

Preliminary hydrothermal alteration and mineralization log for CSDP corehole VC-2A, Valles caldera, New Mexico

GL04705

APPENDIX A

DETAILED LITHOLOGIC, STRUCTURAL, HYDROTHERMAL ALTERA-TION AND VEIN MINERALIZATION LOG FOR CSDP COREHOLE VC-2A, SULPHUR SPRINGS AREA, VALLES CALDERA, N. MEXICO

by

Jeffrey B, Hulen¹ & Jamie N, Gardner²

1—UNIVERSITY OF UTAH RESEARCH INSTITUTE, SALT LAKE CITY, UTAH 84108 2—LOS ALAMOS NATIONAL LABORATORY, LOS ALAMOS, NEW MEXICO 87545

NON- TO WEAKLY WELDED ASH-FLOW TUFF MODERATELY WELDED ASH-FLOW TUFF DENSELY WELDED ASH-FLOW TUFF LITHIC-RICH ZONE IN ASH-FLOW TUFF LITHIC LAG BRECCIA IN ASH-FLOW TUFF MOTTLED DEVITRICATION TEXTURE IN ASH-FLOW TUFF VERY CRYSTAL-RICH HORIZON IN ASH- FLOW TUFF OR PYROCLASTIC SURGE DEPOSIT HYDROTHERMALLY PITTED/ETCHED ZONE PYROCLASTIC SURGE DEPOSIT FALLOUT TUFF UNDEFORMED SHARDS
MODERATELY WELDED ASH-FLOW TUFF DENSELY WELDED ASH-FLOW TUFF LITHIC-RICH ZONE IN ASH-FLOW TUFF LITHIC LAG BRECCIA IN ASH-FLOW TUFF MOTTLED DEVITRICATION TEXTURE IN ASH-FLOW TUFF VERY CRYSTAL-RICH HORIZON IN ASH- FLOW TUFF OR PYROCLASTIC SURGE DEPOSIT HYDROTHERMALLY PITTED/ETCHED ZONE PYROCLASTIC SURGE DEPOSIT FALLOUT TUFF UNDEFORMED SHARDS
DENSELY WELDED ASH-FLOW TUFF LITHIC-RICH ZONE IN ASH-FLOW TUFF LITHIC LAG BRECCIA IN ASH-FLOW TUFF MOTTLED DEVITRICATION TEXTURE IN ASH-FLOW TUFF VERY CRYSTAL-RICH HORIZON IN ASH- FLOW TUFF OR PYROCLASTIC SURGE DEPOSIT HYDROTHERMALLY PITTED/ETCHED ZONE PYROCLASTIC SURGE DEPOSIT FALLOUT TUFF UNDEFORMED SHARDS
LITHIC LAG BRECCIA IN ASH-FLOW TUFF MOTTLED DEVITRICATION TEXTURE IN ASH-FLOW TUFF VERY CRYSTAL-RICH HORIZON IN ASH- FLOW TUFF OR PYROCLASTIC SURGE DEPOSIT HYDROTHERMALLY PITTED/ETCHED ZONE PYROCLASTIC SURGE DEPOSIT FALLOUT TUFF UNDEFORMED SHARDS
MOTTLED DEVITRICATION TEXTURE IN ASH-FLOW TUFF VERY CRYSTAL-RICH HORIZON IN ASH- FLOW TUFF OR PYROCLASTIC SURGE DEPOSIT HYDROTHERMALLY PITTED/ETCHED ZONE PYROCLASTIC SURGE DEPOSIT FALLOUT TUFF UNDEFORMED SHARDS
VERY CRYSTAL-RICH HORIZON IN ASH- FLOW TUFF OR PYROCLASTIC SURGE DEPOSIT HYDROTHERMALLY PITTED/ETCHED ZONE PYROCLASTIC SURGE DEPOSIT FALLOUT TUFF UNDEFORMED SHARDS
HYDROTHERMALLY PITTED/ETCHED ZONE PYROCLASTIC SURGE DEPOSIT FALLOUT TUFF UNDEFORMED SHARDS
FALLOUT TUFF
STRE UNDEFORMED SHARDS
PUMICE
epiclastic sandstone
ACCRETIONARY LAPILLI
DEBRIS-FLOW AND LANDSLIDE DEPOSITS
HIELEIU HYDROTHERMAL BRECCIA

VG-2A: EXPLANATION OF LITHOLOGIC SYMBOLS

SEPT-OCT. 1986 REVISED DEC. 1987

FOR U.S. DEPARTMENT OF ENERGY-OFFICE OF BASIC ENERGY SCIENCES AGREEMENT NO, DE-FG02-86ER13555

-A1-

CATECORY		INTENSITY	
	WEAK (W)	MODERATE (M)	STRONG (S)
QUARTZ— SERICITE (PHYLLIC) ALTERATION	ORIGINAL PLAGIOCLASE PARTIALLY SERICITIZED. ORIGINAL K-FELDSPAR \$10% SERICITIZED. GROUNDMASS <10% AL- TERED TO MICROCRYS- TALLINE QUARTZ-SERI- CITE AGGREGATE.	ORIGINAL PLAGIOCLASE > 50% SERICITIZED, ORIGINAL K-FELDPAR 10-50% SERICITIZED GROUNDMASS 10-50% ALTERED TO MICRO- CRYSTALLINE QUARTZ- SERICITE AGGREGATE,	ORIGINAL PLAGIOCLASE COMPLETELY SERICITIZED, ORIGINAL K-FELDSPAR >50% SERICITIZED, GROUNDMASS >50% ALTERED TO MICRO- CRYSTALLINE QUARTZ- SERICITE AGGREGATE.
SILICIFICATION	GROUNDMASS \$10% ALTERED TO ESSENTIAL- LY MONOMINERALIC MICROCRYST, QUARTZ.	GROUNDMASS >10-50% ALTERED TO ESSENTIAL- LY MONOMINERALIC MICROCRYSTALLINE QTZ.	GROUNDMASS >50% ALTERED TO ESSENTIAL- LLY MONOMINERALIC MICROCRYSTALLINE OTZ.
CHLORITE – SERICITE ALTERATION	ORIGINAL PLAGIOCLASE < 10% ALTERED TO SERICITE, MINOR CHLO- RITE AND PHENGITE. ORIGINAL K-FELDSPAR UNALTERED, ORIGINAL MAFICS ALTERED TO CHLORITE ± CALCITE, PHENGITE, LEUCOXENE. GROUNDMASS < 10% ALTERED TO MICRO- CRYSTALLINE AGGRE- GATE OF SERICITE WITH CHLORITE, PHENGITE, CALCITE, AND (BELOW 420M) ALBITE.	SAME AS WEAK COUN- TERPART EXCEPT PLAGIO- CLASE 10-50% AL- TERED, GROUNDMASS 10-50% ALTERED, ORI- GINAL K-FELDSPAR FRESH OR <10% SERICITIZED,	SAME AS WEAK. COUN- TERPART EXCEPT PLAGIO- CLASE >50% ALTERED, GROUNDMASS >50% ALTERED, ORIGINAL K FELDSPAR <20% SERICITIZED.
CALCITE AFTER PLAGIOCLASE	≤ 10% OF ORIGINAL PLAGIOCLASE ALTERED TO CALCITE.	10–50% OF ORIGINAL PLAGIOCLASE ALTERED TO CALCITE.	>50% OF ORIGINAL PLAGIOCLASE ALTERED , TO CALCITE.
DISSEMINATED PYRITE	≤1%	1-5%	>5%
FRACTURING	≤10 FRACTURES/M	10-30 FRACTURES/M	> 30 FRACTURES/M
VEINING AND VUG—FILLING	€10 VEINLETS / M ±	10–30 VEINLETS/M± 1–5% VUG-FILLING* PHASES.	>30 VEINLETS / M ± >5% VUG-FILLING * PHASES

* HYDROTHERMAL

VC-2A: EXPLANATION OF ALTERATION, FRACTURING, AND VEINLET INTENSITY LOGS.

VC-2A: ABBREVIATIONS

AB--albite ACCR--accretionary ACC--accessory AF--ash-flow AGG--aggregate ALT--altered ALTN--alteration AND--andesite ANH--anhedral APP--apparently AVG--average BX--breccia(s) CAL--calcite CALC--calcite CH--chlorite CHL--chlorite CHLTZD--chloritized CM--centimeter(s) COMP FOL--compaction foliation CPY--chalcopyrite CRS--coarse DEF--definitely DIA--diameter DISS--disseminated DK--dark DW--densely welded E G.--for example ESP--especially EUH--euhedral EXC--except F--fine FL--fluorite FLUOR--fluorite FLD--fluid FM--formation FSP--feldspar GEN--generally GR--grained HYD--hydrothermal HYDROVOLC--hydrovolcanic IL--illite INC--inclusion(s) INTM--intermediate IRREG--irregular K--potassium KF--potassium feldspar KFSP--potassium feldspar LAP--lapilli LEUC--leucoxene LIMEST--limestone LST--least LT--light

M--meter(s) MED--medium MICROXLN--microcrystalline MM--millimeter(s) MO--molybdenite MOLYBD--molybdenite MoS₂--molybdenite MOD--moderate PH--phengite PHENG--phengite PL--plagioclase PLAG--plagioclase POSS--possible, possibly PPY--porphyry PPYTIC--porphyritic PR--primary PY--pyrite Q--quartz QTZ--quartz REL--relatively RH--rhodochrosite RHODOCHR--rhodochrosite RHY--rhyolite SEC--section SEQ--sequence SER--sericite SL--slightly SLTST--siltstone SP--sphalerite SPH--sphalerite SPHALER--sphalerite SS--sandstone SUBH--subhedral TRANSL--translucent TR--trace V--very VAP--vapor VNLT--veinlet W/--with WO/--without WT--weight XL--crystal XLINE--crystalline XLN--crystalline

SYMBOLS

\$ --and ~ --about ≹ --angular > --greater than < --less than ± --with or without ⊥ --perpendicular

VC-2A: DEFINITIONS

- Illite--White or nearly white, clay-grade, essentially non-expandable potassium mica-like mineral similar to muscovite but with less potassium, more silica, and more bound water; may contain up to 5% interstratified smectite, an amount not readily detectable by routine X-ray diffraction.
- Phengite--Brown to (characteristically) vivid gray-green, iron-rich illite analogue
- Sericite--A general term encompassing both illite and illite-rich, mixedlayer illite/smectite
- Smectite--Fully expandable, mica-like sheet silicate with charge deficiency of 0.2-0.6 per formula unit balanced by various interlayer cations (typically calcium and sodium) which readily adsorb water or polar organic molecules (such as ethylene glycol) to produce the characteristic expansion; commonly interstratified with illite to form partially expandable mixed-layer clay.
- Leucoxene--White to light grayish-yellow, microcrystalline aggregate of sphene and anatase in various proportions with or without minor rutile.

PAGE 5 OF 11

	GA	APHI	C LOGS	1			
Ŕ	ALTERATIC	W SZ	* FELLING	THASE'S	TIM		DESCRIPTIONS
1d		"馬見		CHK	TOR	NOTES	
DE.	Sellin Certic	PAR	AOLYN ACT	AOH AOH A	GRA	COMMENTS	
-	WMS WMS WMS WMS	WM5 WM5			00	0.6IN (2')	0-0.61 M.: NO CORE 0.61 7.72 M.: LANDSLIPE BRECCIA, SOFT, PULKY, PORCUS, LT. GRAY TO WHITE : HETEROLITIPLICSIC CLASTS, SUBANGLIAR TO ANGULAR.
-					BO	- CLAY-RICH	UP TO 20 CM. DIA, COMPRISING MED GR. ARKOSE FEDICLAS- TIC 55, FLOW-PANDED RIMOLTE, RIM, ASH-FLOW TUFF, FINE- HED. JUL LINESTOFF SENERAL LINEST. & 55. CLASTS
-					av	(NULLOE 7/	HAVE MARKED CORES & SURROUNDING PIRITIC BANDS I HAVE MARKED SILL SAND & GRIT, PROMARY TUFFA
25-					0.0	7994 (94)	CEQUE, NOW EXTENSIVELY ATTERED ID GUARTE - DENCIFE * PYRITE AGGREGATE; CLAY (SERICITE) = PAM FROM A.12-4.27 M (POSSIBLE GOUGE ZONE)
						7.92M(20)	7.92-17.37 M: EPICLASTIC SEPIMENTS, SOFT, PUNKY LT. GRAY TO
10M-						• APP: DIP - 10-15	COARSE & FINE-MED. SALD; GRIT BEDS (COARSE SAND) ARE UP TO 5 GAI. THICK, FINER-GR. 55 BEDS GEN. < 15 MM THICK;
					@@@@@@ @`@`@	ACCRETION.	GUIDAR FRAGMENTS; CLASTS CONSIST OF RIZ, F3, 4 BULAR FRAGMENTS; CLASTS CONSIST OF RIZ, F3, 4 AB WDANT LITHICS (FELSK VOLCANICS, MOSTLY); ASCRETIC
7 0'-						* LAPILLI TUFF	NARY LAPILLI PRESENT- THERE BECOME: CONSTICUOUS AT 12.8 M. ACCRETICULARY LAPILLI TUFF 1.637 16.97 M. MIXED ACKLAR, TUFF & CRS. \$ 15,99-15,05 M.
-						-17.87M (57')	V. STRONG PHYLLIC (PLIARTZ-SER-PRITE) ALTERATION THROUGHOUT THIS UNITV. SIMILAR TO 0.4-7.92 M.
					80		FELDSPARS BOTH PARTIALLY TO COMPLETELY VISICULAR, ALTERED TO F. YLN. SERICITE.
20M-						-21.GAM (712)	17.97-21.64M FALLY BRECCIA; ANGULAR CLASTS UP TO AT LEAST 10 CM. PIA., MOSTLY WELTED ASH-FLOW THEF, TO
75-					AVATATA SSS	-FLJ.	APPEAR IN VEILLETS & VILGS. 21,64 22,19 M: NON-WELDED ASH-FLOW TUFF; ALTN. AS ABONE
		I			TATATATA D.D.	-24.9M (BI.7)	22.17-24.7 M: ALEXAMING EVER OF FAIL RELLIDE NON-POORLY WELDED ASH-FLOW TUFF, ATM. AS AROVE. 24.9-28.2 M: HIGHLY RACTURED, INTENSELY ALTERED, NOU-
-					TATATATA	-FLT. -28,2M(92,5)	16 POORLY-WELDEP ASH-FLOW TUFF; TR. FLUORITE # 0712 IN VUGG. SOOTY MOS2 "PAINT" APPEARS.
30M1-		H			COP		28.2-3.1 M: LITHIC-RICH, NON-POORLY WELDED ASH-FLOW TUFF; POSS. LAS BRECCIA; PIZ-SER. SHICIFP, W/PIZ, SER. FL-
100-						31.1 M (102')	TATION IS DISTINCTLY EPITHERIAN IN CHARACTER.
-							311-61.0 M. KENDEL WELLER, N. NUT, KITCHLE ATTER THEF, RACTURED, OTZ-SERICITIZED, MINERALIZED W/MOSZ) RIENOCRISTS ARE OTZ & K-PELDEPAR, THE LATTER
					111		COMMONLY PARTIALY PISSOLED PARTIALY ATTERED TO FINE-KIN SERVICITE: ROCK AS LOCALLY DISRUPTED BY
125-						APP. DIP 15°	SUBARDA VALLE STREET VALLE BORTARD IN 1052;
40M-					TAPAPAP	←HYD. BX	PIERSER, ALIN, INSPORTER VUGS IN A LEDYAR PHENOGRYSTS COMMONIN LINED WITH BLIFFORD OURTE URYSTNS. SERICITE REPLACES BOTH PLINICE
-					ZAPAPA AZ	ATTUINT	FRP. AS WELL AS MATRIX & OCCURS AS VEINLETS. 39.3-79.5M (SULCIFIED, GTZ-GER, HYDROTHERMAL
_					TAPAPAT	-45M (147.5)	(BX NT 45 M, COLLID ALSO BE LAG BX)
150'-					Pav Appa	-HYD. BX.	• XRD, 47.7M (%): 0-63, KF-19, PH-2, IL-15
						-47.74	48.2-49.1 M BLOTCHY PENITRIFICATION TEXTURE APPARENT EVEN THROUGH ALTERATION OVERPRINT
50M					111	(156.5 FT)	FO.9 M : FINE-XLN PYRITE COATING FLH. OTE.XL.
					11		
175 -					111		
-				포	NATIONAL	-57.2 M (157.8')	ST. 2-57.6 M: NOS- RICH, SILICEP, SER. ST. 2-57.6 M: NOS- RICH, SILICEP, SER. LOCAL, LATE-STAGE R. LOCALTE. N.SO LOCAL,
-						APP. DIP 10	PELICATE, LIGHT PINK, RHODOCHROSITE, ROSETTES & IRREGULAR, AGGREGATESBETWEEN 57.2 M &
200-							171, (M.
-						_ 63.5M	• XRD, 63.5M (%) 9-53, KF-24, PY-3, IL-19
-					NAVA A	- (A.BM (212.6)	64.8-65.8 M ATERED FALLT BRECCIA
-						C.6. M(217)	45.8-66.1': AJTEREP, RUMICE-RICH TUFF, POSS. SOME ACCRETICIARY LAPILLI, THIS MAY BE A CLAST IN THE
225'-					2000	-60,6M (225 FT.)	661-76.2 M. DEBRIS FLOW, POROUS, PUNKY, INTENSELY
ICM-							OLINTZ-SERICITIZED MOST ORIGINAL FELDERAR EITHER DISSOLVED OR ALTERED TO SERICITE , ROCK ON TAL
							CONFRIENCE PLEACHED, REPPISE AND TONE (NOT AND TONE)
					000	76.2M(250)	EREBUS MATRIX: SAME TOLAND ALEETIVELY
250 -							PYRITIZE?
-							AAS CONNICTON & WILL & MANUEL & MANUEL
							LOGGED BY

