BALTAZOR KGRA AND VICINITY, NEVADA Geothermal Reservoir Assessment Case Study Northern Basin and Range Province

FINAL REPORT
1 October 1978 - 31 January 1983
T.C. WRIGHT

Earth Power Production Company 970 East 4800 South
Salt Lake City, Utah 84117

Prepared for the
U.S. DEPARTMENT OF ENERGY NEVADA OPERATIONS OFFICE Under Contract DE-AC08-79ET27007

DISCLAIMER

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commerical product, process, or service by trade name, mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Printed in the United State of America
Available from:
National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road
Springfield, Virginia 22161
Price: Printed copy $\$$ Microfiche $\$ \overline{3.50}$

Price of the printed copy is determined by the number of pages in the report. Since prices are revised periodically, contact the Contracting Officer for current prices.

TABTE OF CONTENTS

Page
ABSTRACT 1
Introduction 2
Geology 5
Geochemistry 6
Geophysics 10
Temperature Gradient Holes 13
Deep Test Hole 24
References 40
Appendix A. Data on Open-File at UURI 42
Page
Figure 1. Index map 3
Figure 2. Land status map 4
Figure 3. Geochemical data map 8
Figure 4. Map, sulfate as a percentage of total dis- solved solids 9
Figure 5. Aeromagnetic map 11
Figure 6. Microearthquake survey station locations and epicenters 12
Figure 7. Gravity, dipole-dipole and SP survey line locations. 14
Figure 8. Complete Bouguer gravity anomaly map 15
Figure 9. Residual Bouguer gravity anomaly map 16
Figure 10. Gravity interpretation plan map 17
Figure 11. Composite gravity, resistivity and SP interpretation map, Baltazor KGRA 18
Figure 12. Interpreted (from geophysics) geologic cross-section along Line B2, Baltazor KGRA. 19
Figure 13. Composite gravity, resistivity, and SP interpretation map, McGee/Painted Hills area 20
Figure 14. Interpreted (from geophysics) geologic cross-section along Line M2, McGee/ Painted Hills area 21
Figure 15. Temperature gradient map 23
Figure 16. Well completion schematic, Baltazor 45-14 34
Figure 17. Generalized stratigraphic column, Baltazor 45-14 35
Figure 18. Temperature surveys dated $10 / 31 / 82$, and 11/25/82, Baltazor 45-14. 36
Figure 19. Temperature survey dated 2/3/83, Baltazor 45-14 39

TABLE OF ILLUSTRATIONS AND TABLES CONTINUED

Page
Plate I. Geologic and alteration maps, Baltazor Hot Springs and Painted Hills Thermal areas............................(in pocket)
Table I. Logging history for Baltazor 45-14 25
Table II. Drilling history for Baltazor 45-14. 27
Table III. Heat flow data, Baltazor 45-14. 37

The Baltazor KGRA and McGee/Painted Hills geothermal prospects are located in northern Humboldt County, Nevada along the northwestern margin of the Basin and Range province. Earth Power Production Company (EPPC) began exploration of the prospects in 1977. EPPC continued its program as a Geothermal Reservoir Assessment Case Study funded in part by the U.S. Department of Energy under Contract DE-AC08-79ET27007.

Geologic work has included a literature search and reconnaissance photogeologic mapping study and then detailed field geologic and alteration mapping. A groundwater sampling program and soil mercury survey were the geochemical techniques used. Geophysics consisted of a microearthquake study; aeromagnetic mapping; and a gravity, electrical resistivity and self-potential study.

Exploration drilling included 27 shallow temperature gradient holes, four intermediate-depth gradient wells and one 3703-foot deep test, Baltazor 45-14. The deep test penetrated Miocene rhyolite, andesite, basalt and andesitic basalt flows before excessive hole deviation forced an end to drilling and completion as a deep observation well. A temperature survey two weeks after completion obtained a $119.7^{\circ} \mathrm{C}\left(247.4^{\circ} \mathrm{F}\right)$ reading at survey total depth, lllom (3640 feet).

The Baltazor Hot Springs KGRA and McGee Mountain/Painted Hills geothermal area are located in northern Humboldt County, Nevada along the northwestern margin of the Basin and Range province (see Figs 1 and 2). The Baltazor prospect contains about 40 sections under lease to subsidiaries and affiliates of Grace Geothermal Corporation. The McGee area contains about 50 sections under lease to the same companies. Earth Power Production Company (EPPC) of Tulsa, Oklahoma is operator.

EPPC began geothermal exploration at Baltazor and McGee in 1977 with a groundwater sampling survey (Klein and Koenig, 1977) and a microearthquake study (Senturion Sciences, 1977). A geologic literature search and photogeologic mapping study (Gardner and Koenig, 1978) followed in 1978 along with a program of shallow gradient hole drilling (EPPC, 1979). An aeromagnetic survey (Scintrex Mineral Surveys, 1972) and gravity maps (Plouff et al., 1976; Peterson and Hoover, 1977) completed the 1978 data base.

EPPC submitted a proposal in May 1978 in response to DOE RFP No. ET-78-R-08-0003 to provide this existing data and new data as one of the Geothermal Reservoir Assessment Case Studies (Northern Basin and Range Province). DOE awarded a contract to EPPC effective October 1, 1978. New data was to be delivered to DOE in three phases. In Phase I, EPPC drilled and ran temperature surveys in 4 intermediate depth (about $460 \mathrm{~m}=1500$ feet) temperature gradient holes in 1979. In Phase II, completed in January, 1983, EPPC drilled one deep exploratory hole, 45-14, in the Baltazor area to a depth of 1129 m (3703 feet). EPPC has delivered drill cuttings, mud - logs and a suite of geophysical logs to DOE for this well.

(from Edquist, 1981)

Steel tubing $2 \frac{3}{8}$ inches in diameter was run into the hole to 1110 m (3640 feet) and filled with water. A temperature of $119.7^{\circ} \mathrm{C}\left(247.4^{\circ} \mathrm{F}\right)$ was measured at 1110 m on February 3, 1983. Phase III, consisting of flow tests if a productive zone was encountered, was not performed.

