0.136E+02
	• Zi Zi	5	0•949E-05	0•158E-05	0•155E+0S
	. 46	- 5	0.847E-05	0.111E-05	0•109E+02
	• <i>4</i> 8	5	0.753E-05	0.150E-05	0•969E+01
	• 50	5	0.660F-05	0.154E-05	0•850E+01
	. 52	5	0.581E-05	0.202E-05	0•743E+01
	. 54	5	0.572E-05	0.170E-05	0•736E+01
	. 56	5	0.484E-05	0.175E-05	0• 622E+01
	• 58	5	0.460E-05	0.131E-05	0.592E+01
	• 60	5	0.414E-05	0.118E-05	0.533E+01
	• 62	5	0.372F-05	6.964E-06	0•479E+01
	· 64	5	0.349E-05	0.964E-06	0 • 449 E+ 01
	. 66	5	0.340E-05	0.759E-06	0.437E+01
	• 68	5	0.298E-05	0.850E-06	0 • 38 3E+ 01
	. 70	5	0.279E-05	0.870E-06	0•359E+01
	• 72	5	0+223E-05	0,926F-06	0.287E+01
	. 74	5	0.242E-05	0.787E-06	0.311E+01
	.76	5	0.247E-05	0•949E=06	0-3176+01
	• 78	5	0.205E-05	0.1268-05	0•263E+01

11-40

"2

ere e

VALLES EM SØUNDING 841 ØFFSET DISTANCE IS 9900. METERS LØØP AREA IS .1664 SOUARE KILØMETERS SØURCE LENGTH IS 4300. METERS CURRENT IS 36.0 AMPERES DEFLECTIØN ANGLE IS 42.0DEGREES DIGITIZING SCALE IS 0.023MICRØVØLTS/DIV

EDITED AND STACKED DATA

TIME	NUMB	ER AVERAGE	ST. DEV.	EARLY R
• 02	5	0.107E-04	0.195E-05	0•117E+02
• 0 4	5	0•168E-04	0•279E-05	0•184E+02
• 0 5	5	0.207E-04	0•404E-05	0.227E+02
• 08	5	0•245E-04	0.430E-05	0•269E+02
•10	5	0.271E-04	0.430E-05	0•297E+02
• 12	5	0.300E-04	0•426E-05	0•329E+02
• 1 4	5	0.319E-04	0.351E-05	0•350E+02
•15	5	0.335E-04	0.271E-05	0•368E+02
• 18	5	0.322E-04	0.154E-05	0.353E+02
• 20	5	0.296E-04	0.194E-05	0.324E+02
• 22	5	0.273E-04	0•249E-05	0•299E+02
• 24	5 .	0.247E-04	0.287E-05	0.270E+02
• 26	5	0.224E-04	0•189E-05	0•246E+02
• 28	5	0.200E-0.4	0.171E-05	0.219E+02
• 30	5	0.177E-04	0.163E-05	0•194E+02
• 32	5	0.151E-04	0.249E-05	0.166E+02
. 34	5	0•139E-04	0.343E-05	0+152E+02
• 36	. 5	0.127E-04	0.421E-05	0.140E+02
• 38	5	0.109E-04	0.302E-05	0•119E+02
• 40	5	0.896E-05	0•186E-05	0.982E+01
. 42	5	0.767E-05	0•164E-05	0.841E+01
• 44	5	0.674E-05	0.105E-05	0•739E+01
• 46	5	0.545E-05	0.132E-05	0.597E+01
• 48	5	0•439E-05	0•138E-05	0.481E+01
• 50	5	0.467E-05	0.103E-05	0.511E+01
• 52	5	0•379E-05	0.129E-05	0.415E+01
• 54	5	0.356E-05	0.133E-05	0.390E+01
• 56	5	0.323E-05	0.157E-05	0.354E+01
• 58	5	0•309E-05	0.164E-05	0.339E+01
• 60	5	0.309E-05	0.164E-05	0.339E+01
• 62	5	0.360E-05	0.224E-05	0.395E+01
. 64	5	0.282E-05	0.290E-05	0.309E+01
• 66	5	0•268E-05	0.317E-05	0.294E+01
• 68	5	0.249E-05	0.313E-05	0.273E+01
• 70	5	0.203E-05	0.239E=05	0.223E+01
• 72	5	0.185E-05	0.203E-05	0.203E+01
• 74	5	0.180E-05	0.240E-05	0.1972+01
• 76	5	0.180E-05	0.224E-05	U. 197E+01
• 78	5	0.162E-05	0.224E-05	U. 1//L+UI

VALLES EM SØUNDING 842 ØFFSET DISTANCE IS 10100. METERS LØØP AREA IS .1664 SQUARE KILØMETERS SØURCE LENGTH IS 4290. METERS CURRENT IS 36.0 AMPERES DEFLECTION ANGLE IS 40.0DEGREES DIGITIZING SCALE IS 0.023MICRØVØLTS/DIV

EDITED AND STACKED DATA

- 11 Ag

2492). 24

TIME	NUMBER	AVERAGE	ST. DEV.	EARLYR
• 02	4 0.	624E-05	0.156E-05	0•717E+01
• 0 4	4 0.	716E-05	0.226E-05	0.823E+01
• 0.6	4 0.	358E-05	0•285E-05	0•411E+01
• 08	4 0.	173E-06	0.340E-05	0•199E+00
. 10	4 -0.	566E-05	0.267E-05	-0.650E+01
.12	4 -0.	982E-05	0•349E-05	-0.113E+02
.14	40.	123E-04	0•384E-05	-0.147E+02
• 16	4 -0.	160E-04	0•313E-05	-0.184E+02
• 18	4 -0.	210E-04	0•124E-05	-0.241E+02
• 20	4 -0.	224E-04	0•864E-06	-0.257E+02
• 22	4 -0.	225E-04	0.207E-05	-0.259E+02
.24	4 -0.	232E-04	0.327E-05	-0.267E+02
.26	4 -0.	217E-04	0•263E-05	-0.249E+02
. 25	4 -0.	197E-04	0.210E-05	-0.559E+05
• 30	4 -0.	174E-04	0.214E-05	-0.500E+05
• 32	4 - 0.	159E-04	0.222E-05	-0.182E+02
• 34	4 -0.	148E-04	0.270E-05	-0.170E+02
• 36	4 -0.	144E-04	0•293E-05	-0.165E+02
• 33	4 -0.	134E-04	0.281E+05	-0.154E+02
• 40	4 -0.	124E-04	0•249E-05	-0.142E+02
• 42	4 -0.	111E-04	0•159E-05	-0.128E+02
• <i>L</i> i 4	4 - 0.	102E-04	.0.203E-05	-0.117E+02
. 46	4 -0.	941E-05	0•258E-05	-0.108E+02
. 253	4 -0.	831E-05	0.247E-05	-0.955E+01
.50	4 - 0.	739E-05	0.265E-05	-0.849E+01
. 52	4 -0.	69 3E - 05	0.247E-05	-0.796E+01
. 54	4 -0.	531E-05	0.244E-05	-0.6108+01
• 56	4 -0.	48 5E-05	0-197E-05	-0.557E+01
• 53	4 -0.	41 6E-05	0.238E-05	-0.478E+01
. 60	4 - 0.	337E-05	0.153E-05	- (). 445E+ ()]
. 62	4 -0.	346E-05	0.108E-05	- () • 393E+()1
• 64	4 - 0.	318E-05	0•900E-06	-0.3658+01
• 66	4 - 0.	312E-05	0.757E-06	-0.358E+01
• 63	4 - 0.	266E-05	0.887E-06	- U. JUDE+ UI
• 70	4 -0.	225E-05	0.870E-06	- U. 2 37 6+ U1
• 72	4 -0.	225E-05	0.9712-06	- U+ 2 37 E+ U1
• 7 4	4 -0.	219E-05	0.7028-06	-0.232E+01
• 76	4 - ().	185E-05	0.3791-06	- U+ 212E+U1
• 7 3	4 -0.	162E-05	0.632E-06	-U. 10 0E+U1

GROUP SEVEN

VALLES EM SØUNDING 843 ØFFSET DISTANCE IS 9750. METERS LØØP AREA IS .1664 SOUARE KILØMETERS SØURCE LENGTH IS 4300. METERS CURRENT IS 36.0 AMPERES DEFLECTIØN ANGLE IS 37.0DEGREES DIGITIZING SCALE IS 0.023MICRØVØLTS/DIV

EDITED AND STACKED DATA

5. 10. **(**14)

