

Location map, showing position of CSDP coreholes VC-2B and VC-2A relative to the Sulphur Springs area of the Valles caldera complex. Stippling at left shows extent of active or recent surficial alteration. Stippling on right shows areas of phyllic, argillic, and advanced argillic acid-sulfate alteration. A-A' is cross-section of Figure 12 Note also location of 3-D geologic block diagram of Figure 9. Modified from Goff and Gardner (1980) and Charles et al. (1986).

Map showing locations geothermal wells and scientific coreholes completed to date within and adjacent to the Valles caldera complex. Long dashes delineate the ring-fracture margin of the Valles caldera. Short dashes outline the Valles caldera's resurgent dome.

Map of the Valles caldera complex showing locations of completed and proposed CSDP coreholes. VC-1 and VC-2A are already completed. VC-5 will be located in the Toledo embayment. RCG - Redondo Creek graben. VRF - Valles caldera ring-fracture zone. TRF - Toledo caldera ring-fracture zone.

Generalized stratigraphic relations (A) and aereal distribution (B) of major rock units in the Jemez volcanic field. Irregular stipple - Keres Group formations. Regular stipple - Polvadera Group formations. Random dashes - Tewa Group formations. A - Dashed lines indicate uncertainty. B - Major fault zones and geomorphic features labeled as follows: JFZ - Jemez fault zone; SFZ - Santa Ana Mesa fault zone; CFZ - Canada de Cochiti fault zone; PFZ - Pajarito fault zone; VC -Valles caldera complex; R - resurgent dome of VC; T - Toledo embayment; SPD -St. Peter's dome. From Gardner et al. (1986), as modified from Gardner and Goff (1984) and Smith et al. (1970).

(Looking North)

Postcaldera rhyolite 0.43-1.09 Ma

Caldera-fill rocks (<3.6 Ma) principally the Bandelier Tuff (1.45-1.12 Ma) and associated ignimbrites

Miocene volcanic and sedimentary rocks

Paleozoic sedimentary rocks

Precambrian granite and gneiss

Fault; arrows indicate displacement

Geologic block diagram showing interpreted subsurface structure and stratigraphy in the Sulphur Springs area of the west-central Valles caldera complex. For location, please refer to Figure 7. Calderafill units south of the Alamo Canyon fault and east of the Sulphur Creek fault are stripped away in the drawing to show conceptually complex configuration of basement rocks in the floor of the caldera. Wells B-1 and B-3 not shown for clarity. Surface geology from Goff and Gardner (1980).

Borehole	Collar El. (m)	Unit	Top El. (m)	Bottom El. (m)	Thickness (m)
B-1	2566.3	UT? S ₂ ?	2426.1? 2279.8?	2279.8? 1786.0?(TD)	146.3? >493.8?
B-3	2566.3	UT? S ₂ ?	2352.9? 2255.4?	2255.4? 1895.8?(TD)	97.5? >359.6?
B-2	2590.6	UT S2 Ts S3 O SF A M PG	2354.5 2226.5 2182.9 2029.9 2026.8 1862.2 1691.6 1328.9 1066.7	2226.5 2182.3 2029.9 2026.8 1862.2 1691.6 1328.9 1066.7 865.6(TD)	128.0 44.2 153.0 3.1 64.6 170.6 362.7 262.2 201.1
B-7	2651.6	Ts S3 O SF A M PG	1950.6 1850.7 1828.7 1719.0 1444.7 1225.2 987.5	1850.7 1828.7 1719.0 1444.7 1225.2 987.5 960.1(TD)	99.9 22.0 109.7 274.3 219.5 237.7 27.4
3-8	2636.4	UT S2 Ts S3 O LT SF A	2459.6 2259.1 2228.0 2134.7 2125.6 1819.6 1685.5 1545.3	2259.1 2228.0 2134.7 2125.6 1819.6 1685.5 1545.3 1300.2(TD)	200.5 31.1 93.3 9.1 306.0 134.1 140.2 245.1
NC – 1	2657.7	UT S2 TS S3 O S4 LT PC	2413.9 2321.2 2309.1 1694.5 1676.3 1146.0 810.7 438.9	2321.2 2309.1 1694.5 1676.3 1146.0 810.7 438.9 402.3(TD)	92.7 12.2 614.5 18.2 530.3 335.3 371.8 36.6

Table 1. Stratigraphic data for geothermal wells and scientific coreholes within and adjacent to the southwestern Valles caldera.

Table 1, continued

Borehole	Collar El. (m)	Unit	Top El. (m)	Bottom El. (m)	Thickness (m)
Bond-1	2650.7	"IG" SF	2352.0 1876.6	1876.6 1530.6(TD)	47 <mark>5.4</mark> 346.0
WC-234	2625.4	"IG" A M Sa PG	2500.4 2457.8 2210.9 1962.5 1884.8	2 <mark>45</mark> 7.8 2210.9 1962.5 1884.8 661.1(TD)	42.6 246.9 248.4 77.7 1223.7
VC-1	2492.4	UT? S2? A M Sa	2,343.7 2,194.7 2,158.4 2070.6 1684.7	2194.7 2158.4 2070.6 1684.7 1666.1	149.0 36.3 87.8 385.9 18.6
VC-2A	2560.2	UT S ₂ Ts S ₃ O LT	2538.6 2494.4 2480.0 2204.5 2198.5 2083.2	2494.4 2480.0 2204.5 2198.5 2083.2 2032.4(TD)	29.8 44.2 14.4 275.5 6.0 115.3 >50.8

-ABBREVIATIONS-

- UT Upper Tuffs
- S₂ S₂ clastic deposits
- Ts Tshirege Member of Bandelier Tuff
- S₃ S₃ clastic deposits
- Ot Otowi Member of Bandelier Tuff
- $S_4 S_4$ clastic deposits
- LT Lower Tuffs
- "IG" Intracaldera rhyolitic ignimbrite sequence, undivided
- PC Paliza Canyon Formation (intermediate-composition volcanic rocks; Miocene)

02

- SF Santa Fe Group sandstones (Miocene)
- A Abo Formation (redbeds; Permian)
- M Madera Formation (carbonates; Pennsylvanian)
- Sa Sandia Formation (carbonates and siliciclastic rocks; Pennsylvanian)
- PG Granite and granitic orthogneiss (Precambrian)
- BX Complex, multilithologic, tectonic and hydrothermal breccia sequence

s	tratigraphic D	ata for	Wells in t	the Baca Pro	oject Area								-
Well	Elevation, m	Unit	Top El	Bottom El	Thickness		Well	Elevation, m	Unit	Top El	Bottom El	Thickne	SS
	2840	UT	2779	2316	463		Baca 18	2662	S ₂	2547	2486	61 846	
Baca 4	2040	T.	2316	1709	607				ò	1640	1261 TD		
		S ₃	1709	1639	177 -		Baca 18 RD	2662	Ō	1646	1259	387	
		0	1639	1462	48				LT	1259	1130	129	
		S4	1462	1017	397				PC	1130	1103 TD	407	
		LI	1414	925 TD			Baca 19	2779	UT	2740	2334	406	
	2041	LIT	2713	2573	140				S ₂	2334	2328	488	
Baca 5	2841	T	2573	1417	1156				S	1840	1825	15	
		S,	1417	1387	30				0	1825	1334	491	
		Ő	1387	1022	305				LT	1334	1114	220	an ind
		LT	1022	809 716 TD	215		Baca 20	2763	UT	2659	2367	292	104-170
		PC	2560	2524	36				S ₂	2367	2355	12	
Baca 6	2562	S	2500	2499	25				T	2355	1840	309	
		T T	2499	1845	654				53	1840	1350	493	
		0*	1845	1230?					LT '	1350	1129	221	
		PC	1230?	1212 TD	128				PC	1129	671 TD		· ·
Baca 99RD	2633	UT	2609	2481	507		Baca 20 RD	2763	S3	1848	18846	2	
Data J,JRD		Т	2481	1884	6				0	1846	1441 TD		
		S ₃	1884	1506	372		Baca 21	2853	T	2502	1992 TD	202	
		U	1506	1018 TE)		Baca 22	2826	UT	2594	2301	293	
10	• 2662	UT	2568	2552	16				52 T	2301	1856	421	
Baca 10	2002	S.	2552	2504	48				S.	1856	1850	6	
		T	2504	1636	868				O	1850	1439	411	
		S ₃	1636	1629	360				LT	1439	1210	229	
		0	1629	1209	192				PC	1210	994 TD	0	
		LT	1269	862	215		Baca 22 RD1	2826	S ₃	1858	1849	207	
		PC	862	840 TI)				UT UT	1849	1452	282	
	2763	UT	2665	2367	298				PC	1170	861 TD	202	
Baca 11	2705	S,	2367	2342	25		Baca 22 RD2	2826	S.	1840	1834	6	
		T	2342	1846	496		Data 22 RD2	2020	õ	, 1834	1433	401	
		0	1846	1337	184				LT	1433	1219	214	
		LT	1337	776	377				PC	1219	999 TD	10	
		PC	776	666 T	D		Baca 22 RD3	2826	S ₃	1850	1838	306	
	2560	Sr T	2.520	1508	1012					1442	1178	264	
Baca 12	2309	S.	1508	LCZ	64	e •			PC	1178	733	445	
		Õ	LCZ	644	833(1)			SF	733	497	236	
		LT	644	565	302				Α	497	235	262	
		PC	565	263	501				М	235	144 TD		
		A	203	-238	293		Baca 23	· 2662	UT	2601	2541	60	
		M	-230	-642 T	D				S ₂	2541	1632	884	
	2632	P	C 1115	5 401	714				$\hat{0}$	1632	1215	417	
Baca 13	2052	A	40	1 360 T	D				LT	1215	1070	145	
Baca 14	2623	P	C 92	6 827	162				PC	1070	928 TD		
Data 14		SI	F 82	7 665	T02		Baca 24	2664	UT	2611	2456	155	
		A	66 T 272	5 029 I 6 2401	335		•		S ₂ †	0464	1570	004	
Baca 15	2779	U	2/3	1 2395	6				T	2454	15/0	3004	
		5 T	2 239	5 1874	521				53	1567	1252	315	
		S	187	4 1851	23				LT	1252	1134	118	
		Ó	185	1 1383	468				PC	1134	990 TD		
		L	T 138	1213	170						Level LIT I	anar Tuf	
		P	PC 121	3 1161	TD 788		Data are in	elevation (in m	leters) a	above sea	delier Tuff: 9	S S san	d-
Baca 16	2933	T	266	1877	42		S_2, S_2 sandstor	wi Member of	Bande	elier Tuff	: S., S. sand	istone: L	Т,
		S	3 187	35 1326	509		Lower Tuffs F	PC. Paliza Can	yon Fo	ormation;	SF, Santa F	e sandsto	ne
		T	T 13	26 1257	69		and Abiquiu T	uff, undivided;	A, Abo	o Format	ion; M, Mad	era Form	a-
		F	C 12	57 887	370		tion; PG, Preca	ambrian granit	e and g	gneiss.			
		S	SF 81	87 852	TD		*May includ	le some Lower	Tuffs.				
Baca 170H	2853	1	Г 25	12 1880	634		†No sample.						
Data 1701	in and	S	53 18	80 1874	40								
		() 18	91 1101	190)							
		1	DC 11	91 1108	TD			For	1151	hin.	11111 511	1984	
	D 2000		S. 18	67 1861		5		FROM M	JIELS	UN \$	MULTH	11/01	
Baca 17 R	D 2853		0 18	61 1362	49)							
			LT 13	62 1197	16								
			DC 11	07 979	21	0							

(Looking Southwest)

Southeast (left) to northwest (right) geologic section through the medial graben of the Valles caldera's resurgent dome, with control provided by UOC geothermal wells. Section shows most of the major stratigraphic units intersected in the explored portion of the caldera as well as major structures.

Generalized northwest-southeast hydrothermal alteration cross-section through the medial graben of the Valles caldera's resurgent dome (Redondo Creek area) with control provided by UOC geothermal wells. Corresponds to geologic cross-section of Figure 5, except viewed from the southwest.

Figure 10: Temperature surveys for geothermal wells and CSDP corehole VC-2A, Sulphur Springs area. Shown for comparison is a temperature survey for well B-11, in the Redondo Creek area. Data from UOC (1982) and Dondanville (1971) (B-1 to B-11, Bond-1); Goff et al. (1987) (VC-2A); Shevenell et al. (1987) (WC-23-4).