All of the data delivered to the DOE are on open file with the Earth Science Laboratory, University of Utah Research Institute, Salt Lake City (see Appendix A).

Geology

Gardner and Koenig's 1978 literature search and photogeologic mapping study was followed by additional geologic and hydrothermal alteration mapping under a DOE contract (Hulen, 1979). The following discussion is based on the latter study.

Plate I (Hulen,1979) is a geologic map. of the Baltazor and Painted Hills/McGee areas. Cretaceous diorite and quartz diorite intrude Permian to Triassic eugeosynclinal metasedimentary and metavolcanic rocks in the Baltazor area. A thick sequence of Miocene to Pliocene volcanic and volcanoclastic rocks overlies the Permian to Triassic and intrusive rocks. Only the younger sequence crops out in the McGee area, and only the later part of the sequence has been correlated with rocks in the Baltazor area.

Moderate-to high-angle, north-to northeast-trending Basin and Range faults probably control the ascent of thermal fluids near Baltazor Hot Springs. The hot springs location may be controlled by an intersection with near-vertical, north-west-trending faults, the second prominent fault set in the
area. Quaternary landslides dominate the structural geology of the Painted Hills/McGee area.

Baltazor Hot Springs has measured temperatures of $76^{\circ} \mathrm{C}$ to $98^{\circ} \mathrm{C}$ (169° to $208^{\circ} \mathrm{F}$.; Klein and Koenig, 1977). Near-surface gradients approach $290^{\circ} \mathrm{C} / \mathrm{km}$ ($16^{\circ} \mathrm{F} / 100$ feet). There are no thermal springs in the Painted Hills/McGee area, but nearsurface gradients of about $400^{\circ} \mathrm{C} / \mathrm{km}\left(22^{\circ} \mathrm{F} / 100\right.$ feet) have been measured and warm ground and intermittent fumeroles have been reported (Gardner and Koenig, 1978).

Several different styles and ages of hydrothermal alteration and mineralization are found at Baltazor and McGee. The oldest phenomenon consists of copper-bearing quartz veins emplaced in pre-Tertiary rocks prior to Cenozoic volcanism. Argillizaion, silification, hematization and mercury mineralization are spread throughout the Painted Hills; this alteration is probably pre-Pleistocene. Alteration at Baltazor Hot Springs consists of small calcite-bearing opaline sinter deposits. Siliceous sinter deposits indicate reservoir temperatures of at least $180^{\circ} \mathrm{C}\left(356^{\circ} \mathrm{F}\right)$ in the past at Baltazor. The hot spring is not presently precipitating silica.

No young rhyolitic volcanics are present at Baltazor or McGee. These areas are located within the Battle Mountain zone of high heat flow (Sass et al., 1971). These two facts suggest that the thermal phenonena at Baltazor/McGee are due to deep circulation along faults rather than to a shallow body of silicic magma.

Geochemistry

Geothermex, Inc. performed a hydrochemical study of therm-
al areas in 1977 (Klein and Koenig, 1977). The goals of the survey were " to use integrated hydrologic, hydrochemical, and geologic data to describe the region's water-circulation systems and to predict as closely as possible the temperature and composition of deep thermal fluids, characteristics and location of possible acquifer host rocks, volume of recharge to the deep and shallow systems and potential sustained annual yield."

Twenty-six water samples and three gas samples from hot springs were collected and analyzed. Figures 3 and 4 are maps depicting, respectively, geochemical data and sulfate as a percentage of total dissolved solids. Silica and Na-KCa geothermometers indicated a maximum surface temperature for Baltazor Hot Springs of about $160^{\circ} \mathrm{C}\left(320^{\circ} \mathrm{F}\right)$. A temperature less than about $135^{\circ} \mathrm{C}\left(275^{\circ} \mathrm{F}\right)$ appeared to be unlikely. While its sub-boiling temperature made it tempting to hypothesize that Baltazor Hot Springs is a mixed water, no cool component could be deduced that would behave consistently with respect to all the major solutes or the $\mathrm{Na}-\mathrm{K}-\mathrm{Ca}$ geothermometer. Baltazor water, therefore, is probably cooled by conduction as it rises from depths of a kilometer or more. High fluoride content points to an acidic igneous reservoir host rock, either Tertiary dacite-rhyolite or Mesozoic granitics, or at shallower depths, basalts.

A well two miles northeast of the Painted Hills Mine fumarole in the McGee area produces a cool water very similar to Baltazor Hot Springs. Klein and Koenig postulate this to be a thermal water that rises along the McGee Mountain fault and then flows down to the east within dipping sediments. Probably this water derives from a reservoir in rocks like those of the Baltazor reservoir at a similar depth.

Soil samples were collected from 14 sections surrounding Baltazor Hot Springs during February, 1980 and analyzed for mercury and arsenic (Blair, 1980). The 171 samples were taken on a grid with 1000-foot centers; 2000-foot centers in the periferal area. No contour maps or interpretation of the results seems to have been made. The analyses do show two apparent maxima of mercury content: A peak value of 2.8 ppm about 1.3 miles northeást of the later deep test hole, 45-14, along the Pueblo Range front fault; and $l_{0} 4 \mathrm{ppm}$ in the $\mathrm{N} \frac{1}{2}$, Section 22 , T. 46 N., R. 28 E. along the west side of the Pueblo Mountains ridgeline.

Geophysics

Scintrex Mineral Surveys flew aeromagnetic coverage of the Baltazor-McGee area in 1972 at a constant barometric elevation of $2.74 \mathrm{~km}(9000$ feet; see Figure 5). Since the survey is regional in scope and contours reflect topography primarily, the survey has not proved very useful for interpretation of the geothermal system (Edquist, 1981).

