Fluid inclusions were studied in fluorite from depths of 1273 and 1507 ft. and in calcite from 4293 ft. All of the inclusions studied were liquid-rich at room temperature. Vapor-rich inclusions were observed in the sample from 4293 ft. The presence of these inclusions, and the variable ice-melting temperatures of inclusions in this sample suggest that boiling may have occurred. No solid phases were observed in any of the inclusions. Only secondary inclusions were observed in the samples of fluorite. The inclusions in calcite form small isolated three dimensional arrays suggesting that they are primary.

Homogenization temperatures range from 144° to 274°C. No temperatures were obtained on the vapor-rich inclusions. The icemelting temperatures of these inclusions range from -0.0° to -1.7° . Two distinct generations of inclusions with distinctly different homogenization temperatures and salinities are present in the ft. One generation is characterized by fluorite from 1507 homogenization temperatures that range from 144° to 149°C; the second by temperatures that range from 180° to 191°C. This latter group has similar homogenization temperatures but slightly higher apparent salinities than inclusions found at 1273 feet. No freezing measurements could be made on the lower temperature inclusions from 1507 ft. In every case, the bubble froze out during cooling and failed to renucleate before complete melting of the ice had occurred. The low temperature behavior of these inclusions suggest that their salinities are extremely low.

Inclusions from a depth of 4393 ft. display variable icemelting temperatures ranging from -1.0° to -1.7° C. The generally similar homogenization temperatures (refer to Tm vs Th plot)suggest that the differences in ice-melting temperatures results from variations in the CO₂ content of the fluids rather than from variations in the NaCl content of the fluids. This difference in the ice-melting temperatures (0.7° C) corresponds to a CO₂ of 1.6 wt. percent. percent. The presence of the vapor-rich inclusions in this sample suggest that CO₂ was lost during boiling. Thus the actual salinity of these fluids may be closer to 1.7 wt. percent (computed in terms of NaCl).

Variations in the apparent salinities of the shallow fluids are also evident in the Tm vs Th plot. This data suggests that the salinity of the shallow fluids is very low and that the fluids are enriched is CO_2 . Variations in the CO_2 of these fluids may also reflect gas loss due to boiling. The temperatures and salinities of these fluids suggest that they are steam-heated groundwaters.

VALLES GEO	THERMAL	AREA	1	Nanaitu	prim.(p)		
Depth(ft)	(Th)L	Tm	wat%	lensity (g/cc)	sec.(s)	mineral	comments
1273	 178			* Mai 400 *** *** -** 470 *** ***	5 5	Fluorite	along healed fracture
1273	179	0.0	0.0	0.89	5	Fluorite	along healed fracture
1273	179	-0.1	0.2	0.89	5	Fluorite	along healed fracture
1273	193	0.0	0.0	0.88	5	Fluorite	along healed fracture
1273	194	-0.2	0.4	0.88	S	Fluorite	along healed fracture
1273	194	0.0	0.0	0.87	5	Fluorite	along healed fracture
1273	 194	-0.2	0.4	0.88	s	Fluorite	along healed fracture
1273	495	-0.1	0.2	0.87	5	Fluorite	along healed fracture
1273	ł95	0.0	0.0	0.87	5	Fluorite	along healed fracture
1273	200	-0.4	0.7	0.87	5	Fluorite	along healed fracture
1273	205	-0.0	0.0	0.86	S	Fluorite	along healed fracture
1507	2106	-0.4	0.7		5	Fluorite	along healed fracture
1507	144				S	Fluorite	along healed fracture; bubble troze-out on treezing
1507	144				S	Fluorite	along healed fracture; bubble troze-out on treezing
1507	144				S	Fluorite	along healed fracture; bubble froze-out on freezing
1507	145				5	Fluorite	along healed fracture; bubble troze-out on treezing
1507	146				5	Fluorite	along healed fracture; bubble froze-out on freezing
1507	146				5	Fluorite	along healed fracture; bubble froze-out on freezing
1507	ł47				5	Fluorite	along healed fracture; bubble froze-out on freezing
1507	147				5	Fluorite	along healed fracture; bubble troze-out on treezing
1507	148				5	Fluorite	along healed fracture; bubble froze-out on freezing
1507	149	/			5	Fluorite	along healed tracture; bubble troze-out on treezing
1507	149	1609			5	Fluorite	along healed fracture; bubble froze-out on freezing
1507	180	-0.4	0,7	0.90	5	Fluorite	along healed tracture
1507	181	-0.4	0.7	0.89	S	Fluorite	along healed tracture
1507	182	-0,3	0.5	0,89	5	Fluorite	along heated tracture
1507	483	-0.4	0.7	0.89	5	Fluorite	along healed tracture
1507	183	-(), 4	0.7	0.89	5	Fluorite	along heated tracture
1507	184	-0.4	0.7	0.89	5	Fluorite	along nealed fracture
1507	1 84	-0.4	0.7	0.89	5	Fluorite	along nealed fracture
1507	196	-0.4	0.7	0.89	5	Fluorite	along nealed fracture
1507	186	-().4	0.7	0,89	5	Fluorite	along nealed fracture
1507	186	-0.4	0.7	0.89	9	Fluorite	along healed fracture
1507	191	-0.4	0.7	0,88	5	Fluorite	along nealed fractore
4393	2426	-1.5	2.6		Р	Calcite	isolated three-dimensional array
4393	256	-1.7	2.9	0,81	þ	Calcite	isolateo three-dimensional array
4393	259	-1.0	1.7	0.80	Р	Calcite	isolated three dimensional array
4393	273				Р	Lalcite	15018760 Three-Olmensiunal array
4393	273	-1.5	2.6	0,78	р	Calcite	1501ateo toree-ulmensional array
4393	274	-1.7	2,9	0.78	Р	Lalcite	1501ateo toree-olmensiunal array
4393	274	-1.7	2.9	0.78	Ρ	Calcite	1501ateo toree-dimensional array
4393	275	-1.5	2.6	0,78	р	Calcite	isolateo three-dimensional array
ΔΧΟζ	277	-1.5	2.6	0.77	p	Calcite	isolated three-dimensional array

