Babaie, Hassan Ali

STRUCTURAL AND TECTONIC HISTORY OF THE GOLCONDA ALLOCHTHON, SOUTHERN TOIYABE RANGE, NEVADA

Northwestern University
Рн.D. 1984
University
Microfilms
miternational 300 N . Zeeb Road, Ann Abbor, M1 48106

INFORMATION TO USERS

This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted.

The foflowing explanation of techniques is provided to help clarify markings or notations which may appear on this teproduction.

1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity.
2. When an image on the film is obliterated with a round black mark, it is an indication of either blurred cony because of movement during exposure, duplicate copy, or copyrighted materials that should not have been filmed. For blurred pages, a good image of the page can be found in the adjacent frame. If copyrighted materials were deleted, a target note will appear listing the pages in the adjacent frame.
3. When a map, drawing or chart, etc., is part of the material being photographed, a definite method of "sectioning" the material has been followed. It is customary to begin filming the upper left hand corner of a large sheet and to continue from left to right in equal sections with small overlaps. If necessary, sectioning is continued again-beginning below the first row and continuing on until complete.
4. For illustrations that cannot be satisfactorily reproduced by xerographic means, photographic prints can be purchased at additional cost and inserted into your xerographic copy. These prints are available upon request from the Dissertations Customer Services Department.
5. Some pages in any document may have indistinct print. In all cases the best available copy has been filmed.

University
Microfilms International

300 N . Zeeb Road
Ann Arcor. M1 48106

NORTHWESTERN UNIVERSITY

Structural and Tectonic aistory of the Golconda Allochthon, Southern Toiyabe Range, Nevada

A DISSERTATION
SUBMITTED TO THE GRADUATE SCHOOL IN PARTIAZ FULFILLMENT OF THE REQUIREMENTS
for the degree

DOCTOR OF PHILOSOPHY

Field of Geological Sciences

By
Hassan Ali Babaie, H. A.

- PhD.

EVANSTON, HLIINOIS

August 1984

The Golconda allochthon and the subjacent autochthonous Permian Diablo Formation in the southern Toiyabe Range record Paleozoic and Triassic depositional and tectonic events that permit partial reconstruction of the architecture of the local North American continental margin in that period. The allochthon consists of moderately to steeply-dipping NK-striking fault-bounded packets that mainly include upper paleozoic rocks. In genersl, the lowest packets contain terrim genous rocks, and hemipelagic, volcanogenic-basaltic, and pelagic rocks occur in progressively higher packets. Subordinate packets of lower Paleozoic and Lower Triassic rocks occur at the base of the allochthon. Serpentinite occurs near the base of the allochthon as clasts in terrigenous packets and as lenses in packet-bounding faults.

Five phases of deformation are recognized in the upper paleozoic packets: 1) isoclinal $F 1$ folding and formation of axial plane cleavage, 2) thrust imbrication, 3) F2a folding in packet-bounding thrusts and local F2b folding along the thrusts, 4) F3 kink folding, and 5) local $F 4$ folding and faulting at the Golconda thrust zone. Deformation of lower Paleozoic rocks in the Golconda allochthon occurred partly before attachment to the allochthon. The Lower Triassic rocks are less deformed than the other rocks in the allochthon. The autochthonous Diablo Formation is homoclinal with sporadic mesoscopic folds. An east-west component of contraction that persisted through most phases of deformation is indicated by the tectonic fabric in upper Paleozoic
rocks.
The Golconda allochtion may represent an accretionary prism of a west-dipping subduction zone related to an intraoceanic island arc that existed between the Mississippian and Early Triassic. Upper Paleozoic rocks were deposited in the continental shelf and slope, and abyssal plain of an oceanic basin that existed east of the arc. The Triassic rocks may be interpreted as foreland basin deposits of the Golconda accretionary prism. These were overthrust by the prism and were partiy incorporated with lower paleozoic rocks into it as the prism prograded east, relative to North Americs, by accretion. The serpentinites may represent oceanic crustal or mantle rocks that were incorporated into the allochthon by upward plastic motion along packet-bounding thrusts or extensional faults, sedimentary processes, or a combination of these.

ACXNOWLEDGEMENTS

I am particularly grateful to R ．C．Speed for introducing we to the problem，his continuous support and guidance throughout the work， and critical review of the manuscript．I would like to thank A．A． Babaie and my wife S．Babaie for their field assistance．

I wish to thank B．M．Murchey and D．L．Jones and A．G．Harris for the identification of radiolaria and conodonts，respectively．This research was funded by grants from Gulf Oil Co and NSF \％GAR－7911150 （R．C．Speed，principal investigator）and by the Geological Society of America and Northwestern University＇s Special Dissertation Fund．

ABSTRAC
ACKNOYL
TABLE 0
page

ABSTRACT il
ACKNOGLEDGEMENTS iv
TABLE OF CONTENTS V
LIST OF TABLES viii
viiiLIST OF PLATES .viii
LIST OF FIGURES x
CEAPTER 1: INTRODUCTION 1
Background 1
Statement of the problem 11
Method of study 13
CHAFTER 2: TZCTONOSTRATIGRAPHY OR THE GOLCONDA ALLOCKTHON IN STUDY AREA $1 c$
Introduction 14
Allochthonous rocks 23
I- Upper Paleozoic rocks 23

1) Terrigenous rocks 25
Depositional environment 30
2) hemipelagic rocks 32
Depositional envizonment 32
3) Volcanogenic rocks 33
Depositional enviroment 35
4) Pelagic rocks 40
Depositional enviroment 41
Facies analysia 42
II- Lower Paleozoic rocks 44
III- Triassic and Triassic (?) rocks 45
Depositional enviroment 46
Unit 6 47
Autochthonous rocks 49
Lower Paleozoic rocks 49
Diablo Formation (Pd) 50
Depositional envirorment 51
Toiyabe Quartz Latite (TqI) 52
Ophir pluton (rgr) 52VI
Introduction 53
Pre-thrust deformation 56
Syn-thrust deformation 57
Post-thrust deformation 57
Method and terminology 57
E1 folds 60
Doanin 12 60
Domain 7 66
Other domains 66
F2a folds 81
F2b folds 86
F3 folds 90
Domain 7h5 92
Domain 8 97
Domain 12 102
Discussion
102
102
Geometric analysis of kinks 107
Migration model 107
Rotation model 110
Results 110
Tectonic fabric at the Golconda thrust zone 116
Tectonic fabric in donain 9 123
Tectonic fabric of the Diablo Formation 131
Tectonic fabric of autochthonous lower paleozoic rocks 137
Strain analysis 140
Introduction 140
Theory of strain of elliptical grains 140
Initial grain shape 143
Initial grain orientation 143
Ductility contrast between grain and matrix. 144
Volume change during strain 145
Orientation, amount, 147
Incremental rotations 147
Errors
148
148
Strain measurement in the study area 148
Two-dimensional strain analysis 153
Results 154
Correlation between different methods 158
Implications 165
Three-dimensional strain analysis 169
Results 171
Packet 7 171
Packet 12 176
Discusaion 176
CHAPTER 4- RINEMATICS OF SEQUENTLAL PROCESSES AND RECONSTRUCTION OF THB PALROGEOGRAPEY 182
Age of emplacement of the Golconda allochthon in the area. 182
Rinematics of sequential events 183
Paleogeography and plate tectonics reconstruction 192 199
Serpentinization
Serpentinization Correlation with other parts of the Golconda allochthon 202
Jett to Wall Canyons 202
New Pass Range 203
Northern Nevada 205
References 207
APPENDIX I- METHODS OF TWO DIMENSTONAL STRAIN ANALYSIS 219
Group I methods 219
Slope method 219
Arithmetic, geometric, and harmonic mean methods 220
Group II methods 222
Shimanoto-Ikeda method 222
Polar graph method 223
Tobisch and others method 224
Holst method 225
Robin method 225
Rf/\$ method 226
APPENDIX IE- METHOD OF THREE-DIMENSIONAL STRAIN AMALISTS 229
VITA 236

Table
Page

Chapter 1

1-1 Lithology, age, and contacts of four tectonostratigraphic complexes that make up the Golconda allochthon in different parts of Nevada

Chapter 2

2-1 Lithology and age of autochthonous units in the Gol- 16 conda allochthon and their relationship to faultm bounded packets and lithic types
2-2 Description and age of the radiolaria and conodonts 24 dated in this study
2-3 Lithology and age of terrigenouc lithic units
2-4 Facies and depositional enviromment of the four major 43 upper Paleozoic lithic types in the Golconda allochthon

Chapter 3

3-1 Deformational events in the upper paleozoic section of54 the Golconda allochthon
3-2 Deformational events in the lower Paleozoic (?) packet 124 9
3-3 Results of two-dimensional strain for 34 thin sections155
3-4 Results of three-dimensional strain analysis for the 9 172

LIST OF PLATES

[^0]
Figure

Chapter 1

1-1 Locality map and geography of the study area 2
1-2 Map showing the extent of the Golconda allochthon and the location in the study area
1-3 Two major tectonic models for the formation and 10 emplacement of the Golconda allochthon

Chapter 2

2-1 Geological map of the study area showing the distribu- 15 tion of lithic units, packets, and cross section transects
2-2 Tectonostratigraphy of all the rocks in the study area 18
2-3 Cross sections in the Golconda allochtion of the study. 20 area
2-4 location and number of dated specimens in the Golconda 22
$2-5$ Location of clastic and fault zone serpentinites 29

Chapter 3

3-1 Map showing structural domains in the Golconda allo- 58 chthon
5
3-2 Three-dimensional diagram of a fold showing the parame- 59
ters measured for fabric analysis
61
61
3-3 Distribution of the amplitude and halfwavelength of Fl
folds

3-4 Orientation data of Fi structures in domain 1263

3-5 Orientation of $F 1$ structures in three subdomains of 64 domain 12 b
3-6 Orientation data of Fl structures in domain 7 h 567
$\begin{array}{lll}3-7 & \text { Orientation data of Fl structures in domain } 1 & 69 \\ 3-8 & \text { Orientation data of Fl structures in domain } 3 & 70\end{array}$
3-9 Orientation data of $F 1$ structures in domain 4
71
3-10 Orientation data of EL structures in domain 5
3-11 Orientation data of F1 structures in domain 7 t3 73
3-12 Orientation data of Fl structures in domain 8 75
3-13 Orientation data of 51 structures in domain 11 76
3-14 Orientation of bedding and cleavage in domain 13 77
3-15 Orientation data of F1 structures in domain 14 78
3-16 Orientation of bedding and cleavage in domain 25 80
3-17 Orientation of bedding and cleavage in the Golcondaallochthon and autochthon
3-18 Constructed profile of the F2a macroscopic fold inOphir Canyon
3-19 Orientation data of the macroscopic F2a fold in Ophir
Canyon

3-20 Orientation data of $F 1$ structures in both limbs of the macroscopic fold and a flexural slip model for their deformation by the $F 2$ a fold
3-21 Orientation of the apical angle, amplitude, and 87
halfwavelength of the $F 2 b$ folds

3-22 orientation data of F 2 a folds in domain 7 h 5 a 89
3-23 Geometry of a kink fold, showing lines and angles meas-ured in the field
3-24 Orientation data of F 3 folds in domain 7h5a
94
3-25 Summary orientation data of $\mathrm{F3}$ folds in domain 7 h 5 a andthe range of allowable shortening directions for $F 3$folding
3-26 Orientation data and picture of intersecting S and Z 96kinks in domain 7h5a
3-27 orientation data of F 3 folds in domain 7 h 5 b98
3-28 Sumary orientation data of F 3 folds in domain 7 h 5 b , 99showing the range of allowable shortening directionsfor kink folding
3-29 Orientation data of kinks in the southern part of 100

domain 7 h 5 a
3-30 orientation data of F 3 folds in domain 8 101
3-31 Orientation data of $F 3$ folds in domain $12 b$ 103
3-32 Summery orientation data of 53 folds in domain 12 b 104
3-33 Orientation data of F3 folds in domain 12a 105
3-34 Migration and rotation models for formation and growth 108of kinks
3-35 A flexural slip model showing the effect of rotation on 109dilation and angular parameters of kinks
3-36 Distribution of linear and angular features of kinks in the study area
3-37 Relationship between geomotric features of kinks 112
3-38 Pictures of kinks showing axial plane cracks and frac- 115 tures
3-39 Orientation data of F 4 folds and associated faults in the Golconda thrust zone
3-40 A method to determine slip direction using axial plane 119of a fold and associated fault
3-4l Orientation data of F4 folds, slip directions, associ-120 ated faults, and striations in the Golconda thrust zone
3-42 Orientation data of kinks in the Golconda thrust zone, north of Ophir Canyon
3-43 Orientation data of kinks south of Ophir Canyon in the Golconda thrust zone
3-44 Orientation of tabluar clasts and bedding in domain 9b125

Orientation of homoclinal bedding and two in domain gb
3-45 Orientatio
domain 9a
3-46 Distribution of the apical angle, amplitude, and 3-46 Distribution of the apical angle 127
3-47 Orientation data of folds in station 146 of domain 9 a 128
3-48 Orientation data of folds in atation 147 of domain 9a 130
3-49 Schematic diagram showing the relationship between dif- 132ferent structural elements in domain 9a
3-50 0rientation of bedding and cleavage in autochthonous 133Diablo Formation
3-51 Orientation data of a fold and an associated fault in 135autochthonous Diablo Formation
3-52 0rientation of disharmonic folds in Diablo Formation 136
3-53 Orientation of bedding and cleavage in the autochtho- 138nous lover Faleozoic rocks
3-54 Map showing the location and number of oriented speci- 149mens for strain analysis
3-55 Orientation of thin sections and calculated principal 151directions in the oriented specimens of packet 7
3-56 Orientation of thin sections and calculated principal 152
directions in the oriented specimens of packet 12
3-57 Typical grain long versus short axes plot in a slate 156specimen3-58 Relationship between the coefficient of linear correla-157
tion (r) and initial grain axial ratio and strain ratio
3-59 Polar graph showing heart-shaped distribution 159
3-60 Typical $\mathrm{Rf} / \phi, \mathrm{Ri} / \theta$, and Chi-Square graphs 60
3-61 Relationship between the estimates of strain calculated 162by the two methods of two-dimensional strain analysis3-62 Relationship between $\%$ error of each method of group i163and strain ratio of all group II two-dimensionalmethods
3-63 Relationship between $\%$ error of each method of group164and average initial axial ratio3-64 Relationship between z error of each method of group Iand average initial axial orientation
3-65 Correlation between strain ratio calculated by dif- ferent methods of group II166

3-66 Relationship between the harmonic mean and strain axial ratio
3-67 Principal directions and deformation plot for specimens in packet 7
3-68 Ramsay and Wood's (1973) deformation plot for slates from the Caledonites of NW Europe and the Eastern United states and the results of this study
3-69 Relationship between principal extensions and ratios and structural position of the specimen above the Golconda thrust in packet 7 and 12
3-70 Principal directions and deformation plot for specimens in packet 12

Chapter 4

4-1 An accretionary model for the formation of $F 1$ and F 2 a folds in the Golconda allochthon
4-2 Synthetic fabric for the acretionary model of deformation of the upper Paleozoic section
4-3 A forward flexural slip model for F 2 b folaing
4-4 A flexural slip model for 54 folding
4-4 A flexursi silp model for f4 folding depositional processes that evolved the upper Paleozoic section of the Golconda allochthon
4-6 A model for the Triassic paleogeography and tectonic and depositional processes
4-7 Three alternative tectonic models for the origin and mode of emplacement of serpentinites in the Golconda allochthon

Appendix II

APPultriangle construction of three-dimensional method of strain snalysis for specimen $\$ 16$.
APP-2Mohr Circle construction of three-dimensional strain analysis for specimen $\underset{\sim}{*} 16$.