Senturion Sciences, Inc. deployed two 6-station, $9-\mathrm{km}$ diameter pentagonal seismometer arrays in the Baltazor-McGee area in June and July, 1977 (Senturion Sciences, 1977). The purpose was to define heat sources as indicated by microearthquakes and to determine relative crustal movements. Three microearthquake clusters were detected, the Denio, Thousand Creek and Craine Creek clusters (Figure 6).

First motions for the Denio swarm were compatible with a steeply dipping, north-northeast trending normal fault plane bounding the Pueblo Mountains west of Baltazor Hot Springs. The block on the west side of the fault moved upward relative to the eastern valley. Relative crustal movements could not be deduced from the Thousand Creek and Craine Creek clusters.

The swarms may have resulted in part from thermal stresses induced by high heat flows; normal tectonic stresses may also have been responsible for the microearthquakes. Vp/Vs ratios for the combined Denio and Thousand Creek data gave an anomalous (low) Poisson's ratio, possibly indicating voids filled with steam.

Edquist (1981) compiled and interpreted gravity, electrical resistivity and self-potential data for the Baltazor and McGee areas under contract to the DOE. Edquist himself collected gravity data fom 194 stations and added this to 90 stations collecte ously (Peterson and Hoover, 1977; Plouff et al, 1976). survey lines (Figure 7 , gravity anomaly map; Figu. 9 the data were taken along re 8 is a complete Bouguer anomaly map. Cross section Hot Springs appears to be cor tap acquifers in the Steens Bas a residual Bouguer gravity ng indicates that Baltazor by recent faults that gure 10 is a gravity interpretation map.

Edquist also models and interpr tivity and self-potential data collect Surveys, Inc. (1980) on contract to EPPC resistivity data were collected for a tot.
 About 38 line- km of SP data were colle eight profiles. Figures 11 and 12 present inte data for the Baltazor area; Figures 17 Painted Hills/McGee area.

Temperature Gradient Holes

EPPC drilled 27 shallow gradient holes, most to - of about 90 m (300 feet), during the summer of 1977. The

(from Edquist, 1981)

(from Edquist, 1981)

FIGURE 14
INTERPRETED GEOLOGIC CROSS-SECTION ALONG LINE M2
PAINTED HILLS AREA
HUMBOLDT COUNTY, NEVADA
(from Edquist, 1981)
mum gradient measured at Baltazor was $290^{\circ} \mathrm{C} / \mathrm{km}$ (15.90 $\mathrm{F} / 100$
feet); the maximum at McGee was about $455^{\circ} \mathrm{C} / \mathrm{km}$ ($25^{\circ} \mathrm{F} / 100$ feet). Figure 15 is a temperature gradient contour map based on these holes.

Four intermediate-depth gradient holes were drilled in 1979 (see plate I) . Two intermediate depth holes were drilled near the center of the Baltazor anomaly near the range front fault. Baltazor 1500-1 was drilled about half-way between the hot spring and the range front. This hole went through the hot water aquifer at about 60 m (200 feet), cooled to about $82^{\circ} \mathrm{C}\left(180^{\circ} \mathrm{F}\right)$ to 210 m (700 feet), then slowly began to warm again with a bottom hole temperature of $90.5^{\circ} \mathrm{C}\left(195^{\circ} \mathrm{F}\right)$ at 467 m (1532 feet).

The second intermediate depth hole, Baltazor 1500-2 was drilled about a mile southwest of the first hole at a location very near the range front of the Pueblos. This fault cannot be accurately traced in this area due to the large slump blocks that complicate the surface geology. Presumably, the hole penetrated the main fault zone and entered the foot wall at less than 145 m (500 feet) unless this fault is much steeper than thought. The hole encountered a zone of $41^{\circ} \mathrm{C}\left(105^{\circ} \mathrm{F}\right)$ water at 76 m (250 feet), then cooled to a low of $37^{\circ} \mathrm{C}\left(98^{\circ} \mathrm{F}\right.$) at 150 m (475 feet). From 150 m to 380 m (475 to 1250 feet), the hole warmed to $57^{\circ} \mathrm{C}\left(135^{\circ} \mathrm{F}\right)$, then began increasing in temperature at a rate of about $200^{\circ} \mathrm{C} / \mathrm{km}\left(11^{\circ} \mathrm{F} / 100\right.$ feet), to a bottom hole temperature of $68^{\circ} \mathrm{C}\left(154^{\circ} \mathrm{F}\right)$ at 434 m (1.425 feet).

Two intermediate holes also were drilled in the McGee area. McGee 1500-1 was drilled in the area of warm ground where very high temperatures were measured in shallow holes. This hole heated rapidly to a temperature of $117^{\circ} \mathrm{C}\left(242^{\circ} \mathrm{F}\right)$
at 101 m (330 feet), cooled to about $104^{\circ} \mathrm{C}\left(220^{\circ} \mathrm{F}\right.$) at 183 m (500 feet), then stayed roughly isothermal to a bottom hole temperature of $103^{\circ} \mathrm{C}\left(217^{\circ} \mathrm{F}\right)$ at 455 m (1493 feet). The hole was drilled for the most part wtihout returns but apparently the bulk of the hole was in faulted Miocene sedimentary strata.

McGee 1500-2 was drilled east of the fault system at the foot of the upthrown McGee Mountain block. This hole increased in temperature throughout its depth to a bottom hole temperature of $93^{\circ} \mathrm{C}\left(200^{\circ} \mathrm{F}\right)$ at 509 m (1670 feet). The temperature profile shows a slight break in gradient at about 290 m (950 feet), possibly due to a change in thermal conductivity. The gradient at the bottom of the hole is about $110^{\circ} \mathrm{C} /$ km ($6^{\circ} \mathrm{F} / 100$ feet).