Figure 11. Pressure surveys for various geothermal wells in the Sulphur Springs area and, for comparison, for well B-ll in the Redondo Creek area. Also shown are cold hydrostatic and lithostatic (2.5g/cm) pressure profiles and a profile corresponding to theoretical pressure required for hydraulic rock rupture (from Hubbert and Willis, 1957). Well data from UOC (1982) and Dondanville (1971).

a di seria a seria di administrativa

h

5

٤

Fig. 2. Fault map of Sulphur Springs area, New Mexico (Goff and Gardner, 1980) showing positions of thermal areas and nearby geothermal wells. Redondo Boarder denotes

(DOWNHOLE PRESSURE IN SHUT-IN WELLS) PRESSLIRES, BACA-1130 m/ 3707.5' 0.76 MB/ 110 PSI BOND 1 790m/25992.0 0.52 MPa/75 PSI 1740 m/5,708.9 2.14 MPa/310 PSI 680 m/2,231.1 0.76 MPa/75 PSI BI B2 BB 9.7MB/1407PSI 1687m/5,535.1 BT 7.9 MP3/ 1146 PSI BB 1350m/5095.4 6.9MB/1001 PSI 2515/8251.7 n16 / n 2320 PSI BA BB

Plot of deuterium vs. oxygen-18 from geothermal and surface meteoric waters, Sulphur Springs area. Open circles denote meteoric fluids; dots denote thermal fluids; square represents composition of steam produced by single-stage boiling of reservoir fluid from well B-13 (Fig. 2) at 278 °C; triangle represents composition of parent water that produces fumarole steam by single-stage boiling at 200 °C; star represents a hypothetical, highlevel reservoir at 200 °C beneath Sulphur Springs. (From Goff et al., 1985)

NOTES ON DRILLING CHARACTERISTICS OF ROCKS TO BE PENETRATED BY VC-2B

1. High-level volcaniclastic rocks and debris-flow deposits

B-1: "ash altered to clay", "powdery", "very friable" to 900, but silicified below that depth.

2. Intracaldera ignimbrite sequence (Lower Tuffs, Bandelier Tuff, Upper Tuffs

These rocks are highly variable in terms of both primary texture and hydrothermal alteration characteristics. Densely welded tuffs are flinty, hard, and if unfractured should provide no real drilling problems. Non- to poorly-welded varieties could be very soft even if unaltered, and might slough or cave into the borehole; these tuffs are also commonly intensely altered, further promoting instability. Volcaniclastic rocks interbedded with these ignimbrites would respond to drilling much like their high-level counterparts.

Santa Fe Group sandstones (including the Abiquiu "Tuff")

General: "wells which have penetrated this unit have had sloughing problems"; caused severe lost circulation problem, "ran into holes"; commonly only very poorly cemented (Union Oil Company log).

B-8: "Hard, silicified, epidotized' (Union Oil Company, 1982); Silicified, large, coherent, wellcemented chips (Hulen and Nielson, 1986).

B-10: "Loose sandstone, drilled without returns" (UOC Log).

B-16: "Unconsolidated to cemented with calcite and/or clay" (UOC log).

4. Abo Formation -- generally red, hematitic shales siltstones and sandstones

> General: Prone to slumping and caving where exposed at the surface in the Jemez Mountains (for example, where the road to Jemez Springs crosses the Abo near La Cueva, it is frequently broken by landslides). However, this is probably due to a fairly high percentage of expandable clay interlayers in mixed-layer illite smectite. In VC-2B, present and past temperatures at the depth range spanned by the Abo should have eliminated these expandable interlayers, and the formation is

therefore probably more competent.

B-8: "Large pieces indicate much caving" (UOC $\log \rangle$,

B-12: "Some lost circulation" (UOC log)

B-22 RD-3: Dominantly "soft, friable", locally unconsolidated, but variable characteristics (locally dense, firm, well-cemented).

5. Madera Limestone -- mostly massive limestone with minor interbedded calcareous shale, siltstone, and sandstone

General: The Madera apparently drilled with few problems in corehole VC-1 (L. Pisto, personal communication).

B-22-RD-3: Described as "massi∨e limestone", but cuttings samples are >95% lost circulation material (UOC log; obs. of cuttings samples)

6. Sandia Formation -- mixed clastic and carbonate strata; drilling characteristics probably intermediate between those of the Madera and Abo.

Figure 8. Generalized lithologic, structural, alteration, and vein mineraliza-30 - tion log for CSDP corehole VC-2A (modified from Hulen et al., 1987).

DETAILED LITHOLOGIC, STRUCTURAL, HYDROTHERMAL ALTERA-TION AND VEIN MINERALIZATION LOG FOR CSDP COREHOLE VC-2A, SULPHUR SPRINGS AREA, VALLES CALDERA, N. MEXICO

by

Jeffrey B, Hulen' & Jamie N, Gardner²

1—UNIVERSITY OF UTAH RESEARCH INSTITUTE, SALT LAKE CITY, UTAH 84108 2—LOS ALAMOS NATIONAL LABORATORY, LOS ALAMOS, NEW MEXICO 87545

SYMBOL NON- TO WEAKLY WELDED ASH-FLOW TUFF MODERATELY WELDED ASH-FLOW TUFF DENSELY WELDED ASH-FLOW TUFF LITHIC-RICH ZONE IN ASH-FLOW TUFF LITHIC LAG BRECCIA IN ASH-FLOW TUFF MOTTLED DEVITRICATION TEXTURE IN ASH-FLOW TUFF VERY CRYSTAL-RICH HORIZON IN ASH- FLOW TUFF OR PYROCLASTIC SURGE DEPOSIT HYDROTHERMALLY PITTED/ETCHED ZONE PYROCLASTIC SURGE DEPOSIT FALLOUT TUFF UNDEFORMED SHARDS PUMICE EPICLASTIC SANDSTONE ACCRETIONARY LAPILLI ACCRETIONARY LAPILLI ACCRETIONARY LAPILLI HYDROTHERMAL BRECCIA HYDROTHERMAL BRECCIA	l.	
NON- TO WEAKLY WELDED ASH-FLOW TUFF MODERATELY WELDED ASH-FLOW TUFF DENSELY WELDED ASH-FLOW TUFF LITHIC-RICH ZONE IN ASH-FLOW TUFF LITHIC LAG BRECCIA IN ASH-FLOW TUFF MOTTLED DEVITRICATION TEXTURE IN ASH-FLOW TUFF VERY CRYSTAL-RICH HORIZON IN ASH- FLOW TUFF OR PYROCLASTIC SURGE DEPOSIT HYDROTHERMALLY PITTED/ETCHED ZONE PYROCLASTIC SURGE DEPOSIT FALLOUT TUFF UNDEFORMED SHARDS PUMICE EPICLASTIC SANDSTONE ACCRETIONARY LAPILLI ACCRETIONARY LAPILLI ACCRETIONARY LAPILLI MUNDEFORMEL BRECCIA HYDROTHERMAL BRECCIA FAULT BRECCIA	SYMBOL	ROCK TYPE OR <u>FEATURE</u>
		 NON- TO WEAKLY WELDED ASH-FLOW TUFF MODERATELY WELDED ASH-FLOW TUFF DENSELY WELDED ASH-FLOW TUFF LITHIC-RICH ZONE IN ASH-FLOW TUFF LITHIC LAG BRECCIA IN ASH-FLOW TUFF MOTTLED DEVITRICATION TEXTURE IN ASH-FLOW TUFF VERY CRYSTAL-RICH HORIZON IN ASH-FLOW TUFF UNDEFORMED SHARDS PUMICE EPICLASTIC SANDSTONE ACCRETIONARY LAPILLI ACCRETIONARY LAPILLI TUFF DEBRIS-FLOW AND LANDSLIDE DEPOSITS HYDROTHERMAL BRECCIA FAULT BRECCIA

VG-2A: EXPLANATION OF LITHOLOGIC SYMBOLS

SEPT-OCT. 1986 REVISED DEC. 1987

FOR U.S. DEPARTMENT OF ENERGY-OFFICE OF BASIC ENERGY SCIENCES AGREEMENT NO, DE-FG02-86ER13555

CATECORY		INTENSITY	
CATEGORY	WEAK (W)	MODERATE (M)	STRONG (S)
QUARTZ— SERICITE (PHYLLIC) ALTERATION	ORIGINAL PLAGIOCLASE PARTIALLY SERICITIZED. ORIGINAL K-FELDSPAR < 10% SERICITIZED. GROUNDMASS <10% AL- TERED TO MICROCRYS- TALLINE QUARTZ-SERI- CITE AGGREGATE.	ORIGINAL PLAGIOCLASE > 50% SERICITIZED, ORIGINAL K-FELDPAR 10-50% SERICITIZED GROUNDMASS 10-50% ALTERED TO MICRO- CRYSTALLINE QUARTZ- SERICITE AGGREGATE.	ORIGINAL PLAGIOCLASE COMPLETELY SERICITIZED, ORIGINAL K-FELDSPAR >50% SERICITIZED, GROUNDMASS >50% ALTERED TO MICRO- CRYSTALLINE QUARTZ- SERICITE AGGREGATE,
SILICIFICATION	GROUNDMASS <10% ALTERED TO ESSENTIAL- LY MONOMINERALIC MICROCRYST, QUARTZ.	GROUNDMASS >10-50% ALTERED TO ESSENTIAL- LY MONOMINERALIC MICROCRYSTALLINE QTZ.	GROUNDMASS >50% ALTERED TO ESSENTIAL- LLY MONOMINERALIC MICROCRYSTALLINE QTZ.
CHLORITE– SERICITE ALTERATION	ORIGINAL PLAGIOCLASE <10% ALTERED TO SERICITE, MINOR CHLO- RITE AND PHENGITE. ORIGINAL K-FELDSPAR UNALTERED, ORIGINAL MAFICS ALTERED TO CHLORITE ± CALCITE, PHENGITE, LEUCOXENE. GROUNDMASS < 10% ALTERED TO MICRO- CRYSTALLINE AGGRE- GATE OF SERICITE WITH CHLORITE, PHENGITE, CALCITE, AND (BELOW 420M) ALBITE.	SAME AS WEAK COUN- TERPART EXCEPT PLAGIO- CLASE 10-50% AL- TERED, GROUNDMASS 10-50% ALTERED, ORI- GINAL K-FELDSPAR FRESH OR <10% SERICITIZED.	SAME AS WEAK. COUN- TERPART EXCEPT PLAGIO- CLASE >50% ALTERED, GROUNDMASS >50% ALTERED, ORIGINAL K FELDSPAR <20% SERICITIZED.
CALCITE AFTER PLAGIOCLASE	≤10% OF ORIGINAL PLAGIOCLASE ALTERED TO CALCITE.	10–50% OF ORIGINAL PLAGIOCLASE ALTERED TO CALCITE.	>50% OF ORIGINAL PLAGIOCLASE ALTERED , TO CALCITE.
DISSEMINATED PYRITE	≼1%	1-5%	>5%
FRACTURING	≤10 FRACTURES/M	10-30 FRACTURES/M	> 30 FRACTURES / M
VEINING AND VUG-FILLING	≤10 VEINLETS / M ± ≤1% (VOL) VUG-FIL- LING [*] PHASES	10–30 VEINLETS/M ± 1–5% VUG–FILLING* PHASES.	>30 VEINLETS /M ± >5% VUG-FILLING* PHASES

Ć j

* HYDROTHERMAL

VC-2A: EXPLANATION OF ALTERATION, FRACTURING, AND VEINLET INTENSITY LOGS.