DRILL HOLE VC-2A LOCATION VALLES CALDERA, N. MEXICO -A5J.B. HULEN AND J.N. GARDNER

SEPT.-OCT. 1986 REVISED DEC. 1987

PAGE 6 OF 11

	GRAPHI	IC LOGS			
Ŕ	ALTERATION Y	VEINLET & VUG- FILLING PHASES			DESCRIPTIONS
la	NH 53 … H 5	N H H H H H H H H H H H H H H H H H H H	2 FOG	NOTES.	
8		AND	AND SEC	COMMENTS	
	WMS WMS WMS WMS WMS			76.2M(250)	76.2-78.6 M MASSIVE, FINE-MEP, GR. EPICLASTIC 53, BLHOHEP PUNKY, INTENSELY OTZ-SERICITIZED
			B • 0	-78.6M (258)	78.6-79.8M: DEBRIS FLOW, SAME AS 66.1-76.2M. 79.8-80.2M: EPICLASTIC SANDSTONE, AS ABOVE; CONTACT
80M-			0.11	-80,2M (263:2)	80.2 - 80.7 M; MODYWELDED, XL-RICH RHY, ASH-FLOW TUFF
075			111		80,7-215.5 M: PENSELY WELDED, CRYSTAL-RICH RHYDLITE
219-				(COMP. FOL.)	MINERALIZED, BUT IN GENERAL LT MED. GRAY & SOME- WHALFLINT - APPEARUNG; AVG. 30-357, PHENOCRISE- WHALFLINT - APPEARUNG; AVG. 30-357, PHENOCRISE-
-					QUART & REFELTANCE TO SER. ANG. B-20 LITTIC HOW WITH AUBITE NITERED TO SER. ANG. B-20 LITTIC REAGUENTS MOSTLY PORPHYRITIC. INTERMEDIATE
-					VOLCANIC ROCK: MINOR COLLAPSED PUNICE COMMOND VUGCY & ALTERED TO SERICITE. ROCK IS CUT BY
700'-					THERE MINERALS AT 30 OCCUP SINGLY & IN VARIOUS COMBINATIONS AS VIG LINING FILLING PHASES.
-					PELOW. GROUNDMASS CRIGINALLY OTZ ORTHOLIASE, AUBITE - LATTER NOW COMPLETELY SERICITIZED (THIS
					ACCOUNTS FOR THE TEXTURAL CONTRAST W/ ROCK WEOVE BI, 4W; NOTE, THEN, ALBITE & KSPAR ARE EARLY
-					95.4-96M! VEIN UP TO I CM WIDE (PTZ-SER) ALSO VUGS UP TO ISXIOX5 MM
325'-			111		
				- 101.6M(390)	• XRD, 101.6M (%): 0-99, KF-23, P(-2, IL-15
				103.6M(340)	(DEVINUINZATION TEXTURES)
-					105-105.5 M : POWDERY GOLGE ZONE, DIP v 80°
350 -				()	
110M-				109.7M (360)	• XRP, 112.3M (%): 0-54, KE-29, PY-5, 12-10, GYPSUM-1
-				PIP N 42° (CONP. FOL.)	113.4-114M: SPARSE, IRREGULAR, VLIGS, BUT THESE
375' -				(112:368.31)	ARE UP TO 3X 12 MM LINED W 94 ART LLITE.
-					1097-448 SM: MOTTLED, DEVITRIFIED DENSELY
-				- 118.3M (988')	WELDED ASI-FLOW TUFF, AS ABOVE.
120M-					118.9-121.6M: >100 FRACTURES/METER
400´-				-121.GM (399)	123.1-129.6 M: IRREGULAR, ILLITE-LINED VUGS
-					ALSO MASSIVELY REPLACES SCATTERED FLANME.
					129.6-129.9 M; POWDERY, DARK GRAY, FINELY
-				SPHALERITE	LATE-STAGE SHALERITE CRISTALS.
425 -			YAYAYAYA	129.6M (425.3) MIN. FLT B	• XRP, 129, 6M (%):0-47, PY-4, IL-46, SPHAL-2
120M -					
-				-189.8M(499)	193,8-135.6 M: FALLLT BRECCIA, RUBBLE STANEP & COATEP SOLY DARK GRAY W/ MICROCRYSTAL- (UNE OVERTE MOLYBORITE)
-				135.6M (445)	
450 -			AAPACEN	FLT (137.8M) 4521	1956-180.6': BELOW THE ABOVE-MENTIONED RUBBLE ZONE, THE BLOTCHY DEVITEIFICATION TEXTURE IS ESPECIALLY PROMINENT, W/LARGE
140M					(UP TO 5 CM. PIA) "ELES" CORED W/ILLITE/ PYRITE MANTLED BY, PTZ-IL-KFSP THESE ARE
-			52	(COMP. FOL.)	E.G.: V.LT. GRAY
475'-			TAVATAY.	FALLT	VUS VINTM. GRAY
-					FILLED WITH SERIOTE & PYRITE
-			C	149.0M (191.5.)	147.4 M: 2.5X 1.5MM. CPY BLEB IN GRANDPHYRIC. MATRIX OF DENSELY WELDED ASH-FLOW TUFF
150M-				PEHOPOCHR.	149 8-172 IM; MINOR RHOPOCHROSITE, SAME TEX-
500'-			Aller Land	152.4M	TURE AS 57.2-59.7 M.
-					
					I OGGED BY

DRILL HOLE VC-2A LOCATION VALLES CALDERA, N. MEXICO -A6-

OGGED BY J.B. HULEN AND J.N. GARDNER SEPT.- OCT. 1986 <u>REVISED DEC: 1987</u>

PAGE 7 OF 11

	GRAPHI	TC LOGS			
4	ALTERATION	WEINLET & VUG-			DESCRIPTIONS
La.	HE FX HER HA . M		E Ser	Norre	
DE.	ALL	ALLON ALLON	GRA	COMMENTS	
	WMS WHS WMS WHS WHS WHS				PENSELY WELDEP, XL-RICH RHY. ASH-FLOW TUFF CONTINUES
	ai an inn ann a' i			RHODYHR.	• XRD, 156.BM (%): 9-59, KF-22, KY-4, IL-10
			1.	-1667M (64)	156.7 M + RHOPOCHROSTE, AS ABOVE
160M-			VAVAVA	PLENE FOL)	170.7 17/11 NO NEDUCIDE TO THE THE T
525					BLOTCHY DEVITUFICATION TEXTURE STILL PROMINENT (SEE PRECEDING PAGE)
				["(798.2')	• XRP, 164M (%): 9-54, KF-28, PY-2, 11-15
-			NAVAY!	-164.3M(599)	GREEN FLUOR ONE OCTAHEDRON 15 18 mm. PA.
-				FLUOR. XLS.	
77 0'-				167.8M(5506) (CHIL. APHEARS)	167.6M : (HLORITE APPEARS AS A VEN-ECKMING MINERAL (POSS, TRACE FOR A FEW M ABOVE).
170M-			Har	(COMP. FOL.)	IRREGULAR SERVITE CLOTS UP TO AT LEAST
-					CATION TEXTURE AS ABOVE.
-				X APPEARS	175.6M; CALCITE APPEARS IN VEINLETS; SOME CAL. APPARENTLY POST-DATES CHL.
575 -				(976.1)	FLAMME HERE & BELOW ARE WHITE TO HEATT
-				(582.4FT)	CITE.
180M-					• XRP, 177.5M (%): 0-53, PL-8, KF-14, CAL-3, PY-1, IL-16 CH-5
(mi					NOTINI LION ED DEUMORIZIATA I TEVI IDE BE-
- uu					CONTINUE LESS REPUBLICATION TENTINE DE
-			100 C	(COMP. FOL.)	
-					
190M					
- 102					
-			E.		
-					• XRD, 198.1M (%): 0-12, PL-23, KE-12, PL-1, L-10, CH-4
(HO)-				(650FT)	198.5 M: OTZ-CAL-CHL-SER-FLUORITE VEN
non				(661:31)(FL)	
-				010 070	
675'-				(COMP. FOL.)	
-					• XRD, 209.6M (%): 0-46, R-2, KF-26, CN-3, P1-2, 11-10, CH-5
-			E	1 209.6M (687.6Pt)	211.6-215.8 M ; SERICITIZATION STRONGLY INCREASES.
210M-			EE	1 21694.2')	210 & M: 2 MM WIDE OTT-68-241-5ER, VEINLET
70Ó-				<u>(23999</u> %)	ABLIN DISTINCTIVE FAXI-LIKE BREAKES
-				17216:2M	AB IN MILKUPEKIMIE HUDLU METROLE MET
-			23	- (101.4/	216,2-225,0M; NON-WELDED TO POORLY WELDED BHYOLITE ASH-FLOW TUFF, 17. GREENICH-GRAY TO
-			3.2.	1	WHITE BLEACHED APPEARING, LOCALLY POROUS ; W 78 072, PHENOS, 10-12% FELDISPAR PHENOS, 109 (9) DIMICE LARGENY LINCOLLAPSER. AB LOCALLY REPL.
725-			232		W/ CITL / ROSETTES; WIDELY SCATTERED CHLI SER + OTZ d CAL + P MICROVEINLES; FIAMME SERICITIZED + CHL.
-			22	(225.6M FT)	
-			22	V(740.91)	• XRP, 229, 6M (%): 0-75, P3, KF-27, CAL-4, PY-1, IL-17, CH-11
			E	COMP. FOL,	HOW THEF (SEE FOLLOWING PAGE)
750'-				4	1
-					
-					
DRIT	I. HOLE VC-	-2A	0		LOGGED BY J.B. HULEN AND J.N. GARDN

LOCATION VALLES CALDERA, N. MEXICO

E.

-A7--

J.B. HULEN AND J.N. GARDNER SEPT.- OCT. 1986 <u>REVISED DEC. 1987</u>

PAGE 8 OF 11

	T							G	K	A	P	41	C	1	Z	0	Ģ	5	1							I	1	
7	ł	A	Ľ	7	5	R	1		TC.	N	-	ত	1	4	lì	侃	24	횝	#P	HX	SE	is	-	T	Y	T		DESCRIPTIONS
La		Line -	T	7	T	ule:	į	W.		h		NIZITI		PIL I	M	正	11	ZHA H					1 HE		US TO		NOTES,	DESCRIPTIONS
DE		認識	101 110		10 11 10	いる	ILL H		PLAG.	PISS.		FRAC			NUAR	ERIC	YRIT			2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		ALCI	江里		A DI	ľ	COMMENTS	
	ľ	N9		M	5	YM:		WM	15	WM	5	MS	W	MS										E	2	t		225 8- ADT 232 TM (SRAPPTIONAL TOWARD LONER CONTRET)
270M-	1		T	I				ļ												\prod				L.				LIGHT PINKETTGAR WERE THE MILDE PLASE FLAMME
-	ł			+	-	10.000		H		#		-		+						₩				E		ŀ		GREEN IN CONTRAST' TO PINKISH, MATKIN, SCALCULE COMMONLY BANDED, CHL-SER(ILL)-PHENGITE CALCULE ACCORDATES TR DESS, DARK ORAQUE & LEUCOVENE
,-	\dagger	+		+			H	H	+	$\left \right $		+		Ħ	l					╢				E		ŀ	(25MP - 45.)	SCATTERED TR. BRKE RED HEMI TR. ACC. FIRCONI TR. ORIG. MARICE ALTERED TO CH/CALLELC, PHENGITE.
775 -	Ţ		I	I				П				\square												E			277.7M.	* SEE BELOW 237.7-278.7 M : SAME AS ABOVE EXCEPT MODERATELY REPLACED
-	+	+		+			\mathbf{H}	H	+	$\left \right $		$\left \right $		Η						₩							(780'FT)	WELTEP: PARK OPACLES GOVE APPARENTIC RECLEP W/LEUCOXENE; SCATTEREP PIAMME UP TO 7X 2 (M MOST WALLED: SCATTEREP TRACES REPORT HEMATITE.
24011-	\dagger	+	+				Η	H	\parallel	H			t	t		Ĭ			I	╢				4-				GROLINDMASS VARIES FROM GRAY TO PINKISH-GRAY.
- 8001-	1		T					ļ		H										Ш						ŀ	(COMP. FOL.)	* SKETCH OF PORPHYRITIC PUMICE AT 776.6' (230.7M)
	\downarrow			4			H	H	+	#				H							₩	H				1		GRAY-GREEN Z - CONTRACTOR CARAY-GREEN
-	+	+		+	and a second		H	$\ $	+	$\left \right $		H		H	1											ŀ	247.5M (812)	247.5M : 1 CM-WIDE CAL-CH VILIT I TO FOLIATION
0501-	1	Τ	I	Ì								I		T	1					\prod		ŀ		MA		F	C 250.7M	NOD. 050.7M (3): 0-44 A-10 KF-14.CAL-5, 11-23, CH-3
825 -	1	4	4	4			-	H	+	#				H	H			₩		$\parallel \mid$	₩	\parallel			TITE	F	(822.6)	שאין ציאינ זיין אין אריז דע אין
-	+	+	H	$\left \right $			H	H	+		H			H							Ħ	H		A		t		
	1	T	t											T										A		Ţ		
	┦		4	4		ALL DESCRIPTION		H	+	Щ				+	H	H			$\ $	╢				P	TILLS	1		
850 -	$\frac{1}{2}$	+	+	+		A STATEMENT	Η	Н		╟	\parallel	H	ł	Ħ	t	H			Ħ	₩				-		1	(COMP. FOL)	-(THESE ARE AVERAGE DIPS)
20011-	t		t								I			T	I												[261.8M (859.1FT)	• XRD, 261.8 M (%): Q-45, PL-15, KF-15, CAL-3, PV-1, IL-9, CH-3
_	ł			+				H						+	ł					₩				Ш	-2111R	$\left \right $		
-	+	+	+	+			Η	Н	+			H		H	H				I	₩						ł	266.1M (873)	266.1-266.4M; ESPECIALLY BLEACHED-APPEARING
875' -	t		t	I			Π					Ħ		T	T	I			I	Ш				-		I		
2701-	Ī			I										4						Ⅲ		H		P			170 7 N (888 ()	270.7 M : FLUORITE & CAL IN VUG IN PLIMICE & REPL. ALBITE
- 21014	+		+	+				H	+	$\left \right $		╟		+	H		H			₩				V B		Ť	210.1 M (000.1)	
m	t		t						T				N	T	I	8			1	Ш		ľ		ALL	A		273.7M(898)	ATT A THAN , OBIGELY WEIDED, YI -RICH RHY, AGH-FLOW
	1					Thursday.		H			-	4		4		141-140				╢				E				CRYSTS (QTZ & MICROPERTHITE), PROKEN-EUHERAN UP KT
-	+		+	+				H	+	and a		+		H	╢				ł	₩				E				AMM. IN DIA, AYG. M 2 MM. IN THAN, MICHAELENTITICH ORIGIN; AB) MAY BE OF BOTH REPLACEMENT & EXSOLUTION ORIGIN; FIANIME MOSTLY > 7:1 ASPECT RATIO, AYG. 10-15 MM. (UP
280M-	1	1	t	T			Ħ					İ		T	1					$\parallel \mid$				E		I		TO BO MM. LENGTH. FLAMME REPLACED PARTIALLY BY ILLITE CHLORTTE, MINOR PHENGITE ARE SLIGITLY OPERATION OF DISC. PRITE GRUNS, SUPH
925'-	Į		1						4			4		\parallel						Ⅲ		H		F		ľ	(COMP. FOL.)	FLIHEPRAL, 20.5 MM IN PIA. , DISS. LEUCOVENE AS ABOVE; MATELY, 12 GRANDRUKICA LY PEVITERIEP/CKYSTALLIZEP
-	+	+	+	+		+	H		•	$\left \right $	$\left \right $	+		H	H				$\ $	₩		H		Ē		1	[285,6M (937 FT)	• XRD, 285.6M, (%): 0-30, PL-18, KF-21, CAL-5, IL-10, CH-5
-	t		t	t								t		T	1		K							E		1	286.8M	286.7 2-12 MM. WIDE, I.T. BREENISH-GRAY, SER-CHL- (PHENG)-CAL. ZONE (ALTERED FALLY GOLGE?)
_	I		-						4			4		\parallel	10	THE LEAD						H		E		1	(191. 91.1)	
950- F	+	+	+	+			+		+	$\ $		+		+			H	₩	$\ $	₩				-		+		NOTE: SOME LARGER PLIMICES CLIRIOUSLY UNDEFORMED AND NOT PARALLEL TO FOLIATION.
270147 _	t	\parallel	t	t										T	1									F		I		
-	Ţ		-	T	A REAL PROPERTY AND				П	\prod		4		П	1	0		\prod								T	- 294 4M FT)	• XKV1 244.4M, (70); Ψ-40, K-2, K-22, CA-2, L-11, CI-2
-	$\left \right $		-	+	STATE OF TAXABLE PARTY.		TANK DATE		+	₩				+						₩						ł		
975'-	t		T	t		t			T			T		t	1		H	Ш	t	∭		I		F		ŀ	(COMP. FOL.)	
300M	I	П	-	T				-	T					-	10					Щ		H		F	1	1		
-	-			+					+					\mathbf{H}						₩				-				
Im	t		1	+				1	T			T		1							Ħ			E		L	/ 304.8M	
-	I	1	-	-		Ц	П	П	1												Щ					-		
-			+	+				H	+					H						₩						-		
DRIT	1	11	1	1			-	-	1						-	ш		an	111			al.				-		LOGGED BY

