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ROOSEVELT HOT SPRINGS GEOTHERMAL RESERVOIR DESCRIPTION

I. INTRODUCTION

Location

The Roosevelt Hot Springs Unit (RHSU) is located in Beaver
County, Utah, approximately 165 miles south of Salt Lake City and 12 miles
northeast of the town of Milford (Fig. 1). The RHSU is 8 miles long

(north-south) and 6 miles wide (east-west). (Figure 2)

General Geologic Setting

Regionally, the RHSU is located on the eastern edge of the Basin
and Range Physiographic province. This portion of the basin and range has
been subjected to repeated igneous activity during the past 30 million years
(Reference 15).

Locally, the RHSU thermal area is situated at the boundary between
the western foothills of the Mineral Range pluton and the northeastern edge
of the Escalante Valley (Figures 1, 3, and 4). This northern portion of the
Escalante Valley is commonly referred to as the Milford Valley and is a basin
and range graben structure. The graben is about 30 miles north-south and 12
miles east-west, with approximately 5,000 feet of valley fill sediments in
the deeper portions. The Mineral Range is a horst block with the transition
between the Milford Valley and the Mineral Range marked by a sequence of
normal basin and range faults.

Structurally, the mineral range is a basin and range horst
approximately 30 miles long and 6 miles wide. The central part of the

range is a late Cenozoic granitic pluton 20 miles long and covering 67 percent
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of the range. This is the largest pluton in the state of Utah. Located
along the crest of the granitic pluton are nine known Pleistocene rhyolite
centers,

The southern third of the range is composed of folded and faulted
Paleozoic and Mesozoic sedimentary rocks which have been intruded by small
igneous stocks. This area represents about 29 percent of the entire range.

The northern Mineral Range is composed of Cambrian and Cretaceous
sedimentary rocks which are in fault contact with the Tertiary granitic
pluton. The sediments extend for about 3 miles in a northerly direction
from the fault contact and occupy 4 percent of the range area. Pre-Cambrian
metamorphic gneisses and schists are exposed on the western flank of the
range. These have been intruded by and were partially assimilated into the
late Cenozoic igneous intrusives. There is surface evidence of recent
faulting and numerous hot spring deposits along the western range flank
within the RHSU (Figure 5).

In the thermal area, the rocks encountered in drilling beneath
the thin veneer of alluvium are either igneous intrusive rocks of the late
Cenozoic granitic pluton or metamorphic rocks of Pre-Cambrian age. These
rocks have almost no intergranular porosity or permeability. The geothermal
reservoir is associated with interconnected fracture zones and faults which
give the crystalline rocks local high fracture permeability. The reservoir
is confined beneath a cap varying in thickness from 300 to several thousand
feet. The cap was formed by precipitation of silica and carbonate
minerals in the fractures. The geothermal resource is a moderate-to-high

temperature, low-salinity, 1iquid-dominated type (Reference 20).
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Land Status

The area prospectively underlain by a geothermal reservoir was
unitized in April 1976. The RHSU was the first geothermal unit approved
by the United States Department of the Interior. Figure 2 is a Unit area
map showing tract locations, lessors, lessees, and locations of deep
wells and stratigraphic test holes. At the time of this writing, Phillips
holds Federal leases totaling 17,040.97 acres (65.68%) within the unit.

As presently known, the geothermal reservoir boundary falls entirely

within the area of the RHSU.

Historical Background

The Roosevelt Hot Springs (RHS), located in Sec. 34, T26S, RIW,
was a small area of springs discharging sodium chloride water highly charged
with silica. At various times, the settlers used the springs in the area
for washing, bathing, stock watering, and swimming. The springs were reported
to have a small discharge of hot water as late as in 1957; but, by 1966, the
springs were dry (Reference 11). Small fumeroles emit water vapor and gases
at the present time within the spring area.

Earliest drilling for geothermal resources occurred in December
1967 when Eugene Davie and A. L. MacDonald jointly drilled 80 feet into
opaline hot spring deposits in Sec. 16, T27S, R9W. They encountered hot
water and plugged and abandoned the hole. They moved the rig 300 feet to
the east and drilled a 165 foot hole which encountered hot water that flashed
to steam. The well was plugged and then redrilled in March 1968 to 265 feet
at which depth the well flowed a mixture of steam and hot water. This last
hole was eventually plugged and abandoned with some difficulty. It is this

well site that is generally described as the "discovery well" for the RHS

geothermal area.
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Phillips Petroleum Company's exploration activities in Utah began‘
in late 1972, and a chronological 1isting of these is given in Table 1.
Results of the surveys completed prior to the Roosevelt KGRA lease sale
indicated that the Roosevelt area showed exceptional geothermal promise.

The KGRA lease sale in July 1974 was the first to be held in Utah. Of 12
tracts offered, Phillips acquired nine totaling 18,871 acres.

After the leases were issued in October 1974, exploration activity
shifted to drilling the acquired acreage. During 1975, six exploratory wells
and two observation holes were drilled. The commercial discovery well
(No. 3-1) was completed near the end of April. Subsequent work in the
period from 1976 to the present was designed to further our understanding of
the geothermal reservoir.

Many other individuals, companies, institutions, and organizations
have contributed to the large data base available for the Roosevelt geothermal
area, but these are too numerous to mention in this report. For additional
information, the reader is referred to the annotated bibliography of the

RHS geothermal area in Reference 9.

Present Level of Development

As of February 1979, 11 geothermal test wells had been drilled
within the RHSU (Figure 2). Six of the wells are considered capable of
producing fluid in commercial quantities: Phillips #3-1, #54-3, #13-10,
and #25-15; Amax-Thermal Power-0'Brien (ATO, #14-2 and #72-16). Phillips
well #12-35 is productive but presently not commercial. Four wells have
not encountered the geothermal reservoir: Phillips #9-1 and #82-33;

Getty 0i1 Co., #52-21; and ATO, #24-36.
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In addition to the deep tests, eight observation holes ranging in
depth from 1760 to 2317 feet have been drilled in the area. Information

on these 19 test wells and observation holes is presented in Table 2.
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II. GEOLOGY OF THE ROOSEVELT HOT SPRINGS AREA

The geology of the RHSU has recently been mapped (Reference 5,
13, and 16). Figure 6 from Reference 13 depicts the detailed geology of

the area.

Lithologies of the Roosevelt Hot Springs Area

The 1ithology of the RHS area is characterized by metamorphic rocks
of Precambrian age, plutonic rocks of Tertiary age, and volcanic rocks of
Pleistocene age. Quaternary alluvial wash and valley fill deposits Tightly
mantle the area near the Mineral Range and thicken toward the basin center.
Recent deposits include opal, chalceodony, and silica-cemented alluvium

whose origins are related to the geothermal system.