NUMBER	AVERAGE	ST. DEV.	EARLY R
4 0.	126E-04	0.227E-05	0.120E+02
4 0.	153E-04	0.127E-05	0•145E+02
4 0.	188E-04	0.122E-05	0.178E+02
4 0.	247E-04	0.892E-06	0.234E+02
4 0.	303E-04	0.142E-05	0•288E+02
4 0.	366E-04	0.209E-05	0.347E+02
4 .0.	406E-04	0.276E-05	0•385E+02
4 0.	452E-04	0.169E-05	0•429E+02
4 0.	478 E-04	0•158E-05	0.454E+02
4 0.	486E-04	0.100E-05	0.461E+02
4 0.	478E-04	0•809E-06	0.454E+02
4	461E-04	0•138E-05	0•438E+02
4 0.	423E-04	0•205E-05	0.401E+02
4 0.	398E-04	0.162E-05	0.377E+02
4 0.	377E-04	0.206E-05	0.358E+02
4 0.	340E-04	0.178E-05	0.323E+02
4 0.	296E-04	0.164E-05	0.281E+02
4 0.	273E-04	0•187E-05	0.259E+02
4 0.	236E-04	0•179E-05	0.224E+02
4 0.	207E-04	0.142E-05	0.197E+02
4 0.	190E-04	0.841E-06	0.180E+02
4 0.	176E-04	0.705E-06	0.167E+02
4 0.	1 49 E- 0 4	0.121E-05	0.142E+02
4 0.	128E-04	0.121E-05	0.121E+02
4 0.	112E-04	0.147E-05	0.106E+02
4 0.	103E-04	0.181E-05	0.977E+01
4 0.	927E-05	0.132E-05	0.879E+01
4 0.	892E-05	0.984E-06	0.847E+01
- 4 0.	830E-05	0.110E-05	0.737E+01
4 0.	69.2.E-05	0.892E-06	0.6572+01
4 0.	612E-05	0.521E-06	0.551E+01
4 0.	58.4E-05	0.379E-06	0.5548+01
4 ().	566E-05	0.249E-06	0.5375+01
4 ().	532E-05	0.5465-06	0.505E+01
4 0.	493E-05	0.5691-06	$0 \cdot 472E+01$
4 0.	431E-05	0.512E-06	
4 ().	339 E= 05	0.5831-06	0.369E+01
4 0.	343E-05	0.5835-06	0.0025101
∠, 0•	309 E - 05	U+894E=06	U& 27 JET UI
	4 0 4	NUMBERAVERAGE4 $0.126E-04$ 4 $0.153E-04$ 4 $0.188E-04$ 4 $0.247E-04$ 4 $0.303E-04$ 4 $0.366E-04$ 4 $0.406E-04$ 4 $0.478E-04$ 4 $0.398E-04$ 4 $0.326E-04$ 4 $0.27E-04$ 4 $0.278E-04$ 4 $0.278E-04$ 4 $0.278E-04$ 4 $0.278E-04$ 4 $0.278E-04$ 4 $0.278E-04$ 4 $0.176E-04$ 4 $0.128E-04$ 4 $0.128E-04$ 4 $0.128E-05$ 4 $0.692E-05$ 4 $0.692E-05$ 4 $0.692E-05$ 4 $0.532E-05$ 4 $0.339E-05$ 4 $0.309E-05$	NUMBERAVERAGEST. DEV.4 $0.126E-04$ $0.227E-05$ 4 $0.153E-04$ $0.127E-05$ 4 $0.188E-04$ $0.122E-05$ 4 $0.247E-04$ $0.892E-06$ 4 $0.303E-04$ $0.142E-05$ 4 $0.303E-04$ $0.142E-05$ 4 $0.36E-04$ $0.209E-05$ 4 $0.46E-04$ $0.276E-05$ 4 $0.46E-04$ $0.169E-05$ 4 $0.452E-04$ $0.169E-05$ 4 $0.478E-04$ $0.138E-05$ 4 $0.478E-04$ $0.100E-05$ 4 $0.478E-04$ $0.205E-05$ 4 $0.423E-04$ $0.205E-05$ 4 $0.398E-04$ $0.162E-05$ 4 $0.398E-04$ $0.162E-05$ 4 $0.398E-04$ $0.164E-05$ 4 $0.296E-04$ $0.164E-05$ 4 $0.296E-04$ $0.164E-05$ 4 $0.296E-04$ $0.179E-05$ 4 $0.236E-04$ $0.179E-05$ 4 $0.236E-04$ $0.121E-05$ 4 $0.27E-04$ $0.121E-05$ 4 $0.128E-04$ $0.121E-05$ 4 $0.128E-04$ $0.121E-05$ 4 $0.128E-04$ $0.121E-05$ 4 $0.927E-05$ $0.132E-05$ 4 $0.927E-05$ $0.984E-06$ 4 $0.692E-05$ $0.984E-06$ 4 $0.692E-05$ $0.592E-06$ 4 $0.6332E-05$ $0.546E-06$ 4 $0.339E-05$ $0.533E-06$ 4 $0.339E-05$ $0.533E-06$ 4 $0.309E-05$ <t< td=""></t<>

VALLES EM SØUNDING 844 ØFFSET DISTANCE IS 7900. METERS LØOP ARFA IS .3951 SOUARE KILØMETERS SØURCE LENGTH IS 4290. METERS CURRENT IS 36.0 AMPERES DEFLECTIØN ANGLE IS 9.0DEGREES DIGITIZING SCALE IS 0.230MICRØVØLTS/DIV

EDITED AND STACKED DATA

	TIME	NUMB	ER AVERAGE	ST. DEV.	EARLY R
.:	• 02	6	0.190E-03	0•489E-04	0.258E+02
	• 0 4	6	0.368E-03	0•238E-04	0•499E+02
	• 0 6	6	0.447E-03	0.990E-05	0.605E+02
	• 08	6	0.489E-03	0•687E-05	0•663E+02
	• 10	6	0.492E-03	0•869E-05	0•667E+02
	• 12 '	6	0.467E-03	0.117E-04	0•633E+02
	• 1 4	6	0.429E-03	0.153E-04	0•582E+02
	• 16	6	0.388E-03	0.161E-04	0.526E+02
	• 18	6	0.349E-03	0.860E-05	0•473E+02
	• 20	6	0.307E-03	0.104E-04	0•416E+02
	. 22	6	0.280E-03	0.700E-05	0.379E+02
	.24	5	0•239E-03	0•993E-05	0.324E+02
	• 26	6	0.217E-03	0.814E-05	0.294E+02
	• 28	6	0.193E-03	0•559E - 05	0•261E+02
		6	0.171E-03	0.678E-05	0.231E+02
	• 32	6	0.125E-03	0•897E-05	0.206E+02
	• 34	6	0.135E-03	0.454E-05	0 • 18 3E+ 02
	• 36	6	0.121E-03	0.575E-05	0•163E+02
	• 38	6	0.107E-03	0•591E-05	0.145E+02
	• 40	6	0.945E-04	0•753E-05	0.128E+02
	• 42	6	0•879E-04	0•746E-05	0.119E+02
	• 44	6	0.818E-04	0•436E-05	0.111E+02
	• 46	6	0.707E-04	0.737E-05	$(! \cdot 958E+01)$
	• AR	6	0.634E-04	0.456E-05	0.859E+01
	• 50	6	0.576E-04	0.515E-05	0.781E+01
	• 52	6	0.538E-04	0.368E-05	$0 \cdot 729E + 01$
	• 54	6	0.511E-04	0.386E-05	$0 \cdot 692E + 01$
		6	0.430E-04	0.725E-05	0.583E+01
	• 58	6	0.376E-04	0.760E-05	0.5102+01
	• 60	6	0.338E-04	0.509E-05	$0 \cdot 458E + 01$
	• 62	6	0.311E-04	0.5448-05	0.4226+01
	· 64	£.	0.284E-04	0.737E-05	0.3856+01
	. 66	6	0.276E-04	0.764E-05	0.375E+01
	· 69	6	0.257E-04	0.7698-05	0.349E+01
	.70	6	0.227E-04	0.3621-05	$0 \cdot 307E + 01$
	• 72	6	0.215E-04	0.2146-05	0.0746+01
	. 74	6	$() \cdot 19.6E - 0.4$		0 200E+01
	• 76	6	(), 184E=()4	U: 3021=05	0 1075±01
	, 78	6	() .]38E=()4	し。 つわ いたそ しつ	U = IO IE + UI

VALLES EM SØUNDING 845 ØFFSET DISTANCE IS 8200. METERS LØØP AREA IS .1664 SOUARE KILØMETERS SØURCE LENGTH IS 4300. METERS CURRENT IS 35.0 AMPERES DEFLECTIØN ANGLE IS 5.0DEGREES DIGITIZING SCALE IS 0.057MICRØVØLTS/DIV