VC-2A: ABBREVIATIONS

AB--albite ACCR--accretionary ACC--accessory AF--ash-flow AGG--aggregate ALT--altered ALTN--alteration AND--andesite ANH--anhedral APP--apparently AVG--average BX--breccia(s) CAL--calcite CALC--calcite CH--chlorite CHL--chlorite CHLTZD--chloritized CM--centimeter(s) COMP FOL--compaction foliation CPY--chalcopyrite CRS--coarse DEF--definitely DIA--diameter DISS--disseminated DK--dark DW--densely welded E G.--for example ESP--especially EUH--euhedral EXC--except F--fine FL--fluorite FLUOR--fluorite FLD--fluid FM--formation FSP--feldspar GEN--generally GR--grained HYD--hydrothermal HYDROVOLC--hydrovolcanic IL--illite INC--inclusion(s) INTM--intermediate IRREG--irregular K--potassium KF--potassium feldspar KFSP--potassium feldspar LAP--lapilli LEUC--leucoxene LIMEST -- limestone LST--least LT--light

M--meter(s) MED--medium MICROXLN--microcrystalline MM--millimeter(s) MO--molybdenite MOLYBD--molybdenite MoS2--molybdenite MOD--moderate PH--phengite PHENG--phengite PL--plagioclase PLAG--plagioclase POSS--possible, possibly PPY--porphyry PPYTIC--porphyritic PR--primary PY--pyrite 0--quartz QTZ--quartz **REL--relatively** RH--rhodochrosite RHODOCHR--rhodochrosite RHY--rhyolite SEC--section SEQ--sequence SER--sericite SL--slightly SLTST--siltstone SP--sphalerite SPH--sphalerite SPHALER--sphalerite SS--sandstone SUBH--subhedral TRANSL--translucent TR--trace V--very VAP--vapor VNLT--veinlet W/--with WO/--without WT--weight XL--crystal XLINE--crystalline XLN--crystalline

SYMBOLS

\$ --and > --about ≹ --angular > --greater than < --less than ± --with or without ⊥ --perpendicular

VC-2A: DEFINITIONS

- Illite--White or nearly white, clay-grade, essentially non-expandable
 potassium mica-like mineral similar to muscovite but with less potassium, more silica, and more bound water; may contain up to 5%
 interstratified smectite, an amount not readily detectable by
 routine X-ray diffraction.
- Phengite--Brown to (characteristically) vivid gray-green, iron-rich illite analogue
- Sericite--A general term encompassing both illite and illite-rich, mixedlayer illite/smectite
- Smectite--Fully expandable, mica-like sheet silicate with charge deficiency of 0.2-0.6 per formula unit balanced by various interlayer cations (typically calcium and sodium) which readily adsorb water or polar organic molecules (such as ethylene glycol) to produce the characteristic expansion; commonly interstratified with illite to form partially expandable mixed-layer clay.
- Leucoxene--White to light grayish-yellow, microcrystalline aggregate of sphene and anatase in various proportions with or without minor rutile.

PAGE 5 OF 11

	ĢL	RAPHI	d LOGS	7			
×	ALTERATIC	2N SN	# FILLING	T & YUG- HASES	υ'n		DESCRIPTIONS
14	SHE LEVE	··用 打	ZU NE	H X H X A	A HIC	NOTES	
8		FRA	AOLYS SERVICE		N N N N N N N N N N N N N N N N N N N	COMMENTS	
	MMP WMS WMS WMS	WMD WMS			09	0.6IN (2')	0-0.61 M: NO CORE 0.61-7.72M: LANDSLIDE BRECCIA, SOFT, PUNKY, POROLS, LT. GRAY TO WHITE; HETEROLITIOLOGIC CLASIS, SUBANGLIAR TO ANGULAR,
					200	- CLAY-RICH	UP TO BO CM. DIA, COMPRISING MEDGR. ARKOSE & EPICIAS- TIC 55, FLOW-PANEED RIVOLITE, RHY. ASH-FLOW TUFF, FILLE MED. 2014 LINESTOLF: SENERAL LINEST. & 55. CLASTS
-					av	(GUGE?/	HAVE M-RICH CORES & SURROLINDING PIRITIC BALDS; HAVE M-RICH CORES & SURROLINDING PIRITIC BALDS; MATRIX IS CLAYEY SULL, SAND & GRIT, PROBABLY TUFFA-
25					0.0	7.901 (745)	CEOLS, NOW EXTENSIVELY ALTERED TO GUARTIE - DEVICITE PYRITE AGGREGATE; CLAY (SERICITE) = AM FROM A.12-4.27 M (POSSIBLE GOUGE ZONE)
						1. 12m (20)	7.92-17.97 M : EPICLASTIC SEPIMENTS, SOFT, PUNKY LT. GRAY TO WHITE : PISTINCTLY BEDDED (APPARENT DIP 10-157); AJTERNATING
10M-						• APP. DIP - 10-15	COARSE & FINER-MED. SAND; GRIT BEDS (COARSE SAND) ARE UP TO 5 GAN. THICK, FINER-GR. 55 BEDS GEN. < 15 MM THICK;
					@@@ @ @	ACCRETION	GUILAR FRAMENTS; CLASTS CONSIST OF DT. F. A. BUILAR FRAMENTS; CLASTS CONSIST OF DT. F. A. ABUNDAUT, HTMES (FELSK YOLCANICS, MOSTY); ACCRETIO-
1 0'-					00000 00000 000000	+ LAPILLI TUFF	NARY LAPILLI PRESENT-THESE DECOME WONSYLCUOUS AT 12.8 M. ACCRETICIARY LAPILLI TUFF 16.69-16.79 M. MIXED ACCR. LAP. TUFF & CR3. 59 15.69-15.09 M.
-					2744464 JZC>	-17.97M (57')	V. STRONG PHYLLIC (PLIARTZ-SER-PYRITE) ALTERATION THROUGHOUT THIS UNITV. SIMILAR TO 0.66-7.92 M.
1011-					XQ	-	ALTERED TO F. XLN. SERICITE.
4011	╺					21.64M (71')	LEAST 10 CM. PILL, MOSTLY WELTED ASH-FLOW THEF; LEAST 10 CM. PILL, MOSTLY WELTED ASH-FLOW THEF; ALTN. AS APOUR EXCEPT OTZ, SK. & PRITE START TO
75-					AVAVAVA	-FIJ.	APPEAR IN VEILLETS & VUGS. 21.64 22.19 M: NON-WELDED ASH-FLOW TUFF; ALTN. AS ABOVE 22.19-49 M: ALTERNATING ZONES OF FAULT REFLICING &
					22	- 271-7M (DI.7')	NOW-POORLY WELDED ASH-FLOW TUFF, NIN NS ABOVE. 24.2-25.2M HIGHLY REALIZED, INTENSEL ANTERED AND
-					CO CO	-28.2M (92.5)	IN VUGS. SOOTY MOS2 "PAINT" APPEARS.
30M1-					Cop	ALL (mat)	28.2-31.1 M. TITHIC-RICH, NON-POORLY WELDED ASH-FLOW TUFF; POSS. LAS BRECCIA; PTZ-SER, STLICIFP, W/PTZ, SER., FL, & SOOTY GRAY MOLYPOENITE IN VEINS & VUGS; MINIERALI-
						21.1M(102)	ZATION' 15 DISTINCTLY EPITHERIAL IN' CHARKCTER
							TLIFF, FRACTURED, OTZ - SERICITZED, MINERALIZED W/MOSZ; ALENOCRISTS ARE OTZ & K-PELDSPAR, THE LATTER
							COMMONILY PARTIALLY PISSOLVED PARTIALLY ATTERED TO FINE-VLN. SERICITE: ROCK 15 LOCALLY DISRUPTED BY HYDROTHERMAL BRECCIA, MATRIX OF WHICH JS -
125'-						APP. DIP 15°	SUICHED & SELECTIVELY EXERCISED IN MOS2. 912 VALTS WYPY LOCALLY FRESENT & POST-PATE 913 VALTS WYPY LOCALLY FRESENT & POST-PATE
40M-		╏┼┼┣╹┼			TAPAPAPA	-HYD. BK	ALEXACTS COMMONLY LIVE WITH BETERS
					SAFAFARS	42.7M/1407	# FSP. AS WELL AS MATRIX & OCCURS AS VEINLETS. 39.3-37.5M 41.9-42.7M S SILICIFIED, GTZ-SER. HYDROTHERMAL
-					TAPAPAD	-45M (147.5)	(BX AT 45 M. COULD ALSO BE LAG BX)
150-					PAVAPX	HYD. BX.	• XRD, 47.7M (%): 0-63, KF-19, PH-2, IL-15
						-47.71	48.2-49.1 M BLOTCHY PENITRIFICATION TEXTURE APPARENT EVEN THROUGH ALTERATION OVERPRINT
50M						(156.5 FT)	FO.9 M : FINE-XLN PYRITE CONTING FUH. OTE XL.
					11		
175 -					11		
-				문	Now what	-57.2 M (157.8')	ALLANDANT LATE-STACE PLUCKINE N.SO LOCAL,
-						APP. DIP 10°	PELICATE LIGHT PINK RHOPOCHROSTE ROSETTES # IRREGULAR AGGREGATESPETWEEN 57.2 M ¢
200-					VAVA PAV		471. (M.
-						1-67.5M (208.5')	• XRD, 63.5M (%) 9-53, KF-24, RY-3, IL-19
-					NAVA YA	-64.8M (212.6)	64.8-65.8 M ATERED FAULT BRECCIA
					D C	C.6. [M(217)	45.8-66.1 : ALTEREP, RUMICE-RICH TUFF, POSS. SOME ACCRETIONARY LAPILI. THIS MAY BE A CLAST IN THE
225'-					2000	-60,6M (225 FT)	661-76.2 M. DEBRIS FLOW, POROUS, PUNKY, INTENSELY
NM-							OIACTZ-SERICITIZED MOST ORIGINAL FELDSAR ENTHER DISSOLVED OR ALTERED TO SERICITE); ROCK CON- SISTS OF 750% CLASTS, UP TO O.L.M (ANG. M. 9 CM.)DA.
							COMPRISING PLEACHED, REDDISH SANDSTONE (DO THU) PORPHYRITIC ANDESTE PORPHURITE RANDSTONE (DO THU)
						76.2M (250)	ELECTRONIC SALE CLASS STREET
250 -					·		PYRITIZER • VRP. (8.GM(9.): D-53 PY-2 ANATAGE-2. 11LITE-44
-							
	7 1707 -						LOGGED BY

LOCATION VALLES CALDERA, N. MEXICO

<u>J. B. HULEN AND J.N. GARDA</u> SEPT,-OCT, 1986 <u>REVISED DEC. 1987</u>

PAL

PAGE 6 OF 11

	GRI	APHIC	C LOGS	1				
×	ALTERATION	VY	WZ FILLING	E VUG- PHASES			DESCRIPTIONS	
12	世 58	H C	NIZ H	现.	729	NOTES.		
B	ALLAR ALLAR	AN AN	APPLY THE APPLY	AHA	AN	COMMENTS		
	WMS WMS WMS WMS W	MSWMS				~76.2M(250)	76.2-78.6M, MASSIVE, FINE-MEP, GR. EPICLASTIC 53, BUHORD	
		=			000	-78.6M (258)	78.6-79.8M: DEBRIS FLOW, SAME AS 66.1-76.2M. 79.8-80.2M: EPICLASTIC SANDSTONE, AS ABOVE; CONTACT	
80M-	<u>.</u>				A.C.	-80,2M (263.2)	W/TUPF AT BASE - UP 47 80.7 - 80.7 M; MODIWELDED, XL-RICH RHY, ASH-FLOW TUPF	
-							80.7-215.5 M: PENSELY WELDED, CRYSTAL-RICH RHOLITE	
219-						(COMP. FOL.)	MINERALIZED BUT IN GENERAL HT-MED. GRAV & SOME- WHAT FLINTY-APTENRING: ANG. 80-977 PHENOCRYSTS-	
-		++					QUART & K-FELLYAK (1953, OKGINALL) INTERNATIONALLY INC. AND ANTHERED TO SER. ANG. B-7, LITHIC FRAMEWITH ALBITE ALTERED TO SER. ANG. B-7, LITHIC FRAMEWITH - MOSTLY PORTHYRITIC INTERMEDIATE	
-							VOLCANIC ROCK; MINOR COLLAPSED RUMICE COMMONLY VIGGY & ALTERED TO SERVICITE. ROCK IS CUIT BY VIGGY & ALTERED TO SERVICITE. ROCK IS CUIT BY	
90M-= 700'-							THREE MINERALS ALSO OCCUP SINCLY & IN VARIOUS COMPINATIONS AS ING LINING FILLING PHASES LOTED	
-	╶╶┼╸┼┦┼┼┦┼┼┼						DEPARTURES FROM THESE OFICIALLY OTZ, ORTHOOLASE, BELOW. GROUNDMASS ORIGINALLY OTZ, ORTHOOLASE, ALBITE	
-							ACCOUNTS FOR THE TEXTURAL CONTRAST W/ ROCK ABOVE BILIAM; NOTE, THEN, ALBITE & KSPAR ARE EARLY	
							95.4-96M! YEIN UP TO I CM WIDE (972-SER)	
325'-								
100MF						- 100.5M(390)	• XRD, 101.6N(%): 0-199, KF-23, PY-2, IL-15	
						103.6M(340)	(BEVITICITIES)	
-							109.6-109.5 M : POWDERY GOLGE ZONE, DIP v 80°	
750 -								
HON-						109.7M (360)	• XRP, 112.3M (%): 0-51, KF-29, PY-5, 12-10, GYPSUM-1	
-					2.42)-	PIP in 42° DICOMP. FOL.)	119.4-114M: SPARSE, IRREGULAR VUGS, BUT THESE	
275'-						(112:348.3')	ARE UP TO 30X 12 MM-LINED W/9UARTZ, THEN PURTE, THEN PARTIALLY INFILLED WITH ILLITE.	
-							109 7- 119 GM MOTTHER DEVIDENCED DENSELY	
-						-118.3M (388')	WELDED ASH-FLOW TUFF, AS ABOVE.	
120M-							118.9-121.6M: >100 FRACTURES/METER	
400'-						-121.GM (399)	1231-129.6 M: IRREGULAR, ILLITE-LINED VLGS	
-							ALSO MASSINELY REPLACES SCATTERED FLANME.	
		ΠŢ					129.6-129.9 M: POWDERY, DARK GRAY, FINELS	
-						SPHALERITE	GROUND FAULT ORECCIA WHONEY-COLORED, LATE-STAGE EMALERITE CRISTALS.	
425 -					YAYAYAYA	129.6M (425.3) MIN. FLT BX	• XRP, 129.6M (%): 0-47, PY-4, IL-46, SPH41-2	
120M -						100 C (100')		
-					VATAT	MINERALIZED	1938-139,6 M; FALLT BRECCIA, KUBBLE STANES & COATED SOOTY DARK GRAY W/ NICROCRYSTAL- LINE PYRITE, MOXEDUITE.	
150'						-135.6M (445)	ATTINED IT ATTINE NEWE-NENTIONED	
4,0 -					ANY	FLT (137.8M)	RUBBLE ZONE, THE BLOCKLY DEVITRIFICATION TEXTURE IS ESPECIALLY PROMINENT, W/ LARGE	
140M						-	(UP TO 5 CM. PIA) "EYES" CORED W/ ILLITE/ PYRITE MANTLED BY OTZ-IL-KESP THESE ARE VERY IRREGULAR	
-					5	(COMP. FOL.)	E.G.: V. LI. GRAY	
475'-					AVATAV.	FALILT	VUG VINTM. GRAY	
				RH	5 GW		FILLEP WITH JEKICIE & MINIE	
					Seal S	149.8M (191.5.)	147.4 N: 2.5X 1.5MM. CPY BLEB IN GRANDPHYRIC MATRIX OF PENSELY WELDED ASH-FLOW TUFF	
150M-						JEHOPOCHE.	149,8-172.1 M: MINOR RHOPOCHROSITE, SAME TEX-	
500'-						152.4M	TURE AS 57.2-59.7 M.	