Metamorphic and Plutonic Igneous Rocks

The Precambrian metamorphic rocks are subdivided into five Tithologic
units: banded gneiss, quartzite, sillimanite schist, biotite gneiss, and
hornblende gneiss (Reference 13).

The gneissic units all contain as major constituents,quartz, alkali
feldspar, plagioclase feldspar, biotite, and hornblende. They differ in the
relative proportions of the major mineral constituents in texture and in
grain size. The quartzite includes up to about 5 percent feldspar. The
sillimanite schist contains sillimanite, quartz, biotite, and plagioclase
as major constituents.

The metamorphic rocks are exposed in the western foothills of the

range (Figure 6) and have been encountered beneath the alluvium to the west

of the surface exposures.
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The Tertiary plutonic rocks, underlying the eastern side of the
Roosevelt Hot Springs Unit, are no older than 35 million years (Reference 8)
and may be as young as 15.5 to 9.2 million years (Reference 1 and 14).

Five major felsic phases were identified: quartz monzonite, porphyritic
granite, syenite, granite, and fine-grained granite (Reference 13). Textural
and compositional similarities among the major felsic phases make specific
identification problematical.

The plutonic igneous rocks have intruded the Precambrian rocks on
the west and have partially assimilated xenoliths of the latter over a zone
several miles wide. The resulting rocks of mixed origin might best be termed
migmatites or injection gneisses.

Both the metamorphic rocks and the plutonic igneous rocks are crystalline
rocks with extremely low primary porosities and permeabilities. Because of
these similarities, no stratigraphic or lithologic control over the location
of the geothermal reservoir has been noted. The reservoir is localized by
fracture porosity and permeability induced into the crystalline rocks,

apparently as a result of recurrent motion along fault zones within the unit

area.

Volcanic Igneous Rocks

Exposed within the Tertiary granitic pluton are nine Pleistocene
rhyolite domes emplaced in a NNE trending line bordering the eastern side
“of the unit area. Figure 6 shows locations of five of the domes. The line
of domes cuts the crest of the Mineral Range at an oblique angle. Obsidian
rich rhyolitic lava flows and pyroclastic deposits, which include air-fall

tuffs, water-laid tuffs, and non-welded ash-flow tuffs, are associated with the

domes.



Subsurface water has been sampled at virtually all existing springs,
seeps, and wells on and in the area surrounding Roosevelt KGRA (Figure 8).
Chemically identified water types are a) sodium chloride, b) sodium sulfate,
c) sodium bicarbonate, d) calcium chloride, e) calcium sulfate, and
f) calcium bicarbonate. It is clear that sodium chloride type water is leaking
from the geothermal reservoir into the shallow groundwater flow system and
moving down the potentiometric surface into the central portion of the valley.

The reservoir water composition closely matches the data reported
for both RHS and for a small cold water seep located in Section 34 to the
north of the Negro Mag Fault and east of the Dome Fault. A comparison of
analyses from these sites and the #54-3 well is included in Table 3. These
springs are the only known active natural leakages from the reservoir. The
volumes of opal and sinter deposits which presently extend along the Dome
Fault attest to more widespread leakages in the past. Reservoir waters also
presently leak into the shallow groundwater system and, in fact, form a leakage
plume which extends for tens of square miles down the hydraulic gradient to
the north and northwest. Wells and springs throughout this area document the
plume by the presence of dissolved ionic species that are characteristic to
the reservoir waters.

The recharge to the reservoir is derived from precipitation falling
in the Mineral Range and recharging through fractures and joints in the igneous
and metamorphic units. Low tritium values (less than 1 TU), Reference 12,
reported for the reservoir waters suggest an age of at least 20 years for the
reservoir water and no appreciable contribution of rainfall within the past 20
years to the produced reservoir waters. For comparison, & Tlocal cold water
spring in the Mineral Rangecontains 50 to 70 TU (Reference 17). The conclusion

from this data is that watermass in storage within the reservoir is large in




comparison to the natural discharge. This is somewhat confirmed by the Tow
carbon-14 values reported for the reservoir waters (0.7% of modern), but
this value may be due to dilution by carbon-13 remobilized from the country
rocks during thermal metamorphism.

The waters circulate within the reservoir as is indicated by significant
jsothermal sections in wells that penetrate into the reservoir. The chemistry
indicates equilibrium conditions by the excellent agreement between observed
temperatures and those calculated by metal ion ratio geothermometers (Reference 7).
The oxygen shift from the meteoric line on the deuterium-oxygen-18 plot also
spells out equilibrium and long residence times in a high temperature

environment (Reference 6).




IIT. THE ROOSEVELT HOT SPRINGS GEOLOGIC MODEL

Discussion of Data Utilized in Developing the Geologic Model

The development of the RHSU geologic model has progressed as an
outgrowth of the exploration philosophy which led to the discovery of the
Roosevelt field. The exploration model has been refined as well control
from deep tests became available and as research interest resulting from
the initial discovery was increased. The present interpretation is an
integration of geology, geophysics, and well log data derived primarily from
Phillips, other operators, the University of Utah, the UURI group, and
additionally from published data from the state of Utah and the USGS.

Phillips entry into the Roosevelt area was made with the knowledge
of the shallow Davie steam well drilled in the opaline deposits occurring
along the Dome Fault. The association of shallow hot water and silica
having been recently deposited along an active fault zone presented the
model of a high»temperature hot-water reservoir leaking to the surface along
the fault system. The literature report on the regional hydrology included
analyses of the then dry Roosevelt Hot Springs, and metal ratio geothermometers
calculated from this data indicated temperatures near 500°F (Reference 10).

Surface manifestations of the system included the opaline deposits
along the Dome Fault, the dry RHS system, and sulfur mineralization along
the Negro Mag Wash. The magma chamber which had fed the young rhyolite
Domes to the east was a potential heat source. As surface reconnaissance
operations progressed, additional surface features were discovered. Weak
fumeroles and steaming ground were observed in the Negro Mag Wash in the
vicinity of the sulfur mineralization. Temperatures near boiling were found

within a foot of the surface of the alluvial cover. Ongoing sulfur
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mineralization was observed in mineral test pits. Degassing of carbon dioxide
and hydrogen sulfide was also taking place along the Negro Mag Wash.

The conceptual model was a hot water system with an overlying self-
sealed silica cap broken in places by recent faults which act as conduits for
fluids and gases to leak to the surface from the reservoir. The reservoir
was inferred to be in either the valley alluvial fill or a sedimentary
sequence adjacent to the Mineral Range pluton. The spatial relation relative
to the Dome Fault was unknown.

A shallow temperature gradient program and a more detailed water
chemistry study were undertaken to refine the model. These surveys were
followed by resistivity, aeromagnetic, lineament, and gravity studies to
refine the known geology and to investigate the geometry of the geothermal
system.