Deep Test Hole

Southwest Drilling and Exploration Rig \#111 moved on site September 21,1982 . Baltazor $45-14$ was spudded September 24 in the $N E \frac{1}{4} \mathrm{NE} \frac{1}{4} \mathrm{SW} \frac{1}{4}$, Section $14, \mathrm{~T} .46 \mathrm{~N} ., \mathrm{R} .28 \mathrm{E}$. and drilled to 771 m (2529 feet) by October 25 . Very slow penetration rates and hole deviation problems dictated use of a larger rig. Rig \#111 was moved off the hole, which was temporarily shut in.

On December 21, 1982, Calvert Western Rig \#5 began moving on site, reamed the hole from $6 \frac{1}{2}$ inches to $8 \frac{1}{2}$ inches and started making new hole on January 6, 1983. Hole deviation was again severe, culminating in a 24° measurement at 1078 m (3537 feet). On January 15, Gearheart-Owens ran a full suite of geophysical logs to a depth of 1100 m (3609 feet). (See Table I.) Drilling was continued slowly to a total depth of 1129 m (3703 feet), and on January 19 , $2^{3} 8$-inch tubing was set at 1125 m (3689 feet) and filled with water in prep-

Table I.
Logging History for Well 45-14 Baltazor KGRA, Nevada

Date	Type of Log	Logged Interval	Total Depth
10-01-82	Dual Induction Laterolog-GO	39-418'	419°
10-01-82	Compensated Neutron-GO	39-418'	419^{\prime}
10/01/82	Gamma Ray-GO	39-418'	419
10/01/82	Caliper-GO	39-418'	419°
10/01/82	Borehole Compensated Sonic-GO	39-409 ${ }^{\prime}$	419^{\prime}
10/01/82	Integrated Travel Time-GO	39-409'	419^{\prime}
10/01/82	Temperature-GO	39-418'	419^{\prime}
10/31/82	Temperature-Southwest	60-2430'	2529^{\prime}
11/25/82	Temperature-Southwest	80-1567	2529^{\prime}
1/15/83	Compensated Neutron-GO	402-3609	3610^{\prime}
1/15/83	Gamma Ray-GO	402-3609'	3610^{\prime}
1/15/83	Caliper-GO	402-3609'	3610^{\prime}
1/15/83	Borehole Compensated. Sonic-GO	402-3609'	3610°
1/15/83	Integrated Travel Time-GO	402-3609 ${ }^{\prime}$	3610^{\prime}
2/03/83	Temperature-Southwest	40-3640'	3703^{\prime}
(note:	1 logs on open-file, ESL/UURI)		

aration for a final temperature survey. Table II is a complete drilling history for 45-14. Figure 16 is a well completion schematic.

Lost circulation was not the major problem that had been feared. Circulation was lost briefly at 95 m (312 feet), 788 (2584 feet; 80 bbl) and $1082 \mathrm{~m}(3550$ feet; $80 \mathrm{bbls).}$. The major problem was deviation of the hole from vertical, a problem that worsened as drilling proceeded. Weight on the bit was kept relatively low but with little effect. We hypothesize that the hole encountered a range-front fault bordering the east side of the Pueblo Mountains that deflected drilling for most of the depth of 45-14.

Drill cutting samples were collected at 3 m (l0-foot) intervals; they may be examined at the Geothermal Sample Library, University of Utah Research Insitute, (UURI) Salt Lake City. (Cuttings for 15 shallow gradient holes and 3 intermediate-depth holes also are on file.) Figure 17 is a generalized stratigraphic column for 45-14; detailed mud logs are on open-file at UURI.

Two open-hole temperature surveys, run after the hole was drilled to $771 \mathrm{~m}(2529$ feet), are shown in Figure 18. Thermal conductivity measurements on 26 drill cuttings samples permitted calculation of heat flow values for selected intervals (Table III). The gradient value in the 493 m to 585 m interval (1440 to 1920 feet) of $155^{\circ} \mathrm{C} / \mathrm{km}\left(8.48^{\circ} \mathrm{F} / 100\right.$ feet) is probably a good approximation to the true conductive gradient. The associated heat flow of 5.3 HFU probably characterizes well the true conductive heat flow (Southwest Drilling and Exploration, 1983a).

Table TI．

HOLE NO：45－14

DATE	DEPTH	SUMMARY OF OPERATIONS
9／E1／8E	Q－ 0	Move rig to site．Euild road and pad．Dig arie mud pit and rig up．
9／ヨこ／8き	Qー	Contimue to rig up ard dig secord mud pit．
9／ころ／8こ	Q1－ 0	Finish digging mud pits．Haul water ard mix mud：Send flat bed truck to pick up casing．
9／E4／8玉	Q－ 36	Stir up mud pits．Spud hole at 7：30 am with 17 1／E＂bit and drill to 36＇in alluvial fan deposits．Set $1 E 1 / 4^{\prime \prime}$ surface casirg to 36＇． Mix cement and pump down cutside of casing． Euild ard install flawline．
9／25／8こ	$36-190$	Make up $83 / 4^{\prime \prime}$ battom hale assembly and drill to 147＇．Trip to check bit．Run in hole with $97 / 8^{\prime \prime}$ bit arid ream from 36＇to 147＇． Drill to 190＇with $97 / 8^{\prime \prime}$ bit．Drilling in alluvial far deposits to 180＇，rhyolite to 190＇．
9／こ6／8こ	13Q－28Q	Drill to equ＇．Trip to check bit and adjust rotary table clutch linkage．Drill to Eat＇． Trip to lay down stabilizer and drill to esa， in rhyolite with 9 7／日＂bit．
ヨ／ミ゙／8き	こ日の－394	Drill to $31 \underbrace{\prime}$ and encourter last circulation zome．Logse $1 / 2$ pit of mud．Mix mud and LCM．Regair circulaticor．Drill to 394＇ir rhyolite．
Э／ご／8こ	$374-407$	Mix mud．Drill to 407＇in rhyolite．Trip out of hale and make up $1 E 1 / 4$ hole opener． Ream hole from 36＇．
7／シヲ／日こ	4め7－4こ1	Cantinue to ream hale with $121 / 4^{\prime \prime}$ hole operi－ er ta 407＂．Trip out to lay dowri hale gperier． Clean mud pits ard mix mud．Rum in hole with 97／8＂bit ard drill ta 417＂．Trip ta lay down stablizer．Run in hole and drill to 4E1＇ in rhyolite．
9／30／8E	4こ1－44き	Drill ta 442＇ir rhyalite．Trip out af hale． Make up hale operier．Ruri in hole and ream hale with $1 E$ 1／4＂opemer fram 407＂．