CHAPTER 1 - INTRODUCTION

Background

The study area lies in the southern Toiyabe Range, Nevada, between Ophir and Marysville canyons (Figure 1~1). The range exposes extensively pre-Tertiary rocks that include 1) autochthonous and allochthonous (relative to the Golconda thrust) lower Paleozoic rocks that can be correlated with those of the Roberts Mountains allochthon and autochthon, 2) late Paleozoic and possibly Triassic cover strata (Diablo Formation of Speed and others, 1977) that lie unconformably over the autochthonous lower Paleozoic rocks, and 3) the Golconda allochthon, which includes different packets of sedimentary and volcanic rocks of early and late Paleozoic and Early Triagsic ages. The pre-Tertiary rocks are intruded by a pluton of early Tertiary $X-A r$ age (Speed and McRee, 1976) and covered by volcanic rocks (Ferguson and Cathcart, 1954; Kleinhampl and 2 iony, 1967).

This dissertation focuses mainly on 1) the Golconda allochthon and its fault-bounded packets that include varied upper Paleozoic oceanic Eacies (Pablo Formation of Speed, 1977a; Table 1-1), lower Paleozoic hemipelagic rocks, and terrigenous rixiassic rocks, 2) the upper paleom zoic Diablo Formation (Speed and others, 1977; Chapter 2), and to a lesser degree 3) the autochthonous lower Paleozoic rocks immediately below the Golconda thrust.

The Sonoma orogeny (Silberling and Roberts, 1962) or Sonoma event (Speed, 1982) mas defined in central Nevada as the cause of folding and

a, between

 ses extenm allochthos that can and auto
ta (Diablo

Figure 1-1, Locality man of clee arudy area.
rectonostratyciraputc COMPLEX
gescription

Lichology: bedded chers, pelite, quartzote sandston sandy ilacstone, pebbly sandstone, volcamorenic curbidite, tholefitic basalt, massive sulifde, she e and Mn ceposits.
Fosgilas a qidde solfcanpian and early leonardian usulinids and Pemaryivanian co Easiy Pernian cono-
donrs (stevart and others, (977). decrital wadie
Contacts : bounded st the botton by the Golconds, 1962).
pper ?sicozoic overisp sequence by the oolconda thrust,
pper ialeozole overisp sequence ant the roberts with overlying Trisisnic rocks is deposicional.

Litholong: clayey and silicy nutgeone, slate, hornels.. bedded chert, plllowed, missive, sand porpyri-
 grasined volcanosenis sedimentary tacks.
fossily : Mistissippian co Peraian radiolatia and conodoñes
Contaccs; bounded at the base by the Colconda chrust, The Tower plate of the chrust is Yeroian Diablo Forzachon and power paleozoic rocks, eertiary voleanic these ar the top paleogene granitis rock tatrud ail rocks.

Lichalagy : greenacone, bedded cherc, siliceous peifice, chert-pebsie congionerate, quartzose arentre pebdly mudstone, silty inmestone, and volcanogenic rocks
Eossils : radiolatia in chert of the lower half of
Ehssins : radiolatia in chert of the lower half of ppian at the base and ab young zs Eatiy Pennaylvanian in the structuraily higher pares of the sequence (Millee snd others, 1982).
Contsets : the Golconda thruse separates the rocks of the sequence fron the Late Mistissippian to Pernian shallow water rockn.
 pillow sasalt, fascerold, hedded jasper, sod oinor sandatona and greenatone.
Hillou
Canyon
canyon
comario
rosains leonard and possibly Guddaluplan radiolaria
iñ chêrt.

Contacts: a misjor thrust, equivalent to the Golcand
chrust, separates the formasion from the authoch-
thonoua Permian Wildcat Pask Fornacion that is pate
of the overisp sequatice.
Fagnn, 1962
Churkin and Kay, 1967 Churkin and Kay, 1967
Mriler and ochers, 19R1,2
Ferguson and Carhcarc, 195
R, C, Speed, unpub. data, 197l-7 R, C, Speed
Speed, 1977 Speed, 1997
chis study
Huller and ochera, 195!
liberins and oiscts, 1962
zeuart and other
szeuart and others, 1977
Snyder and Brueckner, 1983

Table 1-1. Lithology, ase, and contacts of four tectonoscracigraghic somplexes thas inixe up the Colconda allochthon in different parts of Nevada
thrusting of the oceanic upper paleozoic rocks of the Golconda allochthon and its emplacement over the partly coeval shallow marine rocks of the continental sheif and older Roberts Mountain allochthon (Silberling and Roberts, 1962). The event is characterized by the lack of associated magmatism, metamorphism, and severe deformation of the lower plate of the Golconda thrust (Speed, 1979).

The Golconda allochthon, the upper plate of the Golconda thrust (Speed, 1971b) crops out over 380 km from the southern Toiyabe Range to northern Nevada (Figure 1-2). The tectonostratigraphic units attributed to the allochthon in different parts of Nevada include the Havallah sequence (Silberling and Roberts, 1962; Stewart and others, 1977; Snyder and Brueckner, 1983), the Pablo Formation (Ferguson and Gathcart, 1954; Speed, 1977), the Schoonover complex (Hiller and others, 1982), and the Willow Canyon Formation (Laule and others, 1981). The lithology, age, and contacts of these assemblages are described briefly in Table 1-1.

The upper Paleozoic rocks of the allochthon are interpreted as deep ocean floor deposits (Speed, 1971; Silberling, 1973; MacMillan, 1972; Speed, 1977a,b; Stewart and others, 1977; Snyder and Brueckner, 1983) because of bedded radiolarian chert, red mudstone, pillowed basalt, and distal turbidite. The deep water, trace fossil, Lophoctenium (Stewart and ochers, 1977), occurs at places. Other upper paleom zoic rocks of the allochthon include volcanogenic turbidites and serpentinite bearing siliciclastic sedimentary breccia.

The Golconda thrust was defined in the Sonoma Range Quadrangle in

Figure $1-2$, lao showing the extent of the Golconda allochthon and the location of the study area (shown by X). northern Nevada (Muller and others, 1951), extending from Battle Hountain northwest through Edna Kountain to the west side of the Sonoma Range. There, it superposes the so-called Pumpernickel and Havallah Formations (Ferguson and others, 1951, 1952; Muller and others, 1951; Silberling and Roberts, 1962), now called Golconda allochthon (Speed, 1971b), over upper Paleozoic carbonates and siliciclastic rocks and, in places, lower Paleozoic rocks of the Roberts Mountains allochthon. Based on the apparent continuity, thrust relationships, and ithic similarity of the Pablo Formation (Table 1-1) in the Toiyabe Range to the Golconda allochthon (Table 1-1) in northern Nevada, Speed (1971b) extended the Golconda thrust south of $39^{\circ}, 270$ miles south of its type locality, He redefined it as a single, laterally continuous fauit except for Tertiary disruptions that juxtsposes rocks of different lithology and deformation.

The Golconda thrust is recognized in the study area by the tectonic juxtaposition of folded and faulted upper Paleozoic oceanic rocks and, locally, lower Paleozoic and Triassic rocks over the homoclinal, partly coeval shallow marine Diablo Formation and the rocks of the Roberts Mountains allochthon. The thrust is a regionally mappable surface across which is an abrupt facies and deformation change, and is characterized in places by the existence of many local fauits and associated folds. The Pablo Formation (Table 1-1) in the upper and the Diablo Formation (Speed and others, 1977) in the lower plates of the Golconda thrust in the southern Toiyabe Range are correlated with the allochthonous upper Paleozoic rocks of the Havallah sequence and Antler
sequence in northern Nevada, respectively (Speed, 1977a; Speed and oth- ${ }^{7}$ ers, 1977).

Silberling and Roberts (1962), Speed (1971b), and Silberling (1973, 1975) proposed on the basis of the unconformable superposition of rhyolitic and clastic rocks of the Permian (?) and Early Triassic Roipato Group oi the Golconda allochthon that the Golconda thrust predates the Koipato. The thrusting was after the deposition of the youngest part of the Antler Sequence (Silberling and Roberts, 1962 ; Table 1-1), the Edna Mountain Formation of mid-Permian age. The alkalic and siliceous ash flow tuffs of the Roipato Group are interpreted as deposited on block faulted terrain (Burke, 1973). Using detailed structural and sedimentological relations, Macmillan (1972) demonstrated that the emplacement of the allochthon occurred in Early Triassic time in the New Pass Range, where the allochthon lies with angular unconformity under upper Lower Triasaic conglomerate. Speed (1971b) constrained the emplacement of the allochthon between early Early Triassic and late Early Triassic using the ages of the youngest rocks overrun by the thrust and the oldest cover strata that may be correlated across the Golconda thrust, respectively.

Despite the apparantly well established Late Permian-Early Triassic age of the Golconda thrust (Speed, 1971a; Silberling, 1973, 1975), the contemporaneity of the thrust with the Sonoma event has been questioned by K.B. Ketner (Pers. comm., 1982), and a Jurassic-Cretaceous age for the thrust is proposed. According to him, the Sonoma and the Golconda thrust are tectonically unrelated events of different ages, He

Speed and oth-
nd Silberling superposition arly Triassic alconda thrust ition of the 2oberts, $1962 ;$ in age. The up are inter973). Using Millan (1972) ed in Early hon lies with erate. Speed between early the youngest a that may be

Early Trias 1973, 1975), been ques-ic-Cretaceous ma and the ent ages. He
believes that the rocks of the Golconda allochthon (Havallah sequence) were deformed at an unknown and distant location during latest Permian or earliest Triassic and were then overlain unconformably by shallow water Triassic sediments. Both the Paleozoic rocks and their Triassic cover strata were then emplaced in their present location via the colconda thrust during late Jurassic or Early Cretaceous. Retner's reasons for the above propositions are as follows (K. B, Ketner, Pers. comm., 1982; Ketner, 1982): 1) assignment of a deep water turbidite origin for Triassic rocks in the Adobe Range of northeastern Nevada, and a shallow water origin for Triassic rocks overlying the gavallah sequence west of this range, suggest that the entire stack of the Havallah and shallow water Triassic rocks to the west are out of place and displaced to their present position after the end of the Triassic; 2) paucity of orogenic Triassic sediments in the vicinity of the Golconda allocintion; and 3) absence of convincing examples of a Triassic formation lying with sedimentary contact across the Golconda thrust. His supporting evidences for the age of the Golconda thrust are as follows: 1) a thrust of intensely deformed siliceous Permian rocks, apparently part of the Golconda allochthon, was emplaced over folds of Jurassic or younger age in the peko Hills of northeastern Nevada; 2) the presence of widespread, thick, and coarse orogenic sediments of Cretaceous to Eocene age in Nevada.

A considerable literature entertaining origins of the Golconda allochthon by plate interactions has appeared in recent years (Moores, 1970; Burchfiel and Davis, 1972; MacMillan, I972; Speed, $1971 a, b, 1974$,

19778, 1978, 1979, 1983; Silberling, 1973, 1975; Dickinson, 1977; Poole and Sandberg, 1977; Snyder and Brueckner, 1983). Although an arccontinent collision has been applied as a basis to model and interpret the late Paleozoic-Early Triassic events, timing, paleogeography, and subduction zone polarity have been matters of dispute. Almost all work" ers agree on the idea that in Permo-Triassic time, the rocks of the Golconda allochthon were thrust onto the continental margin of the western onited States. There are basically two major competing models for the evolution and emplacement of the allochthon (Figure 1-3) as described bellow:

Forearc model - This model assumes that the rocks of the allochthon were deposited in oceanic basins that fronted western North America and were accreted to a forearc or accretionary prism (Karig and Sharman, 1975; Scholl and others, 1980) of a migrating island arc above a west dipping subduction zone (Speed, 1977b, 1978, 1979; Snyder and Brueckner, 1983). In this model, the Golconda thrust is the basal detachment surface under the prograding accretionary pile that brought the tectonically stacked rocks over the undersliding passive margin of the North American continental plate (Figure 1-3a).

Back arc model - This model assumes that the rocks of the allochthon were deposited in a local back arc basin of a subduction zone that dipped east below Nevada and were chrusted (obducted) onto the North American continental margin when the basin was closed (Burchfiel and Davis, 1972; Silberling, 1973; Churkin, 1974; Miller and others, 1982)
nson, 1977; Poole Ithough an axcdel and interpret eogeography, and Almost all workrocks of the al margin of the :ompeting models (Figure 1-3) as
lorth America and g and Sharman, arc above a west Snyder and ust is the basal le that brought assive margin of
the allochthon uction zone that onto the North (Burcheiel and others, 1982)

Sections depicting collision of Sonomiza at about $40^{\circ} \mathrm{N} ; w=$ water
Q - Forearc model
after R. C. Speed, 1979

Golconda

W-Back arc model
Figure 1-3. Two major models for the formation and emplacement of the Golconda allochthon.

Statement of the problem

The study area is one of two locations with extensive exposures of the Golconda allochthon in southern Toiyabe anange, the other being between Jett and Peavine Canyons (R. C. Speed unpub. data 1971-3). Only meager exposures of the allochthon exist farther south in Candelaria (R. C. Speed, pers. comm., 1983). Despite its geographically significant location, the thesis area has had only fes detailed investigations (Speed, 1977a; Speed and others, 1977; Speed and McRee, 1976; R. C. Speed and J.R. Macmillan unpub. data, 1971-7).