The water survey located an additional leak from the reservoir to the
north of the dry RHS. This seep has a chemistry very similar to that of the
RHS (Table 3). Both waters are sodium-chloride type and carry high values
of potassium, Tithium, and boron. As the survey progressed, this water type
was found to extend far to the north and west of the Dome Fault area (Figure 8),
becoming diluted and losing potassium and boron in the same direction.

This water was interpreted as overflow from the geothermal system and is
progressively diluted as it flows northward in the regional hydrologic system.
The potassium and boron are incorporated into clay minerals of the valley

fi11 as the waters flow northward. The survey indicated that the main system,
or at least the main overflow from the system, was in the area of the Dome
Fault.

The initial temperature gradient program delineated an area of
anomolous heat which is closely associated with the Dome Fault trend. The

contoured temperature gradient map has changed somewhat in detail as additional
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data have been acquired; but even the early data showed gradients

in excess of 10°F/100 feet over an area of roughly 16 square miles straddling
the Dome Fault. The shallow data do not differentiate between the productive
ground to the east of the fault and what appears to be non-productive ground
to the west of the fault. The very high gradients in excess of 25°F/100 feet
show an even stronger correlation with the Dome Fault and may reflect, to

some degree, the upwelling of thermal waters along the structure. A program
of 2,000 foot temperature observation (gradient holes) was initiated in 1976.
This program has been extremely useful in discriminating between shallow
seated thermal anomalies (thermal plumes) which show decreased gradient or
even reversals at depth and anomalies due to conductive gradients which better
reflect the deeper seated portions of the main reservoir. Figure 13 summarizes
the thermal gradient data from all presently available sources.

Electrical surveys at Roosevelt Hot Springs Unit area have been

performed by or for the following:

Phillips Pétro]eum Company: dipole-dipole resistivity, self-
potential, and magnetotelluric soundings.

University of Utah: electromagnetic soundings, Schlumberger
soundings, magnetotelluric soundings, 100-m, 300-m, and 1-km
dipole-dipole resistivity, self-potential, and electrical
energizing of well casings.

Getty 0i1 Company: 300-m dipole-dipole resistivity survey.

The electrical surveys run to date have provided a three-dimensional
glimpse of the electrical behavior of the rocks in the thermal area. However,
the inhomogeneous nature of the area, coupled with physical problems inherent
in each of the tools, has resulted in a significant gap between the expectations

for obtaining quantitative solutions and the actual results obtained.

ITI-3




One of the most useful and representative of the electrical surveys
is the dipole-dipole resistivity work done by the University of Utah.

Figure 9 is a contour map of apparent resistivity for the first separation
of the 300-m dipole-dipole survey (Reference 18). The observed resistivities
are interpreted to result from the distribution of brine-soaked clays in the
upper 500-m of the geothermal system. The clays are feldspar alteration
products primarily localized along faults and fractures (Reference 18).

0f significance is the rise in apparent resistivity values south and east of
the production wells and the low values associated with the known production
zone and the Dome Fault zone.

Gravity surveys were particularly useful in providing information
on the regional structure, especially in those areas covered by alluvium.
Figure 10 is a terrain-corrected Bouguer gravity anomaly map (Reference 3)
which is a compilation of several individuals' work. The north-south trending
gravity contours reflect the trend of the Mineral Range and Milford Valley.
Gravity gradients indicate that north-south basin and range type faults are
present beneath the alluvium,dropping the consolidated rocks downward to the
west in stair-step fashion. The large gravity low located along the west
edge of Figure 10 represents the deepest part of the Milford graben where
the thickness of poorly consolidated valley fill reaches approximately 5,000
feet. The gravity lows (indicated by the symbols D & E) in the southeast
corner of the figure are coincident with the larger rhyolite domes and
possibly indicate a shallow, low density intrusive body at a depth of about
2-km (Reference 3 and 4).

The aeromagnetic data are more useful than the gravity data in
delineating the geothermal system. Figure 11 is a total aeromagnetic intensity

residual anomaly map of the Roosevelt Hot Springs area (Reference 19). The
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western flank of the Mineral Range is characterized by short wave-length
anomalies with magnitudes of 250 gammas. The style of the magnetic anomalies
changes eastward to Tonger wave lengths and more negative values. The
short wavelength anomaly appears to be related to shallow Precambrian
metamorphic rocks or younger plutonic igneous rocks having higher magnetic
susceptibilities and conversely, the longer wave-length style appears to be
related to a lack of Precambrian rock units and to igneous plutonic and
volcanic phases with low magnetic susceptibilities (Reference 19).

The large negative anomaly centered 4 miles southeast of the Roosevelt
Hot Springs correlates with the reversely polarized Bailey Springs lava flow.
The negative anomalies located 6 to 8 miles further southeast appear to
correlate with the rhyolite domes.

A magnetic high corresponds to the horst block paralleling the
west side of the Dome Fault (Opal Mound Fault), where there is no production
at present. The magnetic low east of the Dome Fault occurs in the area
underlain by the geothermal reservoir. The contrast is attributed in part
to the destruction of magnetic minerals in the area east of the Dome Fault
by hydrothermal solutions from the geothermal reservoir (Reference 3). This
hypothesis is supported by drilling data.

The magnetic contours show a dramatic change in trend from N-S
to E-W just south of the surface termination of the Dome Fault (Figure 11). This
is caused by a local magnetic low which projects into the range. The axis
of the low, which may represent a volcanic unit, lies immediately south of
the southern boundary of the productive reservoir,

Faults have been interpreted from several geophysical methods including
aeromagnetic surveys, gravity surveys, and dipole-dipole apparent resistivity

surveys. An interpreted Tineament-fracture-fault map (Figure 12) was prepared
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by the University of Utah group after integrating these techniques with the
known surface geology (Reference 18).

While the information mentioned above is valuable for the formulation -
of the geologic model, deep well data are preferable. The data summarized in
Table 2 are but a portion of a staggering amount of information which has
been examined and utilized in preparing the model. The production size wells
are the best source of information since the productivity of a block of ground
is confirmed. However, it is not practical to drill production wells every-
where one would like. The drilling of observation holes to several thousand
feet is a compromise which permits predictions to be made with more confidence
than is possible with only shallow gradient hole data. The observation holes
are drilled to sufficient depth to minimize the masking affects which shallow
groundwater may have upon heat transfer. This allows the establishment of
isotherms in the subsurface. Isotherm elevation maps at 25°C intervals have

been prepared and utilized in interpreting the reservoir system.

Model Boundaries

The boundaries of the Roosevelt system range from well defined
structures such as the Dome Fault which Timits the system on the west to
inferred boundaries defined by economic considerations on the east.