DRILL HULL LOCATION VALLES CALDERA.

VC-ZA

OSEL. -A8

MEXIC

N.

NER SEPT.-OCT. 1986 REVISED DEC. 1987

PAGE 9 OF 11

	GRAPHI	C LOGS			
×	ALTERATION Y	YEINLET & VUG- Z FILLING PHASES	-		DESCRIPTIONS
id.		ALL	PAC	NOTES,	
DE.		N HENCK	AEO AEO		
	WMS WMS WMS WMS WMS				DENSELY WELDED, XL-RICH RHY. ASH- FLOW TUFF DONTINUES
				(1006) (1006)	STILL SHINY DARK GRAY
-				(FIAMME)	2091- 21M: PENGELY WELDED, CRYSTAL-RICH, PARTIALLY STILL
310M-				(10197)	GLASST, KHOLITE XATTONIA INT FLAMME, 78-97% PHE- GRAY WITH PARK GRAY-PLIRPLISH-GRAY FLAMME, 78-97% MICROPER- NOCKISTS, NIG. 1.5-2 MM. DIA., 10-127 9TZ, 20-287 MICROPER-
1025/-					THITE (KF \$ AB REPLACEMENT \$ EXSOLUTION 1; 0.3-0.07 No. POR MER MAFICS, EQUANT TO STUDBY LATH-SHAPED, MOSTLY SUB- MERCHART TO STUDBY LATH-SHAPED, MOSTLY SUB-
				-317M	AGGREGATES MANY OF THESE MAPICS RIMMED W/DK. OPAQUE & INTERGROWN, W/ NICROYLH, RELICT EIRCOUR ARTITLE
- 1				/ ~{1540)	ALSO: IRREG. AREAS IN MATRIX KEL, CASALINE (ALSO - DIA CRYSTALS) OTZ-KF+ AD AGGREGATES UP TO AT LST 3 MM DIA MANY FIAMME SINILARLY COARSELY-XLN.
720M			E.C.	/ 319.8M (1049)	317-319.841:AS ABOVE, EVC. MORE PLEACHED-APPEARING.
1050 -				FALLOUT*	VERY F. GR., BUT CONTAINING A FEW, SALTIEREP AUNICE
-				(1056)	CONCENTRATED TOWARD TOP OF UNITY AT UNTER CONTAIL, FRAME ARE DECORDANT, SUB-1, BUT CHANGE RAPIDLY UPHOLE TO CONCENT
-					
			-		2219-255.7M: DENSE, WELPER, J. K. MORE (HOLDH STILL WEALL) ADDRE, EXC. GENERALLY A BIT MORE (HOLDH STILL WEALL) A TEVER : SOME FORMER MARICE UP TO O'S MM. P.A., DEF.
					SOME FORMER PROVENE, NOW ALT TO CHL-OL-PHENG-LEUCOX.
330M					NOTE: THROUGHOLT THIS UNIT ARE BEALTIFLILY DE- VELOPED SPHERULITC, AXIOLITIC & SHELL
-					WITHIN SHELL " PEVITRIFICATION TEXTURES.
1100-					FLUID INCLUSIONS (BOILING INDICATE)
340M-					THE THE AND CALCUL VEILUNG WHERE WHITE
-				- 342M	EGALESCE LOCALLY, FORM IRRES MASSES UP TO
1125'-				(1122 FT)	DISS. DK OPAQUES, AS ABOVE, SOME RIMMED W/LEUC.
-					•XRD: 0-37, KF-16, R-24, CAL-3, PY-1, IL-2, CH-2
-			1	/ 31731-1)	AT 349.1 M. GLASS DISAPPEARS, FLAMME_BECOME
350M				349,1M_1)	LT. GREENIGH-GRAY, & MATRIX CHANGES FROM LT. PURPLISH-GRAY TO LT. GRAY
1150-				(11929)	
					• XRP, 354.1 M: Φ-36, KF-16, PL-29, CAL-3, KY-1, FL-7(%) FLAMME EXTENSIVELY REPLACED WITH CHL-972+
			ALL ALL	- 355,7M)	SERT AGGEEGATES
-					GRAY, MED. GRAINED, MODERATELY SORTED, V. IMMATLIRE; N 70% MICROCRYSTALLINE MATRIX, ORIGINALLY ASH?;
1175'-					NOW QUARTZ, ILLITE, CHL, AGG.; MINOR, SCATTERED, VG- BY PUMICE UP TO AT LEAST ROMM. DIA. (AVG. 2 MM) THESE ALTERED & INFILLED W/ VARIOUS COMBINATIONS
760M-				-361.7M	OF CAL, SER, CHL, FLUOR, & QUARTY, GRUNDS ALE PTZ, K., MICROPERTHIE, VARIOUS LITHICS, POSS. LARGE,
-				(1186:1FT)	ALTERED GLADD THARP. 761.7-371.5M; MODERATELY TO PENSELY WELDED, XL-RICH
-				1	RHOLITE ASH-FLOW TUEF, SINILAR TO 721.9-3787 N. BLEACHEP, RUNKY-APPEARING, V. I.T. GREENISH-GRAV
1200-				- 767.9M	WITH MEL STEENINER OTZ-CHL-CALC-FLUOR VEINLET # 367.71.00MLEX OTZ-CHL-CALC-FLUOR VEINLET # 368.8-370.13M: OTZ-SER:PY-VEINLET W/TR. ELH.
-				(1206.3)	SPHALERITE CRYSTALS 371M: QTZ-CHL-CAL-ADULARIA VEINLET
370M-				1 77254 FT)	WELDED TUFFS (WELDED SLIKESS); BEDS AVG 2 CM THICK
1995-				-372.6 M	772.6- 778.5 M: DW, XL-RICH, RHY, ASH-FLOW TURF.
122/				A	NUST BE A SURGE DEPOSIT
-			2000	-776M (1257.8) -776.8M (1256.4)	76-76-76-77-4 MY JIFF PRECCHA; 7764 10 SUBAULANEP CLASTS OF ASH-FLOW JUFF, IN PARK GRAY GLASSY MARKIA. 376-8-377.4 M; LITHK & PUMICE-RICH NON-WELDED A.F. JIFF
7001				• PIP 27°	277.4 - 377.6 M. DISTINCTLY BEDDED FILE-OR TUFF 377.6 - 378.3 M. SAME AS 376.8 - 377.6 M.
1250-				-70,2M	2007 20.2MI V. WELL BEPTEP THE GR. LAT 978.6 960.2MI XL-RICH, BEPTEP THE V SWEICH OF CONTACT OF FALLOUT TUFF W/ OVERLYING
-					* ASH-PLOW TUP
					* THIS VEINLET SHOWS EVIDENCE OF BOILING (SERVICE) P. WE
	/				I OGGED BY

DRILL HOLE VC-2A LOCATION VALLES CALDERA, N. MEXICO -A9-

J. B. HULEN AND J.N. GARDNER SEPT.=OCT. 1986 <u>REVISED DEC. 1987</u>

	-			Ģ	RAI	PHI	TC		ZC)Gi	5	*	OTE	CHAN	NGE		
2	AL	TE	RA		ON	À	T	1 I I	脂	LING	TP	HAP.	NE:	5	T12	2	DESCRIPTIONS
2	H L		1	Ш,	W	LIN.	SN	금	NH	R	王	×	正	IN	TO	NOTES.	
E	LAN .	的市		弬	A 185	EAST	EIN	107	A C	HE REAL	12OL	110	ŠĮ.	12	20	COMMENTS	
0	QH &	61 MS	UNS WWS	JZ WM	S WMS	IL WM	5 WI	5	2 F	N N	교	Z.	Ð	提	មិមិ	010 (70	TAD & LOG BM: MODERNTEN WELDED CRYSTAL-RICH, RHYOLITE.
-	Ш	Ш		Ш	ΗЦ			П				Ш		Щ	2000	· (FLAMME)	ASH-FLOW TUFF, V. LT. GRAY TO LOCALLY GREENISH-GRAY, DISTINCTIVELY PITTED DUE TO ETCHING & COMPLETE DIS-
_		Щ		₩				Ш				Ш		₩	7		O.5-0.7% PISS. LEUCOXENE; MINOR LITHICS.
-		#		$\left\{ + \right\}$	+		+	$\left \right $				₩					
-		╢			┼╋┼			Н				₩		╢╢		(-368.2M	388.3-392.6M; H. STRONG PHILLK (OTZ-SER) ATHES
1275-		H			╎┛┼┤		1	Н	i T					╢	2000	- (121111)	LOCALLY LINED W/TINY (<0.2 MW) ELH, OTZ, XLS, RARELY EUH, CALCITE XLS, IN THESE YUSS,
790M-=		$\left + \right $						H	Ť			III			2		TR. CHL. MICROVEINLETS & CAL, SER., P
		H						Ш				Ш				-1 392.6M	• XRD, 388.6M (%): 0-64, KF-17, KY-1, IL-22
		П						Ш				Ш		Ш	TAVA TO	D 201 AN .	394.8M: RUBBLE ZONE W/5 MM CALCITE XLS.
1900-		Щ				П		Ш				Ш		₩		(12954)	
-			++	┦┼┼		-	+	H						╢╢			
Imu		++		╏┤┼		- F-	┼╢┼	Н				₩₩		\mathbb{H}		-4911M1)	• XRD, 402.9M (%): 9-58, PY-2, ANH-B, IL-35
400MI -		++		╂┼┤			╢┼	H	17				Î			4 ANHYDRITE	402.5 M ; FELDSPARS WIDELY REPLACED WITH (THINT ANHYDRITE THIS MAY CORRESPOND WITH
10001		H						Ħ	T					III			SEC.) A PINKISH ZONE BETWEEN 40.1 M AND 402.8 M. (VER) PENSE); TR. 973, XLS.
1929-																(404.2M)	IN ETCHED FSF. CAVITIES
		\square		Ш				Ш				Ш		111		· P(FIANME)	FLOW TUFF, SAME AS 780.2 401.1 M, EXC. SLIGHTLY LESS
_		Ш						\prod	Ш					111			FLAMME HAVE BEEN ETCHED, THEN SPARED UNED WITH MICROCRYSTALLINE PYRITE; A FEW LARGER, DUMICES SEEM
4104		$\parallel \mid$						++	4	I.		₩		\mathbb{H}		1-410.9M	404, 2 M; 60° FRACTURE BEARING, RESENOUS-APPEARING,
1350-		₩					┼╢┼	Н				₩₩		\mathbb{H}	0,4	LUTHIC-RICH	<0,5 MM. DIA.
-		++						H		1							410.9-411.7M: LITHIC-RICH ZONE W/10-1578 & TO ROLN- DED LITHICS UP TO 75 MM. DIA.; INCL. PATIC ANDESTE,
-								Ш							TAR		ABO FM. REDDEDS, DW ASH-FLOW TUFF; LITHICS REMAIN 5-7% OF THE ROCK BELOW THIS INTERVAL.
								Ш						Ш		-416.9M (1367.8'	416.9-417.4 M: LITHIC-RICH ZONE, AS ABOVE, EXC.
1375-	[4]	Ш						Ш				Щ			300	(1375.B')	119,3M; BEALTIFUL UNCOLLAPSED SHARDS; 5-7%
420M-	7110			1			╢	Ш				ŝЩ.		₩		BREAK	OF ART (NI POTK BECOMES MODERATELY TO
-		╢	-					\mathbb{H}		I.							DENSELY WELDED W/PLIMICE DISTINCTLY MED. GRAY- GREEN IN A WHITISH, PLINICY MATRIX: CONT. 5-7%
		H						Ħ		Ĭ							LITHIC FRAGNENTS, MALY W 6.5-7 MM. GREEN BUD- HULOS" (COLOR SIMILAR TO FILMME); DISS, PYRITE
um		Ħ	-			N		Π							20	(FIAMME)	W/LESSER ASH-FLOW TUPF, REP SILTST, SS., RHY?
mu-		\prod						Ш						Щ		1403 FT)	10 CM. VIA. 4 LITHIC (ANY MY) A THEY W
12011-		Ш				4								Щ		(1408.5)	CALL 20-60% VARIABLE W/ DEPTH/4 TO SUBROLINDED LITHICS)
72011 -		Щ								I I II						(FIAMME)	MANY CLASTS HAVE DARKER GRAY-GREEN PHENGITE RIMS
-		₩						H							17.00	- 484M	129 3-484.0 M; PW, LITHIC RICH, FELSIC - INIM. ASH-FLOW
1425-		₩						H						H	おち	- (17211)	LITHICS INCREASE POWNWARD MATRIX IS PREDOMINANTLY OLARTZ (+) ALDITE (MICROCRY STALLINE) - KFELDSTAR
															250		CONCENTRATED IN LITHICS AND PHENOCRYSTS, IRREG., REL. CRSXLN ALBITE CLOTS OCCUR LOCALLY
		Ш						П				Ш		Щ	XIX		484-442.6M: MOP. WELDED, FELSIC-INTM. ASH-FLOW
440M-		11						Щ						Щ	it the		EARTHY TEXTURE : 1 70-40% CLASTS TO 4% 6M- 808+
1450'5		+++		A				H						Щ	557	- 442,6M N	MINOR WELPER RITLASTIC FORDIVIRITIC AND STREETE, W
		+++	A					\mathbb{H}						₩		(1452.3)	BRIGHT GREEN PHENGITE RIMS-THESE ESP. WELL-
部		\mathbb{H}	+++			₩	┼╏┼	\mathbb{H}		B				H	79.0		LY FLECTIVELY CHE UTER CLASTS CONTAINS
				N								titt		m	00		PERSIST BUT APPEAR SPARSE DUE TO LOW BX-MATRIX PERCENTAGE.
1/751		\square						\square			d d	ł			The state	~ 4AB.ZM.+)	442.6-477M : MOP. TO DENSELY WELDED, FELSIC-INTM.
450M	411	11	M	1		11		Щ						Щ			LITHICS & PLINCE; ROCK HAS COMPACT PUT PUNKY
-		Ш	3				┼╉┼	Щ				Ш		\mathbb{H}	C.A.		AND EARTHY ASPECT • XRP, 448,2M(%): 0-52, KF-17, CAL-3, PY-1, 12-25
-																	
		H						H							10		
1500-		TT	111	TT		TIT		П							N		NBITIZED
]								Π	Ш			1		Щ			KE CRYST AT
			111														Carl Co. Lins un