DRILL HOLE VC-2A LOCATION VALLES CALDERA, N. MEXICO -A6-

<u>J.B. HULEN AND J.N. GARDNER</u> SEPT,- OCT, 1986 <u>REVISED DEC, 1987</u>

PAGE 7 OF 11

GRAPHIC LOGS	
ALTERATION & WEINLET & VUG-	
A RE RE TRANSF A REALIZED OF THE COMMENTS	_
WINS WINS WINS WINS WINS WINS WINS WINS	7 CONTINUES
• XRP, 156.8M (%): Q-993, KF-22, PY-4, IL-18	
RHOROCHR 156.7 M + RHOPOCHROSTE, AS ABOVE	U COOTI NG
198.5-199.1 M: RUBBLIZED FALLT ZUNE	W/SULIY INDIZ
10.00	
164.3-165.1 M: FALLT ZONE: CONTAINS	TRANSL. APPLE 3 mm. DIA.
750 - HOTION CHLORIE APPEARS A AN YEN	SVE ORMING
170M - (UNSIELE IN HAND-SPECIMEN)	FAST
POLY AD MALE AS ABOVE.	Y DEVITRIFI-
ALLITE APPEARS IN VEINLETS;	SOME CAL.
575 APPEARS ASPARENTLY POST - VALES CHL	
TIGENAME HERE & BELOW ARE WHITEON	TE E FERI-
CITE.	Y-1, 11-16
• XRD, 177.9M (%): 0-79, FL-0, N HT, CA 9, T	4-5
600 - HANNELLER, DEVLICE RATION TEXT	URE BE-
	1
	0,04-4
C198, IM MOTTLED DEVITRIFICATION TEXTURE DIES	OUT
(1985 M/FL) 198.5 M: 912-CAL-CHL-SER-FLUORITE V	iein
2004-11111111111111111111111111111111111	
PIP 37°	
675'-++++++++++++++++++++++++++++++++++++	
• XRD, 209.6M (%); D-46, R-2, KF-26, CN-3, Pt-	-2, 11-10, 41-5
210M-211.6-215.8 M : SERICITIZATION STRONG	HI
1 (169).2') - 212.4 M: 2.MM WIDE 977-AB-CHL- 778.	VEINLET
700- HI DISTINCTIVE FAX-LIKE SHEAVES	EP W/CHL
111 11 11 11 11 11 11 11 11 11 11 11 11	
ZIG 2- ZZF, BM : NON-WELDED TO POORLY W RHYOLITE KSH-FLOW TUFF, LT. GREENISH-GR	5.187%
2200 HILLE, LARSELY UNCOLLAPSEP. AB LOCAL	7, (?) Y REPL.
725- HICROVEINLEIS; FIAMME SERICITIZE	P= CHL.
11111111111111111111111111111111111111	
(740.9) (740.9) (740.9) (740.9)	RHN ASH-
PERMATEOL, FROM THE FOLLOWING PAGE A. NORT	
LOGGED BY	

N. MEXICO

A7-

LOCATION VALLES CALDERA,

CO.

J.B. HULEN AND J. N. GARDNER SEPT.- OCT. 1986 REVISED DEC. 1987

PAGE 9 OF 11

	GRAPHI	TC LOGS	7			
×	ALTERATION Y	YEINLET FILLING	\$ VUG- PHASES	-		DESCRIPTIONS
la la		BUILD BUILD	KHA KHA	ALOS LOS	NOTES, COMMENTS	
B		ARKIC ALL	ATLO ATLO	GEA		
						DENSELY WELDED, XL-RICH RHY. ASH-FLOW TUFF DONTINUES
ÌÌ					(1000) PIP 10 40?	STILL SHINY DARK GRAY
310M-	╏┼┼┼╏┼┼┨╏╕┼┫╎┼┼┫┼┼┼┫┼				(FIAMME) -309,IM (1014)	5091-97M: DENGELY WELDED, CRYSTA-RICH, PARTIALY STILL GLASSY, RHYOLITE ASH-FLOW TUFF; MED., SLIGHTLY RUPPLISH-
IME'						GRAN, WITH PARK GRAY-PLIRPLISH-GRAY FIAMME; 38-3 (76 HE- NOCRYSIS, ANG. 15-2 MM. DIA., 10-127 975, 20-28 78 MICROPER- THITE (K & AB REPLACEMENT & EXSOLUTION 3); 0.8-0.5% FOR-
1027 -						MER MAFICS, EQUANT TO STUBBY LATH-SHAPPED, MOSTLY SUB- HEDRAL, NOW ALT. TO CHL/PHILGHE/CALCITE/K OPACILE & LELK. AGGREGATES MANN OF THESE MAPICS RIMMED W/PK.
1	╏┼┼┼╏┼┼┼╋┼┼╋┼┼╋┼┼╋┼┼				1-3(7840)	OPAOLE & INTERGROWN WINICROULL RELICT ZIRCOU & APATITE NEO: PREES AREAS IN MATERIX REL. CRS-XLINE (ANG. SIGAN
-					1319.8M .	DIA, MANY FLAMME SIMILARLY COARSELY-XLN.
1050-	╏┼┼┼╏┼┼┼║┼┼╢╎┼┼║				FALLOUT*	DIC 217201: AD ADV. EXC. MUYE PLANATER ATTENDED. 319.8-221.9M: FALLAIT THEY, LT. S. GREENSH-GRAY DENSE, VERY F. GR. LAIT CONTAINING A FEW, 24THEREP HIMICE
1					-321.9M)	LAPILLI & LITHICS, BOTH SELECTIVELY CHLIZE, - THESE CONCENTRATED TOWARD TOP OF LINIT; AT LIPPER CONTACT, EDANCE ARE DECORDUT FUEL BUT CHANGE RAPIDLY UPHOLE
	╏┼┼┼╏┼┼┼╏┼┼┼╏╴┼┼╏╸┼┼					TO CONCORDANT
i., i	<u><u></u> <u></u> </u>					221.2 SERTM: DENSE WELPER, X-RICH, RHV ASH-FLOW THE ASH
1075 -						SOME FORMER PROXENE, NOW ALL TO GHE CAL-MENG LETCON.
330M-	<u>╏┤┤┤╏┤┤╏</u> ╎┤ ╝╎┤╝╎┤╝╎┤╝┤┤					NOTE: THROUGHOLT THIS LINIT ARE BEALTIFLILY DE- VELOPED SPHERULITIC, AXIOLITIC & SHELL
						WITHIN SHELL " PEVITRIFICATION TEXTURES. PTZ-CHL-CAL-PHENGITE - FLLIORITE VEINLETS.
1100-						FLUID INCLUSIONS (BOILING INDICATED)
1				=		
740M-	┇┥┽┽┇╎┽╡┇╎┽╡╋┿┽╡╋┿┽╏╋┿┽ ╏┥┽┽┥╏┽┽┥┫┼┽┥╋┿┽┥╋┿┽┨╋┿┽					742- 747.2 MI MOR. CAL-CHL VEINING; WHERE VALUE.
-					- 342M (122 FT)	CONESCE LOCALLY, FORM IRREG. MASSES UP 10 ZOM. IN PAMETER.
1125'-						DISS. DK OPAQUES, AS ABOVE, SOME RIMMED W/LEUC.
	╏┼┼┼╏┼┼┦╏┼┼╴┇╴┼┼┇╸┼┼				1347.3M	*** YAPH WT. " , "218.9 M)
-	╏┼┼┼╏┼┼┼╗┼┼┼╗┼┼╝╸┼				((1977))	NI 342 I M. GLASS PISAPPEARS, FLAMME BE COME
350M-2 1150-					~ 349,1M (1145.5)	LI. MIKILISH-GKAY IU H. GKAY
-						•XRP, 354.1 M: Φ-36, KF-15, PL-25, CA-3, PY-1, FL-3. (%)
1				THE ATT	765 71	ELANME EXTERIAL REPLACED WITH CHL-OTZI
					- (1167 FT)	558.7- 761.7M: EPICLASTIC SANDSTONE, V.V. LT. GREENISH- GRAY, MED-GRANED, MODERATELY SORTED V. IMMATURE; M 2017, MICROCRYSTALLINE, MATTRN, ORIGINALLY ASH?
1175'-						NOW QUARTZ, ILLITE CHL, AGG.; MINCR, SCATTERED, WG- NY PLNICE UP TO AT LEAST ZOMM. DIA. (AVS. Z MM)
760M-					-361.7M	THESE ALLERED & INFLLER WY VARIOUS COMBINATIONS OF CAL, SER, CHL, PLUOR, & CHARTZ, GRANS ARE OTZ, KT, MICROCERTHILE, MARIOUS LITHICS, POSS, LARGE,
-					(1186.7FT)	ALTEREN GLASS THAKARS. 761.7-371.5M: MODERATELY TO PENSELY WELDED, XL-RICH
1000						RHYOLITE ASH-FLOW TUEF, SINILAR TO 2219-3887 M. BLEACHED, PLING-APPEARING, V.T. GREENISH-GNAY, WITH MEC GREENISH-GRAY FIAMME.
-					- 747,EM -1	267.77; COMPLEX ØTZ-CHL-CALC-FLUOR VEINLET 269.8-270-13M: ATZ-SER-PY-VEINLET W/TR. ELH.
77011			3		(1206.3/	77141-EFTE CRITERA VENLET
2/0M-					1 7(1219 FT)	771, 9-972, 6 M. SER. OF V. DISTINCTLY DEPDED DENSELY WELDED TUFFS (WELDED ENRESS ?); BESS ANS 2 OM THICK 9726- 378, 6 M. DW. XL-RICH, RHY ASH-FLOW TUFF.
1225-				0000000000	= 373.5M	V. ORYSTN-RICH (UP TO 70 %) HORIZON (373.5-373.8M) MUST EF & SLIKGE DEPOSIT
1					-376M (1237.8')	76-76.8 MI MYSTERY TURF BRECCIA; 30% & TO SUBROLINDEP
]				75 010	-776.8M (1236.4) ● DIP 27°	270.8-377.4 M: DISTINCTLY DEPOED_ENDER OR THE
380M-					-360,2M,5FT)	21.6- 710.9M: 20ME AD 710.0-21.6M 778.3- 778.6M: V. WELL-BEDDED FILE-GR. TUFF 878.6-960.2M: XL-RICH, BEDDED TUFF
1250-				n with	1	* SKERCH OF CONTACT OF FALLOUT TUFF WOREDYING
]						THIS VENJET SHOWS EVIDENCE OF BOLING (STEXISTING, P. W.
						6 plbank (dolling) [6