The well defined Dome Fault acts as a leaking conduit from the
reservoir. Along this fault, hot spring deposits of opal and silica cemented
alluvium, gas seeps, and fumerole activity attest to this connection to the
reservoir both in the past and the present. This fault marks the boundary

between pervious reservoir rocks to the east and an impervious horst block

on the west.

Well control on both sides of the Dome Fault zone further demonstrates

its importance as a reservoir boundary feature. The deep test holes, the
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Phillips #3-1, #54-3, #13-10,k#25—15, and #12-35, plus the ATO #14-2 and
#72-16 are commercially successful producers and are located to the east in
the downthrown block. Immediately to the west of the Dome Fault are the
nonproductive Phillips #82-33 and #9-1 deep tests and observation holes #1
and #4 which show a significant decrease in temperature gradient in the lower
parts of the holes.

In Phillips nonproductive well #9-1, drilled to 6,885 feet, few
fractures were encountered and the temperature profile logs on this hole
revealed a Tow temperature gradient of 2.79°F/100 feet for the 5,800 feet
to 6,600 feet interval with the highest temperature at 440°F in the bottom
of the well. The linear, constant increase of temperature with depth is
indicative of a heat transfer by conduction. This is further supported by
the fact that the well would not accept fluids during pump-in tests. By
contrast, Phillips producing well #54-3 hit interconnected open fractures at
1,950 feet and from 2,640 feet continuously to the total depth of 2,882 feet.
The temperature profile log shows a temperature gradient averaging 24°F/100
feet to a depth of 1,800 feet, then a change in slope to isothermal below
that point. The isothermal temperature profile is evidence for convective
heat flow caused by the circulating movement of fluids in the interconnected
open fracture system of the reservoir. The wells drilled west of the Dome
Fault have the characteristics of #9-1. Those to the east are similar to #54-3.

The Dome Fault appears to be a major conduit for geothermal fluids.
However, it separates a western block which has so far proven to be tight
and unproductive from an eastern fractured block containing the reservoir.
The fault dip is not known, but well #13-10 may have intersected the fault
zone between 4,700 feet and 4,860 feet. This would place the fault dip at

about 77°E.
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The southern boundary of the geothermal reservoir appears to be
located between the commercial wells Phillips #25-15 and ATO #72-16 and the
nonproductive Getty well #52-21. The Getty well, a 7,500 foot drill hole,
encountered two minor deep fracture intervals; one at 6,630 feet and another
at 7,400 to 7,500 feet. The temperature profile log from this well shows
a Tow but constant 1.9°F/100 feet temperature gradient for the interval
5,800 feet to 7,490 feet, with a maximum temperature of 402°F in the bottom
of the well. The temperature profile indicates that heat movement is primarily
by conduction. This nonproductive well is only 0.7 miles south of the
Phi1lips #25-15 productive well and about 1 mile south of the ATO #72-16
productive well.

Approximately halfway between the productive wells mentioned and
the Getty non-productive well is the southern termination of the surface
expression of the Dome Fault, implying that some structural change occurs
south of this point.

Also, several geophysical surveys indicate a geologic boundary
between the Getty well and the two productive wells to the north. The
shallow temperature gradient map indicates a rapid drop in the temperature
gradients between the ATO Well 72-16 and the Getty well (Figure 13).
Apparent resistivities increase from 10 ohm meters near ATO well #72-16 to
200 ohm meters near the Getty well (Figure 8). The magnetic contours change
in trend in this area (Figure 11). The University of Utah workers inferred
that two east-west faults lie between the Getty well and the wells to the
north (Figure 12). One, or both of these faults may be the boundary separating
the productive reservoir from the Getty well #52-21. Fault #4 in Figure 12

was chosen as the southern boundary of the reservoir.
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Currently, the northern boundary of the geothermal reservoir is open.
However, several lines of evidence may be cited to establish the approximate
northern 1imit of the field. One is the marginal production obtained from
the Phillips #12-35 well, a 7,324 foot test. This well does produce from the
reservoir but only in limited amounts. Temperature profile logs show
several isothermal intervals indicating that convective heat transfer does
occur within the well. The diminished production may indicate that the well
is near the northern edge of the geothermal reservoir.

Low resistivities of magnitudes similar to those associated with
productive areas extend northward beyond well #12-35 (Figure 9) as do anomalous
temperature gradients (Figure 13). Since geology had not dictated the northern
reservoir boundary, the reservoir was extended 3,300 feet to the north of
#12-35 along a line parallel to the Dome Fault.

The eastern boundary has not been definitely established. The
production well farthest from the Dome Fault is the ATO #14-2 located approx-
imately 4,800 feet in an easterly direction perpendicular from the fault as
shown on Figure 12. The deep well (6,118 feet) farthest from the Dome Fault
is the ATO #24-36 which is about 9,000 feet east of the fault. Well #24-36
apparently did not encounter the reservoir nor did it encounter commercial
temperatures. Figure 14, an E-W geologic cross section through well 82-33
also shows the relationship of the isotherms in the vicinity of well #24-36
which is near the east side of the unit area. The isotherms are closest
together at the Dome Fault and separate very little at least as far east as
well #12-35. Beyond #12-35, they plunge downward to the east. The isotherms
through Observation Holes 7 and 8 show a pattern similar to the upper part of

well #24-36, suggesting a similar deepening of the isotherms beneath these holes.
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A producing reservoir zone requires two things: interconnected
fractures fi]]ed'with fluid and sufficiently high temperatures. In the
absence of deep drilling evidence to the contrary, the presence of inter-
connected fractures is assumed in the eastern part of the unit area. The
depths to commercial temperatures can be estimated with some confidence
by using data from well #24-36 and by projecting the isotherms beneath
Observation Holes 7 and 8.

The eastern reservoir boundary will be based upon an economic limit
‘which will be a function of drilling costs and lowered steam quality factors
from deeper wells. In producing wells, the top of the geothermal reservoir
is chosen as the depth at which the equilibrium temperature profile from
each well becomes isothermal, indicating a change from conductive heat flow
to convective heat flow. The reservoir top and horizontal distance to the

Dome Fault is listed below for each well:

Depth to

Top Distance
ATO  #72-16 1400" Est. .3 mile
PPCo. #13-10 1800 2 mile
PPCo. # 3-1 1800° .5 mile
PPCo. #54-3 1800 .5 mile
PPCo. #12-35 1600 .6 mile
PPCo. #25-15 2800' Est. .8 mile
ATO #14-2 2400 .9 mile

Fast of wells #14-2, #25-15, and #12-35, where well control is
lacking, the reservoir top is assumed to be the projected 200°C isotherm.

The base of the geothermal reservoir has not been established. The
temperature profiles in the productive wells are still isothermal at the

bottom of the holes.

RHSU Geologic Model

The RHSU geologic model identifies the geometry of the reservoir as

follows:
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1. The 4 mile long NNE trending Dome Fault zone is the western
boundary.

