COCLC FirstSearch: Display

Request Identifier: 41199574

Receive Date:

Request Date: 20080326

OCLC Number: 68565674 Borrower: UUM

Due Date: N/A

Imprint: 2005.

Patron: Yoshida, Shima

Request Type: Loan

Call Number:

h

Lenders: GID, *GIM, GIS, GIS

Edition: Open File Report 76-0288

Your requested information from your library US GEOL SURVEY LIBR

GENERAL RECORD INFORMATION

BIBLIOGRAPHIC INFORMATION

BORROWING INFORMATION

Title: Magnetotelluric soundings in the Darrough Hot Springs area, Nevada

Verified: <TN:485896><ODYSSEY:utah.illiad.oclc.org/UUM> OCLC

SHIPPED - Lender

Bill To:	same			
Ship Via:	ARIEL FAX/UPS/1ST			
Electronic Delivery:	Odyssey - utah.illiad.oclc.org/UUM			
Maximum Cost:	IFM - 0			
Copyright Compliance:	None			
Billing Notes:	IFM Preferred			
Fax:	PLEASE SEND ARIEL: 155.97.13.119FAX:(801)581-4882			
Email:	ILL-REQ@LIBRARY.UTAH.EDU			
Borrowing Notes: BCR/AMIGOS/ARL/GWLA				
	LENDING INFORMATION	-2,-0		
Lending Charges:	NONE			
Shipped:	20080328			
Ship Insurance:				
Lending Notes:				
Lending Restrictions:				
ttp://firstsearch.oclc.org	g/WebZ/FSPage?pagename=sagefullrecord:pagetype=print:entityprinting=true:en	3/28/2008		

Ship To: INTERLIBRARY LOANS/MARRIOTT LIBRARY/UNIVERSITY OF UTAH/295 S 1500 E SALT LAKE CITY, UT 84112-0860

6.

41199574

Status: SHIPPED

Source: ILLiad

Need Before: 20080425

Renewal Request:

New Due Date:

1229--NO 16-288

UNITED STATES DEPARTMENT OF THE INTERIOR

GEOLOGICAL SURVEY

E Reports - Open all serviced

Magnetotelluric soundings in the Darrough Hot Springs Area, Nevada

By

J.E. O'Donnell

U.S. Geological Survey

Open-file Report No. 76-288 1976

This report is preliminary and has not been edited or reviewed for conformity with U.S. Geological Survey standards and nomenclature.

Released 14.76

LIBRARY

Magnetotelluric Soundings in the Darrough Hot Springs Area, Nevada

By J.E. O'Donnell

Two magnetotelluric soundings (MTS) were made in the Darrough Hot Springs area, one at the hot springs (38° 49' 29" latitude, 117° 10' 55" longitude) and the other four miles east (38⁰ 49' 20" latitude, 117⁰ 06'30" longitude) of the hot springs. The Cagniard resistivities are tabulated in table one along with the audio-magnetotelluric data for the hot springs and the one-dimensional model apparent resistivities derived from the data. The MTS data (.01-.3 Hz) is strongly anisotropic with the northsouth (\mathcal{C} x) resistivities being approximately a factor of ten greater than the east-west $(\mathcal{C} y)$ resistivities for the lower frequencies. Further more the data was found to be too three-dimensional for two-dimensional tensor analysis. An average apparent resistivity was made (table 1) for the Darrough Hot Springs site and then used for inversion data to produce the model given in table 2.

1

SITE: DARROUGH HOT SPRINGS					NGS	COMPUTED MODEL_DATA FROM			FOUR MILES EAST OF DARROUGH HOT SPRINGS				
	f	= Cx	Су	ē		PA			Сх	Ру			
									an di Angelaria Maria angelaria				
	0.01	12	3.0	4.0		5.0			20.0	0.6		• •	
	0.04	80	10.0	10.0		6.4			70.0	4.0		1.0	
	0.08	4	0.6	1.5		4.6	· · ·		7.0	0.7			
	0.12	3	0.4	1.1		3.5			2.0	0.7			
	0.16	3	0.8	1.5		2.8			1.2	0.9			
	0.20	3	1.0	1.7		2.4			1.5	0.9			
	0.24	6	1.0	2.4		2.2		landari ang sa	1.5	0.8			
	0.28	10	3.0	5.5		2.0			1.0	2.0			
	7.5	5.7	5.0	5.3		2.9			na haran da karan yang sang sang sang sang sang sang sang s				
	10.0	6.3	2.6	4.0		3.2					\sim		
N	14.0	5.3	3.0	4.0		3.7							
	27.0	5.9	3.9	4.8		4.9		· · · · · · · · · · · · · · · · · · ·					
	76:0	6.6	6.3	6.4		8.5							
	285.0	9.2	10.6	9.9		21.5			en en la companya de				
	6700.0		108.0	290.0		330.0	•						
г	10200.0		309.0			475.0							
	<u> </u>			· <u>····································</u>		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	···· · · · · · · · · · · · · · · · · ·				1.1	

TABLE 1CAGNIARD RESISTIVITIES AND FREQUENCIES FOR TWO SITES AND MODEL RESISTIVITIES
COMPUTED FOR DARROUGH HOT SPRINGS.

LAY	ER	RESISTIVITY (OHM-METRES)	THICKNESS (METRES)
		800.0	80
2		1.6	340
3		4.0	230
4		0.6	160
5		60.0	6400
6		0.5	

TABLE 2THEORETICAL MODEL USED TO DERIVE APPARENT RESISTIVITIESGIVEN IN TABLE 1.