DRILL HOLE, VC-2A LOCATION <u>VALLES CALDERA, N. MEXICO</u> –A9–

LOGGED BY J. B. HULEN AND J.N. GARDNER SEPT.-OCT. 1986 <u>REVISED DEC. 1987</u>

PAGE 10 OF 11

	GRAP	HIC	LOGS	* HOTE	CHAN	KGE		· · · · · · · · · · · · · · · · · · ·
X	ALTERATION	¥2	Y FELLE	ANDSE	Kin I	T12		DESCRIPTIONS
11d	N LA LIN HA. NH	יורופ		* H	LE LE	FLOO	NOTES,	
DE.	ALL CALL	HEIN	LION LINK	TID	J J	4EO AEO	COMMEN[S	
<u> </u>	WMS WMS WMS WMS	WMS W	MS ON C > L			2	· PERMANE)	ACH FLOW THE Y LI CRY TO LOCALLY CREENISH - GRY
							. ,	DISTINCTIVELY PITTED DUE TO ELCHING & CONTLETE DIS SOLUTION OF FOR PHENOCRYSTS; AVG. W. O.F. 7. DISS. PY D. 5-0.7% DISS. LELLOXENE; MINOR LITHICS.
-								
							1368.2M (1274 FT)	Y. SPONGY, PITTED ASPECT ETCHED FOR CANTRES
(275- 790M-						-		RARELY LINE WITHY LOUGH THE YES VIES.
-		++++					1772:6MET)	• XRD, 788.6M(%): 0-64, KE-1?, P1-1, IL-37
-							(1200. 9	394.8M; RUBBLE ZONE W/5 MM CALCITE XLS.
1and		Ť.					~ 394, BM (1295.4')	
-								
400M-							(1316')	• XRP, 402.9M (%): 9-53, PY-2, ANH-8, IL-35
-							+ ANHYDRITE ZONE?	(HIN- SEC) A PINKISH, ZONE PETWERY ACLIN AND
1325-							(1821.6FT)	in Etched FSP. Cavities
-							· PIP N 40° (FIANME)	402.8-427.6 M; MODERATELY WELDED, XL-RICH, RIM, ACH- FLOW TUFF, SAME AS 200.2-401.1 M, EVC, SLIGHTLY LESS
-								PLANNE HAVE BEEN ETCHED, THEN SPAKEDY LINE WITH MIGGORY STALLINE PRITE; A FEW LARGER, LIMICES SEEM
41014_							(1348')	404.2 M; 50° FRACTURE BEARING RESINCUS APPEARING,
1350-							LITHIC-RICH	<0,5 MM. DIA, 410,9-411.7M: LITHIC-RICH ZONE W/10-15% & TO ROLN-
-								ABO FM. REPOREDS, OW ASH-FLOW TURE INTERVAL.
-							-416,9M (1367,8'	416.9-417.4M: LITHIC-RICH ZONE, AS ABOVE, EXC.
1875-						304	(1375.B')	CLASTS ARE < 20 MM VIA. 19.3M: BEALTIFUL LINCOLLAPSED SHARDS; 5-7%
420M-				8 1			BREAK	420.5-427.6M: ROCK BECOMES MODERATELY TO
-								PRISELY WELDED W/RIMICE DISTINCTLY MED GRAV- GREEN WA WHITSH, PLNKY MATRIX: CONT. 5-7%
							PIP V. 30:	HALOS (COLOR SIMILAR TW FILMME) DISE PRITE CANTINUES ; LITHIC MOSTLY PORTY (RITIC ANDESTE)
1400́-					H		(FIAMME) - 427.6M	W/LESSER ASH-FLOW TUFF, KEY DILIDI, DS., KHY: 10 CM, PIA, & LITHIC (AND, PPC) AT 426, 5 M.
-		A				907	- 129.8M.5)	427.6-429.3M: MOP WELPEP, ASH-FLOW THE LAG BRE- CLA: D-GOO VARIABLE W/ DEPTH 7 TO SUBCOMPED LITHICS CLA: D-GOO VARIABLE AS NOVEL SEE ALO. AND: LICHING
430M-						1/0-	· P(FIAMME)	HRACULED INFILLED W/CALCITE ; GRAY-GREEN HENGITE RIMS
-						100	5 484M (1424 FT)	129.9-484.0.M; PW, LITHIC, PHED, FERSY-CREEN FLADINE
1425-						280		LITHICS INCREASE DOWNWARD: MARIX IS PREDOMINANTLY QUARTE (N. ALPITE (MICROCRY STALLINE)- KFELPSTAR CONCENTRATED IN LITHICS AND PHENOCRYSTE.), IREEG.
						R		REL. CRS. YLN ALBITE CLOTS OCCUR LOCALLY
41011						APL		TUFF LAG BRECCIA LT-MEP, GREENISH-GRAVI, PUNKY, FARTHY TEXTURE; 70-407, CLASTS TO 478.6M807+
14FO'C					Ш	44	r AAP (-1) .	CLASTS BELOW THAT PEPTH; CLASTS MOSTLY VARIOUS TEXTURAL VARIETIES OF PORTYRITIC ANDESTE, W/
Eur-							(14192.3)	BUILT SEEN, BHENGTE, PMS
合理-						1.4		RE-EREIXEN CHURCHINE CHARTS PHENOLOGIS
							LAAR ON	PERSIST BUT APPEAR SPAKSE DUE TO LOW BX-MATRIX PERCENTAGE.
1475				*			(14-6:4)	442.6-477M: MOP. TO PENSELY WELDED, FELSIC-INTRO- ART-FLOW DIFF. IS ORX-GREEN W/ DARKER SRY-GREEN ITHICS & DIFF. IS ORX-SIMILAR TO 429.484M.
450M								LITHIC-RICH (10-15%); ROCK HAS COMPACT PUT PUNKY
		TII						• XRP, 448,2M(%): 0-52, KF-17, CAL-3, M771 12-20
,								
1500-						1		AB SKETCH CF NUBITIZED AN KESE PALENO-
								KT BE CRIST AT

DRILL HOLE VC-2A LOCATION VALLES CALDERA, MEXIC N, C -A10-

LOGGED BY J. B. HULEN AND J.N. GARDNER SEPT.-OCT. 1986 <u>REVISED DEC. 1987</u>

PEL.

	GRAPHIC LOGS										55	5	5											
×	1	AL	17	Ęß	ZA	T	TO_	V		KING	the state	LING	FI	1		G	PH	AS		1	ন্ট			DESCRIPTIONS
10	臣				19	正名	ii.	.世	į		LINK	ーー	12	u u	3D.	RIFE	щ	110	1 H	GITE	FA		NOTES,	
05	ALIO	SER.	SILIC	CHIC	题题		PLA	r x x	I	A	VEN	VLI6	NUAR		101	5 LUO	IBIN	CIT	DR	HEN	SR SR	C	OMMEN 13	
	W I	MS	Ш	5 W	MS	WW 	S	VMS	Ĭ	MS	Ň	15								Ī				MOP. TO DENSELY WELPEP, FELSIC - INTM., AST-FLOW TUFF
460M-	I	П				H				Ц		-						Щ				1		COLOR DUE TO PHENGINE W/MINOR CHLORITE; AVG. 12-17.
-	₽		₩		H	+	+	\mathbb{H}		+	+	+						+				-		40 MM. IN DIAMETER, ETTICS AND THE MINOR AND THE MINOR AND THE SEE BY RIV AND THE MINOR AND THE SUITE SANDSTONE MANY CLASTS
-	Ħ	H			H	H	t				T		Î				Ĭ	Ш	Ш		THE STREET			HAVE BRIGHT GRAY-GREEN PHENGITE KIM2: FELSE VIEL- PEP LIFF LASTS ARE WHITISH IN CONTRAST TO MATRIX.
1727 -	I	П	Щ		H					4		+					Ĭ.		#			1	DIP 35-40°	FINE-VIN OTZ. MONZONITE (PRECAMBRIAN?)
-	╢	₩	₩		+	+	+			╫	+	+						₩				ł		
470M-	╢	Ħ			H					Ħ										I		1		
1550-	I	П	Щ							#	4	4						#				1		
-	╂	╫	$\left \right $		+				たい語	╂	+	+						H			THE AN	II-		476.4-177M:FANIT "DEPOINS" DEFINED BY LAYERS OF COMPACTED GREENISH-GRAY PUMICE.
_	Ħ	\ddagger									t								Ħ			1	1-47, THE = ')	177-477.8 M: AS ABOVE BUT WELL-DEFINED "BEDDING" POSS. A WELPED SURGE DEPOSIT WELPED SURGE DEPOSIT
LAOM-	Π	П				V	-	H				+							Щ		200	THA	- 480M	PLIMICE - RICH TUFF; RX. 16 BASICALLY A DENSE, V. IT GREE- NIGH-GRAY, MICROCRYSTALLINE DTZ-ALDITE-SER-CHL-PHENG.
1575	╢	₩			+		H			+	14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	+			OW.	\mathbb{H}	+	₩	H		0.0	ť	(1575 FT)	PIA. (AVG. 1.5 MM DIA) & SCATT, LOCAL, WELL FORMED, ROUND TO SUBROUND ASH BALLS O. 1-0.7 MM (AVG. 0.2 MM.) DIAMETERS-
-	Ħ	Ħ	H			ſ	1		P		1	T							Щ		33	I	MOSZ "PAINT" ON FRACS.?	SOME OF THESE HAVE VACUE "SHELLS" & MAY BE ACCRE- TIONARY LAPILLI ; N.SO ANG. 5-7% SUBRND-ANGULAR UTVICE UP TO AT LEAST 20 MM (ANG. 7 MM) PLAMETER
-	\prod	П								+		4							Щ		000		-486M =1)	THESE AND, PPY, PPITIC, DACITE, RAY, ASH-FLOW TUFF; THESE AND, PPY, PPITIC, DACITE, RAY, ASH-FLOW TUFF; ONLY ABOUT 0.5-17, 073, F3P, PHENOCET 35, ONLY ANG 0.3- ONLY ABOUT 0.5-17, 073, F3P, PHENOCET 35, ONLY ANG 0.3-
	╢	\mathbf{H}							1	H								H		ł	VAPAVAN		~FALILT ~486.7 M	NOTE: THIS COLLE BE IN PART PHREATOMAGMATIC, BUT WHATEVER, ITS ORIGIN, HAS BEEN
1600-	t	Ħ					1			Ħ		I	ļļ						Ĩ		TA L	1	DIP 40°	TEXTURE W PUMICE & LITHIC SALGEN
490M-	╢	1				Book and		#		╢		+									OL A		SHARDS	(PARTICULARLY 496.2-497.1M, 477, B-480M, 482.1M)
-	╢	╫						H	100	H	- ANA		H					T		t	13	1	INDEFORMED SHARDS	494.7 M. ABUNDANT COARSELY VESICULAR PLANCE & COMPLETE, DELICATE BUBBLE SHARDS (THIN-SEC)
1625-	Ħ	Ħ						Ш		Ì	-interest						I		Ш	I	000	F	1494.7M (162.3 FT)	
	H	\parallel							I	#		+							Ш		TATATAT		FALLIS	• XRP, 498.3M(%); Q-40, PL-15, KF-9, CAL-5, PY-1, IL-25, CH-4
-	╢	╫			H			\mathbb{H}	∦	Ħ		+								ł		ł	- 498.6M (1676FT.)-	498 3 M : AS ABOVE, EXC. SCATTERED. ASH BALLS, SAME AS IN MAIN RESCRIPTION (?)
500M-	Ħ	Ħ			Ţ	14				\prod		I							Щ		20	1	DIP v 40°	1498,6-527.6M: LITHIC-RICH, NON- TO WEAKLY WELDED (OVE-
1650-	₽	#			+		-		╟	₩		+							H	╢		4		RALL), MODERATELY ALTEREP, ASH-FLOW ULT, L. GRAN GREEN RUE TO PHENGITE & CHL. ALTERATION; FARTHY, PINKY TEXTURE, BUT VERY COHERENT; PUNKLES REL.
-	╫	╫			H	.,		H	ł	Ħ		H								t	200	1		PARKER GRAY-GREEN; MATRIX IS MICROXIN AGG. OF AB, OTZ, ILLITE, PHENGITE & MINOR CHL KPS STAIN SHOWS OTZ, ILLITE, PHENGITE & MINOR CHL KPS STAIN SHOWS
-	I	I			Ħ	N. H. L	I	П		\prod		T							Ц			E		NO KEST PREPONINALITY PORPHYRITIC, INTERMEPIATE - COMPO- SITION VOLCANIC ROCKS (MPRESITE - RHYOPKITE), W/SHOR-
FIOM-	$\ $	#			+		+	₩		++		+							$\ $			1		PINATE RHYCLTE REATTLOW INT COMMUNE WARDERHARD AND AND A CRAMER AND AN
1675-	H	╈			T					†										İ	SAL S	t		GREEN, PHELIGITE, RIME: MANY CLASTS SELECTIVELY PHEL TIZED (PISS); OVERALL OF 12 PHELICE - 20ME CLASTS
	I	I			I			Щ					Ц								336		-65.1M	2-3% WRITE : OR PRIMARY PARK ORDERS (PRINCIPAL- PARTIALLY REPLACING PRIMARY PARK ORDERS (PRINCIPAL- LY IN INTMCOMPOSITION VOLCANIC CLASTS)
-	$\ $	\parallel			+					\parallel		+							$\ $		201	K	(1690FT.) ZOINT COLINT	FALSO TR. <1MM. EUH. SP. XLS
	$\ $	++			H							H						Ш	H			T	-516.3M (1694FT)	516.3 M : FRACTURE SURFACE, SPARSELY COVERED W/ZIMM CALIFE & RUITLE CRUSING.
100-	I	I			П	1	П	Щ		\prod		T							Щ		- SA	1	RUTILE)	• XRP, 515.1 M (%): 9-73, PL-19, KE-17, CA-4, W-1, IL-18, CH-2 (THIN 25EC. 12, % LELICOXENE)
920W-		#		-	\parallel					\parallel											100L		(FR211M)	F221-522.4M; FALLT GOLGE & BRECALA W/ABLIND.
-		++					and the second		I	T		I									100	1	FALLT	·····
1725'-								Щ		Π		H	H							and the second s	No.		CF727.6N	• XRP, 527.6 N (%); Q-41, 9-22, KE-17, CH-4, PL-1, 1-10,
527.6M	H				#		#	₩		#		+									310	4	7 (1771 FT)	(THIN-SEC 276,LEUC) - GT 7
(1731') -	H	Ħ	H		Ħ				Ħ		t									Ħ		L		POINT COUNT, SIG. 1 N: * LITHIC-PREE BASIS: * • 0712. PHENOCRISTS- 7.2 • 0712. PHENOCRISTS - 4.8 • CEED DEPAR #116
_	П		Π		1							H					Щ					-		MICROPERTURE PHENOCRYSTS 5.3 PHENOCRYSTS 7.9
-	╟		╟╟		++	H			$\ $	H	+	H	$\parallel \parallel$				₩	₩		₩		+		PLENCERYSTS O.7 PLANCE 18.4 PLENCERYSTS O.7 PLANCE 18.4 PLINCE 12.9 GROUNPMASS 67.9
	t				tt					Ħ												Contraction of		• LITHIC FRAGMENTS 41.3 • GROLINDMASS 77.2
					11																			