EDITED AND STACKED DATA

TIME	NUMBER	R AVERAGE	ST.	DEV.	EARLY R
.02	5	0.632E-04	0.226E-	04	0.240E+02
. ()4	5	0.132E-03	0.140E-	04	0.503E+02
.06	5	0.163E-03	0.506E-	05	0.620E+02
• 08	5	0.182E-03	0.274E-	05	0.690E+02
.10	5	0.184E-03	0.242E-	05	0.700E+02
.12	5 、	0.180E-03	0.269E-	05	0.684E+02
. 1 4	5	0.167E-03	0.369E-	05	0.633E+02
.16	5	0.152E-03	0.242E-	05	0.578E+02
• 18	5	0.139E-03	0.593E-	05	0.527E+02
.20	5	0.125E-03	0.516E-	05	0.474E+02
• 22	5	0.1145-03	0.330E-	05	0.432E+02
.24	5	0.101E-03	0.231E-	05	0.382E+02
.26	5	0.899E-04	0.206E-	05	0.341E+02
 .28	5	0.810E-04	0.267E-	05	0.307E+02
• 30	5	0.708E-04	0.512E-	05	0.269E+02
• 32	5	0.647E-C4	0.358E-	05	0.246E+02
• 34	5	0.579E-04	0.279E-	05	0.220E+02
• 36	5	0.538E-04	0.105E-	05	0.204E+02
• 38	5	0.446E-04	0.260E-	05	0.169E+02
• 40	5	0.403E-04	0.286E-	05	0.155E+02
• 42	5	0.367E-04	.0.162E-	05	0.139E+02
• 44	5	0.334E-04	0.172E-	05	0.127E+02
• 46	5	0.319E-04	0.194E-	05	0.1216+02
• 43	5	0.253E-04	0.329E-	05	0.9621+01
. 50	5	0.239E-04	0.106E-	05	0.9062+01
• 52	5	0.231E - 04	0.236E-	05	0.875E+01
. 54	5	0.214E-04	0.287E-	05	0.814E+01
• 56	5	0.183E-04	0.195E-	05	0.6976+01
• 53	5	0.162E-04 .	0.160E-	05	0.5755101
• 60	5	0.1511-04	U. 165E-	05	0.5756+01
• 62	5	$0 \cdot 141E - 04$	0.273E-	05	0. 4525+01
• 64	5	0.1191-04	0.239E-	05	0.4336+01
• 66	5	0.1161-04	0.2366-	05	0.440E+01
• 68	5	$0 \cdot 112E = 04$	0.207E.	04	0 30 65+01
• 70	5	0.1041-04	0.1405	00	0.352F+01
• 72	5	0.929E-05	0. 004E-	05	0.309F+01
• 14	C C	0.8045-05	0.0055-	05	0.314F+01
• / 6	2	0.7015-05	0.1000-	05	0.300E+01
· / ?]	C	U. 1916.~UD	U. ICCE	(1)	0. 00000001

GROUP SEVEN

VALLES EM SØUNDING 846 ØFFSET DISTANCE IS 9100. METERS LØØP ARFA IS .3951 SOUARE KILØMETERS SØURCE LENGTH IS 4290. METERS CURRENT IS 36.0 AMPERES DEFLECTIØN ANGLE IS 2.0DEGREES DIGITIZING SCALE IS 0.115MICRØVØLTS/DIV

EDITED AND STACKED DATA

Contraction of the

TIME	NUMBER	AVERAGE	ST.	DEV.	EARLY R
. 02	5	0.632E-04	0•613E-	05	0•149E+02
• 0 4	5	0.149E-03	0.121E-	04	0.351E+02
• 0.6	5	0.190E-03	0.107E-	04	0.447E+02
. 08	5	0.216E-03	0.889E-	05	0.508E+02
• 10	5	0.234E-03	0.462E-	05	0.552E+02
. 12	5	0.245E-03	0.546E-	·05	0.576E+02
• 1 4	5	0.247E-03	0.746E-	05	0.582E+02
• 16	5,	0.241E-03	0• 68 4E-	05	0.567E+02
. 18	5	0.234E-03	0.556E-	·05	0.551E+02
• 20	5	0.253E-03	0.498E-	05	0.525E+02
• 22	5 .	0.209E-03	0•479E-	.05	0.493E+02
.24	5	0.198E-03	0•496E-	05	0.467E+02
• 26	5	0.183E-03	0.442E-	05	0.430E+02
• 28	5	0.172E-03	0.552E-	05	0.404E+02
. 30	5	0.154E-03	0.200E-	05	0.364E+02
. 32	5	0.143E-03	0.346E-	05	0•337E+02
• 34	5	0.128E-03	0.640E-	05	0.302E+02
• 36	5	0.119E-03	0.644E-	05	0.279E+02
• 38	5	0.108E-03	0.473E-	· 05	0.254E+02
. 40	5	0.984E-04	0.547E-	05	.0•535E+0S
. 42	5	0.876E-04	0.336E-	05	0.506E+0S
· 2:21	5	0.789E-04	0.287E-	· 05	0•186E+02
. 46	5	0.738E-04	0.579E-	05	0•174E+02
. 43	5	0.651E-04	0.892E-	05	0.153E+02
• 50	5	0.575E-04	0•678E-	· 0 5	0.135E+02
. 52	5	0.531E-04	0.381E-	05	0.125E+02
. 54	5	0•497E-04	0.285E-	-05	0.117E+02
.56	5	0.469E-04	0.381E-	-05	0.110E+02
<u>.</u> 58	5	0.411E-04	0.601E-	· 05	0.969E+01
. 60	5	N. 389E-04	0.350E-	· 0 5	0.915E+01
. 62	5	0.352E-04	0•330E-	05	0.828E+01
· (4	5	0.317E-04	0.402E-	05	0.747E+01
. 66	5	0.310F-04	0.477E-	05	0.731E+01
63	5	().294E-()4	0.517E-	·05	0.693E+01
.70	5	N. 276F-04	0.544E-	· 0.5	0.650E+01
. 72	5	0.241F-04	0.701E-	05	0.569E+01
• 74	5	N.232E-04	0•597E-	05	0.5471+01
. 76	5	0.234F-04	.0.446F-	05	0.552E+01
. 74	5	0.205E-04	0.366E-	•05	0.482E+01

GROUP SEVEN

VALLES EM SØUNDING 847 ØFFSET DISTANCE IS 8700. METERS LØ0P ARFA IS .1664 SOUARE KILØMETERS SØURCE LENGTH IS 4300. METERS CURRENT IS 36.0 AMPERES DEFLECTIØN ANGLE IS 3.0DEGREES DIGITIZING SCALE IS 0.657MICRØVØLTS/DIV

EDITED AND STACKED DATA

	TIME	NUMBER	AVERAGE	ST.	DEV.	EARLY R
	.02	5 0.	468 E-04	0.798E-	05	0.218E+02
	• () 4	5 0.	937E-04	0.266E-	05	0.437E+02
×	.06	50.	120E-03	0.221E-	05	0.562E+02
	. 08	5 0.	135E-03	0.368E-	05	0.631E+02
	• 1.0	5 0.	145E-03	0.304E-	05	0.676E+02
	.12	5 0.	146E-03	0.213E-	05	0.680E+02
	• 1 4	5 , 0.	144E-03	0.242E-	05	0.672E+02
	.16	5 0.	136E-03	0.275E-	05	0.636E+02
	• 18	5 0.	127E-03	0.197E-	05	0.591E+02
	• 20	5 '0.	116E-03	0.330E-	05	0.541E+02
	.22	5 0.	104E-03	0.249E-	05	0.487E+02
	.24	5 0.	970E-04	0.197E-	05	0.453E+02
	• 26	5 0.	897E-04	0.234E-	05	0.418E+02
	. 28	5 0.	806E-04	0.296E-	05	0.376E+02
	. 30	5 0.	742E-04	0.234E-	05	0.346E+02
	• 32	5 0.	665E-04	0.170E-	05	0.º 310E+02
	• 34	5 0.	588E-04	0.334E-	05	0.274E+02
	. 36	5 0.	533E-04	0.162E-	05	0.249E+02
	• 38	5 0.	501E-04	0.197E-	05	0.234E+02
	• 40	5 0.	450E-04	0.100E-	05	0.210E+02
	. 42	5 0.	413E-04	0.178E-	05	0.193E+02
	• 4 4	5 0.	391E-04	0.761E-	06	0.182E+02
	. 46	5 0.	321E-04	0.811E-	06	0.150E+02
	. 43	5 0.	299E-04	0.179E-	05	0.140E+02
	. 50	5 0.	279 E-04	0.278E-	05	0.130E+02
	. 52	5 0.	258E-04	0.959E-	06	0.120E+02
	. 54	5 0.	241E-04	0.213E-	05	0.112E+02
	. 56	5 0.	210E-04	0.106E-	05	0.979E+01
	• 58	5 0.	177E - 04	0.210E-	05	0.824E+01
	• 60	5 0.	172E-04	0.195E-	05	0.803E+01
	• 62	5 0.	163E-04	0.152E-	05	0.760E+01
	• 64	5 0.	146E-04	0.156E-	05.	0.679E+01
	. 66	5 0.	130E - 04	0.263E-	05	0.605E+01
,	· 68,	5 0.	127E-04	0.267E-	05	0.594E+01
	• 70:	5 . 0.	108E-04	0.17.5E-	05	0. 503E+01
· .	• 72	5 0.	9.06E-05	0.122E-	05	0.423E+01
	• 74	5 0.	872E-05	0.142E-	05.	0.407E+01
	• 76	5 0.	814E-05	0.151E-	05	0.380E+01
	• 78	5 0.	734E-05	0.843E-	06	0.342E+01

GROUP SEVEN

VALLES EM SØUNDING 848 ØFFSET DISTANCE IS 9600. METERS LØØP AREA IS .3951 SOUARE KILØMETERS SØURCE LENGTH IS 4300. METERS CURRENT IS 36.0 AMPERES DEFLECTIØN ANGLE IS 1.0DEGREES DIGITIZING SCALE IS 0.115MICRØVØLTS/DIV