Many unresolved problems remain related to the Golconda allochthon that are critical in understanding the tectonic history and paleogeography of the western United States during late Paleozoic and Early Triassic times. In the study area, these problems include the following:

1. Late Paleozoic paleogeography of western margin of North Amerim can continent in what is now Nevada: the study area lies near to the buried edge of sialic Precambrian North America, as is indicated by strontium isotopic ratios and gravity gradients (Kistler and Peterman, 1978; Cogbil1, 1979; Speed, 1982b; Figure 1-2). The edge may represent a preserved segment of the Precambrian-Cambrian passive margin of the western North America (Stewart, 1972). The isotopic 0.706 contour coincides approximately with the westermost outcrops of autochthonous Paleozoic rocks of outer-shelf Eacies (Speed and Sleep, 1982). After the Precambrian rifting, rocks of the Roberts Mountains allochthon were
deposited in an oceanic basin west of the suture (Roberts and others, 1958; Kay and Crawford, 1964, Stewart and Poole, 1974; Matti and McKee, 1977; Speed and sleep, 1982) which were deformed and emplaced into the allochthon during the Antler event (Roberts, 1951) between Devonian and Mississippian.

After the eastward displacement of the Roberts Mountains thrust, a new basin was formed west of the then extended continental margin which received sediments between Mississippian and Permian or Triassic. Unknown are the location, age, extent, and nature of the basin in which the upper Paleozoic rocks of the allochthon were deposited; the location and configuration of the continental shelf and slope; and the existence and nature of an ishand arc associated with this basin.
2. Structure and tectonics of the Golconda allochthon: general architecture ; geometry of fault-bounded packets in the allochthon; kinematics and mechanism of tectonic processes responsible for folding, thrusting, and stacking of packets in different deformation phases; direction and magnitude of tectonic transport and strain; effects of Mesozoic and Cenozoic deformations on the Golconda allochthon.
3. History of the allochthon: time of deposition of the rocks in the Golconda allochthon and autochthon; times of deformation, accretion, and emplacement of the the allochthon; relative age of different deformation phases; relative timing of deformation and deposition in different packets; relative timing of attachment of lower Paleozoic, upper Paleozoic, and Triassic packets to the allochthon; age of the Golconda thrust.
4. Serpentinite: origin of the serpentinites that occur in fault slices in the allochthon; the source of sedimentary fragments of serpentinite in coarse grained clastic rocks; and their tectonic significance.
5. Triassic rocks in the allochthon: the site and extent of their deposition; where, when, and how they got involved with the allochthon; what is their tectonic and paleogeographic significance; what was the source of their clastics; and what constraint do they put on the age of the Golconda thrust.
6. Lower Paleozoic rocks in the allochthon: mechanism of their attachment to the base of the allochthon; their relation to the encroachment of the allochthon and nature of the continental margin; and where they were derived from.

Methods of study
To achieve an improved understanding and solutions to the aforementioned problems related to the Golconda allochthon, the study included detailed field mapping and description of rock types and their boundaxies, sampling for protolith age, petrography, strain analysis, and measurement of tectonic fabrics. The structural data were reduced, modeled, interpreted, and combined with the sedimentologic, petrom graphic, and paleontologic data to evaluate the sequential processes during the development and emplacement of the allochchon.

Eragments of serctonic signifi- the allochthon; ; what was the ut on the age of anism of their relation to the inental margin;

Introduction

This Chapter describes the architecture, lithology, age, mechanism of deposition, and depositional environment of the rocks in the upper plate, and to a lesser extent, lower plate of the Golconda thrust.

The Golconda allochthon, in the study area, is composed of 16 fault-bounded packets with a general north-northwest trend. Each packet, indexed by a number, includes one or more lithic units (Table 2-1, Figure 2-1). The term, unit, applies to individual rock bodies within the allochthon with distinct lithology, age, and boundaries. Although urit contacts may be depositional, they are commonly faulted, such that unit and packet boundaries coincide. Lithic units are indexed on the map by a letter that identifies their interpreted depositional character (e.g., h, for hemipelagic, Table 2-1), followed by a number that indicates their structural position in the allochthon (e.g. tl, t2, t 3); smaller numbers indicate lower structural positions (Table 21, Figure 2-1 \& 2-2). Figure 2-2 illustrates tectonostratigraphy of all the rocks in the study area.

The faults that separafe packets are identified by abrupt lithologic, structural, and in places, age discordance, by the occurrence of fault slices of carbonated serpentinite, by the presence of local faults and asscciated folds, and in the case of the Golconda thrust, by the presence of tectonized rocks. The faults that bound the packets

Figure 2-1. Geologic map of the study area. For description of lithic units see Table 2-1,

tacket	INTERPRETEID ROCK TYPE	mas smmag		Lithol.ogy	Acs
		mis	subunit		
16	votcanosente	v_{3}	-	volennogenic ondstone and sedsmentary breccta, pelite, and chett.	unknown
15	pelastic	${ }^{2}$	$\mathrm{P}_{2 \mathrm{n}}$	bedded radiolnrian chert, pelite, red jnapar, mansive and bedded volesnogenic oandatone and alitacone.	opectreen 38 v. latest Mins. or v. garileat peracsyl.
			${ }^{\text {Pb }}$	mansive crystalline basale.	unknoun
			$P_{2 c}$	chert-quartzite-rerpentinite nedimentary breccia.	unknown, but correlates with units v_{1} and v_{2}
14	volcanogente	v_{2}	${ }^{2}{ }_{2}$	volcanogenic sondstome sud sedimeneary brecefn, pelite, cinert, plllowed, onnalye, and gorphyxitic banalt, and pillow brectia.	Bpecimen 61 Feralan (Guodalupgan)
			$\mathrm{v}_{2}{ }^{\text {b }}$	enssive and porphyritic masale.	unknoum
13	pelagie	p_{1}	-	bedded chert and minor pelite suterbeds.	Specimen 12 prob. Minsistippian
					spectiren 13 v. latest Miss. or v. earlfest Pemnsy1.
					opecimen 74 prot. Khas or Pemsyt.
12	hemipelastc	${ }^{6}$	-	pelite, chert. and minor chert-quartzite mandstose.	uninnown but corestates whth unit ts
11	volcanogenic	${ }^{v}$	$v_{\text {in }}$	as $\mathrm{v}_{2}{ }^{\text {a }}$.	apecsmen 170 Pemasyl. to E. Peymian
			${ }^{1}{ }_{16}$	mainly pillowed and otlier types of basale.	unknown

Table 2-1. Lithology and age of allochthonous units fon the Golconda allochtion, and their relationshif to fault bounced packets and lithic associations.

шпоияи	- ouozspuea z3zent otrswis
sojerajion ana unvurun	2xisy poppoq utit pue saytod
767 - पumpoass	
nesagnopzo -a juastrea 	
287\% Mows mads	
25sversi Kipwquas cost it umponse	
(flyostupudz onxy kontz so 'f, so Jues zay ‘uncuyun	-3uorypure
(uexory or uenozawis)	
versnapao кyerz 	

Figure 2-2, Tectonostratigraphy of all the rocks in the study area. See Table $2-1$ for description of the lithic units. are in genersl moderately to steeply dipping (Figure 2-3) and except lower in the allochthon are not messurable.

The exposed width of packets varies between 0.1 and 2.2 km (Figure 2-1). In general, the structurally higher packets are wider and longer than the lower ones, and continue with almost the same lithology, though not necessarily the same age, for distances of at least 9 km . Among upper Paleozoic rocks, packets with volcanogenic and pelagic rocks make up the bulk of the Golconda allochthon in that order. Upper Paleozoic hemipelagic rocks, although more extensive than terrigenous rocks, occur in narrower and less continuous packets relative to pelagic and volcanogenic rocks.

Figure 2-3 shows cross sections of the Golconda allochthon. Two sections are shown for each transect; they provide alternative structural interpretations based on whether or not lithic units are correlated among packets. In the upper section for each transect, packets are assumed to contain unrelated rocks; in the lower section, however, similar rocks are correlated and asamed to be part of a single packet folded during syn-thrust F2a event (Chapter 3). Packets contain Iithic units of varied facies that are distributed in the following order: In an east to west traverse, moviag structurally upsection, rock types change from mainly terrigenous to hemipelagic, volcanogeaic, pelagic, and finally to volcanogenic.

11 specimens from different parts of the allochthon have yielded radiolaria and conodonts which were identified by B. M. Murchey and D. L. Jones, and A. G. Harris, respectively. Figure $2-4$ shows the number
2.2 km (Figure ider and longer ame lithology, at least 9 km. and pelagic at order. Upper an terrigenous ets relative to 1lochthon. Two ernative structs are correinsect, packets :ion, however, aingle packet sontain lithic wing order: In , rock types nic, pelagic, have yielded Murchey and D. s the number

Figure 2-3. Cross sections in the Colconca allochthon. Two sections are provided for each transect; aee the text for explanatior.

Eigure 2-3 cont'd

Figure 2-4. Location () and number of dated specimens in the Golconda allochthon.
and location of these specimens. Table 2-2 defines the identified fossils in all the packets of the allochthon during this study. Depositional ages of lithic units fall into three groups; I) upper Paleozoic, II) lower Paleozoic, and III) Triassic. The 11 ages, although not enough to define an age gradient in the sllochthon if it exists, indicate nevertheless, that all the four different major lithic associations, despite their different structural positions, have overlapping ages that span a period between Mississippian and Permian.

The autochthonous rocks under the Golconda thrust include the Permian Diablo Formation (Speed and others, 1977) and lower Paleozoic rocks that belong to the Palmetto and Gold Hill Formations (Kleinhampl and Ziony, 1967). The rocks unconformably overlying the allochthon include the Toiyabe Quartz Latite (Speed and HoRee, 1976; Laine, 1977) and possibly unit t6, which contains undated sedimentary rocks of probable Mesozoic or Tertiary age. The rocks of the upper and lower plates of the Golconda allochthon in the study area are described in the following sections.

Allochthonous rocks

1) Upper Paleozoic rocks

These are equivalent to the Pablo Formation of Speed (1977a) and include four major lithic types: 1) terrigenous, 2) hemipelagic, 3) voicanogenic, and 4) pelagic. The relationship between packets, lithic units, and their interpreted lithic type is given in rable 2-1 and Figures $2-1,2-2$, and $2-3$. The ordered succession of lithic types
entified fos dy. Deposier Paleozoic, although not exists, indihic associae overlapping
lude the Perm wer Paleozoic

(Kleinhampl

 allochthon Laine, 1977) acks of problower platesin the folm

mae smaze			
PACKET		seasuts	Fusstionas
16	*	-	--
15	p2	929	Specten 0 38. \%. latest Mlss. or \%. early Fenn. fadiolarla
		p2b	--
		920	**
16	v^{2}	v29	Specinea 6l. Pernisn (Guadatupian) radolaria
		v2b	\cdots
13	pl	*	Specimen A 12. prob, Misalsaipplin tadolaria Spectorn * 73, v. lacpac Misa, or v, carlifest penn. tadiolaria Specteren (74. proh, Miss. or Penn. exdolacis
12	$n 8$	-	--
11	$v 1$	v/s	Specimen * io. Pemp. to f. vernion radiolarsa
		$v 16$	--
10	h7	*	--
9	± 5	-	*
	\%6	-	--
8	14	-	Specisen 228 (11mestoric elast). conodionts ; 1 onfotumus ef. II, StMitex (furaish) 2 FMLTODUS BASSLERI (Firnish) 1 scalpelhous? op. - teanmontus sp. 4 indes. drepmedencifore elements 2 Inder. paleotontrorm clements age : Exrly Dedoutcian
7	t3	-	 I p elegent of idiocnartolders sp, sff. t. CONVEXUS of ounn (19:0) inconplete and deformeds 33 ladec, bat, blatie, and placforn frogments Age : Earllymidudle Pennsylvanisa (Nocrowan to Acokan)
	is	-	--
5	± 2	*	Spectaen t 490n. cmodants : elenents are inconplete) 24 Indet, bar, blade, and platforn ftagnencs Age : probably Triassic dromnites and pectons collected by fi. A. Poole, B. R. Nardiou, and F. G, Poole thave yitided \mathfrak{z} Triassle age (idencicied by :3. S. Shbering) ac this stacton.
5	his	-	Specimen A LA2, conodonts: I CORDYzoous pronvus rulief remmed element +1 indet. phospinatic ? probicmasicum Age : latesc fate Cambrian or earilest farly Urdovician
4	E3	*	--
3	\&	*	-*
2	1.2	-	\cdots
1	14	-	--
	e 2-?	. Des da	ription and age of the radiolaria and conodonts in this study. See text for the sources.

1) Terrigenous rocks

The terrigenous rocks occur in units $t 1$, t 3 , thrust zone unit (tau), $t 4$, and $t 5$, all of which are structurally in low levels in the Golconda allochthon (Figure 2-1, 2-2, and 2-3, Table 2-1). The major rock in these units is a polymict sedimentary breccia that contains angular casts as coarse as boulder and, in places, megaclasts as large as 40 meters. Other rocks are pebbly pelite, calcareous sandstone, and quartz arenite. The lithology and age of these units are given in Table 2-3. The clasts in the breccia are mainly variegated chert, quartzite, quartz, pelite, limestone, carbonated serpentinite, and, to a lesser degree, quartz arenite and calcarenite. The size of lasts in unit th and $t 4$ is smaller than that in units $t 1, t z u$, and $t 5$.

Among the clasts, limestone, serpentinite, and quartzite are the largest, and chert, sandstone, and pelite, the smallest. The quartzite class are lithologically similar to those in the thick Cambrian Gold Hill Formation (Kleinhampl and Zions, 1967) that occur below the colfonda thrust north of Summit Canyon (Fig. 1-1) in the study area. Moreover, clasts of limestone and pelite are similar to lower Paleozoic rocks of the Palmetto Formation (Kleinhampl and zions, 1967) in the
ositional
these by nism and onment of one unit Is in the he major contains as large tone, and in Table uartzite, lesser a unit t3 are the quatzite in Gold the Gola. Morealeozoic in the
autochthon. Ordovician and Pennsylvanian ages, detemined from the limestone clasts (Table 2-1 \& 2-2), support this correlation.