DRILL HOLE VC-2A LOCATION VALLES CALDERA, N. MEXICO -A10-

LOGGED BY J, B, HULEN AND J, N, GARDNER SEPT.-OCT, 1986 <u>REVISED DEC, 1987</u>

PEL

PAGE 10 OF 11

PAGE 11 OF 11

	GRAP.	HIC	I LOGS					
¥	ALTERATION	SING	WEINLET	E VL	G	Ti di		DESCRIPTIONS
1d	西に加たる正文で、正	TUR	ALING ALING	비비	SITE	LOCA	NOTES,	DESCRIPTIONS
DE1		AX I	VLEN VLIG VLIG VLIG VLIG VLIG VLIG VLIG VLIG	LIBL T	FER	GEC	COMMENTS	
	WHS WHS WHS WHS WHS	WMS	WMS QU K ZL			S ME A		KORTINUES TO 477 M. OUTE COHERENT BUT THE
AGOM-								PUNKY EARTHY TEXTURE : DISTINCTIVE I GAAL AND IN TO THE TO THENGTE WIMING CHLORITE ; ANG. 12-15% COLORY DUE TO THENGTE UTHING FRAGE, UP TO AT LEAST
					Ш			AD MM. IN PLANETER; LITHICS ARE ABT. 50% PPYTIC. INTM. 40 MM. IN PLANETER; LITHICS ARE ABT. FLOW TUFF, MINOR.
-				<u>-</u>				ABO HI. PINKISH SILTST & SANUSIONE; MINH SLISE HANG BEIGHT GRUNCHEN PHENGITE RUSS; FELSIC WEL- HANG BEIGHT GRUNCHEN WHITISH IN CONTRAST TO MATRIX.
1525'-					Ħ	THE TURE		NOTE: SCATTERED OTHER CLASTIS INCLUDE OTZ. LATITE & FINE-XLN OTZ. MONZONITE (PRECAMBRIAN ?)
					Ш	To	• DIP 35-40°	• XRD 466.1 M Q-42, KF-11, R-13, CAL-5, PY-1, IL-23, CH-3
						0.50		
470M-								
1550-					Ш			THE ATTINENUT SPEDDING DEFINED BY LAYERS OF COMPACTED
					Щ	Same Sam	MATTN)	ATT-ATT.8 M: AS ABOVE PUT WELL-DEFINED "DEDDING"- POSS.
-							+ WELDED	A WELDED SURGE DEPOSIT 477,8-478.6M; MITERED, Y. WEAKLY TO, NON-WELDED, (FUSED?) DIMICE - RICH TURF: RX. 16 BASICALLY A DENSE, Y. LT GREE-
480M5-						00	5-480M (1575 FT)	NISH-GRAY, MICROCRYSTALINE OTZ-ALDITE- 28-CHL-PHENG. AGGREGATE W/ADUNDANT PUMICE UP TO AT LST 30MM.
1575	iiii iii ii ,ii iii		2		Ш	10.0	Moferia	PIA. (AVG. 1.5 MM DIA.) & SCATT, LOCAL, WELL -FORMED, KOLLME TO SUBROLIND ASH BALLS O.1-0.7 MM (AVG. 0.2 MM) DIAMETER SOME OF THESE HAVE VACHE SHELLS & MAY BE ACCRE-
-					Ш	000	ON FRACE ??	TIONARY LAPILLY ; N.30 ANG. 5-7% SUBRND-ANGULAR LITHICS UP TO AT LEAST 20 MM (ANG. 7 MM) PIAMETER
-					╢	000 BERE	(1905'/ (1594.5')	THESE AND, PH, PH IC. DALTE, MILL ST. AVG 0.3- ONLY ABOUT 0.5-17% OTZ FSP, PHENOCRISTS, ONLY AVG 0.3- 0.5 MM, DIAMETER; OTZ-ALDITE VUG-FILLING AS ABOVE;
v m					Ш	TAPAVAN	W-FALILT 486.7 M	NOTE: THIS COLLD BE IN PART PHREATOMAGMATIC, BUT WHATEVER ITS ORIGIN', HAS BEEN BUT WHATEVER ITS ORIGIN', HAS BEEN
1000-					Ш	r A C	DIP 440°	TEXTURE W/PUMICE & LITHIC ALGEN
490M-						er a	SHARDS	(PARTICULARLY 4%2-492114,477,0-480M , 429.1M) 484 TM O. 2M DK. GRAY-GREEN, F.XLN. SHALE-LIKE ROCK
-					╢	130	UNPEFORMEP SHARPS	494,7 M. ADUNDANT COARSELY VESICULAR PLANCE & COMPLETE, DELICATE BUBBLE SHARDS (THIN-SEC.)
-					Ш	0000	5 494.7 M FT)	
- /201						TATATATA	MYLONITE"	● XRP, 498, 3M(%); Q-40, PL-15, KF-9, CAL-5, PY-1, IL-25, CH-4
-					╢	G GYL	- 498.GM	498.3 M : AS ABOVE, EXC. SCATTERED. ASH BALLS, SAME AS IN MAN DESCRIPTION (?)
500M-					Ш	200	• DIP v 40°	THE AND THE PROPERTY WEIDER OVER
1650-					Ш			ALL, MODERATELY ALTERED, ASH-FLOW TUFF, LT. GRAY- GREEN DUE TO PHENGITE & CHL. ALTERATION, EARTHY,
-					╢	250		PLINKY TEXTURE, BUT VERY COHERENT, PUMICES REL. PARKER GRAY-GREEN; MATRIX 15 MICROXLN AGG. OF AB, DARKER GRAY-GREEN; MATRIX 15 MICROXLN AGG. OF AB,
-					Ħ	200		OFF, TELTIE, MATRIX ALL KESP APPARENTLY IN CLASTS NO KESP IN MATRIX ALL KESP APPARENTLY IN CLASTS PREPOMINANTLY PORPHYRITIC, INTERMEPIATE - COMPO-
					Ш			SITION VOLCANIC ROCKS (NIDESITE-RHYODACTIE), W/SUBJR- PINATE RHYOLITE ASH-FLOW TUFF (COMMONLY GRANOPHYRI) CALLY DENITRIENT/DECRYSTALLIZED W/MICROPEGMATITIC TEX-
510M- 1675-						702		TURES; MALY CLASTS HAVE PARTIAL, DARK, BRIGHT GRAY- GREEN, PHENGITE, RUME; MALY, GLASTS, SELECTIVELY, CRA-
-								TIZED (DISS.); OVERALL 0.0-10 MKUTE - ZOME CLASTZ 2-3% WRITE; OI 7 DISS. V.F. XLU HENATITE (REDDIST) 2007 WRITE; OI 7 DISS. V.F. XLU HENATITE (REDDIST)
-						54	(1690FT.)	LY IN INTM COMPOSITION VOLCANIC CLASTS)
						REAL	POINT COUNT	516.3 M: FRACTURE SURFACE, SPARSELY, COVERED
1700-						APPE	(HYDROTH.	W/2'INN CALCITE & RUTILE CRYSTA+. • XRP, 515.1 M (%): P-73, P19+5-17, CH-4, Ch-1, H-18, CH-5
F20M-						E A E	4 \$ 59	(IMIN-2EC. Z/O LEUCONLINE)
-						VAVAVAV	(1977)3年)	F22,1-522.4M; FULLT GOUGE & BRECULA W/ABLIND. CALCITE; ONE 5X2 CM: VUG CALCITE-FILLED
-						100	L'FALLT	
1725'-						00	5 577.6N	• XRD, 527.6 N (%): Q-A1, RI-22, KF-17, CAL-4, RY-1, IL-10,
527.6M						3		
(1/21) -								POINT COUNT, SIG.1 M: + LITHIC-FREE BASIS; V • OTZ, PHENOCRISTS - 3.2 OTZ, PHENOCRISTS - 4.8 • CFE DEPAR PUIS - K-FEI DEPAR PUIS
								MICROFERINTE MICROFERINTE PHENOCRYSTS 5.3 PHENOCRYSTS 7.9
_								PLAGIOCIASE PLAGE MENOLOGIEP 10 PHENORYSTS 0.7 PUMCE 18.1 PLINICE 12.3 GROLNPMASS 17.9
						Constanting of the second s		LITHIC FRAGMENTS 11.3 GROLINDMASS 27.2

DRILL HOLE VC-2A LOCATION VALLES CALDERA, N. MEXICO -A11-

LOGGED BY J. B. HULEN AND J.N. GARDNER SEPT-OCT. 1986 <u>REVISED DEC. 1987</u>

90 80 07/15/89 VC-24 109.2 VEN FILLING (HAND-PICKED MIN, 1K COUNTE/SEC FULL- SCALE DEFLECTION MO52 <u>B</u> (ASTM 17-744) PEAK POS. (26) MO52 <u>2H</u> (ASTM 6-97) n n (215) 60 50 MIXED-LAYER 1/5 QUARTZ PYRITE $\begin{array}{c} \text{POORY} \times \text{AN} & \text{Mo} S_2(?) \implies 5EE \ 6.33\% \\ (\text{Tr}) \ \text{the dochrosite} \ (?) \\ (\text{Tr}) \ \text{analcine} \ \text{or} \ \text{wairakite}(?) \end{array}$ 40 FSP 30 20 凉 \cap Ģ

			MIN	ERAL	00	ïΥ,	APPR	ROX.	WT.	70		
FOOTLGE	EVER D				50/2	THE AND THE	y Se in					CLASTS OTHER,
2.0-2.3'	72	14	12	R	1	ŕ	11	-	8		2	3 GYPSUM SANDSTON
7.8'	63	7	6	2			1		22			LANDSLIDE BRECCH
12.6-12.8'	42	1	17	3	8		2		35			LANSLIDE BRECCIA-
14.3'	63		11	L					25			4 11
19.3'	47		ć	9			2		42			// //
25.8-25.9												N SLIP PLANE" @ BASE OF LANDSLIPE
1 31.5'	58		Mile 1	2			2		(35)		VOLC. 55 triziaf.
34.5'	70		4	1 2			1		13			11 11
46.8'	- 55		(M	5)		-	1		41	11.		VOLC. 55 W/ ACCR. LAPILL
50.0°	50		于	2	1		2		43			ACCRETIONARY LAPILLI TUF
53.5'	65		17	5		1	1		33			VOLC. 55
59.6												FAULT BRECCIA
71.5	51		1	3	1		JTO			T		NON-WELPED A.F. JUPP
88.0	53		4		20	-	2		38	3		11 11 11 11
89.0'												11 11 11 11
96.0'	61	1	1.1	>	7	TP	1		27			NYDROTHERMAL BRECCIA W/MOS2
96.3'												" "
98.0'												11 11
100,0'									1.1			// //
103.0'											1	M-PW IF W/ Stkuk
106.0'	1 192	1.	3		TR	TR	1		42			M-DW TH W STRUK MOSZ
110.0'												u i u
118.5												11 11 11
12.4. O	58	23	3				13		15			N 11 11
129.0	1 2										+	HYPROTHERMAL
138.0	61	17	3				1		28		ł	HYDROTHERMAL BK
138.5												
143.0												
156.5	63	19	2				1		15		1	M-DWTF W/MOS2
178.0												
188.1	66	3	6		1		1		22		P	FAULT BRECCIA W/MOS2
191.4'												
200.5'												
208.5'	53	24	3				138		19			
217.0		17										
225.0'	53		2				1		44			S2 DEBRIS FLOW
239.9-240.3			1						Jal			
010 01	25		. 12	1			1		60			