EDITED AND STACKED DATA

and the second

TIME	NUM	BER AVERAGE	ST. DEV.	EARLY R
• 02	5	0.392E-04	0.856E-05	0.114E+02
• 0 4	- 5	0.104É-03	0.122E-04	0.304E+02
• 06	5	0.153E-03	0•938E-05	0• 444E+02
• 08	5	0.180E-03	0.618E-05	0•523E+02
.10	5	0.207E-03	0.741E-05	0.603E+02
.12	5	0.228E-03	0.295E-05	0•664E+02
• 1 4	5	0•836E-03	0.237E-05	0•686E+02
• 16	5	0.240E-03	0.295E-05	0.698E+02
• 18	5	0.238E-03	0.580E-05	0•693E+02
.20	5	0.236E-03	0•638E-05	0.686E+02
• 22	5	0.224E-03	0.474E-05	0.651E+02
.24	5	0.214E-03	0•386E-05	0.623E+02
•26	5	0.205E-03	0.153E-05	0.597E+02
. 28	5	0•194E-03	0.578E-05	0•563E+02
• 30	5	0•179E-03	0.777E-05	0.521E+02
• 32	5	0.170E-03	0.517E-05	0.493E+02
• 34	5	0.154E-03	0.971E-05	0.447E+02
• 36	5 ·	0.144E-03	0.624E-05	0.418E+02
• 38	5	0.129E-03	0.571E-05	0.376E+02
• 40	5	0.121E-03	0.729E-05	0.352E+02
. 42	5	0.111E-03	0•589E-05	0.322E+02
. 44	5	0.104E-03	0.388E-05	0.302E+02
• 46	5	0•938E-04	0•716E-05	0.273E+02
. 48	5	0.857E-04	0.410E-05	0.249E+02
. 50	5	0.774E-04	0.496E-05	0.225E+02
• 52	5	0•694E-04	0.542E-05	0.202E+02
. 54	5	0.666E-0.4	0.752E-05	0.194E+02
• 56	5	0•601E-04	0.734E-05	0.175E+02
• 58	5	0.555E-04	0•589E-05	0.162E+02
. 60	5	0.495E-04	0•419E-05	0.144E+02
. 62	5	0.435E-04	0.712E-05	0.127E+02
• 64	5	0.422E-04	0.503E-05	0.123E+02
. 66	5	0.387E-04	0.376E-05	0.113E+02
• 68	5	0•339E-04	0.452E-05	0.113E+02
• 70	5	0.353E-04	0.497E-05	0.103E+02
. 72	5	0•329E-04	0.464E-05	0.958E+01
· 74	5	0.320E-04	0.304E-05	0.932E+01
• 76	5	0.256E-04	0.507E-05	0.744E+01
• 713	5	0.224E-04	0.538E-05	0.650E+01

GROUP SEVEN

VALLES EM SØUNDING 849 ØFFSET DISTANCE IS 10150. METERS LØØP AREA IS .1664 SOUARE KILØMETERS SØURCE LENGTH IS 4290. METERS CURRENT IS 36.0 AMPERES DEFLECTIØN ANGLE IS 1.0DEGREES DIGITIZING SCALE IS 0.057MICRØVØLTS/DIV

EDITED AND STACKED DATA

TIME	NUMBER	A VERA GE	ST. DEV.	EARLY R
• 02	5 0.	141E-04	0•326E-05	0.122E+02
•04	5 0.	318E-04	0•520E-05	0•275E+02
• 06	5 0.	469 E-04	0•462E-05	0.406E+02
.08	5 0.	565E-04	0•268E-05	0•489E+02
.10	5 0.	653E-04	0•279E-05	0•565E+02
.12	5 0.	712E-04	0.335E-05	0•616E+02
• 1 4	5 '0.	7635-04	0•199E-05	0•660E+02
• 1 6	5 0.	787E-04	0.172E-05	0.681E+02
• 18	5 0.	791E-04	0.211E-05	0• 68 5E+02
.20	5 0.	779E-04	0.206E-05	0•674E+02
• 22	5 0.	755E-04	0•255E-05	0•653E+02
• 24	5 0.	732E-04	0.187E-05	0•633E+02
.26	5 0.	712E-04	0•843E-06	0•616E+02
28	5 0.	679 E-04	0•219E-05	0•587E+02
• 30	5 0.	651E-04	0.280E-05	0•564E+02
• 32	5 0.	620E-04	0•293E-05	0•537E+02
34	5 0.	570E-04	0.250E-05	0• 49 3E+ 02
•36	5 0.	507E-04	0.197E-05	0•439E+02
• 38	5 0.	462E-04	0•778E-06	0• 400E+02
• 40	5 0.	431E-04	0.203E-05	0.373E+02
• 42	5 0.	403E-04	0.210E-05	0.348E+02
• 44	5 0.	366E-04	0.236E-05	0•316E+02
• 46	5 0.	343E-04	0.142E-05	0•297E+02
• 48	5 0.	314E-04	0.147E-05	0.272E+02
• 50	5 0.	288E-04	0.111E-05	0•249E+02
• 52	5 0.	272E-04	0•204E-05	0.235E+02
. 54	5 0.	242E-04	0.239E-05	0.209E+02
• 56	5 0.	231E-04	0•168E-05	0.199E+02
. 58	5 0.	217E-04	0.105E-05	0.188E+02
• 60	5 0.	196E-04	0.133E-05	0.170E+02
• 62	5 0.	173E-04	0.111E-05	0.150E+02
• 64	5 0.	158E-04	0•106E-05	0.137E+02
. 66	5 0.	159E-04	0.128E-05	0.138E+02
• 68	5 0.	142E-04	0.190E-05	0.123E+02
.70	5 0.	116E-04	0.172E-05	0.100F+05
*72	5 0.	107E - 04	0.237E-05	U.923E+UI
. 74	5 0.	998E-05	0.165E-05	
• 76	5 0.	929E-05	D.133E-05	
. 78	5 0.	814E-05	0•279E-05	U. 104E+01

EDITED AND STACKED DATA

125

TIME	NUMBER	AVERAGE	ST. DEV.	EARLY R
.02	5 0.	278E-04	0.383E-05	0•409E+02
• 0 4	5 0.	513E-04	0.895E-05	0.755E+02
• 0 6	5 0.	810E-04	0.865E-05	0.119E+03
• 08	5 0.	108E-03	0.695E-05	0.160E+03
.10	5 0.	135E-03	0.708E-05	0•198E+03
.12	5 0.	151E-03	0.598E-05	0.223E+03
• 1 4	5,0.	165E-03	0•636E-05	0.242E+03
• 1.6	5 0.	171E-03	0.526E-05	0.252E+03
.18	5 0.	178E-03	0.520E-05	0.261E+03
• 50	5 0.	182E-03	0.244E-05	0.268E+03
• 22	5 0.	185E-03	0.222E-05	0.272E+03
.24	5 0.	181E-03	0.273E-05	0.267E+03
•26	5 0.	174E-03	0.345E-05	0.256E+03
. 28	5 0.	169E-03	0.253E-05	0.249E+03
• • 30	5 0.	163E-03	0.461E-05	0•240E+03
• 32	5 0.	154E-03	0.390E-05	0.227E+03
• 34	5 0.	146E-03	0.310E-05	0.214E+03
.36	5 0.	1 38 E- 0 3	0.228E-05	0.203E+03
• 38	5 0.	128 E-03	0.364E-05	0.188E+03
• 40	5 0.	121E-03	0.395E-05	0•178E+03
• 42	5 0.	111E-03	0.250E-05	0.163E+03
. 44	5 0.	103E-03	0.275E-05	0•152E+03
• 46	5 0.	963E-04	0.238E-05	0.142E+03
. 48	5 0.	907E-04	0.304E-05	0.134E+03
• 50	5 0.	827E-04	0• 304E- 05	0.122E+03
• 5 <u>2</u>	5 0.	751E-04	0.185E-05	0.111E+03
. 54	5 0.	709E-04	0.207E-05	0.104E+03
. 56	5 0.	663E-04	0.187E-05	0.976E+02
5 8	5 0.	583E-04	0.187E-05	0•858E+02
• 60	5 0.	549E-04	0.200E-05	0.809E+02
• 62	5 0.	436E-04	0.386E-05	0.71€E+02
• 6 4	5 0.	455E-04	0.225E-05	0.670E+02
. 66	5 0.	431E-04	0.160E-05	0.635E+02
• 63	5 0.	404E-04	0.207E-05	0.594E+02
. 70	5 0.	330F-04	0.160E-05	0.559E+02
• 72	5 ().	354E-04	0.111E-05	0.522E+02
· 74	5 0.	315E-04	Q.249E-05	0= 464E+ 02
• 76	5 0.	287E-04	0.350E-05	0.4222+02
- 713	5 0.	252E-04	0•283E-05	0.371E+02

GROUP SEVEN

VALLES EM SØUNDING 851 ØFFSET DISTANCE IS 10200. METERS LØØP AREA IS .1564 SOUARE KILØMETERS SØURCE LENGTH IS 4300. METERS CURRENT IS 36.0 AMPERES DEFLECTIØN ANGLE IS 15.0DEGREES DIGITIZING SCALE IS 0.057MICRØVØLTS/DIV