In the finer grained rocks such as sandstone, bedding, although better defined, is not continuous more than few meters, and is overprinted by a tectonic foliation which is defined by a planar orientation of flattened chert and quartzite grains. The polymict breccia is massive and, locsily, where clasts are of smaller size, contains an anestomosing foliation which wrape around the grains. Matrix is noncalcareous sandy and pelitic. Except in the foliated fine-grained rocks Where grains are flat and elliptical, clasts, in the coarser parts of the sedimentary breccia, are angular, and in places such as unit tzu, catachasized at their rims. Both fine and coarge-grained rocks are intensely deformed as evidenced by the penetrative tectonic foliation and flattened clasts in finer grained parts, and by boudinaged clasts and folded contacts of the large tectonized blocks with their matrix in the thrust zone unit (Table 2-3).

Except for unit $t 5$, the lithic units with coarse clasts such as t and tzu occur in lower structural positions (to the east) relative to the finer grained rocks of unit $t 3$ and $t 4$ and are in fault contact with recognized or inferred lower Paleozoic rocks (Figure 2-1). The cantact of t5 and lower paleozoic (?) rocks (h6) is probably unconformable. Units t3 and $t 4$, on the other hand, are in depositional or fault contact with hemipelagic and volcanogenic upper paleozoic rocks such as those in units h5 and vi. There is a gradational contact between unit t3 and h5. This contact is characterized by gradual change of medium
poorly sorted polymict sedisentary breccid，congiosereste，and poorly sorted polymict sedisentary breccia，congioscerste，sid
peboly mudstone．clasts $:$ sand to dlocks as lorge as 6 m of carbonated serpentinite，subangular to anguiar pestle to olocks as large as 35 mof light to dark gray and light aurple quartzite， subangular to subrounded sand to blocks as large ds 10 m of light to dark gray，brokn，red，and light green chert．fine jebbles to coobles of chert－quartzite conglicherate，tan fine to codrse chert． quartzite sandstone，and angular greenish gray and dark pelfte． These clasts occur in alt the rocks．aiderix ：peletic，sandy to and Mn－oxide nodules and talc．contects ：probably thrust with h_{1} ，$h_{\text {，}}$ ，and h_{3} ，as defined by lithological discordance and
the okcurence of serpentinite slices dions the contacts．
poorly sorted dolymict sedirentary brectia．clasts ：sand to boulder or blocks（doout 5 ni）of carbonated serpentinite，light gray well sorted auartz arenite，ldonoted calcarenite，mediunt ray crystaline hoestone．tan crinold bearing liwestone，nadiun sandstone．matrix ：fine to mediua sandy．gentacts ：upper contact Is depositionat（gradational）with unit λ_{5} ．Lower contact with lower paleozoic rocks of r_{l} is fault．
poorly sorted sedimentary breccia．clasts ：pebbla to fine cobble， light to dark gray chert，pelite，light gray to lighe brown quart－ aite，gray crystalline iinestone，fine chert－quartaite sandstone and siftstone，and boulder and larger size cartonated serpentinite． matrix ：sandy．0ther rocks include interbeds of sandy to cobbly moderately sorted，light to medium gray chert breccia．contacts ： fsult sith uatt h_{5}, h_{6}, h_{7} ，and $v_{1} b$ ．
poorly sorted polynict sedimentary breccia．clastst：light gray and brown nediun to coarse sand size guartz，very costrse sand to very caarse pebole gray pelite and crystailine linestone，and wediu Clasts are angular to subroundeo，equidimensionst to tabular and have a weak preferred orientation．matrix ：non－calcareous sandy other rocks include interopds of quartzärenite．sqgtacts ：probably unconforatable on n_{6} ．Fault with ail other units．
thrust
poorly sorted potymict sedmentary breccia or aioljnge．clasts ifine pebble to 5 a long blocks of light gray quartzite，carbonated serpentinite，dark gray phyllite and erystalline gray limestone， matrix ：peletlc，sandy and pebbly，other rocks include gray peobly
pefite with light gray quartz arenite and iight io dork well sorted chert－quartzite sandstone．Rins of large quartzite blocks are
cataclasized at their folded contacts with the peletic ratrix as
maximun acge of
Early Ordovician
fran the licestone
clasts．（Table 2－2）
unknown
unknown characterized by the cocurence of coarser grains in a fine matrix at the ria conpared to the center of the blocks where grdins are touching and an matrix is evident．contacts ：ower contact with lower paleozofe rocks is the Golconda
t_{3} is probsbly faulted depositiondl．

Table 2－3．Lithology and age of terrigenous lithic units．
to coarse-grained chert-quartzite sandstone of unit t3 to interbedded sandstone and pelite and to pebbly and cobbly pelite at the base of unit h5 that farther vest grades into unit h5. Unit h5, mainly chert and pelite, contains minor thin interbeds of sandstones which disappear higher in the section.

In addition to the serpentinite clasts in the terrigenous rocks that range in size between sand and blocks as large as 6 tueters, or even beyond these extremes, tectonic lenses of serpentinite occur along packet bounding faults; serpentinite lenses will be referred to as fault-zone serpentinite from bere on. Both types of serpentinites are carbonated, but the fault-zone serpentinites also contain fresh serpentine. The fault-zone serpentinites occur mainly at boundaries of packets at low structural positions in the Golconda allochthon as shown on Figure $2-5$. These make up outcrops which are tens of meters wide and continue on strike in places (e.g. Marysville Canyon) For hundreds of meters. The fighest level that fault-zone serpentinites occur in the allochthon is at the contact of packets 12 and 14 (Figure 2-5). A large serpentinite slice occurs also in the autochthonous lower Paleozoic rocks at Wisconsin Canyon. There axe three possibilities for the relationship between the clastic and fault-zone serpentinites: 1) both were supplied from the same source through sedimentary or tectonic means, respectively; 2) the two serpentinite types have different sources; and 3) all serpentinites were originally clastic; the ones at packet boundaries became tectonized later. Because petrological data do not exist for these gerpentinites, the three cases can not be examined against

Figure 2-5. Location of fault-zone () and sedimentary (0)
serpentinites.
one another. Possible origins and modes of emplacement of both of the
 serpentinites are discussed in Chapter 4.

Depositional environment - The protolith early Paleozoic age of the clasts and their lithological correlation with autochthonous rocks to the east, under the Golconda thrust, suggest a depositional basin which was open to the influx of very coarse lover Paleozoic debris. The massive sedimentary breccia and sandstone, pebbly mudstones, and megaclasts, suggest transportation by wasa flows probably near a slope-base (Stanley and Unrug, 1972; Walker and Kutti, 1973). This interpretation is further supported by their chaotic texture, poor sorting, and high content of poorly sorted matrix which characterize slope-base sediments. The angularity and large size of the clasts, and the limestone and pelite clasts suggest slope instability and downslope movement (Stanley and Uarug, 1972) and short distance of transportation, respectively, probably from the shelf break or steep walls of the slope into deeper and less steep areas. The depositional site should haye been steeply sided to the east by uplands of lower paleozoic rocks that supplied the clasts of all sizes and lithologies.

The coarse and fine-grained terrigenous units may represent different facies of a sub-sea fan (Normark, 1970, 1974; Nelson and Kulm, 1973; Walker and Mutti, 1973; Nelson and Nilson, 1974) that existed at the base of the continental slope. Units $t 1$ and tzu, structurally the lovest, and geographically the eastermost units of the terrigenous packets, contain the coarsest grained and most massive sediments, These are characteristically in fault contact with allochthoncus lover

Paleozoic packets. Units $t 3$ and $t 4$, on the other hand, are bedded, 31 graded, better sorted, and finer grained, and lie at higher structural positions, west of unit $t l$ and tzu. The coarse-grained units $t 1$ and tzu are discontinuous and laterally grade, in short distances, into finer grained rocks. The following is an interpretation for depositional setting of the terrigenous rocks based on models of Normark (1970, 1974) and Melson and Nilson (1974) of sub-sea fans. Units t1, tzu, and t5, are interpreted as inner fan sediments, which were probably derived from the walls of canyons that cut the slope, exposing lower Paleozoic rocks. Rocks that probably represent middle fan facies occur in th at Ophir and Wisconsin Canyons. At these places, $t 3$ is dominantly massive fine to coarse-grained breccia, bedded, medium to coarse grained sandstone, and pelite. In places, sandstone makes lenticular bodies in the pelite. The breccia in $t 3$ is finer grained than that in $t z u$ and with the sandstones can be interpreted as turbidite deposited in channels. Evidences for this interpretation are Bouma ab divisions, and high sandstone/shale ratio. Stratigraphically upsection in $t 3$, the dominant rock type is pelite. Here, sandstone is finer grained, graded, and constitute thin lenticular bodies in the pelites. These may represent interchannel deposits of a middle fan, evidenced by their low sandstone/shale ratio, finer sand grain size, and smaller sand bodies relative to pelite. These rocks grade further upsection to bemipelagic rocks of unit hs with sporadic medium to coarse-grained, graded, and lenticular sandstones.

These
higher lev include lis ded with mi ranging bet
ites are interbeds, sand and si

Beddin
bedded wit pelite. Gr
distances 0
(less than the basal chert, quart during forma upper Paleoz Paleozoic ro juxtaposed a ment of the

Depositional
(Berger, 19 minor and th
ad, are bedded, her structural nits $t 1$ and tzu s, into finer or depositional Hormark (1970, ts t1, tzu, and robably derived lower Paleozoic occur in t3 at inantly massive grained sandr bodies in the tzu and with ed in channels. ons, and high 3 , the dominant raded, and cone may represent by their low ler sand bodies to hemipelagic ed, graded, and
2) Hemipelagic rocks

These include units $h 4, h 5, h 7$, and h8 that occur at structurally higher levels than the terrigenous rocks in the allochthon. They include light gray, green, brown, and reddish slate, which is interbedded with milky, light gray, brown, and green chert with bed thicknesses ranging between 0.2 and 30 cm , and a mode between 10 and 20 cm . Relites are more abundant than chert. Chert beds with thin pelite interbeds, however, are locally dominant. Slates contain very fine sand and silt quartz, and minor chert and quaxtzite grains.

Bedding is well defined and is contintous where pelite is interbedded with chert. A penetrative slaty cleavage overprints bedding in pelite. Graded chert-quartz sandstones, laterally continuous only for distances of less than 10 meters, occur sporadically in unit h8 as thin (less than 10 cm) interbeds with pelite. Sandstones are more common at the basal gradational contact of unit h5 with t3. Sandstones contain chert, quartz, and minor quartzite grains which were highly flattened during formation of the cleavage (Chapter 3). The upper contact of the upper Paleozoic hemipelagic rocks is with volcanogenic rocks. Lower Paleozoic rocks of packet S and 9 were thrusted into the allochthon and juxtaposed against pelagic packets during final stages of the emplacement of the allochthon (Chapter 4),

Depositional environment - These rocks are interpreted as hemipelagic (Berger, 1974) because of their mainly bedded chert and pelite and winor and thin terrigenous chert-quartz sandstone interbeds. The fine sandstones axe interpreted as distal turbidite (Bouma and पollister,
1973) because of graded bedding and their considerable content 33 matrix, and because they are thin-bedded, laterally discontinuous, and interfinger with bedded chert and pelite. The chert and quartzite grains in these turbidites axe correlated with the ones in the subjacent coarser grained terrigenous recks.

The hemipelagic rocks were probably deposited in the abyssal plain (Bouma and Hollister, 1973) of an ocean basin because of 1) continuity of bedding in chert, 2) uniformity in size of quartz sand and silc grains in pelite, and 3) their dominant red and green pelite and chert. Sedimentation in the basin was dominated by the deposition of the suspended or eolian mud, biogenic ooze, and terrigenous debris which were probably transported by distal turbidity currents. The eastern part of the ocean basin was fed with a subsea fan which through its channels supplied sediments for the deposition of the terrigenous rocks at the slope-base and distal turbidites in the abyssal plains of the ocean basin.
3) volcanogenic rocks

Units v1, v2, and v3 mainly constitute volcanogenic sedimentary breccia and gandstone, chert, pelite, and volcanic rocks. These rocks occur in packets structurally bigher than the terrigenous and hemipelagic rocks of the allochthon (Figure 2-1).

The breccia is massive, poorly sorted, and contains various types of clasts that float in a sandy volcanogenic matrix. Clasts include; 1-15 cm iong, angular to subrounded, green, red, wilky, and gray chert;
$1-20 \mathrm{~cm}$ long, subangular and tabular pelite; $1-20 \mathrm{~cm}$ long, subangular
le content of continuous, and and quartzite s in the subja-
e abyssal plain F 1) continuity sand and silt lite and chert. sition of the us debris which The eastern ich through its rigenous rocks plains of the
c sedimentary These rocks us and hemivarious types lasts include: nd gray chert; ng, subangular
to subrounded, light brown, green, and greenish gray, fine to medium grained volcanogenic sandstone; sparse, large ($20-100 \mathrm{~cm}$), subrounded to rounded blocks of light brown crystalline 1 imestone; red jasper; and igneous rocics. The igneous clasts in the breccia are of two different types: volcanic and coarser grained granitic rocks. The volcanic rocks are porphyritic and contain lathmshaped sericitized plagioclase crystals with common polysyuthetic and Carlsbad twinning, and chloritized and serpentinized clinopyroxene and hornblende phenocrysts in a fine matrix. plagioclase crystals are mainly bytownite, oligoclase, and andesine, as determined by the Michelle Levy method. Granitic clasts are large ($1-100 \mathrm{~cm}$) and contain a considerable percentage of quartz crystals, alkali feldapars with gridiron twinning, and chloritized muscovite.

Volcanogenic sandstones are poorly sorted, very fine to coarsem grained, light to medium gray, and green. These are massive, and less frequently, where finer grained, laminated, graded, loaded, and convoluted. Other rock types include light green and red chert, red, light gray, greenish gray, and green mudstone, sandatone, and pebbly sandstone with volcanogenic sandstone and chert pebblea and sporadic convolute and slump structures. Bedded red cherts contain radiolaria and yield late Paleozoic ages (Table 2-2).

Bedding is continuous and well defined in the interbedded pelite and chert in contrast to that in the mainly massive sandstone and breccia. Lateral and vertical litholegical and textural variations in short distances are characteristic of the coarse volcanogenic rocks.

Facing, indicated by graded bedding and load structures, is variable, indicating folded beds.

Volcanic rocks make up the bulk of the volcanogenic-basaltic packets and include pillowed, massive, and porphyritic basalts. pillows range in size between few centimeters and a meter. Units v1b, $v 2 b$, and p2b are the largest exposures of volcanic rocks in the volcanogenic packets (Figure 2-1). However, volcanic rocks occur in many other parts of these packets. The contact of the basalta with volcanogenic gedimentary rocks is probably faulted depositional. Two chemical analyses of the pillow basalts in pablo and Jett Canyons, about 20 km south of the study area, by Speed (1977a) relates them to oceanic basalts except for their unusual high soda content.