2. The 2.5 mile, east-west fault #4 is the southern boundary.

3. The northern boundary is established at a point 3,300 feet
north of well #12-35 along the extention of the Dome Fault
and extends perpendicular to the fault 10,000 feet to the east.

4. The eastern boundary has not been truly established. A1l
indications based on well control identify a possible 2 to
2.25 mile east "economic risk 1imit" zone 4 miles in length

and parallel to the Dome Fault.

Future deep test drilling for commercial production may eventually
define the eastern boundary. Until this occurs, the boundary presently is
an "economic 1imit" based on a combination of the depth required to drill to
reach 400°F and the assumption that a sufficient number of interconnected
open fractures in the reservoir will be encountered. In the reservoir model,

the above boundaries are assumed vertical.

5. The top of the reservoir dips east from shallow depths of about
1,000 feet adjacent to the Dome Fault zone to depths from 1,900
to 4,000 feet reached about 0.75 miles east of the Dome Fault.
Then, at a distance of 1.5 miles east, the reservoir top is
interpreted to be approximately 5,300 feet. At a distance of 2
miles east of the Dome Fault, the top of the reservoir has been

projected to be approximately 7,400 feet.

Temperature profile cross sections and three-dimensional fence diagrams with
well control effectively demonstrate the size and shape of the reservoir.

The critical factors used in constructing these diagrams were:
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1. Selected temperatures with depth.
2. Major fracture intervals.
3. Key faults controlling, influencing, and acting as barriers

to the reservoir,

Tables 2 and 4, selected temperature gradient hole information, were
the sources for developing the temperature profile cross-sections, three-
dimensional fence diagrams (Figures 18-20), and the index map (Figure 27).
The six selected temperature profile cross-sections used (Figures
21-26) cut the Roosevelt Hot Springs Unit reservoir at significant angles.
The fence diagrams illustrate the reservoir from key positions. This very
effectively demonstrates the geometry of the Roosevelt Hot Springs Unit
reservoir.
In addition, a selected set of geologic cross-sections east-west

cut through the RHSU are included as Figures 14-17.
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TABLE 1

CHRONOLOGY OF PHILLIPS' ACTIVITIES AT THE ROOSEVELT PROSPECT

LATE 1972 LITERATURE SURVEY & FIELD RECONNAISSANCE
FEB 1973 RECONNAISSANCE GEOCHEMICAL SURVEY
MAR 1973 GRAVITY SURVEY
MAY 1973 GEOCHEMICAL SURVEY (CONTINUING)
MAY 1973 EARLY LEASING ACTIVITIES (CONTINUING)
JUN 1973 BIPOLE -~ DIPOLE SURVEY
JUN 1973 GROUNDNOISE SURVEY
JUL 1973 TEMPERATURE GRADIENT SURVEY (CONTINUING)
oCT 1973 MAGNETOTELLURIC SURVEY
JUL 1974 COMPETITIVE LEASE SALE (~18,000 ACRES)
, OCT 1974 LEASES ISSUE
| DEC 1974 REFLECTION SEISMIC SURVEY
i FEB 1975 SPUDDED OBSERVATION HOLE #2
MAR 1975 SPUDDED OBSERVATION HOLE #1
MAR 1975 SPUDDED ROOSEVELT KGRA #9-1
APR 1975 SPUDDED ROOSEVELT KGRA #3-1 - COMMERCIAL DISCOVERY WELL
APR 1975 GROUND LEVEL MAGNETIC SURVEY
MAY 1975 MAGNETOTELLURIC SURVEY
JUN 1975 PETROLOGIC STUDIES
JUL 1975 SPUDDED ROOSEVELT KGRA #54-3
AUG 1975 SPUDDED ROOSEVELT KGRA #12-35
OCT 1975 SPUDDED ROOSEVELT KGRA #13-10
NOV 1975 SPUDDED ROOSEVELT KGRA #82-33
JAN 1976 WATER OBSERVATION SYSTEM
FEB 1976 MAGNETOTELLURIC SURVEY
FEB 1976 THREE DAY FLOW TEST (#54-3)
MAR 1976 ISOTOPIC STUDIES
APR 1976 WATER APPROPRIATION HEARING
APR 1976 UNIT APPROVED
MAY 1976 HELIUM SURVEY
AUG 1976 SPUDDED ROOSEVELT HOT SPRINGS UNIT #25-15
OCT 1976 MICROEARTHQUAKE AND GROUNDNOISE SURVEYS
oCT 1976 SPONTANEOUS POTENTIAL SURVEY
Nov 1976 HIGH RESOLUTION SEISMIC SURVEY
DEC 1976 LANDSAT IMAGERY STUDY
FEB 1977 SPUDDED OBSERVATION HOLE #4
MAR 1977 SPUDDED OBSERVATION HOLE #5
OCT 1977 COMMENCE LONG TERM RESERVOIR TEST #54~3
OCT 1977 COMMENCE ENVIRONMENTAL BASE LINE STUDY
MAY 1978 SHUT IN WELL #54-3
AUG 1978 SPUDDED OBSERVATION HOLE #8

SEP 1978 SPUDDED OBSERVATION HOLE {7




TABLE 2

ROOSEVELT HOT SPRINGS

- Observation Holes and Deep Test Holes
Complete Data List

The table in the plastic envelope following
this page depicts the information above.




Date: quambeir, 21, 1978

RODSEVELT HOT SPRINGS - Observation Holes _a'nd‘Deep Test Holes Complete Data Sheet