EDITED AND STACKED DATA

TIME	NUMBER	AVERAGE	ST. DEV.	EARLY R
• 02	5 0.	151E-04	0.212E-05	0•138E+02
.04	5 0.	925E-05	0•669E-05	0•846E+01
• 0.6	5 - 0.	129E-04	0.476E-05	-0.118E+02
• 081	5 - 0.	318E-04	0.517E-05	-0.291E+02
• 10	5 -0	412E-04	0.189E-05	-0.377E+02
• 12	5 -0	475E-04	0.218E-05	-0.435E+02
• 1 4	5 -04	522E-04	0.221E-05	-0.477E+02
• 16	5 -0	549E-04	0.163E-05	-0.503E+02
• 18	5 -0.	582E-04	0•140E-05	-0.533E+02
• 20	5 - 0	594E-04	0.807E-06	-0.543E+02
• 22	5 - 0	607E-04	0.147E-05	-0.556E+02
• 24	5 -0.	595E-04	0•246E-05	-0.544E+02
• 2.6	5 -0	573E-04	0.241E-05	-0.524E+02
• 28	5 -0	565E-04	0•194E-05	-0.517E+02
• 30	5 - 0	524E-04	0.155E-05	-0.480E+02
• 32	5 -0.	508E-04	0.120E-05	-0.465E+02
• 34	5 -0.	477E-04	0.221E-05	-0.437E+02
• 36	5 -0.	446E-04	0•159E-05	-0.408E+02
• 38	5 -0.	422E-04	0.365E-05	-0.387E+02
• 40	5 - 0	389E-04	0.227E-05	-0.356E+02
• 42	5 - 0	368E-04	Q.106E-05	-0.336E+02
• 44	5 - 0.	331E-04	0.884E-06	-0.303E+02
• 46	5 -0.	317E-04	0.160E-05	-0.290E+02
• 43	5 - 0.	312E-04	0.230E-05	-0.285E+02
• 50	5 - 0	269E-04	0.132E-05	-0.247E+02
• 52	5 - 0.	252E-04	0.307E-05	-0.231E+02
. 54	5 -0	229 E-04	0.276E-05	-0.210E+02
• 56	5 -0.	,203E-04	0.262E-05	-0.186E+02
• 58	5 -0.	193E-04	0.182E-05	-0.177E+02
• 60	5 -0	186E-04	0.224E-05	-0.170E+02
• 62	5 -0.	176E-04	0.167E-05	-0.161E+02
•.64	50.	160E-04	0•188E-05	-0.146E+02
• 66	5 - 0.	142E-04	0.151E-05	-0.130E+02
• 68	5 -04	127E-04	0•246E-05	-0.116E+02
• 70	5 - 0.	114E-04	0.242E-05	-0.104E+02
• 72	5 -0.	102E-04	Q. 221E-05	-0.930E+01
* 74	5 - 0.	100E-04	0.318E-05	- 0. 919E+01
. 76	5 -04	947E-05	0.246E-05	-0.867E+01
• 713	5 -0.	913E-05	0,263E=05	- U. 836E+ UI

ag interio

VALLES EM SØUNDING 853 ØFFSET DISTANCE IS 9450. METERS LØØP AREA IS .1664 SQUARE KILØMETERS SØURCE LENGTH IS 4300. METERS CURFENT IS 36.0 AMPERES DEFLECTIØN ANGLE IS 20.0DEGREES DIGITIZING SCALE IS 0.057MICRØVØLTS/DIV

EDITED AND STACKED DATA

• '	TIME	NUM	1BER AVERAGE	ST. DEV.	EARLY R
	• 02	5	-0.105E-04	0.285E-05	- 0. 728 E+ 01
	•04	5	0.221E-04	0.112E-04	0.154E+02
	.06	5	0.530E-04	0.840E-05	0•369E+02
	• 08	5	0•739E-04	0.591E-05	0.514E+02
	• 1 0	5	0.916E-04	0•497E-05	0.637E+02
	•12	5	0.982E-04	0.242E-05	0.683E+02
	• 1 4	5	0.998E-04	0.100E-05	0•694E+02
	• 16	5	0.103E-03	0.211E-05	0.718E+02
	• 18	5	Q.104E-03	0.107E-05	0.721E+02
	• 20	5	0•993E-04	0.228E-05	0•691E+02
	• 22	5	0.945E-04	0•148E-05	0.657E+02
	.24	5	0.884E-04	0.266E-05	0.615E+02
	• 26	5	0.821E-04	0.190E-05	0.571E+02
	• 28	5	0.769E-04	0.210E-05	0.535E+02
	• 30	5	0.722E-04	0.240E-05	0.502E+02
	• 32	5	0.666E-04	0.180E-05	0•463E+02
	.34	5	0.621E-04	0•367E-05	0.432E+02
	• 36	5	0.563E-04	0.182E-05	0.392E+02
	• 38	5	0.520E-04	0.412E-05	0.361E+02
	• 40-	5	0•474E-04	0.366E-05	0.329E+02
	• 42	5	0.425E-04	0.265E-05	0•296E+02
	• 44	5	0.398E-04	0.292E-05	0.277E+02
	• 46	5	0.385E-04	0.298E-05	0•268E+02
	• 48	5	0.332E-04	0.292E-05	0.231E+02
	• 50	5	0.305E-04	0.115E-05	0.212E+02
	• 52	5	0.275E-04	0.156E-Q5	0.191E+02
	• 54	5	0•246E-04	0•183E-05	0.171E+02
	• 56	5	0.231E-04	0•183E-05	0.161E+02
	• 58	5	0•209E-04	0.113E-05	0.146E+02
	• 60	5	0•193E-04	0.129E-05	0.134E+02
	• 62	5	0•192E-04	0•139E=05	0.134E+02
	. 64	5	0.176E-04	0.129E-05	0.122E+02
	÷66	5	0.157E-04	0.226E-05	0.110E+02
	• 68	5	0•146E-04	0•248E-05	0.102E+02
	. 70	5	0.144E-04	0.170E-05	0.999E+01
	• 72	5	0.116E-04	- 0. 133E-05	0+808E+01
	• 74	5	$0 \cdot 108 = 04$	0.1236-05	U. 752E+U1
	• 76	5	0.111E-04	0.100E-05	0 = 776E + 01
	• 78	5	0.977E-05	0.126E-05	0.080E+01

...

VALLES EM SØUNDING 854 ØFESET DISTANCE IS 8900. METERS LØØP AREA IS .3951 SOUARE KILØMETERS SØURCE LENGTH IS 4290. METERS CURRENT IS 36.0 AMPERES DEFLECTION ANGLE IS 22.0DEGREES DIGITIZING SCALE IS 0.115MICRØVØLTS/DIV

EDITED AND STACKED DATA

TIME	NIMBE	R AVERAGE	ST. DEV.	EARLYR
02	5	0.899E-04	0.135E-04	0.211E+02
• 0 2	5	0.256E-03	0•179E-04	0• 600E+02
•04	5	0.333E-03	0.606E-05	0.781E+02
• 0 8	5	0.376F-03	0.527E-05	0.883E+02
• 00	5	0.388E-03	0.407E-05	0•909E+02
• 10	5	0.383E-03	0.531E-05	0.897E+02
• 1 <u>~</u>	5	0.370E-03	0.104E-04	0•8 68 E+02
• 1 4	5	0.341E-03	0.892E-05	0.799E+02
• 10	5	0.316E-03	0.366E-05	0•742E+02
• 10	. 5	0.283E-03	0.682E-05	0.663E+02
. 22	5	0.251E-03	0•135E-04	0.590E+02
• C.C. 0 A	5	0.234E-03	0.124E-04	0.550E+02
• 2 4	5	0.209E-03	0.205E-04	0.490E+02
. 28	5	0.184E-03	0.168E-04	0.431E+02
	5	0.168E-03	0.133E-04	0•394E+02
- 30 ·	5	0.147E-03	0.900E-05	0.345E+02
• 37	5	0.133E-03	0•986E-05	0.313E+02
• 34	5	0.123E-03	0.106E-04	0.290E+02
• 30 20	5	0.112E-03	0.100E-04	0.263E+02
. 40	5	0.105E-03	0•929E-05	0.246E+02
. 40	5	0.869E-04	0.743E-05	0.204E+02
• <u>4</u> 7	5	0.779E-04	0.106E-04	0.183E+02
• 46	5	0.713E-04	0.363E-05	0.167E+02
. 48	5	0.671E-04	0.480E-05	0.157E+02
. 50	5	0.621E-04	0•819E-05	0.146E+02
. 50	5	0.552E-04	0.866E-05	0.129E+02
• 54	5	0.529E-04	0.716E-05	0.124E+02
. 56	5	0.444E-04	0.571E-05	0.104E+02
• 58	5	0.361E-04	0•278E-05	0.847E+01
• 60	5	0.336E-04	0.511E-05	0.787E+01
• 62	5	0.306E-04	0•485E-05	0.717E+01
. 64	5	0.301E-04	. 0.579F-05	0.706E+01
. 66	5	0.267E-04	0.570E-05	0.625E+01
. 68	5	0.251E-04	0.592E-05	0.588E+01
. 70	5	0-214E-04	0. 48 SE-05	0.501E+01
. 72	5	0-172E-04	0.509E-05	0.4046+01
. 74	S	0.182E-04	-0.495E-05	0.4261+01
. 76	5	0.170E = 0.4	0.551E=05	0.399E+01
. 73	5	0.143E-04	0.330E-05	0.334t+01

GROUP SEVEN

VALLES EM SØUNDING 855 ØFFSET DISTANCE IS 8350. METERS LØØP APEA IS .1664 SQUARE KILØMETERS SØURCE LENGTH IS 4300. METERS CUPRENT IS 36.0 AMPERES DEFLECTION ANGLE IS 20.0DEGREES DIGITIZING SCALE IS 0.115MICRØVØLTS/DIV

EDITED AND STACKED DATA

. Talifan.