In general, all structurally high packets of the Golconda allochthon are either dominantly volcanogenic or at least have volcanogenic lenses. Unit vi is in fault contact with pelites and cherts of the structurally lower hemipelagic unit $\mathbf{a} 5$. No volcanogenic rock exists east of unit vl in the allochthon. Unit $v 2$ is structurally overlain by pelagic rocks which include minor volcanogenic sandstone. Higher in the allochthon are volcanogenic sedimentary rocks of unit v3.

Depositional environment - Chert and pelite were apparently deposited with breccia and sandstone and locally resedimented in them as indicated by their presence both as interbeds and clasts in these rocks. Clasts of chert and igneous rocks also occur in pebbly pelites that interfinger with the sedimentary breccia, indicating local resedimentation of mud and breccia. Green rims around red chert clasts in the
variable ltic packs. Pillows v2b, and 1canogenic ther parts c sedimenalyses of uth of the except for 1canogenic 8 of the ock exists erlain by her in the deposited m as indise rocks. lites that sedimentasts in the
breccia suggest that red color is primary.
The large size of chert and pelite clasts in the breccia suggests a short transportation path and that they were probably intraclasts derived from walls of local channels. Moreover, where in contact, granitic igneous clasts penetrate the adjacent chert clasts in the breccia, indicating that the chert clasts were relatively soft when igneous debris arrived st the depositional site. In addition to the bedded chert and pelite with ciasts of volcanogenic sandstone, large chert clasts in the breccia contain lenses of fine to medium grained volcanogenic sandstone, indicating that pelite and chert were deposited and resedimented with the volcanogenic debris.

Deposition in submarine canyons or channels, probably by turbidity currents (Halker and Mutti, 1973; Mutti and Ricci-Lucchi, 1978, Middleton and Hampton, 1976) is suggested by 1) the great thickness, 2) lack of bedding in the breccia and sandstone, 3) high content of poorly sorted sandy matrix, 4) rapid lateral and vertical lithological variation from breccia to sandstone to pelite, 5) graded bedding and load structures at the base of the poorly sorted massive sandstones and breccia representing Bouma a division, 6) convolute structures in finer sandstonea, and 7) resedimentation of chert and pelite clasts plucked from channel walls. The Bouma division a indicated by the massive graded breccia and sandstone with load marks, and d and (or) e (Bouma, 1962; Walker, 1965; Middleton and ampton, 1976), represented by pelites are the most common in the volcanogenic rocks.

The occurrence of radiolarian chert and red pelite suggests that
the volcanogenic sediments were deposited on ocean floor. This is 37 ported by the common slices of pillow basalts that correlate with other basalts attributed to the oceanic thoeliites. These basalts and the jasper clasts in the breccia suggest active volcanism in the basin. However, because of the unknown age and contact nature of these basalts, this interpretation in uncertain. The lithology and large size of the clasts of angular granitic igneous rocks indicate a magmatic source, most probably not far from the depositional site, that had access to the basin, probably through channels or submarine canyons possibly feeding a subsea fan. The presence of conduits is suggested by the occurrence of resedimented coeval intraformational chert and pelite clasts in the breccia and lateral variation of coarse breccia to finer grained sandstone. The breccia is therefore interpreted as submarine channel fill deposit. Radiolarian cherts and red pelites are probably background pelagic sediments on the ocean floor. The finegrained volcanogenic laminated sandstones are interpreted as finer grained tails of the turbidites or overspills of the channel. The sparse large limestone clasts in the breccia indicate the presence of carbonates in the magmatic source area, and probably support the idea that the debris did not travel far. The carbonates may have been shallow marine deposits surrounding emergent volcanoes which supplied the volcanic debris.

The breccia in the volcanogenic packets contain two ingredients that may ascribe to an island arc source: 1) quartz bearing volcanic clasts, 2) Na-plagioclase rich volcanic clasts. An extensive arc ter-
rane, wes
(1977b). T
strata the
Range, and
(Speed 197
and arc-der
late Middle
provided by
zoic grani
1973; KistI
rocks in
island arc
magna was
0.706 and 0 .
west, respe
the easternm erated from subparallel deflected interpreted (Speed, 198 1979) indica tinental cri (Speed, 1982

The near
suggested 1 chert and breccia to ted as subelites are The fineas finer annel. The reaence of rt the idea been shalupplied the ingredients ng volcanic arc ter- rane, wesi of the Golconda allochthon, has been recognized by speed (1977b). The arc terrane is mainly covered by Mesozoic and Cenozoic strata that permit fey exposures at Mina, Black rock Desert, Humbolt Range, and Union District among other regions in northwestern Nevada (Speed 1977b). The rocks of the axc terrane are mainly mafic volcanis and arc-derived sedimentary rocks chiefly of late Paleozoic and prelate Middle Triassic age. Evidence of the arc terrane in other areas is provided by the initial strontium isotopic ratio $\left({ }^{87} \mathrm{Sr} /{ }^{86} \mathrm{Sr}\right)_{0}$ for Mesozoic granitic and upper Cenozoic volcanic rocks (Xistler and Peterman, 1973; Ristler, 1974; Speed, 1977b). The Sr isotopic ratio for these rocks in the arc terrane ranges between 0.704 and 0.706 , typical of island arc lithospheres, reflecting the composition of the mantle where magma was generated (Xistler and Peterman, 1978; Speed, 1977b). The 0.706 and 0.704 contours delineate the arc terrane to the east and west, respectively (Speed, 1977b); Figure 1-2). The 0.706 contour is the easternmost boundary of igneous rocks which formed from magmas generated from a subcontinental lithosphere (Speed, 1977b). This line runs subparallel to the regional $N-S$ trend of the Golconda allochthon and is deflected to the west in the Mina region (Figure 1-2). The line is interpreted to define the westernmost Paleozoic shelf rocks in Nevada (Speed, 1982b). Gravity and seismic data (Cogbill, 1979; Prohdehl, 1979) indicate thickening and (or) a decrease in density of the continental crust of North America east and south of the 0.706 ine (Speed, 1982b).

The nearest outcrop of the arc terrane to the study area is in the

Union District about 30 km to the northwest in the Shoshone Range. Here, chemical analysis of volcanic rocks indicates andesitic composition (Speed, 1977a). Silberling (1959) and Speed (1977م) report the presence of granodiorite and quartz monzonite clasts in the rocks of the arc terrane in this area. No granitic rocks older than 202 my (Midde Triassic), which is apparently younger than the andesitic unit, exists within 100 kin radius of the Union district (Speed and Armstrong, 1971; McXee and Silberiing, 1971; Speed, 1977b). Based on this and the paucity of granitic clasts in Triassic conglomerates above the andesitic rocks, Speed (1977b) proposed an island arc origin for these granitic rocks.

Granitic clasts are conmon in coarsemgrained upper Paleozoic volcanogenic breccia of the Golconda allochthon in the study area, and occur with mafic volcanic clasts of probsbly andesitic composition. Although chemistry of these rocks is unknown, both types of the clasts in the volcanogenic rocks of the Golconda allochthon may have an island arc provenance as suggested by their petrography as described before, and indizectiy from their age and geologic setting. The two types of the igneous clasts may have come from a single source as suggested by the existence of the two types in individual beds of turbidites. The age of the resedimented volcanogenic rocks is the youngest among other rocks of the allochthon (Table 2-2) and ranges between pennsylvanian and Permian (Guadalupian), indicating a minimum age of Late Permian for the arc terrane. Its maximum age is st least Pennsylvanian. oshone Range. tic composib) report the he rocks of 202 my (Midesitic unit, Armstrong, this and the the andesithese granieozoic voldy area, and composition. f the clasts ve an island ibed before, types of suggested by idites. The among other ennsylvanian Permian for
4) Pelasic rocks

These rocks include units $p 1$ and $p 2$ that lie at the highest structural positions except relative to unit v3 (Figure 2-1). They are mainly chert that are in average thicker bedded ($1-30 \mathrm{~cm}$) than cherts in the hemipelagic rocks. Pelites on the other hand, are relatively thinner and less frequent. The rocks of units pl and p2a include light to dark gray, green, and milky chert. Chert is interbedded with thin ($0.1-1 \mathrm{~cm}$), red and, less commonly, light gray pelite and red jasper. Unit p2a includes lenses (0.2-6mthick) and interbeds (0.1-15 cm thick) of fine grained, massive, or laminated volcanogenic sandstone and siltstone. The volcanogenic beds have exosional botoms in the interbedded chert and pelite. The bedded cherts in both units p2a and pl contain radiolaria which yield four late Paleozoic ages (Table 2-2). Unit pat is among the most extensive packets of the Golconda allochthon.

Unit p2b is exclusively dark masaive basalt and is probably a thrust sheet. Unit p2c includes interbedded pebbly polymict breccia and fine to medium grained sandstone. Clasts in these rocks are variegated chert, fine sand to gravel, angular to subangular, gray quartzite, and serpentinite. Matrix is green and silty to sandy, probably amphibole and chlorite rich. Rocks of packet 15 are metamorphosed at their contacts with a granitic pluton in upper Ophix Canyon (Figure 2-1) which may be of the same age as the Tertiary Ophir pluton. At these contacts, cherts and pelites are converted into meta-chert with quartzitic texture, and silicified meta-pelite. The effect of metamorphism diminishes

Depositional environment - The mainly homogeneous and continuously bedded radiolarian cherts, thinner red and green peiite, and the lack of terrigenou's rocks suggest that these rocks are pelagic (Berger, 1974). The existence of red jasper and basalt of enit p2b may suggest active volcanism and fumaroles in the depositional site. Such interpretation can be false given the faulted nature of the basalts. The presence of sporadic channelized volcanogenic sediments in pelagic rocks indicates that the depositional basin was open to the influx of fine-grained volcanic debris, probably from the same source that fed the lithic units of the volcanogenic rocks as suggested by their similar lithology and age.

Despite their overlapping ages with the volcanogenic rocks, the pelagic rocks should have been deposited in part of the oceanic basin which was dominated by pelagic deposition and sporadically open to the influx of fine volcanogenic debris. Despite few overlaps, the ages of the radiolarian cherts in the pelagic rocks are in general older than the radiolarian cherts in the volcanogenic sequence (Table 2-1). This probsbly means that during the Mississippian or Pennsylvanian, the depositional basin of the pelagic rocks was remote from turbidite sources.

The massive basalt of unit $p 2 b$ is interpreted as a slice of oceanic crust which was detached from the depositional site. The relationship of the coarse-grained detrital rocks of unit p2c with the pelagic rocks of $p 2 a$ is unknown.

Facies analysis among upper Paleozoic rocks
Table $2-4$ summarizes facies and depositional setting of the four major lithic types in the upper Paleozoic packets of the allochthon. This Table indicates a systematic geographic and structural distribution of facies. The structurally lowest packets in the eastern parts of the allochthon, include the coarsest grained terrigenous clastic rocks that may represent slope-base, inner, and middle fan accumulations. Ciasts in these rocks can be correlated by their lithology and age with lover Paleozoic rocks below the Golconda thrust. Higher and farther west are the hemipelagic rocks which could be ocean plain or outer fan equivalent to the terrigenous rocks. Farther west and structurally higher in the allochthon are volcanogenic and pelagic rocks that represent ocean floor deposits and distal equivalents of the terrigenous deposits. The volcanogenic debris were most probably supplied from an arc terrane which was located to the west of the oceanic basin as discussed before.

Because the four upper Paleozoic lithic suites have an ordered structural position in the Golconda allochthon, and because their ages overlap, the depositional setting for each suite can be part of a regional depositional enviromment that prevailed during late Paleozoic. Since paleomagnetic data is not available for the Golconda allochthon, its translation and rotation with respect to the underlying Roberts Hountains allochthon and the North American continental crust is unknown. However, unique ties exist between clasts in the lower terrigenous packets of the Goiconda allochthon and underiying lower paleo-
zoic rocks
porting evi

America
the Diablo clast lith presence of allochthon,
the trend o
between graphic rec upper Paleo
II) Lower

These
lowest str
dark phylli
chert and
Unit hl inc
chert sands
are similar
33, h5, anc
them to be
below the
interbeds
defined
generations
zoic rocks belonging to the Roberts Mountains allochthon. Other supporting evidence relating the depositional environment to the North America and Nevada are: 1) existence of continental shelf deposits of the Diablo Fomation under the Golconda thrust that have partly similar clast lithology and age as the terrigenous rocks in the allochthon, 2) presence of slope and slope-base terrigenous rocks at the base of the allochthon, and 3) parallelism of the 0.706 isotopic ratio contour and the trend of the allochthon, and its alignmenc parallel to the boundary between the shelf and slope sediments (Speed, 1977b). a paleogeom graphic reconstruction based on the observed facies variation in the upper Paleozoic rocks is given in Chapter 4.
II) Lower paleozoic rocks
These include lower paleozoic units $h 1, b 6$, and $h 7$, mainly at the lowest structural positions in the Golconda allochthon. All include dark phyllite and slate, light to dark gray and light green bedded chert and meta-chert, and thin-bedded dark gray crystalline limestone. Unit hl includes fine-grained, light brown, non-calcareous, quartzchert sandstone. Although interbedded chert and pelite of these units are similar to those of the upper paleozoic hemipelagic rocks (e.g., h3, h5, and h8), their thin-bedded limestone and organic pelite allows them to be distinguished and allied with the lower paleozoic rocks below the Golconda thrust. Ordovician conodonts in two limestone interbeds support this interpretation (Table 2-1). Bedding is well defined and is continuous in these rocks. Pelites of unit h6 show two generations of cleavage; a slaty cleavage and a younger spaced cleavage
(Chapter 3) which is absent in the upper Paleozoic rocks.
Packet 9 contains subunit t5 which resembles allochthonous upper Paleozoic terrigenous rocks of units $t 1, t 3$, and thrust-zone unit ($t z u$) (Table 2-3). The contact of $t 5$ and $h 6$ is covered. Unit $t 5$ includes megaclasts (up to 40 m) of quartzite and gravel-sized quartzite, chert, and limestone clasts which are embedded in a sandy matrix Unit $t 5$, having similar lithology as units $t 1, t 3, t 4$, and $t z u$, belongs to the terrigenous upper Paleozoic rocks which was either deposited unconformably and (or) thrusted over lower Paleozoic rocks of unit h6 or a combination of these.