- : N TeR oo A " Temperature in °C. & °F. * Equivalent Depth to Reach It “Lithology Identified pEagy : Depth to Top of |Wells Are
R 3 Total - |-~ -Starting Date of - : o - Nature of Drill / o
¢ Nl Neme, focavion, | oth | GrGelis mesimm | 0% | 7sec | mo0ec | 1awec | msocc | wmec | zovec | mmcc | msorc | Copager | CeihleTor| Fatamd | desceckimes | Noilris | Seservoirand | Grone
i g in Feet | Temperature and Depth | 122°F 167°F 212°F 257°F 302°F 347°F 392°F 437°F 482°F | kel in Feet 2ones Final Results that Peint : Numbetedy
oo ‘ ' ' i V | 19.93°F/100° o ' '
-3 Phillips O = #2 © | 2/3475 . i ) Quartz Diorite ; . e
1275, R9W, Sec. 10  |2,250 403°F @ 2,194 226'| . 391'| 620 895' | 1173' | 1538' | 2044 - ¢ 1} {290 te 2007) £280° None Biotite Gramo- | Stratigraphic Test Adjaceat to 1
$ 884 2" : (6/21/75) : 6.90°F/100 diorite Observation Hole Paillips #13-10
Lndoind® . Bottom Hole
5 R Isothern Depths Based on Projection| of Bottom Hole Gradient 12.70°F/100'
2 Phillips OH - #1 3/3/15 (408" to 500') ; ’ v
T27S, ROW, Sec. 17  [2,317" 232.8°F @ 2,320° 473' | 955' | 1700' | 3342’ | 4984’ | 6626' | 826" - - 2.74°F/100' 1950' None O ebtortined) | Oomerrrtaere | West of Reserveir] 2
5,664.64" (7/14/15) Proj. Proj. Proj. Proj. (2100'-2320')
, 1/14/75
: 8413" :
s : % 11.53°F/100°
3 Phillips #9~1 (#42-9) 3/13/75 Proj. g . A Deep Test
T27S, R9W, Sec. 3 |6,885' 439.08°F @ 6830 490" 925' | 1408'| 1988'| 2775'| 3870' | 5400' | 6800' | Using (420795; 333-) £705* None g;:‘“’g;;:;;:“ Noa~Commercial g“;“ W“‘i 3
5,833.8' (10/1/77) B.H. : ; *Tight" bt
: Gradient (5800°-6600') '
. & Phillips #3-1 4/19/75 : . o 5 ) 1900 -2400" : Deep Test Commercial .
T27S, R9W, Sec. 3 |2,728" 496.6°F @ 2,700 543' | 638' | 745 880" | 1052' | 1248' | 1416' | 1600' | 1950' %263'%3)3?) 660" Fractures @ gg”gégzﬁte Discovery Completed 3321, "
6,111.4° g (10/5/75) : . : 2723' (L.C.) i as Monitoring Well i
) ' ) Granodiorite
5 Phillips #54-3 1/6/75 ~ i - BOF/100° o Fracture A :
T278, ROW, See. 3  |2,882.1' | S508°F @ 2500'-2600" | 174'| 3e8'| s70'| 748'| 9so' | 11200 | 1314 | 1487'| a7e0r | 22-07F/100 402" 1950° Qtz. Monzonite | oo v oreial Deep Test 1500 5
(400'<600"') ‘ Qtz. Diorite 485°F
6,104.5" (R) (10/15/75) ' 2640'+ Diofite : '
. 19.70°F/100" Fractures . 1600" (R) I
. oy St e 0'-3600" ' 6" ' : : Bitoco (300-500") o 3580'-3640' | Cramediorite | g conpercial 380°F
T26S, R9W, Set. 35 7,324.4 414.2°F @ 3500'-3600 272 476 678 890 1084 1273' | Reversal - - : 255 v - Qtz. Monzonite . 13
"6,171.8" ®R) (4/9/16) : 4148" po il bl B Qtz. Diorite e fest ; ;
b 171, Well 5320' <5350" : 2400+° @ 400°F.
: :  Fluid L i 1800°
t | 7 Phillips 313-10 . 10/2/175 fo 20.80°F/100" e wasor ¢ 33?1@532“1& ‘ 2323?
I . T27S, R9W, Sec. 10 {5,351 485.6°F @ 5343' 150" 295" 510" 745" 985" 1224° 1520° | 3010' | 4280° ¥ e £245 F e Commercial Deep Test 7
. : 5,890.1' 9/22/76 (300'-500') ractures Qtz. Diorite 7 )
»890. (9/22/16) 4100 -4950° Grandodiorite 3400" @ 456°F.
= e g 78517 : 23.0°F/100° e & I
- . | 8 ©Phillips #82-33 11/5/75 4 : , ; ; Proj. (400'-560') o 1656'-2010" giz. Dibtdte Deep Test :
: T26S, R9W,; Se¢. 33  |6,032" 358.7°F @ 5824' 378’ 567" 744" 975' | 3653' { 5264' | Using - - | Temp. Reversal at £340° Fracture: Beeisaioriia Non-Commercial West of Reservoir 8
i 5;832.9' (1/14/71) : B.H. L 1500 2.22°F/180% ¢ 3200 Re-injection Well
: : _Gradient, . (4800'-5800') | 3400 3600° o
% : i ; ; , = I 2840° -80°
8726716 Temporary Dépths Based of Combination of Temp. Log Runs 10/22/76 and 9/30/77;" | : 13020"-30" :
| 9 Phillips #25-15 , 473.8°F @ 7459" : g, ol ‘ _QU0713/76% 6 chor s sa60 3510°-20" e (Mot Statie)
T27S, R9W, See: 15  |7,500° Yithin 24 hour after 670" | 21005" | 21375' | 21755' | %2280' | £2995' | x4015"{ 4553° | 300-3007) . £140" 44301 <70° Granodiorite G B : it .
6,002.0' ' drilling. - €00-5007). : 4600'<50"" Qtz. Monzsnite i e o §§g§¥
NOT STATIC! (10/6/76) . Asas'ani)'
- : 2 5030'-5110"
) 7350 <7500" :
B Rl R R e e R '; e g ssaa e e e | A T—— o e T oy 'T e s o o nopemss Fra'c’tu‘r'és';’ B 'Biotite;
10 Thermal Power #14-2 9/ /16 : 5 '14.86°F/ 100" ) (1000'-1800"') Hornblende :2400"
T27S, R9W, Sec. 2 6,100" 512.63°F @ 5600' 221' | 455'| 679’ 912' 1156 1666' 1902' | “2107' | 2397 (400"-500") £260° 2800 3900° Monzonite Commercial Deep Test 10
6,240" 3 “- (9/29/17) : : e s o : : : 4050' . 5000 Microgranite : i :
: 6000°* ° Granodiorite
» 312°
; : = tz. Monzonite
11 Thermal Powes #72516 |-+ 10/ /76 : e N e (Blow Out) | Qtz. Mon: .
. T27S, ROV, Sec. 16  |1,254" 468°F @ 1229" . 15 23] - 62! 112' | 198 280" 461' | 7767 |. 1400 53.0SF/100° . 485" 480" Crauive & Commercial Deep Test 200" 11
+5,880" ‘ (3/30/77) R g, (4007-5001) 1100° Lt : ’ 464°F
‘ 1245 e
s Firsy Two Projected Values are Hased on Hottom Hole Temperdture Gradient of 9 57'0,‘../100. o . v - i
12 Phillips OH-#4 27537717 This Hole and flor Last Two Projedted Valugs from Gdadient ig Phillipg' #82-33 (:.300'-500') ; . : el e Teat . .
T26S, R9W, Sec. 33 1,760' 198.5°F @ 1384’ 478' 900 1510 2119' 34000 +5800" : A L 7.38°F/ 100" 1550" Tight Granodiorite ‘Obsellrgatii’o; Hole West of Reservoir “12
15,695° - : (5/10/17) 7 Proj. Proj. Proj. Proj. (7(')0’-1376') A L : :
Prdjected Values are |[Based in (Combinatilon on Phillips
#82-33 and Phillips #12-35 Deep [Tests L.C. @ ; S
13 Phillips OH #5 3/12/77 (R) : , : ; 707 a0 G : : L o g
. T26S, ROW, Sec. 28  |1,820' | 232.8°F @ 1140'-1240' | 440" | 587" 7620 . : a L T - 34.25°F/100" 4n’ («1351(7)50?0 ST Moris | rfitemmicien o dnihand Restl ias
ﬁ,755' - % (5/,10/77) o - . 4 1583+ 5 (300!_50()') A ; rancdiorice servation rnole ) B} gservon: :
: (R) 1927°F @ 1786 2150' | 3500' | "6000" | 8000 € s : : LRl
: Proj. Proj. Proj. Proj.
o : : ; 0.72°F/100° Fractures:
14 Phillips OH #3 4/29/17 : N e , .
? ; ; : : 1-500° ' .
i T27S, R8W, Sec. 8  |2,200 68,7°F @ 2186' : - : - E - . . . (3005300 ) +40° E Granodiorite .| Stratigraphic Test g, i of Rewervoir t @ 14
3 +7,700' ' (6/20/77 & 10/19/77) . : 1.12°F/100 1340 Qtz. Diorite Observation Hole A "
: ’ 3 (2080'-2180") 2040"
15 Thermal Power #24~-36 11/20/77 DA’IA PROPRIETARY Data - Data Data Deep Test Data ;
T26S, R9W, Sec. 36 6,118° e : Proprieta Probiiets Proprists Apparently P Lot 15
6,700' A +Eop 2 P ry ropeictary Non-Commercial reprictary
: ; o : ‘ 6.20°F/100°
16 Getty 0il #52-21 277778 : . i ; e nAl Fractures P i : 4 ]
T27S, ROW, Sec. 21  |7,500" - | 402.4°F @ 7490° (356" | 1106’ | 1813'| 2604’ | - 3560' | 4ees' | 7000' | 93277 |  11659'| - (499,500 £585° 6630' RS at W S Aeepfouth of s
5,8’60' ‘ . (10/22/78) o i s - s - ) ‘ Pfoj- o Pfoj- (55009_7[‘90') 7[.00)_7500' : zZ. onzonite on Ometcla ‘Reservoir %
B - 2 . Prdjected Vilues Basqd on Bottom Hole Temperatuxe i U b 1"‘d ted
17 Geothermal Power Corp 7/30/18 B Grd4dient Interval foy This Hole 7.83°F/100°" Sncgnso poate e - :
GPC-#15 i 1,890' 158.45°F @1880"- 11047.5" - - - - - 0 - L. - (4600'=-500") Bedrock not | C‘;“ Stratigraphic Test | £ R { 17+
T27S, R9W, Sec. 18 . e ) Proj. &| Proj. & 3.85°F/100" reached -Si‘;:' Observation Hole SR MSL SCBELVOLL 20
45,539° Extrap. | Extrap. (1700'-1880") ity e
2100' | 3269" : L
G Prdjected Vdlues Basgd on Bottom Hole. Tewperature o ' S i T
18 Phillips OH #8 : 773178 Gradient Intierval foxr This Hole : : (20(7).%32?) : Alteration Granzdlgl:'ltt‘:t Strati hic Tast:. . Extrapolated: -
T27S, ROV, Sec. 14 [2,094' | _176.7°F @ 2085" 1318' | 1976'{ 2625'| 3250'| ..3895'| 4535'| 5175'| - - 8.1°F/100" 325" Fracture, g‘.’“.i bl e sa e Dl SRR B : 18
6,338" (10/24/78) 435 L Pfoj.| Proj.| Proj.| Proj.| Proj.| (19501206003 - Fault Zones Q;‘;“Mznzonite ot 400°F
= S Prqjected Vqlues Basdd on Botfom Hole 1emperﬁtuxe . 3:85"}‘/100" L.C. @ = k i e
; 19 Phillips OH #7 orerr/ig Gradient |Interval jof Thermal Powers {#24=-36 (2‘00,_600.) 11;35. Qz. Monzonite | o .o il Test - |- Extrapolated: EOR
1275, R9W, Sec. 1 . [2,006' |.. 130.5°F @ 2000’ 1750" P - - - 5 . . 2.60°F/100" 248" 770" Granodiorité ox:a 3‘:‘.’0‘ = ;i : -~ 7400' 19 ;-
6,442 ' (10/26/78) * - 2691' | 3632'|  4574'| 5516'|  6458'"| 7400 s e S e : Granite bt " 400°F. :
Proi Proi ol i {1800'~2000') Fractures -
roj.) Proj.| Proj. ‘Proj. Proj.: Prqj. I