TIME	NUMBER	R AVERAGE	ST. DEV.	EARLY R
.02	5	0.818E-04	0.105E-04	0.347E+02
• 0.4	5	0.153E-03	0.672E-05	0.650E+02
.06	5	0.192E-03	0.103E-04	0.816E+02
. 03	5	0.206E-03	0.528E-05	0.872E+02
• 10	5	0.208E-03	0.321E-05	0.880E+02
. 12	5	0.201E-03	0.288E-05	0.852E+02
• 1 4	5 `	0.186E-03	0.508E-05	0.788E+02
. 16	5	0.168E-03	0.429E-05	0.711E+02
. 18	5	0.154E-03	0.464E-05	0.653E+02
.20	5	0.135E-03	0.558E-05	0.574E+02
. 2.2	5	0.122E-03	0.403E-05	0.516E+02
. 2.4	5	0.107E-03	0.801E-05	0.454E+02
.26	5	0.988E-04	0.367E-05	0.419E+02
. 23	5	0.876E-04	0.263E-05	0.371E+02
. 30	5	0.790E-04	0.453E-05	0.335E+02
• 32	5	0.714E-04	0.309E-05	0.303E+02
. 34	5	0.636E-04	0.381E-05	0.270E+02
. 36	5	0.548E-04	0.369E-05	0.233E+02
• 38	5	0.523E-04	0.459E-05	0.222E+02
• 40	5	0.484E-04	0.146E-05	0.205E+02
. 42	5	0.422E-04	0.278E-05	0.179E+02
. 44	5	0.362E-04	0.331E-05	0.153E+02
. 46	5	0.350E-04	0.361E-05	0.149E+02
. 43	5	0.329E-04	0.331E-05	0.140E+02
. 50	5	0.267E-04	0.134E-05	0.113E+02
• 5?	5	0.260E-04	0.201E-05	0.110E+02
• 54	5	0.244E-04	0.198E-05	0.1041+02
. 56	5	0.214E-04	0.269E-05	0.909E+01
• 58	5	0.182E-04	0.134E-05	0.772E+01
. 60	5	0.177E-04	0.214E-05	0.752E+01
. 62	5	0.152E-04	0.304E-05	0.6451.+01
• 64	5	0.136E - 04	0.331E-05	0.5762+01
. 66	5	0.129E-04	0.295E-05	0.547E+01
• 65	5.	0.129E-04	0.313E=05	0.547E+01
• 70	5	0.120E-04	0.346E-05	0.508E+01
• 72 '	5	0.115E-04	0.300E-05	U = 438E + 01
• 7 4	5	0.101E-04	0.198E-05	0. 2201-01
• 7-6	5	0.783E=05	0.3741-05	0.3015+01
. 78	5	0.922E-05	0. 252F-02	0.3716+01

VALLES EM SØUNDING 856 ØFFSET DISTANCE IS 8750. METERS LØØP AREA IS .3951 SOUARE KILØMETERS SØURCE LENGTH IS 4290. METERS CURRENT IS 36.0 AMPERES DEFLECTIØN ANGLE IS 19.0DEGREES DIGITIZING SCALE IS 0.115MICRØVØLTS/DIV

EDITED AND STACKED DATA

TIME	NUMBER	AVERAGE	ST. DEV.	EARLY R
• 02	4 (D.107E-03	0.134E-04	0•229E+02
• 0 4	4 (0.245E-03	0.277E-04	0.524E+02
• 06	4 ().324E-03	0•529E-05	0•695E+02
• 08	4 (D.354E-03	0•910E-05	0•759E+02
• 10	4 (0.366E-03	0•293E-05	0•783E+02
• 12	4 ()•369E-03	0•417E-05	0.790E+02
.14	4 (0.364E-03	0.125E-05	0•779E+02
• 16	4 (0•337E-03	0.600E-05	0.723E+02
• 18	4 (0.314E-03	0•699E-05	0.673E+02
• 20	4.(D.292E-03	0.565E-05	0.625E+02
. 55	4 (D.268E-03	0•488E-05	0.574E+02
.24	4 (0.247E-03	0.262E-05	0.529E+02
.26	.4 (D.224E-03	0.455E-05	0.480E+02
• 28	4 (D.205E-03	0•494E-05	0•439E+02
: 30	4 (D•182E-03	0•463E-05	. 0.390E+02
• 32	4 (0.168E-03	0.433E-05	0.359E+02
• 34	4 (0 . 149E-03	0.335E-05	0.320E+02
• 36	4 (D.136E-03	0•449E-05	0.292E+02
• 39	4 (D.124E-03	0•170E-05	0.267E+02
. 40	4 (0 .111E-03	0•262E-05	0.238E+02
• 42	4 ()•994E-04	0•463E-05	0.213E+02
. 44	4 (0.920E-04	0.315E-05	0•197E+02
. 46	4 (0•859E-04	'0.510E-05	0.184E+02
. 48	4 (D•750E−04	0•594E-05	0.161E+02
• 50	4 (O•678E−04	0•381E-05	0.145E+02
• 52	4 (D.632E-04	0.215E-05	0.135E+02
. 54	4 (0.601E-04	0•149E-05	0.129E+02
• 56	4 ().572E-04	0.221E-05	0.123E+02
• 58	4 ().534E-04	0•418E-05	0.115E+02
. 60	4 ().497E-04	0.565E-05	0.107E+02
. 62	·4 ().414E-04	0.527E-05	0.8876+01
. 64	4 (O•339E−04	0.643E-05	0.727E+01
. 66	4 (D. 328 E-04	0.330E-05	0.702E+01
• 63	4 (0.299E-04	0.215E-05	U. 641E+UI
• 70	4 ().287E-04	0+244E-05	$U_{*} = 01.6E_{*} U_{*}$
.72	4 (D.247E-04	0.600E-05	0.3302+01
• 74	4 (0.216E-04	()• 51 ()t.∞ () 5	
• 76	4 (0.172E-04	0.182E-05	$0 = 370F \pm 01$
• 78	4 (D.172E-04	0.1855-02	U. 3701+01

GROUP SEVEN

		. –						
•		•				. c		
TIME	801	802	803	804	805	806	808	809
0.023	61.76	71.22	59.19	86.15	75.98	67.37	92.05	59.40
0+025	59 - 68	77.16	66.00	94.04	82.94	72.03	99.27	62.07
0+028	57.60	82.32	72.32	101.01	89 - 58	76.62	106.31	64.85
0.031	55.54	86.49	77.84	106.77	95.74	81.11	113.07	67.75
0.035	53.48	89.48	82.33	111.05	101.24	85.44	119.42	70.77
0.038	51.44	91.16	85.55	113.66	105.93	89.55	125.26	73.92
0.042	49.43	91.46	87.34	114.47	109.67	93•40	130•48	77.20
0.047	47.43	90.36	87.61	113.45	112-35	96.93	134-98	80.62
0.052	45.46	87.92	86.35	110.64	113.89	100.10	138•'67	84.18
0.058	43.52	84.23	83.61	106.17	114.23	102.86	141.47	87.88
0.064	41.49	79 • 29	79.15	100.14	111.54	103.05	142.25	90.12
0.071	39.22	73.11	72.79	92.70	103.83	98.02	139.60	·88•69
0.079	36.85	66.20	65.28	84.31	93.16	89.70	134.31	84.72
0.038	34.62	60.22	58.63	76.28	83.60	81.29	127.37	80.20
0.098	32.67	56.05	53.79	69•31	76.99	74.30	119.35	76.19
0.108	29.92	52.32	49.29	62.39	70.17	67.97	110.03	71.52
0.120	25.56	43.15	44.25	55.00	61.36	62.23	99.46	- 65. 51
0.133	22.10	42.83	39.07	47.97	53.32	56.55	89.05	58.83
0.143	20.32	36.06	34.15	41.59	46.60	50.26	79.66	51.81
0.164	18.35	29.11	29.85	35.50	39.14	43.10	70.69	44.59
0.182	15.59	. 25.94	25.45	30.69	33.76	37.24	60.14	39.28
0.202	10.53	25.97	21.25	26.24	28.59	31.24	49.42	33.49
0.224	7.03	24.25	17.42	20.71	55.81	25.61	41.50	27.11
0.248	6.40	19•69	14.64	15.88	17.84	21.72	34.95	21.12
0-276	7.44	16.14	12.94	13.24	14.02	17.49	28.05	16.28
0.306	6. 33	13.52	10.60	11.53	11.66	14.25	22.52	13.28
0.339	4.44	11.16	8.74	9•28	9.86	12.04	17.85	11.06
0.377	3.48	8.85	7.51	6.71	8.16	9.64	14.21	8.80
0.418	5.95	7.47	6.43	5.67	6.95	8.21	12.15	7.48
0.463	2.79	7.02	5.51	5.79	6.13	7.53	11.29	6•87
0.514	2.74	6.29	4.94	5.28	5.54	6.83	10.86	6.40