N N					T	MIN	JER	ALOG	Y, 1	PPR	OX.	NT. 9	70		٦
N. S. No. 1 N. S					7	-		1	7	14	1	1. 10	Nil		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				IN	10	i / 0	8 /4	1. 1	' /		1 1		¥	1#1	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		/		15	10	17	15	K/N	18	10th		KH 1	H X	8	
	1	/	12	3/	¥/	E/F	7/3	2/2/	3	W /E	13 1			F OTHER	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	6	er	2 177	1/4	1*	10	14	15/	-	$\frac{1}{1}$	1 11/2	NY		3 COLINI EPITE	-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	6	255 4	4-10	3 2	17	17	4	-	A (AN		1	40		17 STIAL NIL	-
268.0° 7 7 <t< td=""><td>1</td><td>E-158.1'</td><td>1.er</td><td>+</td><td><u>'</u></td><td>17</td><td>*</td><td></td><td>10</td><td>+</td><td></td><td></td><td></td><td></td><td>T'</td></t<>	1	E-158.1'	1.er	+	<u>'</u>	17	*		10	+					T'
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	F	768.0'	1	-	-	-	-		-						
309.7 77 25 2 1 45 779.3 787 25 2 1 47 77 747.2 78 25 2 1 17 11 17 779.2 25 2 1 17 11 17 769.2 55 1 10 1940 1940 767.3 55 27 3 1 10 1940 $404.0'$ 56 27 3 1 10 $404.0'$ $407.5'$ 55 25 5 76 15 3590 $11/499/01/190.3$ 477 4 72 46 3590 $404.0'$ $403.5'$ 59 22 1 17 16 $4091.5'$ 59 22 2 1 17 17 17 463.2 590 22 2 1 17 17 17 17 17 17 17	F	279.1	61	1	17	-	2		TR			30			1
$\overline{373.3'}$ $\overline{377.4'}$ $\overline{12}$ $\overline{1}$ $\overline{1}$ $\overline{11}$ $\overline{177}$ $\overline{347.2'}$ $\overline{13}$ $\overline{25}$ $\overline{2}$ $\overline{1}$ $\overline{177}$ $\overline{11}$ $\overline{177}$ $\overline{368.3'}$ $\overline{37}$ $\overline{27}$ $\overline{3}$ $\overline{1}$ $\overline{10}$ $\overline{194p}$ $\overline{368.3'}$ $\overline{57}$ $\overline{27}$ $\overline{3}$ $\overline{1}$ $\overline{10}$ $\overline{194p}$ $\overline{787.8'}$ $\overline{55}$ $\overline{27}$ $\overline{3}$ $\overline{1}$ $\overline{10}$ $\overline{194p}$ $401.3'$ $\overline{95}$ $\overline{27}$ $\overline{3}$ $\overline{1}$ $\overline{10}$ $\overline{194p}$ $404.0'$ $\overline{95}$ $\overline{25}$ $\overline{5}$ $\overline{7}$ $\overline{7}$ $\overline{11}$ $\overline{10}$ $407.5'$ $\overline{55}$ $\overline{25}$ $\overline{5}$ $\overline{7}$	-	305.7	57		25	1	D		1			15			
747.2 75 25 2 1 17 17 357.2 377.2 377.2 377.2 377.2 11 10 $194p$ 368.3 54 29 5 1 10 $194p$ 368.3 54 29 5 1 10 $194p$ $401.3'$ 56 27 3 1 10 $194p$ $407.5'$ 55 25 5 R 15 10 $407.5'$ 55 25 5 R 15 10 $407.5'$ 55 25 5 R 15 $35PH$ $443.5'$ 57 27 3 1 17 46 $35PH$ 463.2 50 27 3 1 1 17 46 $35PH$ 463.2 50 27 28 1 17 185 $5752.4'$ $5752.4'$ 177 195 $157572.4'$ 177 196 <t< td=""><td></td><td>333.3'</td><td>3</td><td>1.0</td><td>129</td><td>1</td><td>2</td><td></td><td>1</td><td></td><td></td><td>THE</td><td>T</td><td></td><td></td></t<>		333.3'	3	1.0	129	1	2		1			THE	T		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		345.2 221	53	110	25	-2-	2		1		-	19	22.11 Z		
768.3 54 29 5 1 10 1 11 $401.3'$ 56 27 3 1 11 11 $407.5'$ 55 25 5 $7e$ 11 13 $407.5'$ 55 25 5 $7e$ 15 15 $407.5'$ 55 25 5 $7e$ 15 15 $407.5'$ 55 17 4 $7e$ 46 3 $5PH$ $407.5'$ 55 17 4 $7e$ 46 3 $5PH$ $448.5'$ 55 12 4 1 15 15 463.2 50 23 2 1 15 15 17 15 $491.5'$ 55 22 2 1 15 15 15 $578.2'$ 57 28 2 1 17 160 5 $578.4'$ 51 21 21 1 <t< td=""><td></td><td>359.2</td><td>1</td><td></td><td></td><td></td><td></td><td></td><td>1.</td><td></td><td></td><td>1 dec</td><td></td><td>North</td><td></td></t<>		359.2	1						1.			1 dec		North	
$\overline{387.8'}$ $\overline{50}$ $\overline{21}$ $\overline{3}$ $\overline{17}$ $\overline{111}$ $\overline{171}$ $401.3'$ $\overline{56}$ $\overline{277}$ $\overline{3}$ 1 $\overline{183}$ $407.5'$ $\overline{55}$ $\overline{25}$ $\overline{7}$ $\overline{15}$ $\overline{75}$ $407.5'$ $\overline{55}$ $\overline{25}$ $\overline{7}$ $\overline{4}$ $\overline{7}$ $\overline{75}$ $407.5'$ $\overline{55}$ $\overline{22}$ $\overline{7}$ $\overline{4}$ $\overline{7}$ $\overline{75}$ $443.5'$ $\overline{59}$ $\overline{17}$ $\overline{4}$ $\overline{7}$ $\overline{76}$ $\overline{3}$ $\overline{77}$ $443.5'$ $\overline{59}$ $\overline{22}$ $\overline{7}$ $\overline{77}$		368.3	54	-	29		5		1			10		1. gyp.	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	387.8'	55		31	111	3		Tr			11		1 //	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		401.3'	56		27	0.5	3		1			13			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		404.0'													
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		409.5'	55	1	25		5		TR			15	1	1. K	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		11/4/3/5/41 425.3	47	1			4	2	TR			46		3 SPH.	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		443.5'	53	1?	2		3		TP	-		41			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		463.2	50		23		2					15	Ĺ		
514.5' 55 22 4 1 18 $ 517.0'$ 28 2 1 15 $ 578.2'$ 54 28 2 1 15 $ 557.4'$ 51 21 1 70 $ 562.4'$ 53 8 14 3 1 77 16 5 $602.2'$ $ 77$ 55 4 6 $ 602.2'$ $ 77$ 55 4 6 $ 602.2'$ $ 77$ 55 4 6 $ 672.0'$ $ 77$ 55 4 6 $ 77$ 55 4 6 $ -$ <td></td> <td>491.5</td> <td>56</td> <td></td> <td>23</td> <td></td> <td>3</td> <td></td> <td>1</td> <td></td> <td></td> <td>17</td> <td>-</td> <td></td> <td></td>		491.5	56		23		3		1			17	-		
519.8' 28 2 1 15 $573.2'$ 54 28 2 1 15 $573.4'$ 21 1 70 70 $562.4'$ 51 21 1 70 28 4 $582.4'$ 53 8 14 3 77 10 5 $602.2'$ $612.3'$ 12 21 21 -7 55 4 6 ANORPH ($6475)$? $672'$ $77'$ $77'''''''''''''''''''''''''''''''''''$		514.5'	55		22	_	4		1			18		-	
578.2' 54 28 2 1 15 $557.4'$ 51 21 1 70 28 4 $562.4'$ 53 8 14 3 1 77 28 4 $582.4'$ 53 8 14 3 1 77 16 5 $602.2'$ $612.3'$ 48 21 21 $ 77$ 5 4 6 $632.'$ $612.3'$ 48 21 21 $ 77$ 5 4 6 $6475?$ $637.6'$ 48 21 21 $ 77$ 78 10 4 77 78000 $670.0'$ 42 26 32 1 10 5 5 4000 5 $670.0'$ 47 276 32 1 10 5 5 4000 5 $697.0'$ $707.5'$ 751 20 7 1 10 5		519.8'	20		1										
553.4' 51 21 1 7 23 4 $562.4'$ 53 8 14 3 1 77 10 5 $602.2'$ $612.3'$ 43 21 21 $ 77$ 10 5 $ 672.2'$ $672.'$ $672.'$ 77 77 57 4 6 $6475?$ $672.'$ $672.'$ $672.'$ $672.'$ $672.'$ $672.'$ 777 7		538.2'	野		28		2		1			15		A.	
562.4' 51 21 1 77 23 4 $582.4'$ 55 8 14 3 1 77 10 5 $ 602.2'$ $602.2'$ $602.2'$ $602.2'$ $ 77$ 10 5 $ 612.3'$ 43 21 21 21 $ 77$ 55 4 6 $6475?$ $672'$ $ 77$ 55 4 6 $6475?$ $670.0'$ 42 29 12 1 1 78 10 4 7 900076 $670.0'$ 42 20 32 1 1 10 4 7 900076 $687.6'$ 46 2 26 32 1 10 5 5 $6077.0'$ 5 5 $6077.0'$ 7 7 7 7 7 7 7 7 7 7 7 7		553.4										70			
582.4' 53 8 14 3 1 77 16 5 $ 602.2'$ $612.3'$ 48 21 21 $ 77$ 5 4 6 MORTH ($6473)?$ $672.'$ $672.'$ $672.'$ $672.'$ 77 5 4 6 MORTH ($6473)?$ $676.8 - 637.0'$ $670.0'$ 12 -1 1 17 78 10 4 77 annorph $677.0'$ 12 12 11 10 4 77 annorph $687.6'$ 46 2 26 3 2 1 10 4 77 annorph $697.0'$ 46 2 26 3 2 1 10 4 77 annorph $697.0'$ 12 206 3 2 1 10 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 <td></td> <td>562.4</td> <td>51</td> <td>-</td> <td>21</td> <td>umit.</td> <td>1</td> <td></td> <td>TV</td> <td></td> <td></td> <td>23</td> <td>4</td> <td>· · · · ·</td> <td></td>		562.4	51	-	21	umit.	1		TV			23	4	· · · · ·	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		582.4	53	8	14	3	1		TP			10	5		
612.3' 48 21 21 21 -1 $7r$ 5 4 6 MORPH ($6439/r$ $676.3 - 637.0'$ -1 1 1 1 1 $7r$ 5 4 6 MORPH ($6439/r$ $670.0'$ 42 29 12 -1 1 1 $7r$ 5 $670.0'$ 47 29 12 -1 1 $7r$ 7 $7r$ $687.6'$ 46 2 26 3 2 1 10 5 $697.0'$ $-7r$ $-7r$ 1 10 5 5 $697.0'$ $-7r$ $-7r$ 1 10 5 5 $709.5'$ 751 29 2 1 2 13 7 $740.5'$ 75 43 25 4 1 1 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17		602.2'	10						-						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		612.3	43	21	21	-	-		Tr		_	1. And	4	6 AMORPH (6495)	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		672			21								_		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	76.8-651.0	20	20	4.0		6			-		10	1	M	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		670.0	41	10	12	-	1		12	(K	_	10	4	1 annovph	J
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		60/16	40	2	20	3	2	_	1	-		10	5		i
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		6917.0	1 - 3		na	_	Te		1				100 m	F. HODRIGIE	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		707.7	51	A	10	0	TE-		1			10	7	2 AMUKPHULZ	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		710.1	71	100	22	L	4		Z		-	12	7	5 111	
790.9' 1 1 12 2 19 10 822.6' 44 10 14 5 TR 1 23 3		7710	AR	11	10	7	1	-	-1			17	14-	10 Mon Manavator	
822.6 44 10 14 5 TR 1 23 3		171.0	1	11	17	P	1		1			12	2	1 Der 101	
		8006	14	10	AZ	5	TP		1		_	173	3		
8091' $an 10 n 2 1 1 1 1 1 1 1 0 n 1 1 0 0 0 1 0 0 0 0 0$		859 1	AN	初	415	8	1		1			4	3	g an /alaci?	

	_				MI	NER	PAL	.OGʻ	7, A	PPR	DX. WT	. %		7
			A		W.			Jan Star	C/ TE			$\frac{1}{2}$		
		6	A LA		H/E	T/A		ATTAN A	19/	0× 14		E S S	OTHER amorph;	
	916										10			
Q	937	20	12	20	5				1		10	2	9	_
	966	40	2	22	2	+.			1		14	2	17	_
	1006	41	11	16	2	1		-	/		2	2	15	_
	1020	27	21	19	-	1.	-	TR	1		2	2	16	_
-	1044.5	70	10	15	7	1		-	1		1	her	127	_
	1066.0	44	22	17	1	1		1	1		1	2	10	-
	1077.6	-		11-0				L.						-
_	1095.2'	37	A	11	2	1.		1-	2		. 4	- H	12	-
	1128.2	27	24	16	3	1		12	2		12	22	13 2M	-
	1161.6	26	25	19	3	1		3	82		7	7.		_
	1166.0	60	- artists	19.	4.	R		4			19	4		53
	1170.5	-						<u> </u>						1
	1206.3	47	-	28	B.	11	TR	1	1		13	. 9	5 AMORPHOUS	
	1226.0	62	1	-		1		B	2	1	32.	-	subtrates.	UNSTEI
	1234.6	55	2	15		1		1.			8		18	BRECCI
	1238.0										1			
	1275.0	64		17		1		proved	1		33		TR. PYROPHYLLITE?	
0	1295.4	53	1	23		3			1		19			
	1320.6	53	~839N	-		2	8		2		75	· ····································	SERICITIZED	
0	1349.8	59				2			1		43		NO CHLORITE -	
	1375.8,	46	-	28	9	1.		-	1		15	estimate	AG	2.5/109
	1396.8			-										
	1420.8	AA-	27	7	4	1	-		1		14	2		
0	1457.0'	环				1			1		44			
	1470.4'	72	124	17	3	1			2		25	Ti.	43	1 ho
0	1510.8'	37	15	12	6	2			1		23	4	and the first and a second	To has
0	1529.2'	42	13	11	5	1.			2.		23	3	マインドローナー	
	1565.3			6 x										
	1571.4'	461	13	6	6	1/2			1		, 3	1.2	N - 1	
	1591.5	ľ.											1	
	1596.7													
	1617.0	48	12	6	7	1.					23	3		
	1623.0	2,6			-						- Kin-			
	1634.9'	40	15	9	5	1			.1		25	4.		
	1650.7	41	12	14	3	1			2		19	3		
	1660.0'	35	13	16)	6	TK			2		23	5		867
	1690.0'	33	19	17	4	1			3		. 18	D.		4
	17310	149	22	49	4	4			3		110	2.		

Figure 5. The plot for measuring the smectite: illite ratio, based on the angular distance Δd_2 between reflections in 42° - $48^\circ 2\theta$ region. The reflection between 42° and $45^\circ 2\theta$ is used to select the proper thickness of the ethylene glycol complex for smectite-dominated compositions. Dashed parts of the curves represent the composition range beyond which Δd_2 cannot be measured because of merging of analytical reflections.

First, it can be noted that a reflection occurs between 5.2° and 8.7°2 θ (at 6.44°2 θ), therefore the sample is ordered to some extent. An initial percent smectite is then determined using the "IS" curve in Figure 5A, yielding a value of 41% smectite. Using this value the degree of ordering can now be determined from Figure 6. $\Delta d_1 = 3.29^\circ$, and 41% smectite yields a value close to ½ ordered (see Reynolds and Hower, 1970, for a discussion of degree of ordering). A return to Figure 5A allows a value of 43% smectite to be determined for $\Delta d_2 = 3.20$ and random interstratification. Interpolation half way

Figure 6. The plot for estimation of the degree of ordering using the initial value of percent smectite obtained using plots in Figures 5, 7, or 8 and the angular distance Δd_1 between the reflections in the range $10-5^{\circ}2\theta$. The variations in Δd_1 as affected by the thickness of the ethylene glycol-smectite complex and domain size differences are shown for maximum IS ordering to illustrate their influence. All other curves were calculated assuming 1–14 layer domain size and 16.9-Å ethylene glycol-smectite complex thickness.

between the IS ordered and IS random results in a final value of 42% smectite layers.

The thickness of the ethylene glycol complex layer can now be determined from Figure 5B as approximately 16.8 Å based on the peak spacing at $44.00^{\circ}2\theta$ and the percent smectite of 42%.

Method II

This method uses, for most of the compositional range, the stronger of the two reflections between 42° and $48^{\circ}2\theta$ (the $42^{\circ}-45^{\circ}2\theta$ migration peak) and the strong reflection that migrates from about 26° to $27^{\circ}2\theta$. The determination is slightly affected by domain size and strongly affected by the manner of interstratification and the ethylene glycol-smectite layer thickness. Figure 7 shows the migration curves for these reflections, calculated for 1-8 layers for the randomly and ordered interstratified cases, and for ethylene glycol-smectite layer thicknesses of 16.6, 16.9, and 17.2 Å. The figure also includes points of the migration curve for domains of 1-14 layers and an ethylene glycol-smectite layer thickness of 16.9 Å. It can be seen from these points that the domain size effect is apparent, but minor. Figure 7 includes an additional curve at low smectite contents for the 17.2-Å, ethylene glycol-smectite complex, using the peak that migrates from 45 to $48^{\circ}2\theta$. The change to using this peak is caused by the fact that the $42-45^{\circ}2\theta$ peak is weak in the 17.2-Å, ethylene glycolsmectite complex and cannot be resolved at low smectite contents.