DRILL HOLE VC-2A LOCATION VALLES CALDERA, N. MEXICO

-A11-

LOGGED BY J.B. HULEN AND J.N. GARDNER

SEPT-OCT. 1986 REVISED DEC. 1987

NI HOUSE IEASE IE LASSAULT 人时间则 ALTN. (B-3) 0420 AP (B-3) 8-1 for SILICIFIED B-3 GALATE TEMPERATURE N DEGREES CENTIGRADE comparison LITHOLOGY CLAY 100 200 150 50 0 NS NS FRIABLE .100 ,F00 ż 200 民民 JULYA 1264 ALTERATION Ш Х 日田日 300 1000 Z Z 世上史 NS PEPTH 4 See. 400 2 NS SAMP SIL 1500 SANP, SILT 500 N5 TABLE ESTIMATED DEP OF WATER Ħ 00 00. 0 000 0 00. 00 2000. 00 O 000 00 00... 0000 0. 00 0 6 00 0 000 5.5 D 1 0 00 6 ωć • 0 0 D Ø ×ċ 0 00 2000 4 7 .6705 2200 TEMPERATURE LOG FROM PONDANVILLE, 1971 - EXPLANATION-SAND AND SANDTONE, LOCALLY TUFFACEOUS (sandstone shown distinctly bedded) NS N SANDY TUFF" (AIR FALL?) 2=000 25/00 CLAYEY SANDSTONE NO SAMPLE NS NOTE : LOGGING SAND & SILT BY ROBERT SMITH, SANDY GRAVEL & GRAVELLY SAND 4.5.6.5. GRAVEL TUFF, PROBABLY ASH-FLOW Lithologic, "alteration" and temperature log for well Baca 3, Sulphur Springs area, Valles caldera, New Mexico. (ABSTRACTED FROM LOG BY BACA LAND & CATTLE CO.) LOGGED BY BOB SMITH, U.S.G.S. JBH 07/12/86

FROM DONDANNILLE, 1971 for the temperature surveys show that some of the test fluid was coming from below 2900 feet, but pressures appear too high and temperatures too low to allow a vaporphase separation.

It is concluded that the rocks penetrated by the Bond #1 well contain liquid water at elevated temperature, and significantly less than hydrostatic pressure.

Baca #1, T.D. 2560 feet 2. Baca #3, T.D. 2200(?) feet

> The Baca #1 well is the first well in Valles Caldera drilled to establish geothermal steam production. With 13-3/8 inch casing emplaced to 461 feet, the well encountered steam zones at 1441 - 1500 feet. As measured by Rogers Engineering Company, the zones flowed 85,000 pounds of steam per hour with less than 5% liquid water content. Their estimate of reservoir conditions was 310° - 320°F. and 65 psig reservoir pressure, a saturated steam zone. Rogers' estimate of the formation temperature is in good agreement with the temperature calculated from the sodiumpotassium content of the effluent water: 338°F. The well was deepened to 2560 feet and the hole was lost while attempting to run casing.

> The Baca #3 well, a twin to the Baca #1, was drilled to re-establish production from the steam zones discovered in the Baca #1 well. At a total depth of 1983 feet, with 1179 feet of 9-5/8 inch casing, the well had a flow of 11% steam and 89% water, chiefly from zones below 1900 feet. The water zone apparently was depleted rapidly, for one day later the well was flowing 50% steam. After tests, 7 inch casing was hung from 1000 feet to 1983 feet and the well was drilled to total depth, about 2200 feet. A downhole temperature survey recorded a maximum temperature of 390°F. at 1800 feet and a water level between 800 feet and 900 feet.

> The Baca #1 and #3 wells establish that low pressure-high temperature conditions are available in the Valles Caldera suitable for formation of saturated steam reservoirs. Although the wells, as drilled, did not discover commercial production, data from the Baca #4 well indicates the Baca #1 - #3 location is probably on the fringe of a saturated steam reservoir and may be prospective for dry steam production from greater depths.

3. Baca #2, T.D. 5658 feet

The Baca #2 well is the deepest geothermal test in the Valles Caldera, and is the only well to penetrate Paleozoic sediments and Pre-Cambrian granite. The well was drilled with mud to a depth of 3445 feet with lost circulation

30.

.

.

Hulen and l Nielson, 1986

R S

,

A A STANGER MARKEN

Casing Data:

1. Bottom of 9-5/8" casing: 2908 ft

2. 7" liner from 2697 to 5515 ft; liner slotted from 3202 to 5512 ft

Formation Encountered During Drilling:

- 1. Valles Rhyolite: 0 1400 ft
- 2. Caldera Fill: 1400 2300 ft
- 3. Bandelier Tuff: 2300 3300 ft

4. Tertiary Sediments: 3300 - 3960 ft

- 5. Permian Redbeds: 3960 4840 ft
- 6. Pennsylvanian Limestones: 4840 5460 ft
- 7. Granite: below 5460 ft

Only one pressure/temperature survey is available for this well (see Figure 3.7). Baca reservoir pressure, as deduced from Redondo Creek Wells, is also shown in Figure 3.7. Both the downhole pressure and temperature surveys show a change in gradient at approximately 4500 ft; since the fluid in the well is liquid, this change in pressure gradient is most easily explained by a measurement error. Above 4000 ft, the measured pressure in B-7 is similar to the Baca reservoir pressure.

3.12 Well Baca No. 8 (Sulphur Creek Area)

Ground Surface Elevation: 8631 ASL Zero Point for Downhole Surveys: 8637+1 ASL Date Completed: 9/13/72 Total Depth of Well: 4384 ft Deviation Data: Unavailable Casing Data: 1. Bottom of 9-5/8" casing: 2281 ft 2. 2-3/8" tubing: 0 - 4225 ft

Formations Encountered During Drilling:

- 1. Caldera Fill: 0 580 ft
- 2. Bandelier Tuff: 580 3100 ft
- 3. Tertiary Sediments: 3100 4000 ft
- 4. Permian Redbeds: 4000 4384 ft

The available pressure/temperature surveys for B-8 are shown in Figure 3.8. Temperature survey S3-T in B-8 is a nice boiling-point profile, indicating that boiling water is entering and flowing up the well. It, therefore, appears that B-8 penetrates two-phase conditions toward bottomhole, with no information available about conditions elsewhere.

(Looking North)

West-east conceptual geologic cross-section through the Sulphur Springs area and the west-central Valles caldera complex (see Fig. 7 for location). Control provided by geothermal wells along and north of the section, by CSDP corehole VC-2A, and by the geologic mapping of Goff and Gardner (1980). Section shows position of hypothetical Urad- and Climax-type stockwork molybdenum mineralization relative to the lowtemperature, high-level molybdenite occurrence of VC-2A. Also shown is a hypothetical composite stock of high-silica rhyolite and granite genetically related to the molybdenum mineralization. From Hulen et al., 1987.

Southwest-northeast cross-section showing stratigraphy, structure, isotherms, and conceptual fluid pathline in the Valles hydrothermal system.

Aspects of tectonic, volcanic and magmatic evolution of the Valles caldera complex addressed by collaborating investigators.

TOPIC OF INVESTIGATION	INVESTIGATOR(S)	METHOD OF INVESTIGATION
Facies within caldera-fill units and their relation- ship to hydrothermal sys- tems	Heiken, Broxton, Krier, Wohletz (LANL)	Geologic mapping, core logging, stra- tigraphic correlation, various petro- graphic techniques
Vertical variation in rock composition, VC-2B (as a guide to magmatic evolution	Goff (LANL)	Major/minor/trace element geochemis- try and isotopic analysis of whole- core samples
	Wolff (UTA), Gardner, (LANL), Sykes (UTA), Self (UTA)	(Bandelier Tuff) petrographic study; geochemical analysis of whole-pumice and matrix in rhyolitic ignimbrite cores; correlation with outflow-sheet characteristics; integration of these data to model magmatic evolution
Pre- and post-eruptive volatile distributions in intracaldera rhyolites (as a guide to magmatic evo- lution)	Stix (UT), Gorton (UT), Williams (LSU)	Analysis of H ₂ O, CO ₂ , F, S, and Cl in melt inclusions in phenocrysts and in coexisting matrix glass
Paleomagnetic stratigraphy	Geissman (UNM)	Measurement of intensity, orientation, and polarity of paleomagnetism in core samples
Comparison of intracaldera ignimbrites with correspon- ding outflow sheets	Wolff (UTA), Gardner (LANL), Sykes (UTA), Self (UTA)	(Bandelier Tuff) integration of results of past field studies with petrographic, geochemical, and isotopic characteriza- tion of the Bandelier Tuff in cores from VC-2A and VC-2B
Geometry, caldera-fill , characteristics, and evo- lution of the pre-Bande lier-age Lower Tuffs cal- dera	Hulen and Nielson (UURI)	(Lower Tuffs) detailed logging, petro- graphic examination, geochemical and isotopic analysis of cuttings from UOC geothermal wells and core from VC-2A and 2B; 3-D reconstruction of caldera
Petrography and composition	Musgrave (NMIMT)	Petrography, XRD
of a hypothetical, subvol- canic, rhyolitic pluton be- neath the VC-2B site	Goff (LANL)	Major/minor/trace element geochemical and isotopic analysis of core

*numbers refer to research objectives listed on pages

Aspects of evolution of the Sulphur Springs hydrothermal system addressed by collaborating investigators.