21.013

10.1

, Alter

II - 56

Territoria de la constante de la const								
						· ·		
TIME	810	811	812	813	814	815	816	817
0.023	145.27	183.06	118.22	49.00	-3.25	33.47	63.12	51.93
0.025	145.79	170.54	118.73	54.84	-2.93	37.70	66.16	55.64
0.028	146.01	159.80	119.81	60.24	-2.01	41.97	68.70	58.97
0.031	145.95	150.62	121.48	64.96	0.19	46.19	70•68	61.81
0.035	145.60	142.80	123.76	68.75	4.61	50.23	72.03	64.08
0.038	144.96	136.19 -	126.69	71.43	11.92	54.00	72.72	65.71
0.042	144.04	130.65	130.29	72.84	21.67	57.37	72.73	66.65
$\left \begin{array}{c} 0.047 \\ 0.057 \end{array} \right $	142.84	126.09	134-63	72.91	31.70	60.25	72.06	66.87
0.052	141.37	122-41	139.77	71.63	38 • 63	62.54	70-73	66.35
0.058	139.64	119.56	145.77	69.08	39.63	64.16	68 • 78	65.13
0.064	137.55	116.89	149.06	65.56	37.35	64.05	66.15	62.92
10.071	134.98	113.68	144.83	61.45	36.12	60 • 97	62•79	59.45
0.079	132.08	110.37	135.77	56.81	34.09	55.92	58.87	55.14
0.088	129.96	108.87	126.79	52.12	30.99	50.80	54+29	50.91
1 0.098	129.45	110.54	120.33	47.75	27.48	46.54	49.05	47.27
0.108	126.01	106.24	110.75	43.74	24.47	42.52	42.91	43.20
0.120.	115.25	87.93	94.13	40•29	22.88	38.52	35.83	37.98
10-133	104.58	73.06	77.85	37.27	20.97	34.24	30.25	32.31
1 1. 1 42	96.39	65.51	63•34	34.27	13.02	29.55	26.93	26.97
0.164	83+87	52.89	46.12	30.66	15.46	24.96	24.29	22.76
0.022	69 • 19	44.77	34.69	27.62	13.64	21.55	20.69	19.78
0.202	60.29	38.67	31.01	24.14	12.53	18.70	16.89	17.38
0.0224	53.21	33.49	34.79	20.07	10.77	15.81	14.37	14.60
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	43.22	30.02	33 • 9 3	16.71	9 • 08	13.35	11.86	12.06
210.276	36.00	22.73	43.83	14.53	7.90	11.13	9.42	10.52
0 200	27.64	19.15	42.03	12.71	5.94	9•28	8.75	8.90
0.339	21.66	15.35	20.19	11.38	4.96	7.57	7.10	7.74
	17.56	11.96	2.95	10.65	4.03	6.38	5.46	6. 40
	15.35	10.29	1 • 40	9.17	3• 38	5.47	4.67	5.43
	13.32	9.31	12.29	7.21	3•18	4.79	4.41	4.81
U• 514	13.49	9.35	17.32	5.72	2.87	4.34	3.94	4.09

Şelen anı Alfana II-57

ROur

SEVE

C. Alaska and the second second								•	۰.
and a second second	TIME	818	819	820	821	822	823	824	825
-	0.023	52.31	44. R A	53.74	121.85	35.07	41.75	-1.32	62.41
	0.025	56.57	47.79	58 • 9 1	137.67	39.06	47.63	-1.07	68.12
	0.028	60.43	50.39	63.42	150.51	42.51	52.72	-0.13	71.93
	0.031	63.75	52.52	67.07	159.24	45.20	56.62	2.66	73.47
	0.035	66.42	54.10	69.66	163.03	46.96	59.01	8.92	72.59
	0.033	68.34	55.07	71.06	161.53	47.67.	59.67	19.43	69 • 38
	0.042	69.46	55.42	71.20	154.89	47.28	58.55	31.93	64.14
	0.047	69.72	55.11	70.07	143.72	45.82	55.75	40.87	57.37
	0.052	69 • 11	54.17	67.73	129.05	43.38	51.51	41.08	49.63
	0.053	67•66	52.63	64.31	112.12	40 • 1 4	46.18	32.43	41.53
	0.064	65.22	50.11	59.77	95.03	35.70	39.91	22.51	33.29
	0.071	61.62	46.25	54.16	79.39	29.89	32.97	15.95	25.25
	0.079	57.20	41.61	47.95	65.11	23.85	26.17	10.77	18.32
	0.089	52.43	37.10	41.61	53.19	19.19	20.66	7.67	14.41
	0.098	47.63	33.14	35.46	43.91	16.25	16.65	6.59	13.56
	0.108	42.53	29.24	29.93	37.43	14.34	14.08	6.56	13.52
	0.128	37.07	25.19	25.36	33.97	13.29	13.07	7.40	12.80
	0.133	35.50	21.58	21.81	29.45	12.28	12.00	7-13	10.79
	0.148	28.13	18.86	19.20	23.52	10.64	10.10	4.92	8.15
	0.164	24.03	17.03	16.93	20.42	8.43	8.22	3.30	6. 69
-	0.182	20.30	14.76	14.23	17.17	6.90	6.62	2.64	5.92
	0.202	16.92	11.37	11.78	14.41	5.67	5.74	3.02	5.17
	0.224	14.12	9.23	9•78	11.75	4.31	4.63	2.86	4.29
3 L	0.24R	11.95	8.54	8.03	9.83	3.73	3.81	2.02	3.60
2	0.276	10.33	7.17	7.03	7.93	3.19	3.46	1.77	2.99
G	0.306	8.62	5.62	5.91	5.49	2.45	2.92	1.61	2.51
s	0.339	7.59	4.87	4.99	3.84	1.89	2.45	1.26	2.15
\leq	0.377	6.16	3.94	4.29	3.42	1.62	1.87	1.04	1.81
ž	0. ∠18	5.19	3.35	3.67	3.02	1.41	1 - 59	0.91	1.55
	0.463	4.77	3.03	3.16	5• 65	1.21	1.55	0.84	1.36
	0.514	3.98	2.74	2.72	2.84	1.20	1.34	0.71	1.18

Sales in

読んがい

-				•			1		
	TIME	826	827	828	829	830	831	8 32	833
0	. 023	50.75	53.49	68.74	159.24	34.24	- 114.73	. 33-14	17.01
́С	• 025	56.96	61.00	77.86	181.17	34.91	113.77	42.97	17.37
0	• 028	62.16	67.52	84.93	193.10	34.98	113.02	53.89	17.49
0	031	65.93	72.57	89.23	192.81	34.44	112.46	65.36	17.35
C C	0.035	67.98	75.71	90.28	180.37	33.33	112.11	76.67	16.96
1 0	1.038	68.14	76.68	87.99	158.07	31.70.	111.94	86.99	16.34
0	0.42	66.40	75.40	82.58	129.77	29.62	111.97	95.45	15.52
0).047	62.90	71.97	74.66	99.82	27.21	112.20	101.29	14.52
	0.052	57.91	66.70	65.00	71.93	24.56	112.62	103.96	13.39
	0.058	51.84.	60.01	54.51	48.55	21.78	113.24	103.19	12.17
	0.064	44.96	51.30	43.40	32+23	19.02	113.90	101.56	11.00
1	0.071	.37.63	40.55	32.23	22.41	16.40	114.38	102.32	10.02
(0.079	30.50	30.08	22.61	15.97	13.96	114.75	103.91	9.14
(0.088	25.01	22.30	16.87	13.75	12.06	114.09	103.14	8.26
(0.098	21.49	17.30	14.68	16.52	10.84	111.63	98.26	7.37
	0.108	19.12	I 4• 61	14.33	21.15	9.86	105.79	92.42	6.43
(0.120	17.64	14.33	15.45	21.71	8.87	94.97	87.73	5.46
	0.133	15.60	13.61	14.11	14.90	7.38	84.88	77.78	4.86
	0.143	12.67	10.91	9•79	7.51	5.45	77.75	62.70	4.54
	0.164	10.30	8.24	7.64	6.03	3.93	69.80	52.15	3.72
	0.132	8.72	6.63	6.62 .	6.92	3:30	61.81	44.31	2.85
	0.202	7.52	5.57	5.94	6.76	2.89	50.66	37.30	2.36
	0.224	6.27	. 4. 49	4.85	4.34	2.61	39•98	30•09	2.20
ן ה	0.243	5.22	3.95	3.76	3.60	2.39	31.05	23.74	1.86
Ď	0,276	4.37	3.04	3.18	3.93	2.02	27.05	17.78	1.50
5	0.306	3.83	2.55	2.80	2. 72	1.70	23.07	14.04	1.34
2	0.339	3.09	2.17	2.41	1.33	1.33	18.76	11.45	1.15
\leq	0.377	2.67	1.72	1.93	1.62	0.99	15.41	8.81	0.94
ž	0.418	2.33	1.43	1.65	1•41	0.83	13.04	7.50	0.80
	0.463	1.93	1.33	1.53	1.28	0.82	11.82	7.20	0.72
	0.514	1.75	1.2.4	1.27	1.30	0.79	10-43	6.94	0.61