Example: Sample Sr-1M6

The reflections at 26.57° and $44.0^{\circ}2\theta$ yield the following results:

15

ma	ナ

		APP	ROX.	WT.	70					7
1	IL LILE				Ben and	-002 Mass	AND EIG	SAT SO		
245.3'				(1)		2 1.0/	41	0.004	Sa COALDETTA JE	VEL "
255.4	100			(10	19.0	1/8/	3 (14)	10.71	12 7HIND UNF	- Cri I
210 270.2					-	-	-			1
279.1		100			5.0	PHE .	1<5	0.57		1
305,7'		100	TR	(2)	5.0	STAK	\$ (25	0.48		1
333.3'		100	-	(1)	5.02	PLAS	145	0.54		1
345.2		100				1	(-5)	0,44	the second of	1
359.2'							1			1
368.31		100		(2)	5.03	1 PK 8.8	\$ (25	0.68		1
387.8'								-		
401.3		100					(25)	0.50		
404.0'							ļ			
409.5		100		(2)	(5.03)	8.8	(25)	0.5		
435,0 443,5 3	-91	(97)		(9)	(5.08)	0.55/	5 (10)	0.64		
463.2	10	100		(6	15.04	8.8	(5)	0,		1
491.5		100		(2)	5.09	18.75	(25)	0.2		
51.4.5'		100		(2)	(5.03	8:12	12	0.57		
519.8				_			-			
538.2		01		(0)	VER	2 10k-/	H	048	<u></u>	
552 A		70	4	(2)	9,09	Bill	1	070		
HOLA FBD N										
102.4				-	-					
112 3		85	15	(1)	(5.02)	10.8	25	0.0		
622.0		07	12		1.02/	188	/	0,07		
24.8-637.0							-			
(FO',		96	4	(<1)	15.01	1 PK.	<5	0.68		-
687.6'		85	15	<u> </u>	(8.79	-	0,72		
697,0										
709.5'		GA	76		(5.03)	NO.5: 8.79	45	0.57		
718.1			1		ř í					
740.5		686	34	(2)	(5.02)	P 8,83	45	0,54		
771.0		95	5	(0)	4.99	114 8.75	25	0.45		
790.9'		95 97	\$3	(0)	(4.99)	17-	25	0. 截3		
8226		98	2	(1)	(5.01)	1Pk	~5	0.61		
859.1		96	4	(6)	(4.99)	PK 8.83	45	0.40		
		A'I	17	10	5ml	8.70	45	0.50 0.50		

	APPROXI	MATE	WEIGHT	70 5		
	ut let	11	141/		The lat	ist a
		4/1	$\left \widetilde{\mathbf{x}} \right \left \widetilde{\mathbf{x}} \right $	28 H		110
		1 /3	1/ g/	8 33	1 miles	619
DEPTH /m/		10	1 1 1/5	10.2	10/	
TO 9162K						
10 937	85	15			0.350.36	
906 TD 1000	72	1			0.35	
	73	/			0.97	
1020	20	11			071	
1041.9	07	11			0.72	
1000	36	14			0.29	
1096.01	19	31			0,28	
1178.01	57	43			0,95	
1161.6'	-1					
1166.0						
1170.5'						
1206.3'	77	23			050	
1226.0'	100				0.46	
1234.6						
1238.0'	87	13			0,44	
1275.0'	100	-			0.35	
1295.41	100	-			0,90	
1320.6	99	1			0,18	
1349.8'	100	-			0,55	
1375.8	97	3			0,96	
1396.8	92-	8			0,43	
142.0.8	91	9			0.48	
1457.0	100	-			0,98	
1470.4	100	-			0.98	
1510.8	90	10			0,36	
1529.2	912	8			0,%	
1565.3						
1571.4	100	-			0,%	
1591.5						
1596.7						
1617.0		+			720	
16:27.0	100	-			745	
162417	99	2			0.97	
16:00	71	1			2.88	
1660.0	70	NO			2,25	
15 N.U	95	5			0.98	
	VA-DA	1-1	1 AV XR	D12	50)	
	IC Lat			5	11	

70

'*٦*

52:216-267.7'

		1	APP	ROXII	MATE										
		and		IN.	1	HI D		\$	/	1	R S				
	1	ALL.		8/3		part 1	or	g~/	DN/	20		2	GU		
	A.	TH	13	[\$]	5	10			/6	100 m			1	A20A	
191,4 178	100	100				5.05	8.50	0,5) (0 7 (5) (25)) (7)	D.7	5	-	0.11	
200.5'	100					5.0	20,3	8.77	(3)	$\overline{7}$	0.6	5	-	0.18	
208.5'	100)						0		17	0.61	2			
217.0	100					5.02	0.90	8.78	(2)	(7)	0.60	2			
2.25.0	1														
227. 3'	100					5.01	0.75	8.75	(0)	(7)	0,88	3			
240.0	100					5.02	0,60	8.65	(3)	(8)	0.80				
245. 3		100	_			5.01	0.67	8.83	(0)	(5)	0.度	3			
247.6	-										1.02				
250.1	100			-		5,08	0,89	8.37	(9)	(11)	0,96				
255,4	100					5,09	1,0	B.90	(10)	(14)	0.94				
256.3		100									0.52				
258.1	100		1		Ŕ	5.01	0.72	8.80	(<i>0</i>)	(6)	0.83	0,83			
261.7-261.8	100			+		5.01	070	8.70	(0)	(7)	(0.82)				
268.0		100			Ű.	(5.00)	-	8.8	(0)	(25)	(0.54)				
279.1		100				5,03	-	8.8	3)	(45)	8.33				
286.2'					<u>И</u> И И										
					<u> </u>										
VC- 52 SAI 22: 52 SAI	ND? MPL	ES	NE		И (CLA	Y	X	27]	1		

		APF	PROXIMA	TE I	NEIG	HT %	5		_	
	Sund		J & 2	50m	TIL STATE	- H. H. H.	135-1-1-3		OTHER	
191.4" 178	59	20	20	15 1			18			
200.5'	61	-	1	1		37			tri hem, ap	
208.5	FB 50	24	32	1		49				
217.0	51		3	4		45		-		
225.0	F73		2	1		44				_
2.27.3'	52		2	ZAN		44				
240,0	TF/3		2/4	2/1		- Sky	8			
245, 3'	8	15	5	3 AN		69				
247.6			0					-		
250.1	77	B	1	7/A.N.		18				
255.4	62	7	1	1		29				
256.31	61	7	1		2	-	29			
258.1	59	7	1		4	79				
261.8'	47	9	3		1	40				-
2.68.0	50	17 11	1		÷	×.	32			_
279.1	6765	76	3/1			794	3 3928			
286.2'										
YC-24: 52	SAL	IDSTONI	= -	BUL	K XI	2P				

-3)

KF 250 PL 990

3

\$

					_					-		
	/	7	11	1	7	1	1	K	bict	1	11	77
			14	/	1ª	12	/	/ M	//	[]		
DEPTH	A a	7 5	3 /2	1			1	V/=	1/3	//	/ /'	AM.
1128.2'	37 24	16 7	3 1	TR	12-1	R	ſ	2	2		1×	0.51LM 0.2HEM
1137.0	75 23	16 3	3 TR	-	1		ľ.	1	2		20	
1147.0	27 19	16	1	ろ	25			1	12		190	
1166.0	6	19 4	TR	4	1		100	15	4		-	
1167.0	56 17	12 1	TR					(19	3			-
1170,5	58 18	14 5	1	TR				8	6			
1171.9			-			-	1 **	1, 18:8				
1177.0	55 -	19 5	TR	2	-			15	3			
255-1A 1180,1'	57 6	16 4	TR	TR	10070			12	4			
1182.0	57	18 6	TR	1				14	4			
1183.6	53 11	14 17	11-	10	-			7	6	-		
1206.3	48	29 1	3 1	1	TR			102	港		**	
1212.2'	55 -	- 6	62	-			78	13	115		• • • • •	
1214.0	54 -	- 5	7	1			73		-			
1226.0	57	-	1	3			79	a	12		00	
1294.2	14 11	17 -	1	7				D	3		20	
1196.0	45	27 3	1	1				11	4		8	
				-			1	.,				
				_								
											+	
											-	
· · ·												
						_					+	
			$\left \right $								+	
												0
				_		-					+	
								_				
VC-2A	9	7 51	NDE	sta	E	54	MP	Eg	-	¢.	1 11/7	11867
										23	116(-	110001

DEPTH	1 Starter			¥//	ALL DE LE	\$ \$		A Contraction	(B) 1 10 00	No and All	AD + 4 X- ind (G2X) #2+6 move	bil)	shift in
	N.	/N/	10/	1	$\sqrt[n]{\nabla}$	VV	100	60	1×1×	3/	slightl upon gl	ycol? much	110.2
128.2		13	42	5.0		8.90		27	(0.35?		V		
1121.0		48	57	5.00)	8.88	0	25	10.002		1		-
1161.6		55	45	4.99	- 1	8.90	0	Ó	0,25		NO.		
1166.0		89	11	5.00	- 1	8.8	1	-5	0.42		V,		1
1167.0		81	19	5.00	"-	8,82	0	25	0.52		V		
1170.5'		72	28					-	0,99				
252-96-1171.3		60	24	100		870	0	15	0.99				
11/4,7		95	15	4.98		8.78	0	-7	0,70		/		
1180.1		72	28	5.00		882	0	15	0.53		V.		
1182.0		86	14	5.00	-	8.80	0	25	OAT		V	0,13°20	0.08 %
1183.6		53	47	5,00	-	8.86	0	-5	040		V,		
1186.5'		52	48	4,98	-	8.85	0	~5	0,49		Y		
1206, 3	Im	77	23	5.00	0 44	8,05	0	25	0,50		Y	0.05.20	
1212.2	100	-		5.03	0.00	8.36	7	12	0,78		1	0.18 20	<u>-</u>
12.76.0'	100	-		5,07		847	3	8	0.70		/	0,19°29	
1234.5'		71	29				/		0.40				
							-						
	+	+											
,													
		┨──┨──	+ $+$ $+$										
			+ $+$ $+$							_			
								-					
VC-2A		77 S CL	WDSTON BY XRD	VE SA	MPI	ES			53	: 1167-	-1186.7	-	

ILSEMANNITE	M0308 • nH20
4.23	50*
3,36	100*
3,23	10
3.14	20
3.04	10
2.72	40
2.44	70*
2.22	NO X
2.12	10 +
1. 12	20*
1.822	10 h
1.641	90 20.1K
1.55	20*
1.458	20 条

* PARTIALLY DUE TO ADMIXED QUARTZ

21

$MoS_2 - MC$	DLYBDENITE		
	24	► <u>3R</u>	
d 6.15 2.737 2.674 2.277 2.049 1.830 1.581	I 1016 10 45 14 25 12 12	d 6.09 2.71 2.63 2.34 2.194 2.034 1.889 1.755	N 2222000828
1.920		1, 581	70

JORDISITE - colloidal Mosz no X-ray pattern.

Figure 6. A summary of the temperature dependence of I/S composition from active geothermal areas and deeply buried shales. See text for explanation. (Hower, pers. comm.).

DEPTH							
1128,2" 1137.0 1149.0							
1166.0 1167.0 1170.5							
1171,9 1174,5 1177.0 1180,1							
1102.0 1183.6 1186.5' 1206.3'							
1212.2							
						· · · · · · · · · · · · · · · · · · ·	
,							
VC-2A	9	3 SANDE	MOVE S	AMPLES	53	: 1167-1186.7	

52:216-267,7

		\int	/	/	/	/						/	/ /	/ /	///	/	
		' /	/	/ /	/ /	/ /	/ /	/ /	/ /	/ /	/ /	/ /			/ /		
-191,4																	
200.51																	
208.5'																	
217.0																	
225.Ó																	
227. 3'																	
240.0																	
245. 3																	
247.6																	
250.1																	
255,4																	
256.3																	
258.1																	
261.7-2618																	
268.0																	
279, 1																	
286.2'																	
VC = 52 SA ZA : 52 SA	NDS MPLE	104	臣														italită țeleven neterina successo și și

52:216-267.7'

		[]		/	/	7	/	/	/	/	/	/		77	
	/	/		/ /		/ /	/ /		/ /	/ /			/ /		
			' /											/	
191,4′			1		[-		-					 		
200.5'							-								
208.5'													<u> </u>		
217,0'															
2.25. Ó	}}														
227. 3'															
240.0															
245. 3															
247.6															
250.1															
255,4															
256.3															
258.1															
261.7-2618															
268.0															
279.1		_													
286.2'															
VC- ER CA		TONE	<u></u>		l							[l		
之: 二二五	MPLE	5								lating of the second	-				Die specifie gewonnen werden die soweit was soweit was soweit werden die soweit werden die soweit werden die so

VC-21 1-2-83.3

grender van de kante

MA		$(z_{i}) = \sum_{i=1}^{N} \left(\frac{\partial \hat{f}}{\partial x_{i}} \right)^{2} \left(\frac{\partial \hat{f}}{\partial x_{i}} \right)^{2}$
	2 - 19 2 2 - 19 2	公共 学
CA	<u>%</u> - ОХь	-→ 0,87 Ca =
N(1-)	· · · · · · · · · · · · · · · · · · ·	0.443
	と、白米、	2、2等
	% OX.	24-30
	$\gamma_0^* = O(X_{\rm const})$	
	$\mathbb{X} = O(\mathbb{X})$,	(0 - 0.7)
	E K M	12 ¹
	% OX*	0.017
Ų		< 250
C R	$\sum_{i=1}^{n-1} \frac{1}{i} \sum_{i=1}^{n-1} \frac{1}{i$	
ЙŃ	\times $0 \times$.	0.029
		1.4
NI	1.1 July 1.4	9
$\sum_{i=1}^{N} \frac{1}{i} \sum_{j=1}^{N} \frac{1}{i} \sum_{j$		1. Q
M ()	Cr Kr Pa	< 50.0
E.B		33
		6.6
	P P M	< 5.00
АÜ	$[\odot) [\odot, [\lor]]$	2
(~) { [< 4,00
ΑS		108
	P*P*M	< <u>30</u> × 0
AL C		
	$\left \left(\left $	< 2500
	12 (A [A]	< 50.0
SIM		
$\{n_i\}$		1 1 200
	(at he w)	
20		
	(a^{k},b^{-k},ξ^{k})	
	(1,0) = (1,0)	the second se
1997 - 19		
		$A_{ij} = (A_{ij}^{\dagger})^{ij} (A_{ij}^{ij})^{ij} (A_{ij}^{ij})^{ij} (A_{ij}^{ij})^{ij} (A_{ij}^{ij})^{ij} (A_{ij}^{ij})^{$

98,775

JEP C

VC-21100-110,2

ELEMENT

CONCENTRATION

NÁ	Υ. ΟΧ.,		$(1, 1) \in (1, 1)$
K	₩. (1X.,		生,橙薏
6.6	X 0X -		3.94
MG	X 07.		0,213
$\int_{0}^{1+\varepsilon_{1}} \frac{e^{-\varepsilon_{1}}}{e^{-\varepsilon_{1}}} d\varepsilon$	[2] · · · · · · · · · · · · · · · · · · ·		1.72
13) ¹ .			当,234
	2 OX.		80.20
11	X AX,		0.293
(D)	X OX.		0.052
	户户:"		2.4
NĂ	M AX.		0.013
	P P P	d,	1749台
	S Se M		4 ()
$M_{\rm eff} \gtrsim 1$	$\mathbb{C} = \mathbb{C} \times \mathbb{C}$		ひょう怪型
	la melal		
			17
ei (1)	0.409 Ag		$3340 = 0.5546 \text{ MOD}_2$
			4.4.2
ZM			
	2012年		and the second se
			20 . .
1			102
	다 12 1년		1.00
	there we		2500
	2011 N 12		
			化价值
1.2			$\mathcal{T}_{ij} = \mathcal{T}_{ij} + \mathcal{T}_{ij}$
<u>, (</u>)			1,38

1

ANALYSIS BY INPUCTIVELY COUPLED
PLASMA SPECTROMETRY
(SILICA BY COLORIME KY/
(3- LETTO SOLE MURCHEN)

生态

 $\mathbb{X}_{+} \oplus \mathbb{X}_{+}$ $X = 0 X_{*}$

% 0X.