115 2026 1132 1132 1132 1132

VC2B RD011 TEMPERA

DATE	DEPTH	TEMP. F	TEMP. C
8/7	715	180	82
8/7	720	170	77
8/7	743	180	82
8/7	768	200	93
8/8	778	230	110/_
8/8	818	170	27
8/9	870	160	71
8/15	+433	180	8.2 company
8/17	1575>	220	nine and the second
8/17	1608	230	
8/17	1633	230	_110-
8/18	1648	235	-45
8/18	1653	190	-88
8/18	1678	190	88
8/18	1698	230	110
8/19	1713	230	-110
8/19	1723	225	147
8/19	1728	230	110
8/19	1733	230	140
8/19	1738	225	107
8/19	1743	230	110
8/19	1763	240	110
8/20	1797	220	444
8/20	1802	230	110
8/20	1823	240	1.51
8/21	1828	250	121
8/21	1833	250	110
8/2)	1838	230	110
8721	1860	200	122
8721	1868	200	148
8721	1878	250	142
8721	1000	200	1/9
8721	1010	200 200	143
0/21	10/0	290	143
0/21	1001	200	149
0722	1000	290	143
	1996	300	149
0/22	2003-		
8/27	-2000	330	166~
0720	2020	300	149
	2033-	290	
	2038	340	171
	2043	320	160
	2073	320	160
8723	2078	340	171-0
9/2	2094	380	~ 587
9/3	2143	390	-199-
	2163	400	204
	2183	420	248:

Na K Ca Mg Li HCO3 504 CI B TC Silz AS TE one entry 1.8/ -0.32 彩 5.5 0.43 18.8 57 2945 182 309 VC-2A 210 321. 1888 2.3 -O.21 (wellhead 2093 17 29 15 48 12.4 0.02 261 267 441 1196 B-15 11 42 24 3.4 0.04 17 1897 17 1.6 -0.20 168 546 1146 278 B-13 NA -0.47 33 4350 39.3 entry 1463 m 360 395 2800 470 80.5 2.89 28.2 WC23-4 214 46.0 0.45 68 233 450 5890 382 95 9960 96.2 NA - 0.92 WC 23-4 - (one entry 1920 m) Colculations used Twokt Tsion = Te (columna, above) - Remember, the real ones may have gos, which is not in the Tm •. derived above. Tm@ Geoth Temp=Th Geothermometers NaKla Nakla QZZ Sample Na/K QTZ Neas Nalk VC-2A 263 (1052 281 252 - ,32 -,32 -,32 -0.32 B-15 294 281 -0,21 247 .21 -,21 -,21 B-13 292 295 250 -,20 -.20 -0.20 We23-4 266 258 249 -,47 -,47 -,47 -0,47 -0.92 We23-4 248