Sec. 1

II-59

. 19

TIME	8.34	835	836	837	2 2 2 2 2	839	1840	8 4 1
0.000	57.00	- 8.71	20.87	A 01		10.70	24. 17	26.46
0 025	51 05	5.04	01 01	A 00	27 • 46	17 12	27.47	26.04
0.020	63 04	1 2 4	$21 \cdot 21$	4• C O 1 1 7	29.22	19.22		25.75
0.021	62.76		20 24		29.34	17.20	14 00	25.50
	00. 10 An 10	- /	22.00	3.52	29.81	17•83	10.20	20.55
0.035	60 × 12 61 × 10		C J + C U D / D /	3.22	30.66	20.99	10.14	20.JO 25. KA
0.035	01•18 50 07	- 1. 14	24.24 05 50	· と・ うち 1 - つく	31.92	22.83		20+ 04 25. 25
0 0 47		-10-13	20+00	1.35	33.63	25.52	14.70	22.03
0.050	JJ: 74	-13,37	C (+ U)	0.22	35.86	29.32	13.21	20.17
0.052	47.01	-10.33	20•01 20 05	- 0. 99	38 • 71	34.60	10.43	20.00 07 07
0.05%	43. AU 202 00	-18.94	30.43	-5.55	42.28	41.96	18.31	CI.CI
0.064	37.33	-21.64	さう• どう	- 3. 19	46.43	50.48	21.06	
0.071	33.37	-24.63	33.31	- 3.67	50.79	57.61	24.88	27.10
0.079	27.78	-21.64	31.46	- 3.90	55.58	63•68	30.20	30.49
1.088	25.29	- 30. 24	39.59	- 4. 35	60.80	69 • 36	36.35	32.01
0.098	23.24	- 32.30	41.78	- 5.23	66•34	74.77	42.05	33.62
0.108	21.44	- 36. 33	43.85	- 6.23	71.13	77.59	45.60	34.92
0.120	19.11	- 42. 71	45.51	- 7.19	73.40	75.10	44.28	35.30
0.133	16.07	- 47. 32	46.45	-8.01	73.10	71.05	42.12	35.76
0-148	12.52	- 49 . 51	46.49	-8.98	70.20	67.55	41.86	36.59
0.164	9.40	- 50.22	45.93	-9.76	64.96	61.93	41.67	35.70
0.182	7.99	- 49.90	44.53	-9.63	60•38	55.40	42.57	32.04
0.505	6.99	- 47.80	42.14	-8.41	55.65	48 • 61	43.13	27.74
0.224	5.56	- 43. 58	38.53	-8.62	48.57	41.45	40.43	24.53
0.248	4.69	- 38 . 38	34.63 ·	-8.64	40.93	34.53	35.32	21.44
0.276	3.93	-34.27	30.41	- 7. 40	34.95	28.72	29 . 39	18.25
0.306	3.12	-29.96	25.21	- 5.84	28.74	23.35	24.19	14.58
n. 339	2.68	-25.71	21.41	- 5. 53	23.17	18.01	20.32 .	12.37
0.377	2.41	-21.85	19.05	- 4.83	19.43	14.93	1 6 . 59	10.62
0.218	2.06	-18.62	16.35	- 3. 91	16.62	12.81	14.14	9.04
0. 463	1.69	-16.03	13.52	- 3. 49	14.70	11.47	12.70	7.82
0.514	1.49	-13.51	11-69	-2.75	13.43	11.06	11.42	6.91

な情報語

II-60

GROUF c r

1

			н н					
TIME	8 42	843	844	845	846	847	8 48	8 49
0.023	10.82	23.17	66.51	65.92	47.61	58.84	42.69	40.64
0+025	9.54	21.53	68.64	63.74	50.34	61.13	46.45	43.15
0.028	8.17	20.41	70.35	71.13	52.75	63.14	50.02	45.57
0.031	6.72	19.73	71.62	73.04	54.78	64.86	53.34	47.89
0.035	5.20	19.46	72.43	74.43	56.37	66.24	56.32	50.07
0.037	3.62	19.57	72.75	75.27	57.49	67.26	58.87	52.09
0.042	2.01	20.08	72.59	75.54	58 • 1 1	67.91	60.92	53.91
0.047	0.37	21.01	71.93	75.23	58.21	68.18	62.42	55.51
0.052	-1.28	22.42	70.80	74.35	57.73	68.06	63.32	56.86
0.058	-2.93	24.41	69.22	72.92	56.84	67.56	63.60	57.95
0.064	- 4. 67	26.78	67.74	71.57	56.17	67.24	63.90	59.13
0.071	- 6. 56	29.17	67.02	71.06	56.74	67.85	65.09	60.89
0.079	-8.52	31.75	66.72	71.01	58.11	69.05	66.83	63.05
0.038	-10.75	34.58	66.27	70.84	59 • 71	70.28	69 • 1 4	65.78
0.098	-13.29	37•60	65.38	70.24	61.26	71.20	72.27	69.34
0.103	-15-64	40.22	63.27	68.55	62.33	.71.12	75.21	72.70
0.120	-17.49	41.53	58.96	64.86	62.10	69.04	76.48	74.40
0.133	-18.81	42.50	53.94	59.86	60.46	66.26	75.85	74.75
0.143	-20.67	43.93	49.29	54.65	57.82	63.29	73.73	74.26
0.164	-24.73	45.22	44.84	50.40	55+48	58.84	71.86	73.46
0.132	-27.60	45.78	40.18	46.02	52.94	53.55	70.63	72.32
0+505	- 27 . 49	44.68	35.35	40.97	49.54	47.83	68.24	70.03
0.224	-24.75	41.86	31.09	36.34	45.91	43.16	63.81	66.13
0.248	-23.98	37.69	26.90	31.87	41.71	39.81	59.27	62.44
0.276	-21.85	33.20	23.08	26.97	36.76	35.15	54.27	58 • 39
6 0.306	-18-26	29.45	19.32	22.66	32.31	29.72	48.59	53.32
0.339	-16.59	25.37	16.53	19.92	28.06	25.55	43.11	46.77
0.377	-15.03	21.22	13.92	16.45	24.27	22.43	37.23	39.54
Z 0.418	-12.95	18.13	11.85	14.01	20.84	19.21	31.87	33.84
0.463	-10.46	15.90	10.34	12.43	17.58	16.02	26.92	29.12
0.514	-8.39	13.21	8.96	10.56	14.57	13.65	21.53	23.34

1000

							ः निष्कृ मुद्
TIME	850	8 5 1	853	, 854	855	856	
0.023	26.0	14.19	12.79	74.40	87.04	67.65	
0.025	26.9	12.84	17.85	80.98	90.09	72.22	
0.028	27.7	9.09	24.01	86.90	92.64	76.33	
0.031	29.0	3.29	31.09	91.94	94.64	79.85	
n.n35	30.2	- 4.03	38.79	95.89	96.05	82.70	
0.033	31.9	-12.25	46.60	98.61	96.85	84.79	
0.042	33.4	-20.75	53.93	99.98	97.02	86.06	
0.047	35.5	-28.96	60.12	99.94	96.55	86.47	
0.052	37.0	-36.47	64.54	98.49	95.46	86.01	
0.058	40.5	- 42.99	66.73	95.69	93.77	84.70	
0.064	43.2	- 47.85	67.98	92.99 ·	91.87	83.05	
0.071	47.2	- 50.94	70.23	92.05	90.27	81.70	
0.079	47.6	- 53.06	72.60	92.01	88.75	80.39	
0.089	52.0	- 53. 63	74.24	91.77	87.62	79.72	
0+098	54.1	-51.92	74.83	90.79	87.22	80.29	×.
0.108	55.6	-51.04	75.05	89.51	85.65	80.86	
0.120	56.6	- 54. 67	75.65	88.08	80.85	80.06	
0.133	56.4	- 57.98	75.78	84.44	74.23	77.01	
0:148	53.0	- 60.20	75.34	77.85	67.45	71.64	
0.164	53 • 5	- 61.90	75.63	70.99	61.84	66.07	
0.182	57 . ()	- 61.78	72.65	64.10	56.44	61.95	
0.202	59.0	- 60.22	67.10	56.57	49.53	57.85	
0.224	53.5	- 58 - 81	61.70	50.89	43.55	52.34	
0.243	54.3	-56.04	56.24	46.29	38.80	46.12	
0.276	51.0	- 52. 51	50.93	39.41	33.30	39 • 68	
0.306	47.3	- 49 • 18	46.23	33+58	29.02	34.27	
0.339	42.7	- 43. 78	40.89	28.23	24.30	29.69	
0.377	37.5	- 38 - 19	34.84	24.85	20.94	25.28	
0.418	32.2	-32-89	29.84	21.42	18.04	21.65	
0.463	26.7	-27.41	25.47	17.83	15.20	18.55	
0.514	20.6	-21.49	20.41	15.50	13.27	15.68	

IF62

GROUP SEVEN

and the second second

1-Station Control

金融語

4

Gui

nena : Gebagia

and the second sec

44.6

verang (and the 'Constitution,

II-76

II-78

\$

11-80

In addition to carrying out geophysical services, Group Seven offers management and consulting services for geothermal exploration. Interested organizations should contact:

Group Seven, Inc. Geophysical Services Division P. O. Box 374 Golden, Colorado 80401 Tel. 277-0641 or 277-0515