DATE
$10 / 01 / 92 \quad 442-442$
$10 / 02 / 82 \quad 442-442$

10／ロふ／8こ 44こー 44こ

10／Q4／BE 44ミー 44き

10／05／82 44Еー 5Е5

10／06／8こ 5느 649

10／07／8こ 649－736
$10 / 08 / 85 \quad 736-750$
$10 / 09 / 82 \quad 7501881$
$10 / 10 / 82 \quad 881-1018$
$10 / 11 / 82 \quad 1018-1208$

Coritime to ream hole with 12 1／4＂hole open－ er to 48° ．Pull Gut of hole．Geanhant log－ ging holes Run $75 / 8^{\prime \prime}$ casing：Unable to get casirg past 3EQ．pull casing out of hole．

Coritirue to pull casirig out of hole．Make up stacked hole opener．Rum in hole with $1 巳 1 / 4^{\prime \prime}$ stacked hale opener．Ream to straighter hole from about E日Q＇．

Contimue to ream hole to straighter down to 403＂．Pull out af hole ard lay dowripipe． Rurn $95 / 8^{\prime \prime}$ casirng ta 40ミ＇．Cemert casing； goad returris．Wait orn cemert．

Wait Gri cemerit．Dig cellar for EOPE．Cut off casirg，weld on well head ard irstall EOPE． Test BOPE：passes test．Clean mud pits．Make up $83 / 4^{\prime \prime}$ down hole assembly．

Run in hale with 9 3／4＂bit．Tagged cemerit at 369＇．Carditior mud．Drill to farmatiori 4E8＇． Trip to charge to $63 / 4 "$ bit ard stablizer． Drill ir altered mhyalite to 5E5＂．5QQ＂ta SeQ＇is vesicular rhyolite ard ash tuff．

Drill with 6 3／4＂bit to 649＇．Drilling in vesicular rhyolite ta 570^{\prime} ，ard rhyalite to 610＇．Lithalagy change at 610＇to aridesite where drillirg slaws．

Drill with 6 3／4＂bit ta 6EQ＇．Trip ta charge bit arad drill ta 736° ir ardesite．

Drill ta 75Q．Pull Gut af hale ta switah from mud ta air．Rum ir hole．Ericounter tag much water（nega GPM）．Pull out af hole．／ Switch to mud arid ream hole．

Coritimue to ream hole with $63 / 4^{\prime \prime}$ bit to 75Q＂． Trip to change bit．Drill to 881＂．Litholagy change at $87 Q^{\prime}$ to basalt．

Drill to 940^{\prime} in basalt，to 970＇in ash flow tuff，to 990^{\prime} in basalt，to 1018＇in basalt／ clay．Trip out of hale at $99 \varnothing^{\circ}$ ta clean 6 3／4＂bit and put in jets．

Coritinue to drill with $63 / 4^{\prime \prime}$ bit from 1018° to 1E巳g＇in basalt．

DATE	DEPTH	SUMMARY OF DPERATTONS
10／1E／BE	1Eこロ－1483	Drill from 1Eeg＇ta 1493＂with 6 3／4：bit． Drilling in basalt with blue clay．
10／1З／日玉	$1485-1615$	Drill with 5 3／4＂bit ta $145 Q^{\prime \prime}$（still ir basalt with blue clay）．Thin mud ard drill to 1570° iri basalt．Trip out af hale to check bit．Clear mud pits arad rurn maintair－ emce arn rig．Mix mud arad rurn iri hole with $63 / 4^{\prime \prime}$ bit．Drill to 161玉＂ir basalt．
10114／8玉	$1612-1750$	Drill with $63 / 4^{\prime \prime}$ bit ta 1750° ir basalt． Cimculate to cleari hale ard drap drift toul （bad rum）．Rum in hole ard mix mud．
$10 / 15 / 82$	1750－1804	Drop drift tool agair（ 6 den off）．Trip out of hole．Maintainerice．Mix mud ard rurn in hale with 6 3／4＂bit，drill ir basalt to 1804＇．Drilling with reduced weight on bit to straighter hale．
10／16／8こ	1904－197E	Drill with 6 3／4＂bit from 1804＇to 197e＇ir basalt with ash／tuff．
181／17／8E	187シー1913	Drill with 6 3／4＂bit to 1895＇．Mix mud arid continue down to 1913＇in basalt．Drap drift toal（3．zS deg Gff）．Pull gut af hole．Rum maintainerice or rig．
10／18／8玉	$1913-1954$	Rig maintainence．Run in hole with new E 1／E＂ bit．Drill to 19EQ＂．Mix mud arad contirue ta 1954＇in basalt．
10／19／82	1954－2038	Drill ta 1994＇with E 1／E＂bit．Circulate ard drop drift tagl（5． 75 deg off）．Pull aut af hole，maintaimerice，run ir hale．Drill ahead tG EQJB＇with $61 / \Xi^{\prime \prime}$ bit ir basalt．
10／こめ／日こ	こセら8－213こ	Drill ahead ta el3e＇in basalt with 6 1／E＂bit． At E064＇added water to pit to reduce viscosity of mud．Rig mairitainemce at E114＂．
10／E1／8こ	こ13こーこ184	Drill ahead ta E184，in basalt with $61 /$ E＂bit．$^{\text {b }}$ Open 3rd mud pit and mix mud．Pull qut of hole－ 10 buttoms missing from bit．Install new $61 / e^{"}$ journel buttom bit，mix mud and rum in hole．Circulate and rur wireline deviation survey（ 3.75 deg aff）．Pull gut of hale－ plugged float．Clear mud pump ard lires．
10／Eこ／8こ	2184－E®68	Run in hale．Mix and corditior mud．Drill with $61 / e^{\prime \prime}$ bit to e268＇in basalt to e190＇，to Ee6B＇in arodesitic basalt．Water added to mud pits at 2194^{\prime}, E206＇，and ees 4＇．