Unit hl, h4, and h6 can be interpreted as hemipelagic because of their content of chert, limestone, and terrigenous sandstone interbeds. Onit hl is allochthonous because of its tectonic position above the Golconda thrust, emplacement above upper Paleozoic autochthonous Diablo Formation, and its highly tectonized contact with unit t3. Unit h4 and n6 are clearly allochthonous because they lie between packets of upper Paleozoic rocks in the allochthon. These rocks and probably their overlying upper Paleozoic rocks of unit t5 were incorporated into the allochthou in the final stages of its emplacement as is suggested by their low structural positions (Chapter 3).

1II) Triassic and Triassic (3) rocks
These include clastic rocks that occur at low structural positions in the Golconda allochthon at Marysville Canyon (Fig. 1-1). They occur in the fault bounded unit t2 which lies between packets of upper and lower Paleozoic rocks. The Triassic rocks are calcareous fine to pebbly

honous upper

 ne unit (tzu) t5 includes tzite, chert, Jnit t5, hav9 to the terunconformably or a combinabecause of interbeds. above the onous Diabio Unit h4 and ets of upper their overto the alloed by theiral positions - They occur upper and ne to pebbly sandstone, pebbly conglomerate, and breccia with quartz, red and gray chert, chert-sandstone, feldspar crystals, and plagioclaserrich angular and subangular volcanic clasts. Other rocks include massive chert and calcareous mudstone.

The limy and sandy mudstone are bioturbated with horizontal traces. The sandstones are limy, thin-bedded and rippled. The pelitic and sandy rocks contain shell impressions and are at least partly calcareous. There is no cleavage in these rocks in contrast to sandstones with almost the same lithology in other units of the allochtion (e.g., b5, and h8). Sandstones include angular volcanic pebbles with thin and long plagioclase needles and angular to subangulaz quartz, plagioclase, chert, and opaque mineral grains which are dispersed in a fine to medium volcanogenic sandy matrix.

Lenses of carbonated serpentinite, between 5 and 10 meters thick, and laterally continuous for at least 15 m , occur at the contact of the Triassic rocks and unit $t 3$ (Figure 2-5). These serpentinite bodies are typical of thrust contacts of many packets at low structural positions (Figure 2-5, Plate 1). However, they occur also as large sedimentary clasts in many terrigenous rocks such as th, t3, and perhaps t2. Their origin is discussed in Chapter 4.

Depositional environment - The Triassic rocks are allochthonous because they occur between allochthonous packets of upper and lower Paleozoic, and because their boundaries with these two packets include tectonized serpentinite. The major differences between Triassic and upper Paleozoic rocks in the allochthon are in the carbonate content and lack of

The Triassic rocks were deposited in a basin which received volcanogenic, chert, carbonate, and serpentinite debris. The angularity of the clasts suggest proximity of the depositional site to the source. A shallow marine depositional setting is inferred for these rocks based on the presence of bioturbation and bivalve shells. Best candidates for the source of all the clasts in these rocks are the Golconda allochthon and its relative autochthon. An interpretation for the environment of deposition is discussed in Chapter 4.

Unit t6

The westernmost outcrops of rocks unconformably below Tertiary volcanic rocks are pelitic and fine to coarse detrital rocks of unit t6. These include fine to medism grained, light purple and brown, well-sorted, and thin- to thick-bedded ($1-70 \mathrm{~cm}$, and a mode of 20 cm) quartzite, light brown and red silty pelite, and a poorly sorted sedimentary breccia. Clasts in the breccia are subangular glassy quartz, light to dark gray, red, and milky chert, and angular to subangular quartzite. Quartzites are graded and have curved cross laminations. Their contact with red pelite is load marked. These rocks are metamorphosed as evidenced by the presence of silicified sedimentary breccia and conversion of sandstone into quartzite, probably due to the effect of the adjacent granitic pluton.

The contact of unit t6 with $v 3$ is not exposed and its age is unknown. The rocks of this unit are mich coarser grained than those of the adjacent and structuraliy high units of the allochthon. Three

1- Uait t6 is a young autochthonous deposit which was laid down after the emplacement of the allochthon in the Mesozoic or Tertiary and before the intrusion of the granitic plutons and cover by Tertiary volcanic rocks.

2- Unit t6 is part of the Golconda allochthon but unconformable on subjacent packets. A likely site of deposition for these rocks in this model is a forearc basin if they prove to have overlapping ages with lower packets of the allochthon.

3- Unit t6 is part of the Golconda allochthon and an accreted packet which was emplaced in early stages of development of the allochthon exposed in the Toiyabe nange suggested by its high atructural position.

Because of their unknown age and paucity of data on theix age and lithology, all these origins are tentative and remain to be examined.

The lower plate of the Golconda thrust includes lower Paleozodc rocks (1 Pz) and the Fermian Diablo Formation (Pd) (Figure 2-1), The allochthon is overlain to the west by Tertiary volcanics (Tqi) and possibly by clastics of unit t6. Except possibly for unit $t 6$ which was described in the previous section, other cover strata and autochthonous rocks are described in the following paragraphs.

Autochthonous lower paleozoic zocks (1Pz)
These are rocks below the Diablo Formation in Ophir and Wisconsin Canyons, and below the Golconda thrust elsewhere. At Ophir and Wisconsin Canyons, they include metamorphosed calcareous pelite, calcarenite, thick-bedded medium gray pelite and chert, gray crystalline limestone, fine-grained quartzite, and conglomerate with meta-chert, limestone, and calcarenite clasts. Clasts in the breccis are couching and, in places, floating in a metamorphosed biotite-bearing matrix. Other rocks include dark pelite and greenish gray masaive and porphyritic basalt with plagioclase phenocrysts. A large serpentinite body, similar to the fault-zone serpentinites in the Golconda allochthon, occurs in this unit in Hisconsin Canyon. In Summit Canyon, the autochthonous lower Paleozoic rocks are mainly gray, fine-grained, massive or thickbedded quartzite. They have been mapped as Cambrian Gold gill Formation and Cambrian-Ordovician Palmetto Formation by Rleinhampl and ziony (1967).

Maleozoic (e 2-1). The i) and pos6 which was 2tocithonous

Wisconsin and Wisconalcarenite, limestone, limestone, ing and, in ix. Other porphyritic dy, similar , occurs in tochthonous e or thick1 Formation 1 and Ziony

This unit lies imadiately under the Golconda thrust in Ophir and Wisconsin Canyons. It was first assigned to the Diablo Formation by Ferguson and Cathcart (1954) in the Toiyabe Range, because of its mainly coarse chert-clast lithology and fossils that correlate with the Disblo Formation in the Candelaria Hills (Speed and others, 1977). The Diablo Formation of Ferguson and Cathcart (1954) is divided into eight structurally and spatially discrete units in the Toiyabe Range by Speed and othera (1977). According to Speed and others (1977), all except two of these units are allochthonous relative to the Golconda thrust. The other two (their units dl and d3) rest with erosional contact over lower Paleozoic rocks. Rocks assigned to the Diablo Formation in the study area are equivalent to unit dl of Speed and others (1977) which iies under the Golconda thrust.

No fossil has been found in the study area in these rocks. However, partially correlative autochthonous Diablo rocks in Pablo and Jett Canyons, 20 km to the south, have yielded fairly late permian (possibly Wolfcampian to Guadslupian) fossils (Speed and others, 1977).

These rocks are characteristically homoclinal and lie between highly deformed rocks of the Golconda allochthon above and lower Paleozoic autochthonous rocks below. The contact of the Diablo Formation and lower Paleozoic rocks is unconformable (Speed and others, 1977). Lithology of the rocks in the Diablo Formation is as follows: gray, plane-laminated, medium- to coarse-grained quartz- and quartz-chertarenite, interbedded with clayey and silty sandstone; graded
conglomerate with chert and quartzite clasts; light gray and white, plane-laminated pebbly and well-sorted calcarenite; and marble. The breccia and gandatone have erosional contact, and both are tectonically foliated (Chapter 3) by the preferred planar orientation of the clasts that is parallel to an anastomosing foliation in the matrix. The foliation is homoclinal and parallel to bedding. These rocks are silicified probably due to the thermal effect of the neighboring Ophir pluton. A description of these rocks is given in speed and others (1977).

Depositional environment - Disharmonic ayndepositional folds (Chapter 3) occur in the calcarenites south of the Ophir Canyon, suggesting slumping in an unatable depositional site. Lamination in clasts of quartz arenite is folded in places, suggesting that they were soft or previously deformed when deposited in the breccia, The chert, quartzite, and other clasts in these rocks are correlated with autochthonous lower Paleozoic rocks to the east. The main difference between autochthonous Diablo Formation and allochthonous rocks of unit $t 3$ is in the presence of calcarenite and Iimestone interbeds in the former and large sexpentinite and other clasts in the latter, reflecting their different depositional environment.

Speed and others (1977) assign a shallow stable marine fouter shelf) environment for this unit mainly on the basis of its correlation with their unit $d 3$ in Pablo and Jett Canyons, where broken bivalves are comon, and because of the presence of well-bedded carbonates and sandstones. marble. The tectonically f the clasts x. The foliae silicified hir pluton. A 977).

1ds (Chapter n, suggesting n clasts of were soft or hert, quart" autochthonous etween autom t3 is in the mer and large eir different arine Couter 3 correlation bivalves are tes and sand-

Toiyabe Quartz latite (Tgl)
Rocks of this unit (Ferguson and Cathcart, 1954; Speed and Mckee, 1976; Laine 1977) overife unconformably most of the Golconda allochthon on the western flank of the Toiyabe Range (Figure 2-1). It includes partly welded crystal- and crystal-pumice-ash flow tuff that give a 21.5 my K-Ar age (Kleinhampl and ziony, 1967; Speed and McRee, 1976). The crystals consist of quartz, feldspar, biotite, and hornblende, and constitute 35% to 60% of the rock, whereas pumice varies between 0% and 15\% and is devitrified (Laine, 1977). It is believed that rocks of Toiyabe quartz latites were deposited after a period of Early Miocene caldera formation, intrusion, and volcanism (Speed and McKee, 1976; Laine, 1977).

Ophir pluton

Granitic rocks of the ophir pluton intrude both the autochthonous and allochthonous rocks in lower and upper Ophir Canyon (Figure 2-1, Plate 1). In both areas, rocks of the autochthonous Diablo Formation (Pd), lower Paleczoic (1Pz), and allochthonous units are metamorphosed at their contacts with granitic rocks of the Ophir pluton, with the development of meta-chert, meta-pelite, silicified rocks, and marble.

Ophir pluton has previously provided a 54 wy K-Ar date from biotite (Speed and mcKee, 1976). A 42 my K (Ar date has been obtained in the present study in the lower (eastern) part of the pluton.

The relationship between Ophir pluton and Roiyabe quartz latites is not clear, However, the rocks of the Toiyabe quartz latites lie over an undated granitic pluton in upper Ophir Canyon.

Introduction

In this Chapter, structural data from all rocks of the Golconda allochthon, Diablo Formation, and to a lesser extent, autochthonous lower Paleozoic rocks are discussed. Interpretation of the kinematics of deformation is given in Chapter 4.

At least 5 phases of deformation are detected in upper Paleozoic packets (Chapter 2) of the Golconda allochthon in the study area (Table 3-1). The first (D1) consists of close to isoclinal folds (F1) of bedding mainly recorded by isolated hinges and boudins of chert in slate and by axial plane slaty cleavage (S1). The second (D2) involves thrusting and stacking of the folded rocks and is evidenced by the existence of packet-bounding faults (Chapter 2) that cut across D1 structures. The third phase (D3) includes 52 a folds deforming cleavage, bedding, and packet-bounding thrusts with half-wavelengths of at least 200 meters. Such folds are detected by the regional variability of bedding and cleavage and by a macroscopic fold in packet 7 in Ophir and Wisconsin Canyons. D3 also includes local F 2 b folds that occur at a thrust zone between packet 7 and 8 . D4 involves $F 3$ folds including kinks in pelite and related folds with round profile in interbedded thin chert and pelite. Undeformed kinks occur together with refolded and faulted F 2 b folds at the contact of packet 7 and 8 , indicating that kinks and associated sinusoidal folds are younger than the $F 2 b$ folds.
the Golconda ent, autochthonous
the kinematics

upper Paleozoic

 study area (Table olds (F1) of bedof chert in slated (D2) involves evidenced by the cut across D1
forming cleavage, gths of at least riability of bed7 in Ophir and
s that occur at a
folds including
le in interbedded
with refolded
indicating that
the F 2 b folds.

At the Golconda thrust zone, mesoacopic folds (F4) cut by local faults, are related to the latest deformation (D5) along the thrust. Except for the local $F 2 b$ and $F 4$ folds, a similar sequence of deformation is evident in all packets of upper Paleozoic rocks of the allochthon.

The lower Paleozoic and Triassic rocks within the allochthon differ in lithology (Chapter 2) and structure compared to the upper Paleozoic rocks. Isoclinal folding is indicated in the lower Paleozoic rocks by the parallelism of a well developed slaty cleavage and bedding in interbedded pelite and chert. A younger spaced cleavage, absent in upper Paleozoic rocks, exists in packet 9 which is dominated by rocks of probable early Paleozoic age. Mesoscopic and variably oriented folds younger than cleavage, are among the other structures of packet 9 which are sbsent in upper Paleozoic packets. The tectonic fabric in the lower Paleozoic rocks may at least partly be of pre-Golconda age. Triassic rocks differ from both lower and upper paleozoic rocks in that they are vexy little deformed. No cleavage or folding is evident in these rocks despite their partly similar lithology to some upper Paleow zoic rocks (Chapter 2).

Any kinematic model, to explain development of the Golconda allochthon, should account for ordered accretion of varied facies of upper Paleozoic (Chapter 2), lower Paleozoic, and Triassic packets to the allochthon, and the ordered sequential deformation in these rocks. There are two alternatives to explain the above: 1) upper paleozoic rocks were part of an originally continuous mass which were sequentially thrusted into a prism and emplaced over lower Paleozoic rocks of
local faults, t. Except for ation is evithon.
allochthon to the upper r Paleozoic and bedding , absent in ted by rocks ly oriented of packet 9
fabric in ol conda age. ocks in that s evident in upper Paleoconda alloies of upper ets to the these rocks.