% - 0 X +

 $\chi^{-}_{\rm h} (X)_{\rm h}$

 $\sum_{i=1}^{M} - \sum_{i=1}^{M} \sum_$ $\% - 0 \times c$

PPM

臣位图 $\frac{n}{2s} = \binom{n}{2s} \times \frac{n}{s}$ $[2] \mathbb{D} \mathbb{N}$

伊伊何

 $\{ \mathbb{P}^r \}^{(i)} (v)$

 $\left[P \right] \cap \left[P \right]$

 $\{0,1,0\}$ 말만난 $\left| \frac{1}{2} \right|^{2} = \left| \frac{1}{2} \right|^{2} \left| \frac{1}{$ VC-2A 130-130.35

CONCENTRATION

0.5064

ELEMENT

()

K CA M(0)**F** [.] ât., \mathbb{N} MO

1 E

 $\{j\}$

110

5

	() ~1,1512			
	2.93			
	10.60			
	26.10			
	0.189			
	0.022			
	20			
	0.035			
d)	250			
	2.4			
	0.011			
	3.6			
	(A			
	4			
	949 =	0.141% MOS2		
	24			
4	5,00			
	4			
₹ <u></u>	4.00			
	1.53.4			
₫(30.0			
$\mathcal{A}_{j}^{(1)}$	1.00			
4	2500			
4	$E(0) \to O$			
				RUL VPD=
	1200		SEMI-QUANI.	all m
	8		5 ADITE	
	2 » O		DYINIL	FAR
$d_{n}^{(\ell)}$	A()()		TOALITE	(SFRICITE)
			N ILLI IL	7
	6.0		DD YUAN	
	1.1.1.			
	1.60			
	2.31			
	2 - W1 4			

2

JEFF

7

VC-2A 188-188.3

CONCENTRATION

ELEMENT

	TOTAL		94.359	
5	73		4.05	
	的性性	4	150	
ЭE.	РРМ		69	
. Á	户户户		41	
(R	医原因		100	
	PPM	$d_{w_{i}}^{e^{2}}$	400	
	(12) (12) (M		$2 \neq 2$	
18°	PPM		23	
ļ	PPM	$e_{\pi_p}^{\pi^{*'}}$	1200	
) N			0	
	p p M	۲.,	50.0	
	PPM	$s_{e_q}^{p^h}$	2500	
		$d_{i_k}^{*}$	100	
3B	PPM	-1 ²¹	30+0	
18				
) (I		-1.	4,00	
\ G				
30		• Ž _* ,	5.00	
N.	PPM		98	
5 <u>(</u>)	P P M		43	
10			3416 🗮	0.567 70 MOS2
20	(P P M		9	
11	ppy	4	5.00	
00	p p M		38	
4N	% OX*		0.022	
3R			3	
)	PPM	د در ¹⁸ مر	250	
36	% 0X.		0.006	
10	eek		9	
r	2 0X.		0.017	
DIA F T	27 UA (17 OV.		0.100	
era. Dera	$Z_{\mu} = \bigcup A \Rightarrow$ W = O M		7 ⊕ √ # 20 . 五間	
* 18. NJ	74 N.F. 6 197 - 1987		17 AT	
1142 2142	74 U.X.o 1977 - O.X.		17.4 Z.Z. (1) 14. 1 Z	
ali) ari	% UX •		V+4V0 A 990	
N	Ze UX e .		1 ¢ 2 0 0 - A00	
VA V	2 OX +			
			الد الار الألم	

pom A 4 opm Ag VC.2.A 83.2-83.3 <0.02 1.7 100 -100.2 130 - 130.3 0.02 1.1 188 - 188.2 9.5 0.02 (by AA)

WAGNER PETROGRAPHIC 95 South 700 East • AMERICAN FORK, UTAH 84003 (801) 756-217	page 1
SAMPLE SUBMITTAL	

BY JEFFREY B. HULEN/ULIRI DATE 10/16/86

3).

))-

SAMPLE NUMBER	DESCRIPTION	Thin Section	Polished Section	Need Impreg- nation	Polished Thin Section	1.25" Micro- probe Slide	Large Polished Section	K-Spar Stain	Calcite Stain
2.0-2.3	CORE +	V.						V,	
12.6'	CORE (CLAST IN LSL,							V,	
72-32.2.	11	V.		VZ				V	
46.8 46.91 D	11	V,		VZ				V	
50'	" (ACCR. LAPILLI)	V		VZ				V.	
87.2'	" (TUFF)	V		V?				V	
96 (A)	11	V						V	
96'(B)	//	V.						V.	
106'	" (PWT)	V						V	
118,5/	o (DWT)							V	
138' (A)	n (PWT)	V						V	
147.91	" (PWT)(\$BK)	ľ,						V	
148.5'	1 (BX-TF?) CONTAC							V	
460.0	" (DWT-devit.)	V						V	
780	" (DWT)- silisifit.	V						Ľ,	
188.1'	" (MoSz BX)	V.						V	
200.5/	n (PWT)	1						V	
208.5	" (.")	1						V	
213	" (SIL.BX)	V						V	· ·
216.5'	" (NWT)	V,						V	
227.2-227.5	" (DEBRIS FLOW)	V,						V	12
248'	//	V					-	V	
250-250.25'	" (55)	V						V	2
256.2-256.5	1 (55)	V,	1					V	i
268.2'	" (DWT)	V						V	
279.1'	" (DWT)	V						V	
		,							
705.7	CORE (DWT)	V						V	
388.3	" "	V						V	
345.2	// //	V						V	
359.7	11 11	V						V	
368.31	" " (silicf.)	V						V	
387.8'	4 II	V						1	
401,31	11 11	V						F	
74.9'	11 11	V						V	
REMARKS * PLEAS	E STAIN 1/2 OF SLIPE. C	NLY.		SAMPLE	25 MAR	SKED Y	ELLON	/ PLEA	SE RUE
A YELLOW AREA							.,		_
B) PIEASE SAW A	ORE AS INDICATED PALLO	5H ONE	OF 7	HE EN	CES	THELL	PREP	ARE 7	HE
THE SECTION	THE OTHER HALF	-N UNL		TP FF	1-1-1	IIICN	INT	1 31-1	_

WAGNER PETROGRAPHIC 95 South 700 East • AMERICAN FORK, UTAH 84003 (801) 756-2172

SAMPLE SUBMITTAL

BY J.B. HULEN

DATE _____

(page 2)

SAMPLE NUMBER	DESCRIPTION	Thin Section	Polished Section	Need Impreg- nation	Polished Thin Section	l.25" Micro- probe Slide	Large Polished Section	K - Spar Stain	Calcite Stain
VC-2A 463.2'	CORE (DWT)(ser, sil)	V,						V.	
491.51	11 11 (11)	V,						V	
514.5	11 11 (ser)	V,						V	
538.2'	li 11 4							V,	
553.61	11 11 11	V,						V	
562.4'	// // //	V.						V,	
582.4	// // //	V						VI	
612.3	11 + 11	V.						V	
632	11 11 11	V						V,	
636.8-651	11 11 11	V,						V	
651.4	11 11 11	V						V.	
687.6'	11 11 4	. 1						V	
697-	. 11 11	V,						V	
1718.1	11 11	V						V	
740,5	11 11	V			1			V	
771	11 11	V						V	
790.9	" "	V						U.	
822,6	11 11	V						V	
859.1	H 11	V				1		1	•
088.1	1 11	V						V	
1. 226-6B	" Fallout Tuff	V					1	V	
0.227-3B	" " contactual toff	V						V	
0. 255-2A##	11 - 53 55	V						V	
0.252-4B**	(1183,6) 53 55	V						V	
REMARKS * PL	EASE STAIN 1/2 OF SLIDE	ONLY		1	1	1		1	_
Y CAN HAN	LUIS LUDICATED. DALIEU A	NE OF	THE	ENCE	5. TI	FAL DI	FDAD		_
TA DAW ALONG	- LINE INVICE IEV POLISH O	NE 4	IHE	FACE	el IH	LN re	TAR	- IHE	_

	SAMPLE Eu	SU	BMI	ТТ	AL	1 [°] 1			
BY UURI/	ESL 391-C CHIPETA SILC UT. 84108	YAW		DAT	e12	19 86			_
SAMPLE NUMBER	DESCRIPTION	Thin Section	Polished Section	Need Impreg- nation	Polished Thin Section	1.25" Micro- probe Slide	Large Polished Section	K-Spar Stain	Calcit Stain
1/55 86-1	ROCK	V		/				V	
M/55 86-2	ROCK-	V		V				V	
M/55 86-44	ROCK	V						V	
1/53 B6-4B	ROCK	V						V	
M/55 86-4C	ROCK	V						1/	
916'	CORE							V	
937	"	V						V	
946	//	V						V,	
1070	4	V.						V	
1044.5/	11	V						V	
1077.6'		V						V	
1095.2-	11	V						V	
1128.2-	11	V						V	
1161.7-		V						V	
1206.31	((INCLUDE VEIN)	1						V	
1276'	//	V						V	
1238/	"	V						V	
1275	//	V						V	
1295.4	11	V						V	
1320,6'	11	V						V	
1349,8	"	V						V	
1375 R'	"	V						V	
1396.8'	11	V						V	
1420, 8	4	V						V	
1446'	U	VA						V	
1457 /	4							V	
1470,41	//	V						V	
1510,8	. <i>V</i>	V						V	
1529.2'	"	V						1	
1565.3	<i>V</i>	V						V	
1571,4	11	V						V	
1591.15	//	V						V	
1623	//	V						V	
1634.9-	11	V						V	
1660'	<i>ti</i>	V						V	
Den A C	IT SECTION TO COPE AN	(15 AS I	UDICAT	ED PL	INIKE	PIN	IFS I		

BY	SAMPLE	ESU	B M I	T T dat	а L е				
T			1	1	1		1	1	1
SAMPLE NUMBER	DESCRIPTION	Thin Section	Polished Section	Need Impreg- nation	Polished Thin Section	1.25 Micro- probe Slide	Large Polished Section	K-Spar Stain	Calcite Stain
1690'	CORE	V	· ·					V	
17'31	CORE	V			÷			V	
1									
GB-1	ROCK	V							
GB-2	ROCK	V							
12-01 NO-NI No 1	Pack		-	17.12	1. A.	1.14			
140-140.1	INCE	V V			· · · · ·				
	·								
and the second	······································			-					
	· · ·								
- 1									
									•
			·						
			1				ĺ		
			ĺ						

Pine Grove moly system, Utah Keith et 21., 1986 Pine grove moly deposit, u125 mt of 0.3% Mo52 - occurs in eroded vent of 22-23 m.y. rhyolite ash-flow tuff (MAMM) It is comagnatic with the tuff, as proved by nearly identical compositions of accessory almandime/spessartine in each. Lo so: the orebody 1/31 (if at the top of the phase five porphyry) was developed at a depth of about 3100 - 3500 m below, surface.

Cunningham and Steven, 1978.

- suggest that poupher U-Mo-Fireins of Central District are situdied in a fractured roof or hood zone of a concealed to hypolysal felsic pluton

- Mo in verns increases in relative and absolute abundance with depth. most common in deepest levels of Control District mines.

→ They suggest that 2 porphyry-type" moly deposit may underlie the U-Mo-F vein system at or near the top of the postulated, concealed stock.

because: 1) see Mo increase, above. 2) U-Mo-F veins accuse coincide with local area of distension inithin an area of concurrently active intrusion and extrusion.

PRELIMINARY FLUID INCL. STUDIES: The on Fluorite cogenetic with pitchblende - approx 150°C. ... prob. deeper & hother where <u>molybdente</u> occurrs.

ordisite coffinite Cunninghow, et al., 1982 Marysvale bdenite umoholite casite U-Mo hydrate central mng, district V U- and Mo- kearing hydrothermal verns in Fractures above a postulated, concealed stock (in struk, zone above) ("houd zone"? like questa?) AGE = 18-19 m.y . URANIUM \$ MG-BEARING YEINS WFLUORITE POSTULATED PORPHYRY MOSZ Cunningham 1 Steven 1979 - POSTULISTED STOCK w(oc). chalcedonic silica. Molybdenite does occur sparsely in the U-bearing veins also jordisite JORDISITE - Black, powdery for colloidal form of what may be Mo52 - alters to ilsemannite. Palache, et al., # ILSEMANNITE - Mo308. nH20 (molybdenum blue) found only as earthy masses or crusts, as a stain or disservinated pigment. Black, blue-black or blue, becoming blue on exposure. Readily peptized by water giving a deep blue sol 2nd minn. - oxd'n of molybdenite - found colors associated minerals BLUE

Mt. Emmons Revel Basin Thomas & Galey, Jr., 1982 @ surface: "base metals" and silver in veins Pb, Zn, Ag & AU (NOLY DE PRIOR, TO) MOLYBRENITE OCCURS IN TRACE OR MINOR AMOUNTS IN VEINS & VEINLETS deeper part deposit: Part 112 Weak KF-Q-MOS2 Verning - Mutually crosscut qt2-ser ALTERATION MINERALIZATION · UpperRedwell Basin Bx (pipe) deposit: Perussive, intense PHYLUC ALTOPATION in pipe above (to surface) & completely enclosing & including one with upper one body Moly in gtz, vnits & as "paint" on fracture surf. pyrote, fluorite & sericite are common WM. Mos2 < 10 ppm down from surface to a 3000 ft Lower Redwell Basin, deposit (100 mTC 0,16% Mosz [>0.1]) DELOW Proversive phyllic alteration. POSSIBLY within Weak potassic alteration zone · <u>Mt Emmons Deposit</u> → (155 NTC 0,44% Mo52 [>0.12]) glassic cupila deposit · pervasive, intense phyllic alteration above and " phyllic + potassic wothin one budy · intense potassic beneath are (at stock apex) gtz-orthoclase = brothe WITH VEINLETS OF ORTHOCLASE, M. QUARTZ, FLUORITE TO OREBODY Present WHEN EPTH PEVELOPEP Upper Redwell Basin (0.1% cutoff):2200-2400 feet - 4000 # Sharpung? 3700-4200 test -+ ~ 5700' Lower from Sharp 900-1100 feet > ?? Mt. Emmons (0.1% cutoff)

	VC-2A TEMP. LOG SANDIA
	w Su
0	
	E 11×10
	L RDOS ETH LOS
	CABLE I
	TH & & FT DEG C 9.15 TH 186 & FT DEG C 73.28
	TH 240.0 FT DEG C 102.28
	TH SOBLE FT DEG C 166.29
Ł	TH S00 0 FT DEG 0 178.14
	TH 1000 0 FT DEG C 197.96
-	TH 1200.0 FT DEG C 194.65 TH 1300.5 FT DEG C 198.06 TH 1300.5 FT DEG C 291.74
	TH 1505.0 FT DEG C 204,67
0	TR 1706.0 FT DEG C 210. 41
	MUN TEMP 9.15DEG 4
	TME IN MIN 173.1 IME IN MIN 173.1 IME INGGED 3433
	101 TIME 15 47:35 DE TA LOGGED 0.0
	ULTIN LUGGEU IT 20.4 10 = 1720 FBET NETER DEPTH

.