$10 / 23 / 80$

18／24／8こ

18／こら／日を

1ロ／ミ6／BE

1Q／こ7／8き こちこコーシらこヲ

1ロノこヨ／日き こらこコーシらこヲ

1ロ／30／8き シらこコーシらこヨ

18／コ1／日き こらこヨーシらきヨ
11／ロ1／日き こらこヨーシらこヨ

Drill ahead with 6 1／E＂bit to EJQZ＂miximg mud at $こ=\exists 4^{\prime}$ ．Rum wirelime deviaticur survey
 E375＂mixirng mud at EЗS4＂．Drillirg in arodes－ itic basalt Ee6g＂ta 2כ75＂．

Maintaimersee（repair pump clutch yoke）．Drill ahead to E4QQ＂．Circulate arod rur wirelime deviatigr survey（E．QaQ deg aff）．Drill ahead
 Drill ahead to E4EO＂，mixing mud at E454＂． Ardesitic basalt EЗ75＂to E46ご．

Drill ahead to ESQQ＂with E $1 / E=$ bit．Circulate ard ruri wirelime deviatior survey（bad rum）． Drill ahead ta ESIJ＇，circulate，arid ruri survey agair（S．，DQ deg aff）．Drill ta ESEヲ＂ir arodesitic basalt：Pull out of hole．

Maintaimernce \｛clear ard re－irstall hoist lime ciutch）．Clears mud pits arad mix mud．Mair－ taimerice（charige battery orm rigg air lire cm draw works，ard check gear baxes）．Ruri ir hole ard mix mud．Problems with hoistirg lime clutch，will rat pull pipe．Pull out of hole．
ivaimtaimernce orn haistimg lire clutch．
Make up $日 5 / 8^{\prime \prime}$ hale aperier．Rur in hale to 475＇．Stir mud pits arod mix mud．Ream hole fram 475＇ta 75＇

Ream hole with $85 / 8^{\prime \prime}$ hole gperier fram 758＂ ta 79E＂。

Pull gut af hole ard lay down pipe．Pick up arid laad equipment．

Ruri temperature survey ari hale．$T D=2430^{\circ}$.
Rig dawr．Mave rig ta Deria Jurictiar． Remave mud fram pits．

$\begin{aligned} & 11 / 02 / 82- \\ & 12 / 20 / 82 \end{aligned}$	2529-2529	Well shut in with BOP installed, waiting on rig. Calvert Western Exploration Co. Franks 400 Series Explorer III "Rocket" moved on hole as follows:
12/21/82	2529-2529	Dig out for cellar and unload truck.
12/22/82	2529-2529	Dig out cellar and for mud pits.
12/23/82	2529-2529	Dig out for mud pits where dozer missed.
12/24/82	2529-2529	Unload trucks and set mud pit.
12/28/82	2529-2529	Rig up and unload trucks. Put derrick on unit.
12/29/82	2529-2529	Rig up -- board in cellar.
12/30/82	2529-2529	Rig up: rework some areas of location; set unit, sub, doghouse, mudpit, mud pump.
12/31/82	2525-2529	Rig up: rework some areas of location with backhoe; set pipe baskets, mudpump, walk and racks.
1/01/83	2529-2529	Rig up.
1/02/83	2529-2529	Rig up: nipple up, weld on Bradden head, mix mud.
1/03/83	2529-2529	Pick up bit and B.H.A. Clean out bridges and condition mud. Ream from 456 to 754 to 8혼. Run deviation survey: 9° at 723'.
1/04/83	2529-2529	Reaming $8 \frac{1}{2} "$ hole to 1560^{\prime}. Run deviation surveys: $93 / 4^{\circ}$ at $824^{\prime}, 93 / 4^{\circ}$ at 916', $8 \frac{1^{\circ}}{}{ }^{\circ}$ at $1008^{\prime}, 8^{\circ}$ at $1100^{\prime}, 73 / 4^{\circ}$ at $1192^{\prime \prime}$, $8 \frac{3^{\circ}}{}{ }^{\circ}$ at $1284^{\prime}, 8 \frac{1^{\circ}}{}{ }^{\circ}$ at $1376^{\prime}, 8 \frac{1}{4}^{\circ}$ at 1499^{\prime}.
1/05/83	2529-2529	Reaming $8 \frac{1}{2}$ " hole to 2164. Run deviation surveys: $7 \frac{1}{4}^{\circ}$ at $1591^{\prime}, 4 \frac{1}{4}{ }^{\circ}$ at 1990', 3° at 2113'.
1/06/83	2529-2540	Reaming $8 \frac{1}{2}$ " hole to 2529^{\prime}. Deviation $2 \frac{1}{4}$. at 2237', 5° at 2391'. Trip out -- I.B.S. 60' off bottom. Change B.H.A., pick up 2 drill collars and trip in. Reaming, drilling new hole to 2540^{\prime}.