Paleozoic were sequenoic rocks of
the continental margin that later imbricated with the lower paleozoic and Triassic rocks to form the allochthon; 2) rocks of different ages constructed smaller allochthon, which were later amalgamated into the Golconda allochthon. The geographic and structural distribution of different upper Paleozoic facies discussed in Chapter 2, the limited occurrence of lower Paleozoic and Triassic rocks at the basal part of the allochthon, and the observed evidences of the same sequence of tectonic events in all the upper paleozoic packets supports the first scheme.

The fundamental structural feature of all packets of the upper Paleozoic section of the allochthon is their boundary faults that can be used as a reference for the formation of all other tectonic fabrics. Accordingly, the deformation in the upper Paleozoic packets can be divided in a sequence relative to thrusting of the packets into the section as pre-, syn-, and post-thrust.

Pre-thrust deformation - The isociinal folds of beds (Fi) are the earliest structures in each packet and are cut by packet boundaries. Prethrust deformation (D1) is manifested in the Golconda allochthon as a well developed axial plane slaty cleavage in pelite and spaced foliation in sandstone. D1 structures exist in upper Paleozois packets, which despite their different lithology, represent varied facies of a depositionsl enviroment that persisted from late Mississippian through Permian (Chapter 2). Aiternative schemes for assembling the packets and formation of these structures are as follows: 1) Dl, represents simultaneous deformation of rocks of wide age span before thrust

Abstract

imbrication, 2) D1 is diachronous; younger in structurally lower and later-emplaced packets than in upper ones. The second scheme appears more probable because of the ordered distribution of upper paleozoic rocks in the allochthon (Chapter 2). The order would otherwise be disturbed by isoclinal folding had they been deformed according to the first scheme. The implication of the second alternative is that D1 deformation was progressive with consistently oriented shortening.

Syn-thrust deformation - This deformation (D2) is marked by faulting of the isoclinally folded rocks and by open folding (F2a), rotation, and translation of the packets and formation of associated $\operatorname{F2b}$ folds. If the second scheme discussed above is correct, syn-thrust deformation was also diachronous and spanned different increments of time in different packets, and overlapped in time the pre-thrust deformation in younger packets.

Post-thrust deformation - After all or some of the packets were accreted to the allochthon, D1 structures such as slaty cleavage and first folds were folded by sporadic kink and other open and gentle folds (F3). Other post-thrust structures include local F4 folds and associated faults at the Golconda thrust that represent the latest motion along the thrust.

Method and terminology
The allochthonous rocks are divided into domains based on the orientation of slaty cleavage and bedding in packets (Figure 3-1). Except in packet 7, domains are indexed by the number of the packet

rding to the

ive is that $D I$
ortening.
by faulting of rotation, and b folds. If

st deformation

time in dif-
deformation in
packets were Ey cleavage and an and gentle 1. 14 folds and at the latest
based on the s (Figure 3-1). of the packet

Figure 3-1. Map showing structural donains in the Golconda allocthon.

$\mathrm{i}=$ inflection point
A/2 = half-wavelength
Am =ampltude
that they include. Packet 7 is divided into domains 7 h 5 and 7 t3 according to the corresponding lithic units (Figure 3-1). Each domain is in turn divided into subdomains that resolve local variations of bedding and cleavage within domains (e.g. $1 \mathrm{a}, 7 \mathrm{~h} 5 \mathrm{c}, \mathrm{etc}$,). In order to distinguish folds of different size, shape, and probably, generation, the lengths and orientation of the parameters shown on Figure 3-2 were measured. The rest of this chapter is devoted to description of folds of different generations, faults, and analysis of strain in different domains. All the fabric diagrams in this study are lower hemisphere equal area projections.

First folds (르)

Hemipelagic units h5 and h8 which occur in domain 7 and 12, respectively, provide the best exposures of first structures. A detailed analysis of the two domains will be given first. DI structures in other domains will be covered at the end of this section.

Domain 12

Rocks of this domain (unit a8) provide a unique opportunity for the analygis of Fl folds which are detected here as closures of beds with associated axial plane slaty cleavage, bedding-cleavage intersection (bxc lineation), and chert boudins (Table 3-1). The bedding ciosures of the first folds occur mostly in subdomain $12 b 3$. Sizes of these folds are shown on Figure 3-3. Halfwavelength of the majority of the Il folds ranges between 40 and 80 cm , but 10% are as wide as 140 to 160 cm . Most of the folds have amplitudes less than 150 cm , and the major-
ity of
(Figure

Slaty
another
the
and 75°
the
bxs line
obtaine
The
profile
as their
continuto
axis att
lar to
Eolds (
a great
domaing
tions.
to the Y
plane
distribut
1)
orientat
ity of them are individual balfwaves with uncertain inflection points (Figure 3-2).

Figure 3-4 shows the orientation of these folds in domain 12. Slaty cleavage and the axial planes of these folds are parallel to one another and to cherts in their limbs. Their hingelines and axes lie in the cleavage and trend between $N 1^{\circ} \mathrm{W}$ and $\mathrm{N} 45^{\circ} \mathrm{W}$ and piunge between 24° and 75°. The bxc lineations distribute on a great circle parallei to the modal cleavage, axial planes, and homoclinal bedding. Most of the bxc lineations plunge N, parallel to the hingelines and fold axes obtained by bedding intergections (bxb).

The chert beds are boudinaged were interbedded with pelite. The profile length of boudins is comonly less than 10 cm , almost the same as their length on cleavage except in rare exposures where boudins are Continuous for few meters on cleavage. The distribution of the long axis attitudes of boudins in both cases, measured on cleavage, is similar to that of the bxc lineations, hingelines, and fold axes of the Fl §olds (Figure 3-4). Although lineations in domain $12 b$ generally occupy a great circle, they distribute as partial girdles in different subdomains (Figure 3-5), indicating a geographic distribution of orientations. Where strain has been measured, most lineations are subparaliel to the Y axis (Figure 3-70). In sumary, all lineations lie in the plane of modal cleavage, axial planes, and bedding in parallel limbs, a distribution that could have been formed in the following ways:

1) Inhomogeneous coaxial strain: cleavage of different initial orientations formed, for example due to anisotropy, resulting in

subdomain 12 h

boudin axis

O bxe ilmestion

- L bedding
o1. clenvage
O F_{1} axis $(b \times b)$
(3) F_{1} hingeline
$X F_{1}$ axisi plane

subdomein 12bl
Figure 3-5. Orientation of F_{1} structures in the three subdomains of domain 12 b .
variably oriented intersections with a bedding of constant or variable initial orientation; progressive or later flattening caused the cleavage to become subparallel and the lineations to become coplanar.

2) Inhomogeneous noncoaxial strain: orientation of the z principal strain axis is constant but X and Y rotate, leading to the formation of differently oriented boudins on a constantly oriented eleavage.
3) Superposed folding: unidentified pre-D1 deformation caused varied orientations of intersection with di cleavage. Small change in the orientation of bedding and (or) cleavage can result in great variation in bxc orientation.
4) Rotation of DL lineations on the cleavage plane: Progressive pure or simple shear could have caused migration of Di lineations toward the X deformation direction within the flattening (cleavage) plane (Ramsay, 1967; Sanderson, 1973; Escher and Watterson, 1974; Ramsay, 1978; Bel1, 1978; Rhodes and Gayer, 1979).

The geographic distribution of the lineations in the southern and northern parts of subdomain 12 b (Figure 3-5), pitching at different angles and directions in the constantiy oriented cleavage supports hypotheses 1 and 3. Ciustering of the bxb and hingelines is most probably the result of a geographic distribution, supported by the fact that these were only measured in subdomain 12 b 3 (Figure 3-5) where boudins are also clustered. No 1 ineation attributed to shear, to satisfy the fourth hypothesis, is evidenced in these rocks.

Only few isoclinal folds were discovered in this domain. Structures of the D1 phase such as the axial plane slaty cleavage, bxc lineation, and chert boudins, however, are comon. Such structures are reoriented in places because of a younger (F2a) fold.

Figure 3-6 shows the orientation of $F 1$ lineations in domain 7 h 5. The boudin axes and bingelines of isoclinal folds at each subdomain cluster at low angles to the corresponding modal cleavege. The bxc lineations lie on the cleavage with a larger spread than chert boudins. Such a distribution can be explained by the same hypotheses as mentioned in domain 12. Girdles of Fl cleavage and lineations in subdomains 7h5a and 7 h 5 b are due to F 2 a folds for the reasons to be discussed later.

Other domains

Except for domain 9 , which will be treated separately, the distribution of bedding and cleavage in other domains are shown on Figures 3-7 through 3-16. Bedding is parallel to cleavage in all these domains, and both are deformed by F2a macroscopic folds. In general, the orientation range of bedding and cleavage is approximately similar in each domain and indicates deformation of the $F 1$ folds. The partial girdle distribution of cleavage and bedding in most domains and few unusual orientations, for example in $8 b$ and $11 a$, may be original; due to F2a folds, or a result of inhomogeneous strain.

Boudin axes plunge shallowly to moderately N or $N W$ except in domains 7 t 3 e and 13 , where the steep and moderate SE plunge of boudins

Figure 3-6. Orientation of $F l$ structures in domain 7h5,

Figure 3-7, Orientation of bedding and cleavage in domain 1.

Figure 3-8. Orientation of cleavage in domain 3 .

Figure 3-9. Orientation of bedding and cleavage in domain 4.

Figure 3-10. Orientation of bedding and cleavage in domain 5.

Figure 3-11. Orientation of F_{1} structures in domain $7 t 3$.

Figure $3-11$ cont'd

Figure 3-12, Orfentation of F1 structures in domain 8 .

ineation

n axis
in 8.

Figure 3-13. Orientation of F_{1} structures in domain 11 .

Figure 3-15, Orientation of Fl structures in domain 14 .

Figure 15 cont'd

may be because of Fl and (or) F 2 a folding.

F2a folds
These are large, gentle to open folds of bedding and cleavage and packet bounding thrusts that are responsible for the variability in cleavage and bedding orientation in all the domains (Figure 3-7 through 3-16, 3-17). The statistical axes of F2a folds plunge shallowiy to moderately NNW.

The best example of the $F 28$ folds is a macroscopic fold in Ophir and Wisconsin Canyons in packet 7 (Figure 3-18). The fold is an isolated single halfwave with halfwavelength of at least 200 meters. Its axis plunges $30^{\circ} \mathrm{N} 16^{\circ} \mathrm{N}$, and its axial plane, constructed from axial traces and axis, gtrikes $N 55^{\circ} \mathrm{W}$ dipping $42^{\circ} \mathrm{NE}$ (Figure 3-19). Cross sections of this fold are shown on Plate 3 and Figure 2-3.

F2a folds, homoaxial with average lineation of Fl folds (Figure 3-17), are second phase because large range of Fl cleavage (Figure 319) cannot be accounted for by fanning and rather is explained by folding as discussed below, and because packet bounding thrists are folded.

Figure 3-18 depicts a constructed profile of the macroscopic F2a fold in packet 7. Shown on the diagram are also three subdomains in this part of the packet which are defined by the fold. Sumary diagrams of Fl structures in subdomain 7 h 5 a and 7 h 5 b are shown on Figures 320a,b, respectively, Khen combined, the two diagrams define a girde of cleavage and bedding, which contains the pole to the axial plane of the only FI fold measured in domain 7h5a (Figure 3-20c). The zonal axis of the girdle plunges $N N W$ subparallel to the statistical axis of the
and cleavage and :he variability in igure 3-7 through unge shallowly to
c fold in Ophir e fold is an isom 200 meters. Its ructed from axial 3-19). Cross sec-

folds (Figure

 eavage (Figure 3xplained by foldrusts are folded. macroscopic F2a ree subdomains in Sumary diagrams own on Figures 3define a girdle he axial plane of . The zonal axistical axis of the

$0 \perp$ bedding and cleavage
Figure 3-17. Orientation of berding and cleavage in the Golconda allochthon and its autochthon.

$$
\xrightarrow{\text { Orotile otane }} \underset{\text { Rose }}{\text { N74 }}
$$

b

	trace of exial mane of F20 reld
	traeo of beeding ene Ateovele
كرك	trational equtact
-	-sasket-bandiay threst
7n5, 7ts	- dloththomose lithte *xtle
$1: 7$	f*utt-bounded Fecket

Figure 3-13. a) Constructed profile and b) cross sections of the F2a macrofold in Ophir-tisconsin Canyous (see Plate 3)

Figure 3-19. Orientation data for macroscopic F2a fold in Ophir Canyon.

F2a
diagra
ural s
tions
F2a fo
linear
becaus
in ot
To ach
subdoma
would b
actual
indicat
A model

F 2 b \% 1

Th
the
3-1). T
serpent
cleavag
local f
cion ind
majority
(Figure

F2a fold (Figure 3-19). Figure $3 \sim 20 d$ illustrates a synthetic fabric diagram shoring the effect of the F2a folds on $F 1$ structures by flexural slip in domain 7 h 5 a and 7 h 5 b . According to this model, the lineations and poles to bedding and cleavage rotate about the axis of the F2a fold in small and great circles, respectively. The initial Fl linear and planar structures are assumed to be those in domain 7 h 5 a because here, cleavage and bedding are homoclinal and parallel to those in other parts of packet 7 where there is no rotation by the $\operatorname{F2a}$ fold. To achieve the observed fabric, the cleavage of the homoclinal part of subdomain 7 h 5 a is rotated about the zonal axis by 100°. No such fit would be observed if both limbs are rotated 50°. The good fit of the actual orientation dats (Figure 3-20c) with the model (Figure 3-20d) indicates that there was flexural slip kinematics during F2a folding. A model for the F2a folding is provided in Chapter 4.

F2b folds

These are local structures that occur only in subdomain 7h5a at the contact with subdomains $8 b$ and $11 a$ in Ophir Canyon (Figure $1-1$ and 3-1). This location is a thrust zone, characterized by the occurrence of several local faults, brecciation, mineralization (quartz vein), serpentinite, and lithic and structural discordance. Here, bedding and cleavage are deformed by sinusoidai folds and are cut in many places by local faults. The apical angles of these folds have a bimodal distribution indicating open and close folds (Ramsay, 1967) (Figure 3-21a). The majority of the folds have amplitude and half-wavelength less than 6 cm (Figure 3-2db, c).