(0) State of Utah, Technical Publication No. 43, Water
Resources of the Milford Area,Utah, With Emphasis .

on Ground Water.

(b) AMTECH Laboratories for Phillips Pefroleum Co.
(¢) Phillips Petroleum R 8 D analytical branch

All species reported in ppm 8 conductivity in pmho/cm

TABLE 3
(a) (b) (b) (¢) (c) (e) | (b)
ROOSEVELTIROOSEVELT| 54-3 54-3 54-3 54-3 54-3
HOT SPGS.| SEEP |FLOW TEST|FLOW TEST|FLOW TEST|FLOW TEST|FLOW TEST
Na 2100 1770 2000 2000 1950 1700 2540
K 470 470 400 417 460 320 469
Li 20 20 14 9 21.6
Rb 4.1 3.89
Cs 4.8 <4.05
NH4 13 <l 2 <1
Ca 19 10.6 6.7 6.49 6.5 1o 6.5
Mg 33 0.5 0.13 12 02 19 0.1
Sr <3 20
HCOs3 42 165 200 180 168 275 243
COs 57 0 0
S04 65 69 56 51 94.7 105 70
Cl 3800 2820 3600 3400 3600 2900 | 3600
F 7. 6.0 5.3 35 5.6
NO3 1.9 1.6 <.05 <.05 <.04 23 0
B 3 29 29 28.2 27 26 35
Al 0.2 <045
$102 400 662 533 660 76
pH 85 7.45 70 6.3 8.14 6.35 77
_Cond 11500 10100 10890 11950 9430
Date I1-4-50 | 10-11-75 | 10-11-75 | 2-15-76 | 2-15-76 | 10-3-77 | 5-4-78
EXPLANATION PHILLIPS PETROLEUM COMPANY