DATE	DEPTH	SUMMARY OF OPERATIONS
1/07/83	2540-2682	Drilling 8 $\frac{1}{2}$ " hole in andesitic basa
		Deviation $9 \frac{1_{2}}{}{ }^{\circ}$ at 2583^{\prime}. Lost 80 bbls mud at 2584, mix LCM. Deviation $10 \frac{1_{2}}{}{ }^{\circ}$ at 2636', $113 / 4^{\circ}$ at 2667'. Trip out @ 2655' to change B.H.A., trip in. Drilling to 2682'。
1/08/83	'2682-2773	Drilling $8 \frac{1}{2}$ " hole in andesitic basalt. Deviation 12° at 2696! 11° at 2727', $12 \frac{1}{4}{ }^{\circ}$ at 2758'。
1/09/83	2773-2829	Drilling $8 \frac{1}{2}$ " hole in andesitic basalt. Deviation 12° at 2789', 12° at 2819.
1/10/83	2829-2923	Drilling $8 \frac{1}{2} "$ hole in andesitic basalt. Deviation 12° at 2851', 12° at 2881', 12 $\frac{1^{\circ}}{}{ }^{\circ}$ at 2912'. Trip out to change B.H.A., trip in.
1/11/83	2923-3081	Drilling 8 $\frac{1}{2}$ " hole in basalt. Deviation $12 \frac{1}{2}{ }^{\circ}$ at 2950', bottom-hole temperature $148^{\circ} \mathrm{F}$; deviation $12 \frac{1^{\circ}}{}{ }^{\circ}$ at 2981', B.H.T. $160^{\circ} \mathrm{F}$.
1/12/83	3081-3295	Drilling $8 \frac{1}{2}$ " hole in basalt and, in 3090-3140' and 3180-3210' intervals, welded tuff. Trip out at 3260 " to change bit, trip in. Drilling to 3295'.
1/13/83	3295-3551	Drilling $8 \frac{1}{2}$ " hole in basalt and, to 3460^{\prime}, welded tuff. Deviation 24° at 3537^{\prime}. Lost 80 bbls mud at 3550^{\prime}. Trip out 18 stands drill pipe, circulate mud, add LCM.
1/14/83	3551-3588	Circulate and condition mud. Trip out and lay down B.H.A. and 6 drill collars. Trip in with new $8 \frac{1}{2} "$ bit and 6 drill collars. Drill basalt to 3588'.
1/15/83	3588-3610	Drilling 8는" hole in basalt to 3610'. Condition hole for logs. Trip out and rig up for logging. Run Gearheart-Owens logs, rig down loggers.
1/16/83	3610-3676	Drilling $8 \frac{1}{2}$ " hole in basalt.
1/17/83	3676-3703	Drilling $8 \frac{1}{2}$ " hole in basalt. Condition hole to run tubing. Trip out 30 stands D.P.

DATE	DEPTA	SUMMARY OF OPERATIONS
1/18/83	3703-3703	Circulate and condition hole for tubing.
		Trip in 30 stands D.P. to bottom -- no fill.
		Circulate, trip out and lay down D.P.,
		collars. Break kelly, nipple down. Rig up to run tubing. Run 10 joints $23 / 8^{\prime \prime}$
		tubing.
1/19/83	'3703-3703	Run 116 joints tubing, set at 3689',
		fill with water. Wash pumps and pits,
1/20/83	3703-3703	Rig down, move rig to Denio.
1/21/83	3703-3703	Rig down, move rig to Denio. Fence
		reserve pit.

Figure 16. Well Completion Schematic, Baltazor 45-14.

Alluvium/Alluvial fan deposits

Rhyolite flows - purple aphanitic groundmass, smiflow structure, feld. , qtz phenocrysts, slight arglztn. 510-530': ves, lt beigebrn ash fall tuff.
Andesite flows - med gray to black groundmass, phenocrysts hb \& plag, faulting slick 630-650'.
Basalt flows and flow breccias with interbedded tuff and clay horizonsblack - gray aphanitic basalt, cryptocrystalline, phenocrysts plag and pyroxene, calcite and qtz veins.
920-970': lt gry-white to brnwhite ash tuff, altered to blue to yel-grn clay locally. 1800-2180': white ash tuff (10-15\%) with basalt.

Andesitic basalt flows - graygrn aphanitic groundmass with plag phenocrysts, 5-10\% whitetan crystal tuff. Secondary calcite veins and traces qtz fracture filling, sltly altered femag minerals, chloritized 2770-2930'.

Basalt - grn, gry-grn to dark gry, hard, brittle, fine-grned, schistose to phyllitic texture, chloritized, sm white veins qtz and calcite. 3090-3140', 31803210', 3290-3460': welded tuff, buff-white, medium-grained, clasts red basalt.

Figure 17. Generalized Stratigraphic Column, 45-14.
Sources: Southwest Drilling and Exploration, 1983a; ExLog Smith mud logs (on open-file, UURI)

TABLE III．
heat flow data
gAL TAZOR HOT SPRINGS
HOLE ND： $45-14$

RLN NMBER	TOTAL DEPTH （FEET）	BOTTOH HCLE TERTP （DEG F）	GRRDIENT A （DEG F／ 100 FT）：	GRADIENT INTERVAL （FEET）	$\begin{aligned} & \text { CALC SURF } \\ & \text { TETP } \\ & \text { (DEG F) } \% \end{aligned}$	GRADIENT （DEG F／ $100 \mathrm{FI}+$	THERMML CONDUCTIVITY （TCD）+	
1	2430	こここ． 77	6.9		$\begin{array}{r} \text { 7E. } 1 \\ \text { EE. } 6 \\ - \text { ES. } 7 \end{array}$	$\begin{array}{r} 4.93 \\ 8.48 \\ 11.00 \end{array}$	$\begin{aligned} & 3.6(E) \\ & 3.4(5) \\ & 3.5(E) \end{aligned}$	$\begin{aligned} & 3 . E \\ & 5.3 \\ & 7.0 \end{aligned}$
E	1567	161． 41	6.8	$606-9001$ 900－1400 $14 E 0-1567$	90． 5 56． 9 30． 8		$\begin{aligned} & 4.0(4) \\ & 3.4(5) \\ & 3.1(1) \end{aligned}$	$\begin{aligned} & 1.6 \\ & 3.8 \\ & 4.7 \end{aligned}$

＊Gradient $A=$ The bottom hole teaperature minus an estimated mean annual surface temperature of 55 denF divided by the total depth．
＊＊Extrapolated surface temperature．