0	SAMPLE No.	EL AL	5/3/2	A S	2 Martin	A RING	ALL LA	A Sul	HI HI	The states	1400	4	J
	55-1 -2 -3 -4 -5												
	-6 -7 -8 -9 -10 -11												
	-12 -13 -14 -15 -15 -16												
<u></u>	17 18 19 20												
									20				
	SLILPHL	K SPK	IN92-	90	NFAC		PUL	.F X					

,

			4		-6BZ -0.1 ⊒	0,527 wt 2 V2f 0-177 "
	138	-ord	(58.5m) 191.8	(164.3m) 539	- 0,2 = 0 =	0.7011 «
-	-0.1	-0.3	0	-0,3 d	- 0.4	-
	-0.3	-0.1	-0.4	0 d		
	0	0	-0.1	0		
	-0.1	-0.2	-0.1	0		
	0	-0.1	0	-0.34		
	-0.2		-0.1	-0.1		
	-0.1		-0.3	Od		
	-0.3		-0.1	0		
	0		-0.2	-0,24		
	-0.1		-0.1	0		
AVG.	-0.140.1	-0.1±0.2	-0.1±0.1°C	-0.1 = 0.1 C		

12 2 539.1 FLUORITE: RECON. MOSTLY, PRIMARY INCLUSIONS - These quite common PR. 200.2 PR. 2/2.2°C PR 197.8°C PR 196.2°C PR 203.2°C PS 2nd 196.2°C PR 208.6°C 208.2°C 212.2°C 197.8°C 196.1°C 203.2°C $T_n = 203.2^{\circ} c \pm 6.6^{\circ} c$ 1713' CALCITE RECON. 219-211.3' PR-219.7 PR-217.7' PR-217.6' PR-217.4'

Monteney Sheles Certrate Stell 5 bulks-P.O CS 057071 Aves Suez 6 opie 539 PREEZING PUINT DEPRESSIONS A.Ho, 3°C - daughters. brikefritig ent. daughter - daughters B 8/2 rutile 7/2× 9/2 C 0.2°C ? O.C -0,3°C doughtas - 0:1°C D- daughters -0.2°C- daughters 0- no daughters S B n360 feely ungent biref. $(0)^{\overline{}})$ 539 15

1- 10 8	= DOIF	Τ	М	INERAL	-			
$V = 10 \mu$	HED	\square	1.1		4/1		4/1	
	K	×/ /	5/ 15	1 /3		1 8	//	//
DEPTIL	13			2	E	1	//	/
42.06m 138/0'		141	$-\frac{1}{2}$		100/	/4/	\leftarrow	/
48.71m 159.8'	Ø							
57.93m 188.1'	Ø							
58.46m 191.8		Ø						
19.13m 194.0		Ø						
87.26m 286.31								
93.17m 305.7'-A		Ø						
" 305.7'-B			Ø					
" 305.7'-0								
122, 31 m 401.7								VERY TILN OWSTALS
149,80 m 491.5'	V	,						APPLI LIKET ALDINA
164. 31 m 1539.1		Ø						
171.41m 562.4'			V					
192.62m 672.0			V				_	(PEL)
190.711 651.4 -A		1	K					WHITE
231.94m 761.0'	1		V			$\left \right $		
306.61m 1006.0			V					
333.8m 1095. 2'			V					
343.86m 1 28.2'			V					
367.66m 1206.3'	D.	Ø	K	0				ALL MINERALS
394.82m 1295.4'	M	M	X.					IN TIMALELY IN TERGROOM
452,45m 1484.5'			V					
522,10m 171 3.0'			V					
95.79 m 314, 3'		X						
							_	
	- 74	FILI	P INICI	LISIC	N SI	MPLE	5	
V.								
								J.HULEN 12/86

DETERMINING SALINITIES OF FLUID INCLUSIONS -0.4°= 0.701 "

-0.1°C= 0.177 Wt% Nac

0.2°C=0,352 " -0.3°C=0.527 "

A. Freezing Data

When a fluid inclusion has no daughter salts, salinity may be approximated by using the following formulas:

wt % NaCl equivalent = $1.769580 - 4.2384 \times 10^{-2}0^{2} + 5.2778 \times 10^{-4}0^{3} \pm 0.028$ molality NaCl equivalent = $0.306040 - 2.8598 \times 10^{-3}0^{2} + 4.8690 \times 10^{-6}0^{3} \pm 0.007$

> Θ = Temperature in °C at which last ice crystal in inclusion melts. -20.8 °C < Θ < O °C

Reference: Potter, Clynne, and Brown, 1978, Freezing point depression of aqueous NaCl solutions: Econ. Geol., V. 73, p. 284-285.

B. Salt Dissolution Data

When daughter salts are present within fluid inclusions, by noting the temperature at which the last bit of salt finally dissolves, salinity may be determined.

1. If only halite is present:
wt % NaCl equivalent = 26.218 + 0.0072t + 0.000106t² ± .05 wt % NaCl

Reference: Potter, Babcock, and Brown, 1977, A new method for determining the solubility of salts in aqueous solutions at elevated temperatures: Jour. Research U. S. Geol. Survey, V. 5 (3), p. 389-395.

2. If both halite and sylvite are present and the temperatures at which each salt crystal finally disappears is noted, then

wt % NaCl + KCl equivalent

is determined by using the chart in Figure 7 as explained at the bottom of the figure.

Reference: Roedder, 1971, Fluid inclusion studies on the porphyry-type ore deposits at Bingham, Utah, Butte, Montana, and Climax, Colorado: Econ. Geol., V. 66, p. 98-120.

					/0	. /:		/	/		\$/	/	/	/	7	77
	PEPTH INTERVAL	13		12 5/à				ANY A			/	//	/	//		PURPOSE
	2.0-2.3'	0.7	5 1	2	1	COR	E									STRATIGRAPHIC, STRU TURAL, ALTN. RESEA
	12.6-12.8'	0.2	2 2	4	7A	"	"	"						1		H
	32.0-32.4 (YA	¥)OA	1 3	9	4	H	STONE	"			-					
	46.8-47.0	0,2	17	14	ZC	. "	TUFF	//			-			I		"
	50	NO.		10	4	"	TUFF				<u> </u>		<u> </u>	ļ		"
	79.7-79.6 (top	FU.1	0	10	0	//	EK BV					-				"
	07		1 7	10	4		- OA				-		-			"
	07.2-07.6 (12)	04	7	27	88		HYP.	- "			-	-				"
	99.1-96.0	RUB-	11	21	17		BK.	"			-	-				"
	1015	BLE	12	20	1	-	TUFF	"								"
	1091-109.5'	04	17	30	5	"	"	"								"
	170-170.3'	0.3	, ···	74	ŕ	"	"	"								"
	138-138.3'	0.3	17	76	41	"	"	"								
	159 8-160 1'	0.3	120	40	GB	"	"	"								"
	178.0-178.9'	0.2	125	47	4B	"		"			_					"
No.	180.0-180.9'	01	126	49	4	1		"		-						"
All the second s	208.4-208.7	0.3'	12	53	74	"	BX.	"								//
	213.5'	RLIB-	70	54	7			"								"
	2072-2075	O.J'	31	F77	na	"	DEBRIS	"	-+							//
	1299-140.3	04'	71	60	5	"	11	"								
	247.5 - 247.9'	OA'	34	CI.	A	11	"	"								"
	250.0-250.25	0.25	34	62	44	"	55	11	-	- 1	-					//
	255,4-2555'	0,1'	35	63	8B	"	"	"		-						"
	258.0-258.2'	0.2	75	GA	4B	"	"	"	-+							//
	260.0-260.25	0.25	35	64	6B	"	"	"								"
	256.2-256.5	0.3	35	64	24	1	//	11		-				-+	-+	"
	1206.0-1206.7'	0.7'	159	260	1A	"	PW FF	"		-					-+	//
	261.7-261.8(1/2)	0.2'			-		55	#	-	-			-			//
	268.0-268.3'	0.3'	76	66	2	11	DW	1	-							11
ł	279.0-279.2'	0.2'	78	68	3	//	/	n				-				H
ŀ	286.0-286.4 (1/2)	OA'	39	69		//	11	"			-+					11
-	705.5-305.8'	0.3	41	73	5	N	"	//							-	//
ŀ	314.3-314.6	0.3	42	75	死	//	"	"								"
ŀ	337.0-333.3'	7.3	44	79	5	//	."ev	"					-			"
ŀ	345.0 - 345.3'	7.3	46	81	-	//	PW	11								11
F	362.7-363.1'	7.41	48	85	3	"	"	//								11
	768.0-768.3	0.3'	49	86	4	"	//	"								//
inger.	VC-2A S	AM	PLE	s ·	TAK	EN	F	OR	RI	ESE	EAR	ط۲	B	4	J. + UU 391-1 5.L.C	HULEN RI/ESL c. chipeta way 1. utah bahob

	PEPTHT) 9 3 0	197 F						\$\$					PLIRPOSE
	373 4- 374 0	64	1 50	87	15B	CORT	TSHIR	1723	14	\leftarrow	\leftarrow	\leftarrow	\leftarrow	\leftarrow	\leftarrow	STRATIGRAPHIC, STR
	387.6-387.9'	03	5 51	190	3	"	//	1700				-	-		-	IURAL, ALIN. KL-
	403.3-403.65	0.34	5 53	94	2	"	"	"			+	1	-	-	-	"
	413.6-414.0'	0A	55	96	7B	"	"	"			1		1			"
	434.8-435.0'	0.2	58	100	12.	"	"	"				1	-			"
	440-440.4 (14))04	199	102	2	"	GOLIGE	"				-				"
	458.1-458.4'	0.3	61	105	筑	"	TSHIE.	*			1			1		"
	468.5-468.85'	035	63	107	184	"	11	"							†	"
	491.5-491.80	0.3	66	113	3	"	"	"								"
	501.5-501.9'	RIB- BLE	67	NEAR	-3	"	"	1								"
	514.0-514.2 (1/2	0.2	69	117	5	"	1	"								"
	519.8'	RUB- BLE	69	118		1	"	"			2					"
	534.9'	"	71	120		"	"	"								"
	546.2-546.4'		73	123	11	"	"	"								"
	553.4-553.6	REBLE	74	階	5	0	"	"								"
	562.2-562.7	BLE	75	127	3	"	"	"								"
	582,3-582,6	0.3	78	131	3	11	"	"								"
	602,3-602,6	0.3	80	135	2	"	"	"								"
	612.0-612.3 (22	0.3	81	137	44	"	"	"								"
	621,0-621.5(12 CORE	0,5	87	139	1A	"	"	"								,
	636.8-637.0	RE	85	142	CUR.	//	"	"								"
-	645-645.2'	0,2	86	145	BLE	/	"	"	-+							"
-	651.3-651.6	0,3	87	146	3 PUB-	Ø	"	"	_	_						1
-	674 - 614,3	0,9	00	150	BLE	"	"	"								"
H	60/.6	MO,r	92	170	"	"	"	"								"
H	697.6	0.1	72	152	0	И	"	"								//
ŀ	101.7- 701.7	OP	74 0/-	176	2	"	MW//	"								//
-	710.0-710.2	0.2	08	1/1	24	"		"	_							"
-	720.7- 127.4 Vore	01	-10	163	9	"	"	"	-							
-	140,5 (PEORE)	0.1		167	4	"	"	"								
-	100,1-101	011		175	7	"	"	"		\rightarrow						
-	808.9-8091'	0.1		177	34	//	"	//		-					-	
-	8075-80075'	2.25		180	10	//	//	//		-						<i>v</i>
	839.6-839.9'	0,90	-	183	5	//	11	H		-						11
-	859.0-859.21	2.31	-+	187	nc	//	11	11		-+	-+		-+			
-	888 - 888.3'	0.31		193	10	"	"	//								11
	908,3-908.7'(%)	0.41		197	A	"	H	//		-						1
-	12217 10011 [4]					1			1						1	

\cap				/	,	7	/ /	,	, ,			/	/	/	
			Junt 1	×/ 5	8/	2/4	//	/		\$) }	/	/		/	
	DEPTH	1								/	/		//	//	PLIRPOSE. TAKEN
	916'	RUB-	19	7	CORE	TSHI	2/11/03		\frown	ſ	\leftarrow	ſ	f-	1-	STRATIGRAPHIC, STRUC
	976	"	20	7	"	"	11	2	+						10142, ALIN. 12 ACT
	937'	"	203	5	"	"	"	\vdash							
	946'	"	20	1	"	"	"		1						"
	966.6	n0.1	20	33	"	"	"								4
	976.3-976.5'	0,2'	211	20	1	"	"	-							1
	1006'	RUB- BLE		<u> </u>	"	"	"								"
	1020	"	220) 1B	"	"	"								"
	1033.5'	"	226	64	"	"	"								"
	1044.5'	"	225	5 2C	11	"	"		1				-		11
	1070.0	10.1	229	1 7A	1	"	"								11
	1077.6	RUB- BLE		1	"	11	"								//
	1095-1095.4'(12	04	235	4	"	"	"								11
	1109.7-1110.1	O.4 RUB.			1	"	"								"
9	1117'	RLIB- BLE	N		11	"	"								"
	1128.2'		1		"	"	"								11
()	1137.0'	"	245	10	"	"	"								//
	1149.0	"	247	11	"	"	"								"
	1212. 2'	"			4	OTOWI	' //								//
	1214.0'	11	261	2B3	"	1	"								"
ł	1234.5-34.7	W.2'	265	242	"	BX.	1								¥
ł	1254-1254.2'	RUB- BLE	269	4B	11	MW	11/04								//
	1269.5'	11	272	3		11	11					_			//
	1275-1275.2'	0.21	273	7B	"	11	11								//
F	1283.6-1283.8	0.2'	275	2A3	//	"	//								"
l l	1295.4 1295.6	0.2'	277	5A	"	11	"								//
	1304.5-1304.9'	04'		-	//	"	"								11
F	1313.5-1313.8'	0.3			11	"	"								//
F	1320.6-1320.7	0.1	282	ZA	"	//	"			+					//
	1330.8-1331.0'	0.2	284	98	"	"	"								//
	1340.3-1340.5'	0.2	286	6	"	1	11								"
	1349.7-1349.9'	0.2	288	44	11	//	11								"
	1364.0-1364.2'	0.21	291	44	"	11	"	-	-		-		-	- 1	4
	1375.8-1375.91	0.1	293	4A	11	1	//						-	-1	11
-	1383.7-1383.8	0.1	295	2B	"	11	//							1	11
	1404 - 1404.4'	0A'	299	GA	11	LAG	11		1						11
	1420.7-1421.0'	7.3	302	3	11	"	1	-						- 1	"
	14 70,7-1430.8'	D.1	704	弘	//	//	//					1	-		//
	VC-2A	SAI	MPLES	5 7	AK	EN	FC	R	RES	5EA	RCI	+ 1	BY	J. U.75.	HULEN URI/ESL 21-C CHIPETA WAY L.C., LITATT 84108

		Ι											
/													7 7 7
		//	/	. /	/ /	/	/	1	4/	/	/ /	/ /	' / /
		Int b	X/ 4	S/	× h	/	1	1 4	1	/ /	/	/	
		19/ 2	3	40	Bul	K	1. Fl.	51			/	/ ,	DUPDOSE
PEPTH	Į\$	54/XZ/:	72/W	<u>Sk</u>	\$/;	₹ /\$		47	/	/ /	/ /	/	TAKEN
INIERVAL	1	14/4	10	101	107	14	14.	2			-	-	STRIKTURAL STRATI-
1439.7-1440	0.7'	278	1E	RE	AFT	Yoye					_		GRATHIC, ALTIN. RESIGN.
1445.6-1446	04'	20/	DV	"	1	"						_	
1450.7 - 1451	0,3	20	3	//	"	1							
1448.3 - 1448.6	0,3	200	103	.#	""	/							"
1460.8 -1461"	0,2	310	202	"	. 11	"					_		"
1470.3 -1470.6	0.3	312	32	^	"	. "						1	"
1484.4 - 1484.6	0,2	317	VI	"	1	"					_		
1500.7-1501.0	0.3	320	C2	"	"	"		_	_		_		1
1510.8-1511.0	0.2'	712	C3	"	"	"							
1520.7-1521.0	0,3	324	JZ	11	"	"							" "
1550.7-1551.0	0.3	370	15	"	"	"							11
1529.0-1529.4	04	3126	G	"//	"	."							"
1540.6-1541.0	0.4	328	L	"	"	11/06							H
1565,6-1566.0	OÁ	733	M	"	"	"							<i>II</i>
1568	RUB- BLE	734	E	//	//	"							//
1571.3-1571.5	0.2	335	Az	//	"	H							
1985.3-1985.6	0.3	337	K	//	VEIN	ĸ							11
1596.5-1596.7	0.2				ROCK	4							11
1596 - 1596.31	0.3'			2	FE	"							11
1601 - 1601. 3'()	0.31	341	AI		XX	11							4
1610.9-1611	0.1	342	Hz		"	"							· · · ·
1617'	RUB- BLE				"	"				-			4
1622.7-1622.9'	0.2	345	3B		11	4				-		í	4
1629.0-1629:3	0.3	346	28		"	"							"
1630.8-1631.0'	0.2	346	48		"	"					¥4		"
1635.2-1635.6	0.41	347	5		"	"							
1634.8-1635.2	0.61	347	4c		"	"					1		· //
1641.4-1641.7	0.3'	349	24		SW-	"					1		11
1650.7-1651.0	0.31	350	3B		"	11							//
1660.7-1661.0	0.3	35/2	AB2		"	"							11
1670.7-1671.0	0.3	354	38	-	11	"				-			"
1680.7-1681.01	2,31	356	20	-+	"	//							"
1700.8-1701.0	0,21	760.	4B		"	"							1
17.10.8-1711.010	0.21	762	5B	+	11	11				-			4
1721.0 - 1721.3'	0.31	365	AI		11	"						1	4
1730,8-1731.010	221	766	Fa		"	11						1	//
										1			
and the second se			1				1						

A