GEOTHERMAL OPERATIONS
43| SOUTH 300 EAST SALT LAKE CITY, UTAH 84l1

ROOSEVELT HOT SPRINGS UNIT

REPRESENTATIVE ANALYSES OF
RESERVOIR WATERS FROM PRODUCTION
TESTS AND NATURAL SPRINGS

BEAVER COUNTY, UTAH

@
SCALE

GEOLOGIST S. JOHNSON ATE FEBRUARY, |
DRAFTSMAN D. OLSON RATE FEBRUARY, |

REVISED DATE




TABLE 4

ROOSEVELT HOT SPRINGS SHALLOW TEMPERATURE GRADIENT DATA SHEET

Call Temperature Total Depth
Letter Well Name Gradient in Feet Location
L U.U.-76 7.2°F/100" 196" T26S, R9W, Sec. 15
T'GQ—l
&= [and
'y o
i ® M EV-2300 3.9°7/100" 400" T26S, R9W, Sec. 16
N GREP-1-29 8.6°F/100" 359! T27S, R9W, Sec. 29
o 0 U.U.-76 2.8°F/100" 225! T26S, R9W, Sec. 19
I E‘: T0G0-3
u:%
P GREP-1-21 24.4°F/100" 475" T26S, R9W, Sec. 21
Q EV-2000 1.1°%F/100' 300" T26S, RIOW, Sec. 36
™ -
o R T - #3 9.6°F/100' 328" T27S, R9W, Sec. 5
U:(D
S U.U.-75 3.9°F/100" 323" T27S, R9W, Sec. 18
BBC
o T U.U.-75 26.3°F/100" 135" T26S, R9W, Sec. 27
e T.G.-12
1R
=]
qm
U T - #8 10.6°F/100" 250" T27S, R9W, Sec. 21
= =
Ik ' EV-4600 4.6°F/100" 230" T26S, R9W, Sec. 23
= O

"Data Sheet of Selected Shallow Temperature-Gradient Drill Holes Used
in the Temperature Profile Cross Sections and Fence Diagrams"
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FIGURE 2
ROOSEVELT HOT SPRINGS UNIT - UNIT MAP

The figure in the plastic envelope
following this page depicts the information
above.
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FIGURE 3. GENERAL GEOLOGIC MAP OF THE MINERAL MOUNTAINS AND VICINITY,
BEAVER AND MILLARD COUNTIES, UTAH. GEOLOGY COMPILED FROM EVANS
(1977), HINTZE (1963), WHELAN (1973,1977), BAER (1973), AND WELSH (1973).
CARTER & COOK (1978). EXPLANATION

SEDIMENTARY ROCKS

QUATERNARY ALLUVIUM

QUATERNARY OPAL AND OPALINE SINTER
QUATERNARY CEMENTED ALLUVIUM
CENOZOIC SEDIMENTARY ROCKS

CENOZOIC

MESOZOIC { [M_] MESOZOIC SEDIMENTARY ROCKS

PALEOZOIC { [[P] PALEOZOIC SEDIMENTARY ROCKS

METAMORPHIC ROCKS
PRECAMBRIAN -{_ [Re | PRECAMBRIAN METAMORPHIC ROCKS

IGNEOUS ROCKS

[ TERTIARY INTRUSIVE ROCKS

QUATERNARY BASALT

QUATERNARY RHYOLITE DOMES

QUATERNARY RHYOLITE FLOWS

QUATERNARY VOLCANIC TALUS

QUATERNARY ASH FLOWS

LATE TERTIARY BASALT FLOWS

LATE TERTIARY RHYOLITE FLOWS

TERTIARY ROGER PARK BRECCIA

TERTIARY VOLCANICS, UNDIFFERENTIATED
TERTIARY BULLION CANYON RHYOLITE
TERTIARY DRY HOLLOW LATITE

TERTIARY MOUNT BELKNAP RHYOLITE

Tvii ] TERTIARY JOE LOTT TUFF

TERTIARY NEEDLES RANGE LATITIC IGNIMBRITES
TERTIARY ISOM ANDESITIC - LATITIC IGNIMBRITES

LATE TERTIARY ANDESITE - TRACHYTE - LATITE
PYROCLASTICS

(-4
-

—
3

CENOZOIC

)
-

=1 4] [= =
LR

=
=

Tvi

—
-]
3

r

THRUST FAULT,
GEOLOGY CONTACT ~v—v—=v— BARBS ON THRUST SHEET

NORMAL FAULT (BALLS —+H++++— RAILROAD
INDICATE DOWNTHROWN & HIGHWAY

SIDE)
—===— STRIKE-SLIP FAULT T ROAD
{ARROWS INDICATE DIR- i HIGH THERMAL GRAD -

i IENT ANOMALY AREA,
¥ QUTLINE FOLLOWS
300°C/KM CONTOUR

ECTION OF RELATIVE
MOTION)




a

.
S

P ‘%D«i y W {fﬁf

Ty aua( MOLNTANS

/

Tzﬂ '\ \
A o7 T !

o e y\. } AN e bt /

4 ’.”‘FQ&/ SQQ Lt N P e Sty S

FIG. 4. GEOLOGY MAP




-j-m——w———-—‘—-—L‘-ﬁ_——d‘ﬁﬁ=l=-¢!a=ﬂ—-
|
§
19 : 20 21 | 22 | s
SRR B e T
-J- | \‘
T ED G ‘
30 29 28 \ 4
OH-4 823
T e
26 31 32 33
S
NEGRO |[MAG WASH-S
Qal FAULT

)
w4

-‘\-:\— s > e = = s > m A T e e = b-——-ﬂ.—— == anem

Lo o o e e & 4 .

ROW

191 GRANITE

i
|
.L—-—-
30 29
|
LEGEND
Qal | ALLuvIUM

| HOT SPGS DEPOSIT

VOLCANICS

g 5 i

4 GEOTHERMAL WELL
9 OBSERVATION HOLE

METAMORPHICS

PHILLIPS PETROLEUM
GEOTHERMAL OPERATIONS

ROOSEVELT HOT SPRINGS UNIT
GENERALIZED GEOLOGIC MAP
BEAVER COUNTY, UTAH
Modified From C.A. Pefersen

FIGURE 5




FIGURE 6

ROOSEVELT HOT SPRINGS KGRA -
DETAILED GEOLOGIC MAP

The figure in the plastic envelope
following this page depicts the information
above.
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FIGURE 13

ROOSEVELT HOT SPRINGS UNIT AREA
TEMPERATURE GRADIENT CONTOUR MAP

The figure in the plastic envelope
following this page depicts the information
above.
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FIGURE 18
FENCE DIAGRAM - EAST-NORTHEAST VIEW

The figure in the plastic envelope
following this page depicts the information
above.
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FIGURE 19
FENCE DIAGRAM - EAST VIEW

The figure in the plastic envelope
following this page depicts the information
above.
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FIGURE 20
FENCE DIAGRAM - NORTH VIEW

The figure in the plastic envelope
following this page depicts the information
above,
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FIGURE 27
INDEX MAP

The figure in the plastic envelope
following this page depicts the information
above.
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