As 1.8/ -0.32 one entry 1.8/ -0.32 (490 m) produced: composite wellhead pla K Ca Mg Li HCO3 504 C/ B T,C Silz 1888 309 5.5 0.43 18.8 57 56 2945 18.2 1196 261 12.4 0.02 15 48 29 2093 17 VC-2A 252 210 322 B-15 (247) 267 441 1146 244 3.A 0.04 17 168 42 1897 17 2800 470 80.5 2.89 28.2 360 33 4350 39.3 5890 1020 46.0 0.45 68 382 95 9960 96.2 1.6 -0.20 (") B-13 (250) 278 546 NA -0.92 NA -0.92 NA -0.92 (one entry) 1920 m WC23-4 (249) 214 395 WC 23-4 249 233 450 L> Q Nake 243. ~280

Calculations used TNOK + Tsion = Te (columna, above) - Remember, the real ones may have gas, which is not in the Tm derived above.

·c/flinc

Witten by Mildung "

uses Boi la valumenter Heury's & Poter prom Tus Grown from Timoren Ti auf nermed compretinitant nermed and

Sample	Qtz	QtzAd	Na/K(F)	Na/K(G)	NaKCa	КМQ	("")
VC-2A 2/0 18-15 262 8-13 263	215 241 204	196 217 187	263 (274) 272)	275 303 301	281 281 295	236 317 290	1
WC23-4 1/4 WC23-42 33	243	210 218	266 269	277 280	258 297	211 304	2

A reconnaissance study of fluid inclusions in vein quartz, fluorite, and calcite was conducted to better characterize temperature and compositional relationships within the reservoir. Samples were collected from depths ranging from 1273 to 5751. All of the inclusions studied were liquid-rich, and contained two phases atroom temperature. The inclusions in fluorite and along quartz were secondary in origin, occurring healed Primary liquid and vapor-rich inclusions which define fractures. isolated three dimensional arrays were observed in coarse-plates Because of the small size of calcite (fish-scales). of the vapor-rich inclusions (less than microns), it was not possible to make reliable microthermometric measurements on them. Their presence, however, and the morphology of the calcite crystals suggests that mineral deposition occurred as a result of boiling.

The results of the microthermometric measurements are shown . The homogenization temperatures of the inclusions in Figure ranged from 144 to 274°C. With the exception of fluorite from a depth of 1507 feet, individual crystals displayed little variation in homogenization temperatures. In contrast, two distinct generations of secondary inclusions were observed in the One generation is characterized by homogenization fluorite. temperatures that ranged from 180 to 191°C, the by second temperatures between 144 and 149°C. No freezing measurements were conducted on the group of lower temperature inclusions because in every case, the bubble froze out and failed t.o renucleate before complete melting had occurred. Thus, while it sets of was not possible to compare the composition of the two inclusions, the temperature behavior of these inclusions indicates that they had low salinities.

Ice-melting temperatures of the inclusions ranged from 0.0 to -1.7. Despite their narrow range of homogenization temperatures, several of the samples displayed large variations in their freezing point depressions. For example, the ice-melting temperatures of inclusions in calcite from 4393 feet ranged from -1.0 to -1.7° C while the homogenization temperatures varied by only 21° C.

The large range in ice-melting temperatures cannot be readily explained solely in terms of variations in the salinities of the inclusion fluids since this would imply salinities that from 1.7 to 2.9 equivalent weight percent NaCl ranged during Alternatively formation of the calcite (Potter et al., 1978). the variations in ice-melting temperatures may be due largely to variations in the gas contents of the fluids (Hedenquist and Henley, 1985). For this sample, the differences in ice-melting temperatures of the inclusions $(0.7^{\circ}C)$ corresponds to a CQ content of 1.9 weight percent. Large variations in CO, may be caused by gas loss or gas enrichment related to boiling. Where such variations in ice-melting temperatures exist, an estimate of the salinity of the fluid can be obtained from the minimum Thus, the salinity of the fluids freezing point depression. trapped at a depth of 4393 is probably close to 1.7 equivalent weight percent NaCl. This value is consistent with the fluids sampled from a similar depth in WC28-4 which have a calculated

ice-melting temperature (gas-free) of -0.92 and a quartz geothermometer temperature of 248°C.