+ Least－squares geothermal gradient calculated over the gradient interval．
+ TCU $=$ mcal／cu－sec－denC．Number of thermal conductivity samples for each interval in parentheses．
$3 \quad \mathrm{HFU}=$ microcal／sq－cm－sec．
（from Southwest Drilling and Exploration，1983a）

A final temperature survey was made on February 3, 1983 after the $2^{3} / 8$-inch tubing was set (Figure 19). Gradients over the 493 m to 585 m and 585 m to 646 m intervals closely matched those measured earlier. The gradient for the 902 m to 1012 m interval (2960 to 3320 feet) measured only $25.7^{\circ} \mathrm{C} / \mathrm{km}\left(1.41^{\circ} \mathrm{F} / 100\right.$ feet). Temperature at the survey total depth of 1110 m (3640 feet) was $119.7^{\circ} \mathrm{C}\left(247.4^{\circ} \mathrm{F}\right.$). (Southwest Drilling and Exploration, 1983b). Theseresults are still being evaluated, however, it may be that penetration of the expected range-front fault is responsible for the abruptly lower gradient below about 655m (2150 feet).

Blair, G.N.,1980, Geochemical Soil Survey, Baltazor Thermal Area, Nevada: Univ. Utah Rsch. Inst., Earth Science Lab., OFR.

EPPC, 1979, 27 shallow thermal gradient holes-temp. and lithology: Univ. Utah Rsch. Inst., Earth Science Lab., OFR.

EPPC, 1980, Deep thermal gradient study of 3 holes to 1500 ft; temp. logs, drilling and completion histories, location map: Univ. Utah Rsch. Inst., Earth Science Lab., OFR.

Edquist, R.K., 1981, Geophysical investigations of the Baltazor KGRA and the Painted Hills Thermal Area, Humboldt County, Nevada: Univ. of Utah DOE/DGE Rpt. DOE/ID/12079-29, ESL-54.

Gardner, M.C., and Koenig, J.B., 1978, Photogeologic interpretation of the Baltazor-McGee (Painted Hills) geothermal prospects, Humboldt County, Nevada: Univ. Utah Rsch. Inst., Earth Science Lab., OFR.

Hulen, J., 1979, Geology and alteration of the Baltazor Hot Springs and Painted Hills thermal areas, Humboldt County, Nevada: Univ. Utah Rsch. Inst., Earth Science Lab., report no. 27.

Klein, C.W. and Koenig, J.B., l977, Geothermal interpretation of groundwaters, Continental Lake region, Humboldt County, Nevada: Univ. Utah Rsch. Inst., Earth Science Lab., OFR.

Mining Geophysical Surveys, Inc., 1980, Resistivity and selfpotential survey, Baltazor-McGee geothermal prospects, Humboldt County, Nevada: Univ. Utah Rsch. Inst., Earth Science Lab., OFR.

Peterson, D.L., and Hoover, D.B., 1977, Principal facts for a gravity survey of Baltazor Known Geothermal Resource Area, Nevada: U.S. Geological Survey, OFR, 77-67C, 4 p.

Plouff, D., Robbins, S.L., and Holden, K.D., 1976, Principal facts for gravity observations in the Charles Sheldon Antelope Range, Nevada - Oregon: U.S. Geological Survey, OFR, 76-601, 22 p.

Sass, J.H., Lachenbruch, A.H., Munroe, R.J., Greere, G.W., and Moses, T.H., l971, Heat flow in the western United States: Journ. Geophys. Research, v. 76, no. 26, p. 6376-6413.

Scintrex Mineral Surveys, Inc., 1972, Aeromagnetic map of the Baltazor-McGee geothermal prospects: Univ. Utah Rsch. Inst., Earth Science Lab., OFR.

Senturion Sciences, Inc., 1977, Northwestern Nevada microearthquake survey report: Univ. Utah Rsch. Inst., Earth Science Lab., OFR.

Southwest Drilling and Exploration, l983a, Final report: Grace Geothermal Corp. Baltazor Hot Springs, Nevada Hole No. 45-14: Univ. Utah Rsch. Inst., Earth Science Lab., OFR.

Southwest Drilling and Exploration, 1983b, Temperature survey dated February 3, 1983, Baltazor 45-14: Univ. Utah Rsch. Inst., Earth Science Lab., OFR.

Open-file Materials

Open-file materials generated under Department of Energy's Industry Coupled Program, and from Earth Science Laboratory research, are available in reproduction at duplicating and handling cost from:

Publications
Earth Science Laboratory
420 Chipeta Way, Suite 120
Salt Lake City, Utah 84108

OFR \#	
NV/BAL/EPP-1	Geothermex report: "Geothermal Interpretation of Groundwaters, Continental Lake Region,
Humboldt Co., Nevada" (Dec 1977) $\$ 2.50$.	

NV/BAL/EPP-10	Geochemical soil survey (Hg, As) for 173 samples at 1000 ft station spacing covering (5 sq mi. $\$ 1.25$
*	Driller's logs, 0-2529 feet, Baltazor 45-14. \$*
* ,	Geophysical logs, Gearheart-Owens, 39-418 feet, Baltazor 45-14. \$*
*	Temperature surveys dated $10 / 31 / 82$ and $11 / 25 / 82$, Baltazor 45-14. \$*
*	Drilling history, drilling data \log and daily mud logs, 0-2529 feet, Baltazor 45-14. \$*
*	Final report, Southwest Exploration,0-2529 feet, Baltazor 45-14. \$*
* -	Geophysical logs, Gearheart-Owens, 402-3609 feet, Baltazor 45-14. \$*
*	Exlog Smith mud logs, 2540-3703 feet, Baltazor 45-14. \$*
*	Calvert Western drillers' logs, 0-3703 feet, Baltazor 45-14. \$*
*	Temperature survey dated $2 / 03 / 83,0-3640$ feet, Baltazor 45-14. \$*

* To be determined by ESL/UURI