TOPIC OF INVESTIGATION	INVESTIGATOR (S)	METHOD OF INVESTIGATION
Variation in fluid composi- tion with depth and time	Musgrave (NMIMT)	Geochemical and light stable isotopic analysis of secondary phases and inclu- sion fluids; fluid-inclusion microther- mometry; gas analysis of fluid inclusions.
	Bohlke (ANL)	Halogens and noble gas isotopes in fluid inclusions
	W-Gabriel (LANL)	Oxygen isotopes in sericite
	McKibben and Williams (UCR)	Gas analysıs of fluid inclusions
	Sasada (GSJ)	Fluid inclusion microthermometry
Variation in temperature/	Sasada (GSJ)	Fluid-inclusion microthermometry
TOPIC OF INVESTIGATION Variation in fluid composition with depth and time Variation in temperature/ pressure with depth and time Sources of fluids at different stages of the system's evolution Relative ages of alteration/ mineralization events; dis- tinguishing present (active) from past alteration and mineralization Absolute ages of alteration/ mineralization Absolute ages of alteration/ mineralization events; dis- tinguishing present (active) from past alteration and mineralization Absolute ages of alteration/ mineralization Absolute ages of alteration/ mineralization	Musgrave (NMIMT)	Fluid-inclusion microthermometry
	Geissman (UNM) ·	Determination of past maximum tempe- ratures by progressive demagnetiza- tion of rock
Sources of fluids at dif- ferent stages of the sys-	Bohlke (ANL) and Irwin (UCB)	Halogens and noble gas isotopes in fluid inclusions
	Musgrave (NMIMT)	Light stable isotopic, helium iso- topic, and Pb/Sr isotopic analysis of inclusion fluids
Relative ages of alteration/ mineralization events	Musgrave (NMIMT)	Surface geologic and alteration map- ping, core logging, petrography
	Geissmann (UNM)	Measurement of intensity and polarity of secondary magnetism acquired during hydrothermal events
Absolute ages of alteration/	W-Gabriel (LANL)	K-Ar dating of hydrothermal sericites
mineralization events; dis- tinguishing present (active) from past alteration and mineralization	Sturchio and Bohlke (ANL)	U-series isotopic geochronology .
Metamorphic and contact-meta- somatic mineralogy, zoning, paragenesis; active metamor- phic and metasomatic reac- tions (conductive/convective heat transfer zone)	Elston and Grambling (UNM)	Geochemical and light stable isotopic analysis of secondary phases and inclu- sion fluids; petrography, XRD

*numbers refer to research objectives listed on pages

continued. Aspects of evolution of the Sulphur Springs hydrothermal system addressed by collaborating investigators.

	TOPIC OF INVESTIGATION	INVESTIGATOR(S)	METHOD OF INVESTIGATION
	Sources and migration of sulphur in the Sulphur Springs hydrothermal system	McKibben (UCR) and Eldridge (ANU)	Sulphur isotopic analysis of sul- fides, sulfates, and fluids
	Sources of metals in the Sulphur Springs hydro- thermal system	Musgrave (UNM)	Pb and Sr isotopic analysis of in- clusion fluids and metallic mine rals of hydrothermal origin
	Mechanisms of alteration and metallic mineraliza- tion	Bohlke (ANL) and Irwin (UCB) Sasada (GSJ) Musgrave (NMIMT)	Halogens and noble gas isotopes in fluid inclusions Phase relations in fluid inclusions
()	Clay mineral geothermometry	Ballantyne and Moore (UURI)	Sericite geochemistry and expanda- bility as correlated with past and present temperatures
	Compositions of unaltered lithologies (protoliths) as references for studies of alteration and fluid- rock interaction	Wolff (UTA), Gardner (LANL), Sykes (UTA), Self (UTA) Elston and Grambling (UNM)	Major/minor/trace element and iso- topic analysis of unaltered calde- ra-fill lithologies or their proxi- mal-facies, outflow-sheet equivalents Major/minor/trace element and isoto- pic analysis of unaltered, pre-caldera lithologies.

*numbers refer to research objectives listed on pages

,

continued. Aspects of the active Sulphur Springs hydrothermal system addressed by collaborating investigators.

TOPIC OF INVESTIGATION	INVESTIGATOR (S)	METHOD OF INVESTIGATION
Subsurface configuration of fluid regimes	Wannamaker (UURI)	Controlled-source audiomagneto- telluric survey
Physical/chemical controls on contemporary hydrother- mal alteration and metallic mineralization	Musgrave (NMIMT)	Combining geochemical and iso- topic analyses of fluids and secondary phases with which they are in contact; computer modeling
	Sturchio and Bohlke (ANL)	U-series disequilibrium studies
	Laul and Gosselin (BPNWL)	Measurement of radionuclide abun- dance patterns, correlations, and activity ratios; REE geochemistry, relative abundances
Rates of mass transport	Laul and Gosselin (BPNWL)	U-series disequilibrium studies
	Sturchio and Bohlke (ANL)	U-series disequilibrium studies
Contemporary fluid sources	Kennedy (UCB)	Measurement of elemental and iso- topic compositions of noble gases in fluids
	McKibben (UCR) and Eldridge (ANU)	Sulphur isotopic analysis of reser- voir fluid
	Goff (LANL)	Geochemical and isotopic analysis of reservoir fluids
、	Laul and Gosselin (BPNWL)	REE geochemistry of reservoir fluids
Physical/chemical controls on contem- porary isochemical thermal metamorphism and contact metasoma- tism	Elston and Grambling	Geochemical and isotopic analysis of fluids, solutes, and the secondary minerals with which they are in con- tact

*numbers refer to research objectives listed on pages

TableAspects of the active Sulphur Springs hydrothermal systemaddressed by collaborating investigators.

TOPIC OF INVESTIGATION	INVESTIGATOR (S)	METHOD OF INVESTIGATION
Thermal conductivity of reservoir rocks; heat flux at Sulphur Springs and throughout the Valles cal- dera complex	Sass (USGS), Morgan (NAU), Lachenbruch (USGS), Christensen (PU)	Thermal conductivity measurements of water-saturated VC-2B core at simula- ted reservoir pressures and tempera- tures; computer modeling
Variation in fluid compo- sition with depth	Goff (LANL)	Geochemical and isotopic analysis of fluids collected both at the wellhead and at specific sites down the borehole
Current state-of-stress	Sattler (SNL)	Differential strain-curve analysis and/ or waveform analysis; petrographic characterization of microcracking in oriented core; sonic wave amplitude and relative to core diameter and orienta- tion
Nature of permeability and porosity	Owen and Little (TTR)	Measurement of permeability at simulated overburden pressure; 3-D reconstruction of porosity network from computerized X- ray tomography (CT) scans; measurement of visible fracture orientation using compu- terized goniometer
、	Heiken, Broxton, Krier, Wohletz (LANL)	Characterization of primary permeability (nature and distribution) intracaldera volcanic and volcaniclastic units)
Electrical properties of reservoir rocks	Owen (TTR)	Measurement of dielectric permittivity and electrical resistivity of core at various simulated reservoir pressures and tempera- tures
Thermal conductivity of reservoir rock during drilling	Lee (NMIMT)	Mathematical modeling of effective thermal conductivity, theoretically removing ef- fects of drilling fluid and its circulation

*numbers refer to research objectives listed on pages

J. K. Bohlke Chem. Technology Division CMT-205 9700 S. Cass Ave. Argonne, Illinois 60439 (312)-972-4261

√Dr. Phil Bethke U. S. Geological Survey 12201 Sunrise Valley Drive National Center, MS 959 Reston VA 22092

Dr. Gudmundur S. Bodvarsson Earth Sciences Div Lawrence Berkeley Laboratory 1 Cyclotron Berkeley, CA 94720

(415) (FT5) 451-4789 Dr. J. P. Bradbury U.S. Geological Survey 12201 Sunrise Valley Dr. National Center, MS 959 Reston VA 22092

Dr. Robert Charles INC-7, MS J514 Los Alamos Nat'l Lab Los Alamos NM 87545

VProf. Cliff Dahm Dept of Biology Castetter Hall 173 Univ. of New Mexico Albuquerque NM 87131

✓ Prof. Wilfred Elders Dept of Earth Sciences, IGPP Univ. of California Riverside CA 92521

/Prof. Wolfgang Elston Dept of Geol. Sciences Univ. of New Mexico Albuquerque NM 867131

Dr. Christian Fouillac
 BRGM - SGN/IRG
 BP 6009
 45060 Orleans
 FRANCE

Dr. Jamie N. Gardner ESS-1, MS D462 Los Alamos Nat'l Lab Los Alamos, NM 87545

Prof. John Geissman Geology Dept Univ. of New Mexico Albuquerque, NM 87131 (505)-277-4204

Dr. W-Gabriel Giday ESS-1, MS D462 Los Alamos Nat'l Lab Los Alamos, NM 87545

Dr. Fraser Goff ESS-1, MS D462 Los Alamos Nat'l Lab Los Alamos, NM 87545 (505)-667-1799

VProf. Mike Gorton Dept of Geology University of Toronto 170 College St. Toronto M5S 1A1 - CANADA

✓ Dr. David Gosselin P8-08 Analytical Chem Sect. Battelle, Pacific NW Lab PO Box 999 Richland WA 99352

Prof. Jeff Grambling Dept of Geology Univ. of New Mexico Albuquerque NM 87131 Mr. C. O. Grigsby MIT Dept of Chem Engineering Building 66, Room 305 Cambridge MA 02139

- √gProf. T. Mark Harrison Dept of Geological Sciences SUNY-Albany Albany, NY 12222
- Prof. David Norman Dept of Geology New Mexico Inst. of Mining & Tech Socorro NM 87801
 Dr. Dennis Nielson UURI ESL 391 Chipeta Way, Suite C Salt Lake City, UT 84108
 - /Dr. Kenneth H. Olsen ESS-3, MS C355 Los Alamos Nat'l Lab Los Alamos, NM 87545
 - √Prof. Fred Phillips Dept of Geosciences New Mexico Inst. of Mining & Tech Socorro NM 89801
- ✓ Dr. Masakatsu Sasada Geol Survey of Japan 1-1-3 Higashi, Tsukuba Ibaraki 305 JAPAN
- ✓ Dr. John H. Sass U. S. Geological Survey 2255 N. Gemini Dr. Flagstaff AZ 86001

Prof. Steve Self Dept of Geol. Univ. of Texas, Arlington Box 19049 Arlington TX 76019 Ms. Lisa Shevenell
Water Resources Center
Desert Res. Institute
P. O. Box 60220
Reno NV 89506-0220

VDr. Cole Smith U. S. Geol. Survey Denver Federal Center Box 25046 Denver CO 80225

Mr. Terry Spell Dept of Geol. Sciences SUNY, Albany Albany NY 12222

Mr. John Stix Dept of Geology University of Toronto 170 College St. Toronto M5S 1A1 - CANADA (416)-978-3022

- Dept of Geology University of Texas Arlington TX 76019
- Dr. Neil Sturchio Bldg 205 - Argonne Nat'l Lab Chemical Tech Div. 9700 S. Cass Ave (32)-972-3986 Argonne IL 60439
- Dr. Chandler Swanberg GEO Operator Corp 545 Middlefield Rd., Suite 200 Menlo Park, CA 94025

Mr. Kazuhiro Tanaka Civil Engineering Lab Central Res. Inst. of the Elec. Pwr. Ind. 1646 Abiko Abiko City, Chiba 270-11 JAPAN Dr. Lawrence Teufel Org. 6232 Sandia Nat'l Lab Los Alamos NM 87185

Dr. James Vernon IGPP/ESS-1, MS D462 Los Alamos Nat'l Lab Los Alamos, NM 87545

Dr. Rosemary Vidale-Buden Montebello, Unit 1614 5901 Mt. Eagle Dr. Alexandria VA 22303

Dr. Grant Heiken ESS-1, MS D462 Los Alamos Nat'l Lab Los Alamos, NM 87545

Ms. Cathy Janik U.S. Geological Survey MS 910 345 Middlefield Rd Menlo Park CA 94025

/Prof. David Johnson
Dept of Geosceinces
New Mexico Inst. of Mining &
Tech
Socorro NM 87801

Prof. B. M. Kennedy Dept of Physics Univ. of California at Berkeley Berkeley CA 94720 Prof. Philip Kyle Dept of Geosceinces New Mexico Inst. of Mining & Tech Socorro NM 87801 Dr. A. W. Laughlin ESS-1, MS D462 Los Alamos Nat'l Lab Los Alamos NM 87545

Dr. J. C. Laul Chem. Sci. Dept. Battelle, Pacific NW Lab PO Box 999 Richland WA 99352 (509)-376-35799 Prof. Robert L. Lee Dept of Pet. Eng. New Mexico Inst. of Mining &