The relationships between the homogenization and ice-melting temperatures suggest that the inclusion fluids in different samples can be related to each other by dilution. The high temperature endmember was sampled at a depth of 5751 feet. The fluid has a temperature of 290°C, a salinity of 1.7 equivalent weight percent NaCl, and a CO₂ content of 0.84 weight percent. The low temperature endmember was trapped in fluorite in the upper part of the well. This fluid has a temperature of about 190°C, a low salinity, and a variable gas content. These relationships suggest that the fluid represents a steam-heated groundwater. A lowering of the water table may be responsible for the formation of lower temperature inclusions in the fluorite (Sasada, 1988)

References

Hedenquist, J. W., and Henley, R. W., 1985, The importance of CO_2 on freezing point measurements of fluid inclusions: Evidence from active geothermal systems and implications for epithermal ore deposition: Econ. Geol., v. 80, p. 1379-1406.

Potter, R. W., II, Clynne, M. A., and Brown, D. L., 1978, Freezing point depression of aqueous sodium chloride solutions: Econ. Geol., v. 73, p. 284-5.

Sasada, M., 1988, Microthermometry of fluid inclusions from VC-1 core hole in Valles Caldera, New Mexico: Jour. Geophys. Res., v. 90, p. 6091-6096

BACA					prim.(p)	
			NaCl	Density	or	
Depth(ft)	Th	Te	wt%	(g/cc)	sec.(s)	mineral
3283	249	-1.0	1.7	0.81	S	Cc
3283	254	-0.9	1.6	0.80	p?	Cc
3283	267	-1.0	1.7	0.78	S	Cc
3283	249	-1.0	1.7	0.81	p?	Cc
3283	261				p?	Cc
3283	245	-0.1	0.2	0.80	S	Cc
3283	244	-0.6	1.0	0.81	S	Cc
3283	242	-0.7	1.2	0.82	S	Cc
3283	246	-0.4	0.7	0.81	S	Cc
3283	245				S	Cc
3283	246	-1.1	1.9	0.82	?	Cc
3283	237				S	Cc
5751	291	-1.2	2.1	0.74	S	Qtz
5751	291	-1.0	1.7	0.74	S	Qtz
5751	291	-1.1	1.9	0.74	S	Qtz
5751	289	-1.1	1.9	0.74	S	Qtz
5751	289	-1.0	1.7	0.74	S	Qtz
5751	290	-1.2	2.1	0.75	S	Qtz
5751	288	-1.3	2.2	0.75	S	Qtz
5751	288				S	Qtz
5751	289	-1.0	1.7	0.74	S	Qtz
5751	289	-1.0	1.7	0.74	S	Qtz
5751	291	-1.2	2.1	0.74	S	Qtz
5751	291	-1.2	2.1	0.74	S	Qtz
5751	291	-1.3	2.2	0.75	S	Qtz
5751	291	-1.3	2.2	0.75	S	Qtz
5751	292				S	Qtz

bigillebilast lest de joid stretcher 3283 A that a CO2 FOF X= 249.55 +7.55 237.3-267.2 0 a B 12 246.2 (-1.1 5 5 @ 237.3° to tree & -1.0) 5 254.54 254, 24 P? 3 267.2 (-1.0) 0 Proze - 34.1 5 50) 60.90 a Margarite and the P? A 249,2 249.1 A 4(-110) (5)) 261,2 261,4 B p? -IR 0 344: X 5 214.3 6 G (det) 8 245.6 244.9 12 too small

Pg1/Z BACA 5751 1-31-89 de all secondary E A V 1. 291.0 s. planar 291.0 R-1.2 B 2,7289,7 7290,3 >290:7 <291,1 (-1-0 5. (291.0) A 5. 3 >289.2 290.7) 0 2, -leli 29016 all of these 00 P small ind i had TH~ 290-291 4. 289,2 S. 289.2 4,00 5, 5, (288,5) 3 F1.0 5.6.289.5 109. B 5,7,288,0 -1.3) mostind, onthis 5. 8 288.0 plane have TH= Tousmall \$ 5. 288-289 9.(289.D 289.1R -110 96. 5.10(289.1) -1.0) 289.1R