Mr. Thomas Little Terra Tek Research Research Park 420 Wakara Way Salt Lake City, UT 84108

Socorro NM 87801

Tech

/ Dr. Graeme Lyon Dept of Sci. & Ind. Res. Inst. of Nuclear Science Private Bag, Lower Hutt New Zealand

Dr. Peter Lysne Geosci. Res. Drilling Office Org. 6252 Sandia Nat'l Lab Abuquerque NM 87185

Prof. Michael McKibben Dept of Earth Sciences, Univ. of California Riverside CA 92521

VProf. Toshikatsu Miki Technical College Yamaguchi University Tokiwadai Ube 755 JAPAN

Prof. Paul Morgan Dept of Geology Box 6030 Northern Arizona University Flagstaff, AZ 86011

Dr. Robert J. Munroe U.S. Geological Survey MS 923 345 Middlefield Rd Menlo Park CA 94025

Mr. John Musgrave Dept of Geology New Mexico Inst. of Mining & Tech Socorro NM 87801

Dr. Francois Vuataz BRGM - SGN/IRG BP 6009 45060 Orleans FRANCE

Dr. P. E. Wannamaker UURI ESL 391 Chipeta Way, Suite C Salt Lake City, UT 84108

Dr. Art White U.S. Geological Survey MS 910 345 Middlefield Rd Menlo Park CA 94025

Mr. Jack Whittier New Mexico Solar Energy Inst. Box 350 L Las Cruces NM 88003 /Prof. John A. Wolff Dept of Geol. Univ. of Texas, Arlington Box 19049 Arlington TX 76019 Dr. Harold Wollenberg Earth Sciences Div. Larence Berkeley Lab Berkeley CA 94720

Dr. J. V. Wright Oakdene The Square Eyan Derbyshire UNITED KINGDOM

Dr. P. M. Wright UURI ESL 391 Chipeta Way, Suite C Salt Lake City, UT 84108

JIM VERNON LANL MS-D446 LOS Alamos 87545 (505)-665-1419

JOHN WOLFF PEPT. OF GEOLOGY U. Text, ARLINGTON ARLINGTON, TEXAS 76019 (* 273-2987)

PR. L.B. OWEN TERRA TEK RESEARCH 420 WAKARA WAY S.L.C., UTAH 84108 DAILY DRILLING SUMMARY, COREHOLE X

						N					
$\langle \cdot \rangle$				$\left(\right)$							
DATE 09/21	NTER- VA- 314-319'	WEIGHT	RPM	CAKE	WT.	VIS	W/L	pH	COMPONENTS 2 GEL / LIGNITE 1 GODA AGH	FLOWLINE TEMP.	COMMENTS ROTHRY TO 314'
05/22	319-475'	-	-	1/32"	8,4	70	1500	11	POLYCORE CMC	\$.9°C@ 985'	
05/23	475-794'	-	-		-		1		3 GEL † 507A ASH	43 AC @ 592,	100% RECOVERY
05/24	5994-696'	-			8.5	78	—		F GEL F GAL POLYCORE L	43.4°C@	BIT # 2 @ 690' (LY HOWL) - CONDITION HOLE - WORK THRU BRIDES (2580'
05/25	696-792'	3000	600- 800	_	BA	40	-		3.5 GEL	48.9°C.@730'	WORKING THROUGH BRIDGES AT 570'
05/26	732-908'	3500	11		8.5	40	-	_	3 GEL 1 CM (C?) 5 GAL. POLYCORE L	B1.7°C @ 50' -	BIT \$ 3 @ 859 (LY HOML) 1007 RECOVER!
05/27	908-1079	5000	//	_		36		_	7 GEL, CMC 5 GAL POLYCORE L 1 SODA ASH	48.9°C@977', 56.7°C@ 1030 -	- 100% RECOVERY
05/28	1079-1216	"	11	-		76	-	-	4 GEL 1 SOPA ASH 1 CALISTIC	51.7°CC 1100' 53.9°CC 1215'	17
05/29	1216-1367	11	,	-	9.4	50		12	5 GEL, 1? MON-PACK*50 5 GAL PRILLING PRILLING	64.4°C@ 1280', 37.8°C@ 1360	
									1 CALISTIC 5 GRL VAN-FLAK		
									1 512-710*90		
05/90	1367-1448'	"	<i>tt</i>		-	1		-	5 GEL 5 GAL, STA-FLO 1 SACK LIGNITE	73.3°C@ 1405' 76.7°C@ 1458'	PIT # 4 @ 1985' ? 14 HPWL
									? SACKS CALISTIC		N.
07/31	1448-15999'	F000		2/32	9.3	37	8.8	-	4 GEL STA-FLO 1 VAN-FLOCK	73.9°C @ 1599'	MLID THICK W/SOLIDS; DLIMPED, MIXED NEW BATCH
06/01	1599-1619	"	-	Yan	8.4	40	6.4	-	1 LIGNITE		
								A	25 SACKS GEL 2 STA-FLO 90% 2 CALISTIC 90% 5 GAL VON FLOOK 1 SACK LIGNITE	68.9°C, then 40.6°C @ 1610	HOLE CAME IN WHILE MUD WAS BEING CHANGED; SPENT 21 of 24 HRS. CONDITIONING HOLE.
06/03	1619-1695'		_		8.4	わか	8.0	10	1 GEL, 1 CALISTIC		NO MENTION OF
06/04	1695-1878	2000	30200	1/92	8.4	33	BD	p	11 6EZ, 59. 5TAFLO		BIT * 8 @ 1714 100% RECOVER
06/05	1838-1996'	2000	300-	Y32.	8.4	33	8.0	10	10 GEL, 5 (9?) STA: 1 CALISTIC	-FLO 44.4°CE 1961 48.9°CE 1981	5'
06/06	1996- 2090	2000	. 11	Yoz	B.J	刭	11,2	11	10 GEL ("W/FOLYME	R5) 49.4°CC 204 51.1°CC 209	6 100% RECOVERY
06/07	2090- 2246	11	"		8.5	4 <u>1</u> 2			10 GEL 5 GAL POLYCORE	»_"	- RUN TUBING; RE- MORE BOP & CUT H ROD CASING @ 600'; RUN 66 JTS. 1%" TUBING TO 2146', WELD TUBINS TO 4%" CASINS HEAD W/ TONLIT; WELP 2" COLLAR BE- LOW HEAP TO 4%" CASING ; CIRCULATE MUD FROM HOLE W/ CLEAR WATER FOR 4 HRS.

รรมวงสะบาก มีวัติสู่ในสีเป็นการเ

			c h									
COREHOLE X - ADDITIONAL NOTES												
FLUIP ENTRIES												
FLUID ENTRY	u 1590-1552	BR CA	ECCIA ZO	NE W/FS	P. CLAST	5 IN						
	107-1.	(12/01)	N HOTZ	VENE WIL	10 -17 01	NELL SDA	CE "					
11	и 18/5:	(1880)-	DOGTOOT	H CALCIT	E, CHILOR	ITE, EPIDO	TE					
*		(100)		VEINLET	511							
		,	0		1							
1/	n 2090:	(2082-	-2004'/+	- "BROKEN CALCITE	WENTEN-	SPACE 5, SOME						
				postoo	ALCI-	TE!						
	N/I	ID OULD	ATERISTI	16								
	IVIL		ACIEN SI									
	1996	2110	1848	1704'	1599'	1448						
WT.	8.5	8.5	8.6	8.3	9.3	88						
FUNNEL	284 2	31	46	30(6:)	37	A						
APP. 1/15	5	5	18	5	5	10						
PLAST VIS	3	4	12	4	10	2.						
YIELD PT.	5	2	3	2	10	10						
GEL	3/1	31	4/_	34	6/1	5/8						
STRENGTH	74 10	75 10	15	10?	8	8						
PH	P	106	RO	16A	8.8	8.8						
API FLUIP LOSS, CC/30M	11.2	12,0				01						
FILTER CAKE	Yon.	1/32	Yz	2/32	120	132						
THICKNESS	2	-	1/3	.1/22	.1/2?	2						
AKING	11.2	2.	1.2.	1.6 .	712							
	1400	1500	1600	1800	1700	1500						
CI, PPM	1700	1/			100	75						
Ca, PPM	87	100	85	100	100	12						
	TP	To	0.5%	TR	2%	2.5%						
5AND, %	In	IT.	267	P S	-107	69						
50LID5, %			910		110	010						

Third Hole Planned at Valles Caldera

Valles caldera, N. Mex., is the culmination of more than 13 million years of volcanism in the Jemez volcanic field and is an excellent model for resurgent calderas and for the high-temperature geothermal systems found with them. This month one of the biggest diamond drills in the world will start the third research core hole in the caldera. Valles Caldera 2B will be the tenth core hole in the Department of Energy's Continental Scientific Drilling Program.

CSDP drilling in the 1.1-million-year-old caldera began in 1984 in the southwest moat zone when the research hole Valles Caldera 1 was continuously cored to 856 m. VC-1 intersected a hydrothermal outflow plume from the deep geothermal system. Data indicate multiple episodes of hydrothermal activity in the volcanic field's history, as well as multiple episodes of rhyolite magma generation during evolution of the caldera. The June 10, 1988 (vol. 63), issue of Journal of Geophysical Research—Solid Earth and Planets carried a special section on results from VC-1.

Core hole Valles Caldera 2A was drilled in 1986 to a depth of 528 m, into the shallow vapor cap of the Sulphur Springs hydrothermal system on the west flank of the resurgent dome. Research is still underway on VA-2A; preliminary results include production of superheated fluids from the top of the neutral chloride liquid-dominated zone of the hydrothermal system and identification of suboregrade molybdenite deposition at shallow depths from an earlier configuration of the evolving hydrothermal system (see *Eos*, July 28, 1987, cover and p. 649).

VC-2B will penetrate vapor and liquid zones of the active Sulphur Springs system and will bottom at about 1.75 km and 300°C in Precambrian granitic rocks. The core hole will be sited near the junction of the caldera's resurgent dome with the main ring fracture and will continuously sample Quaternary caldera-fill tuffs and sedimentary rocks, Miocene-Pliocene arkosic sandstones, Permian red beds, Pennsylvanian limestone, and Precambrian rocks. All will exhibit effects of young caldera-related hydrothermal activity and thermal metamorphism. The hole will be kept open for 4 years following drilling so researchers can do experiments and log or sample fluids

Prime scientific objectives for VC-2B are to study

 structural and geochemical evolution of hydrothermal systems active ore deposition in geothermal systems
development of vapor-dominated geother-

EOS, V. 69, p. 697 (198

- mal systems • structural and magmatic development of large calderas
- physical chemistry of fluids and mineralization
- nature of boiling transition between vapor ' and liquid zones of the hydrothermal system
- structural settings and facies models for caldera-hosted natural resources
- heat transfer and active metamorphism in a conductive-convective thermal regime transition zone

Scientists interested in participating in the project, obtaining core or fluid samples, or conducting downhole experiments should contact Jamie Gardner or Fraser Goff (Los Alamos National Laboratory, MS D462, Los Alamos, NM 87545; tel. 505-667-1799) and Jeff Hulen (Earth Science Laboratory, University of Utah Research Institute, 391-C Chipeta Way, Salt Lake City, UT 84108; tel. 801-524-3446). Following completion of drilling and digestion of preliminary results, there will be an open workshop in spring 1989 to coordinate research activities and to evaluate and revise the long-range plan for continental scientific drilling at Valles caldera.

The VC-2B coring, logging, and associated logistics operations will be paid for by DOE's Office of Basic Energy Sciences. Most associated scientific studies will be supported by the U. S. Geological Survey, National Science Foundation, or DOE. Interested scientists should solicit research support by independent proposals to their customary funding agencies. After submission of proposals, coordination of proposal reviews and selection will be handled by the Interagency Coordination Group under the USGS/NSF/DOE Accord for Continental Scientific Drilling.

This news was contributed by Jamie Gardner, Los Alamos National Laboratory, New Mexico. MODEL OF A TRUE VAPOR - DOMINATED SYSTEM. FROM WHITE ET AL., 19/1

DEEP SUBSURFACE WATER TABLE

CONDENSATE ZONE - Nearly saturated with liquid water condensed from steam. Rich in Clays (kaolin & montmorillonite) · Pressure slightly above hydrostatic impeding free because may be major channels of upflowing steam from (1), w rising vapor VAPOR-POMINATED RESERVOIR - Vapor & Liquid Water Co-exist

LIPLID - DOMINATEP

(3)

1