Figiure 3-21. Apical angle and size of F2b folco.
cle

Figure 3-22a sets out the orientation of bedding and coplanar F1 cleavage in F2b Folds in subdomain 7 h 5 a . Poles to both planar elements distribute approximately on a great circie with large spread, indicating a folding event younger than isoclinal Fl folding. The poles to bozoclinal bedding and cleavage, where $F 2 b$ folds are absent, do not 1 ie on the F 2 b phase bedding girdle. Figure $3-22 \mathrm{~b}$ shows the orientation of the axial planes of the $F 2 a$ folds. The distribution is approximately a great circle subparallel to that of the poles to cleavage and bedding, indicating homoaxial rotation of the folds. Figure $3-22 \mathrm{c}$ depicts the orientation of fold axes ($b x b$) and hingelines of the $F 2 a$ folds.

The presence of local fauits cutting across these folds, the occurrence of these folds at the packet boundaries and in faulted blocks that are rotated relative to howoclinal sedding and cleavage where $22 b$ foids are absent, and their deformed attitudes, suggest that F2b folds are syn-thzust structures. At this thrust zone, smaller scale kink folds occur in unrotated orientations, indicating that F2b folds are older than the kinkg. These constrain the relative age of $F 2 b$ folds between F 1 and kink folding. Their relationship to F 2 a folds in not clear; they were probably formed either synchronously or in different increments of the same sya-thrust deformation (D2).

There are two alternative ways to explain why homociinal Fl cleavage and bedding do not lie on F2b girdle (Figure 3-22a): 1) blocks of Fl structures were first rotated, for example due to faulting, from their initial homocinal orientation, and then deformed into $F 2 b$ folds, 2) Fi cleavage and bedding were first deformed by F2b folds and then

Figure 3-22. Orientation data of F 2 b folds in domain 7 h 3 a .
rigidly rotated so as to remove the homoclinal fi orientation from the F2b girdle.

The structures depicted on Figure 3-22 are both for S and Z F2b folds; Z folds are the dominant type. Hingelines of the Z and S folds are nonmparallel as a result of their differently oriented axial planes. The distribution of short and long limbs of the S and $2 F 2 b$ folds shown on Figure 3-22a can be explained by homosxial rotation of the folds, as suggested by the orientation of their axial planes, such that initially differently oriented short limbs of S and z folds would assume subparallel attitudes after refolding. A model of formation of these folds is given in Chapter 4.

F3 folds
F3 folds include kinks and sinusoidal folds in slates and chert interbeds, respectively. These occur in domains dominated by Dl slaty cleavage such as 7 h 5 and 12 (Figure $3-1$) and are younger than $F 2 a$ and E2b folds in Ophir Canyon for the reasons to be discussed.

Kinks are strajght limbed monoclines with angular hinge zone between paired subparallel axial planes or kink planes (Ramsay, 1967; Verbeek, 1978; Rousell, 1980) (Figure 3-23). They occur in very thinly layered rocks with well developed planar snisotropy such as slates and in sets with either individual or intersecting orientations. Experim ments on cards and Folisted rocks (Borg and Handin, 1966; Patterson and Weiss, 1966; Donath, 1968; Weiss, 1968; Anderson, 1974; Gay and Weiss, 1974), theoretical work (Ramsay, 1962, 1967; Dewey, 1965, 1969; Weiss, 1968, 1980), and field studies (Anderson, 1964, 1968; Clifford, 1969;

```
LL a long 11mb
SL = short limb
AP = axial plane
AT = axial trace
\(L=\) length between two hinge innes measured perpendicular to hinge lines
```

$S=$ length on profile plane perpendicular to axial traces (Amp)
$H=$ length along axial trace between two hinges, measured on profile plane
Figure 3-23. Geometery of a kink fold, showing lines and angles measured in the field.

Fy80
robi
unde
nucle
on Fi
folda
mine
matio
cusse

Dotas

3-24)
sinus
wavel
a fact
limbs.
fold
18).
kinks

Fyson, 1968; Roberts, 1971; Hobson, 1973; Naha and Halyburton, 1974; Tobisch and Fiske, 1976; Verbeek 1978; Rousel1, 1980) contributed to an understanding of the kinematics of kink folding and developed models of nucleation and growth of kinks. Geometric measures of kinks are shown on Figure 3-23.

The orientation and geometry of F 3 kinks and related sinusoidal folds (see below) were analyized in domains $7 \mathrm{~h} 5,9$, and 12 , to determine the kinematics of this phase of folding and mechanism of kink formation and growth according to two simple models. The regults are discussed in the following sections.

Domain 7h5

Slates of this domain (Chapter 2) are abundantly kinked (Figure 3-24). The kinks are continuous in places along their axial planes with sinusoidal folds in chert interbeds. The F 3 sinusoidal have halfwavelengths of 0.5 to 2.0 meter. These larger folds contain smaller by a factor of 10) coaxial kinks and (or) sinusoidal folds on their short limbs. The other main structure in this domain is a macroscopic F2a fold that divides domain 7 h 5 into subdomain 7 h 5 a and 7 h 5 b (Figure 318). Individual and intersecting S - and $Z-s h a p e d$ (down-plunge view) kinks are distributed geographically in different parts of these subdomains as shown on Figure 3-18.
orientation data of S and Z kinks and related larger sinusoidal folds in subdomain 7 h 5 a are plotted on Figure $3-24$ and sumarized on Figure 3-25. The hingelines of the Z-shaped kinks define a NW trending, moderately plunging maximum spread in a partial girdle that ranges

$0 \Rightarrow$ 且

Figure 3-25. Sumary fabric diagrams of (a) Z-kinks,
(b) rounded folds, (c) S-kinks, and
(d) all kinks in subdomain 7h5a.
between $225^{\circ} \mathrm{E}$ and $\mathrm{N} 75^{\circ} \mathrm{W}$. All sinusoidal folds in this domain have Z asymmetry and approximately the same orientation as 2 kinks except for their short limbs. Hingelines of the S kinks define a SW trending, moderately plunging maximum on axial surfaces that generally strike NE and dip steeply $S E$. The long limbs are the only fabric element that are parallel among S and Z kinks.

NE and $S E$ dipping kinks (Z and S kinks, respectively) do occur together in rare exposures as small as 1 square meter and are referred to as intersecting kinks (Figure 3-26b). Orientation data of six intersecting kinks in subdomain 7 h 5 a is shown on Figure 3-26a. The average intersection of the S and Z kink planes is nearly perpendicular to the hingelines of both S and Z kinks. The fabric elements of the intersecting S and Z kinks are parallel to those of the S and Z kinks that occur individually (compare Figure $3-25 d$ \& $3-26 a$). The permissible range of the maximum principal compression (Z) responsible for the formation of the kinks can be approximated using the following procedure.

Maximum compression lies within 5° of the long limb cleavage for conjugate and between 10° and 15° for individual kinks, and 45° to 65° from the mean kink planes (Anderson, 1964; Patterson and Weiss, 1966 ; Donath, 1968; Rambay, 1967; Kleist, 1972; Gay and Weiss, 1974). The loci of all lines 45° to 60° from the average kink planes define small circles centered at 45° to 30° about the poles to the kink planes. Similarly, the loci of lines that are 0° to 15° from the cleavage define small circles centered around the poles to these cleavages. These elements are plotted on Figures $3-25,3-26,3-28$, and $3-32$, and
omain have Z nks except for SW trending, ally strike NE element that ly) do occur d are referred of six intera. The average
icular to the
the intersect-
aks that occur
sible range of
formation of

e.

cleavage for and 45° to 65° Heiss, 1966;
(8, 1974). The
define suall
kink planes.
the cleavage
se cleavages.
d $3-32$, and

[^1]the regions where both conditions are met are shaded to define possible positions of Z axis. In domain 7 h 5 , the resolved Z axes plunge mostly SSW, W, and NNW for both the individual and intersecting kinks.

Figure 3-27 depicts the orientation of F 3 folds in subdomains 7 h 5 b 1 and 7 h 5 b 2 , on the east dipping 1 imb of the F2a macroscopic fold in Ophir and Wisconsin Canyons (Figure 3-18). The orientation of an intersecting set and individual kinks and their corresponding fields of z in subdomain 7 h 5 bl , located at the hinge zone of the macrofold, are shown on Figure 3-28a. Here, the intersection of the S and Z kink planes of the intersecting set is close to cleavage and is subparallel to both the S and Z hingelines. Figure $3-28 b$ plots the orientation data of S kinks in subdowain 7 h5b2 where hingelines and axial planes of these kinks parallel those of the 2 kinks in subdomain 7 h 5 a (Figure 325a).

Rinks are differently oriented in the southern part of domain 7h5a compared to the rest of this domain (Figure 3-29). This distribution can be explained by deformation due to the latest motion along the Golconda thrust (see the Golconda thrust zone).

Domain 8
Rinks are oriented differently in this domain which is dominated by a well foliated sandstone and conglomerate (Figure 3-30). The southern part of this domain is close to the Golconda thrust (Figure 3-1), and includes $F 3$ orientations with steep hingelines that may result from rotation as in the southern part of domain 7h5a. However, steep kink planes and cleavage are probably the reason for the steep plunge. This
to define possible xes plunge mostly ing kinks.
is in subdomains macroscopic Eold eientation of an sponding fields of macrofold, are the S and Z kink dis subparallel :s the orientation d axial planes of n 7h5a (Figure 3-
rt of domain 7h5a This distribution on along the Golch is dominated 3-30). The south(Figure 3-1), t may result from ver, steep kink teep plunge. This

Figure 3-28. Summary fabric diagrams of F3 folds in a) domain 7 h 5 bl and b) domain 7 h 5 b 2 .

Figuxe 3-29. Orientation data of kinks in the southern part of domain 7hja.

is supported by the fact that bedding and cleavage are not differently oriented close to the Golconda thrust from other parts of this domain.

Domsin 12

The main structure of this domain is a NG striking vertical slaty cleavage that parallels bedding in chert (Figure 3-4). Rinks and minor sinusoidal folds in cleavage and bedding occur in this domain though not as comnonly as in domain 7h5. Figure 3-31 shows the orientation of S and Z kinks and sinusoidal folde in domain 12. Figure $3-32 \mathrm{a}$ and $3-32 \mathrm{~b}$ set out the orientation of intersecting kinks and their corresponding 2 axes and of individual kinks at two locations in domain 12 b . Here, Z axis is differantly oriented compared to that in domain 7h5a but is similar to that in domain 7h5bl. The modal cleavage is approximately a symatry plane with respect to all the fabric elements of S and Z kinks (Figure 3-32c). Comparing Figures $3-31$ and $3-32, S$ and z sinusoidal folds have identical orientation to the kinks with corresponding asymmetries, indicating, as in domain 7 h 5 , that they were formed synchronously. The major difference compared to the intersecting kinks in gubdomain 7 h5a is that the intersecting S and Z kinks in domain $12 b$ have paraliel hingelines. S kinks in aubdomain $12 a$ plunge moderately SW (Figure 3-33) most probably because of different orientation of cleavage in this gubdomain.

Discusgion

Kinks have different attitudes in different dowains, In domain 7 h 5 , orientation of kinks is a function of their position relative to

Figure 3-32, Orientation data of a) \& b) intersecting kinks and c) all kinks in domain $12 b$.

Figure 3-33. Orientation data of F3 folds in domain 12a,
the macroscopic $\mathbf{F} 2 \mathrm{a}$ fold. In the lower 1 imb of this fold, in domain 7h5s, orientation of the intersecting and individual kinks with corresponding asymetries are identical, indicating that they are of the same generation. On the upper 1 imb in subdomain 7 h 5 b 2 , all the kinks are S-shaped and have nearly similar orientation as the Z-shaped kinks in domain 7h5a. The intersecting S and Z kinks in domain $765 b 1$ have the same atritude as individual S and Z kinks. Here, S and Z hingelines are subparallel, and Z kink planes are differently oriented compared to those in dotain 7h5a. The southern part of domain 7 h 5 a is characterized by deformed kinks due to a latest motion along the Golconda thrust (see the Golconda thrust zone). Kinks in domains $12 b$ and 7h5bl have similar orientation in contrast to those in other domains of packet 12 and 7.

The following sequence of events becomes apparent from the analysis of shortening directions during kink folding in different domains. The parallelism of the shortening axes in the upper and lower limbs of the macrofold (domeins 7 h 502 and 7 h 5 a) indicates that kinks in these domains were formed simultaneously due to a westly plunging shortening after the macrofold was formed. This is supported by the incompatible sense of dom-plunge asymuetry of kinks in both limbs if they are parasitic to the macrofold. During this phase of deformation, the orientation of cleavage in domain 7h5bl and in packet 12 were at a high angle to shortening such that kinks couid not be formed. A younger episode of $\mathrm{N}-\mathrm{S}$ shortening generated kinks in the appropriately oriented clesvage in different domains. Southerly plunging shortening formed
conjugate kinks in domain 7 h 5 b 1 and packet 12 because it was at a low angle (less than 15°) to cleavage in these domains. The northerly plunging shortening in this episode of kink folding resulted in cleavage-parallel slip in domain 7h5a as it was subparallel to the strike of the cleavage in this domain. This reaulted in rotation of the axes and axial planes of the previously forned z-kinks, probably by heterogeneous aimple shear, as evidenced by the large dispersion of these fabric elements compared to the almost constantly oriented cleavage in this domain (Fig. 3-25a).

Geometric analysig of kinks

Two main models have been proposed for kink formation through experimental and theoretical work: Rink rotation (Donath, 1968; C1if~ ford 1968; Rouse11, 1980) and kink migration (Patterson and Weiss, 1966; Weiss, 1968; Gay and Weiss, 1974). In the following paragraphs these models are discussed, followed by analysis of the results of this study.

MIGRATION MODEL - According to this model (Figure 3-34a), kinks nucleate at a point or line and grow both parallel and normal to the kink plane. The orientation of kink plane relative to cleavage is fixed during growth, but their line of intersection migrates as kinks develop. Assuming no change of thickness of cleavage (flexural slip), angles α and $\mathbf{\phi}$ remain equal and constant. Gliding on foliation in the kinked sector is the only mechanism of deformation. In terms of linear and angular parameters, this model requires $\alpha=\beta$ and variable L for all the kinks.
3. The northerly 19 resulted in parallel to the rotation of the ks, probably by dispersion of tantly oriented

mation through

 th, 1968; Clifon and Heiss, wing paragraphs results of this3-34a), kinks d normal to the cleavage is grates as kinks lexural slip), oliation in the erms of linear variable L for

(after Rousell, 1980)

Figure 3-35. Relationship between dilation (T') and angular parameters (a) and locking position (b) in a flexural slip model for a kink undergoing rotation. See text for explanation.

ROTATION MODEL - This model (Figure 3-34b, 3-35) assumes that 110 distance between kink band boundaries is fized during deformation and that the short limb is hinged at the boundaries of fink bands and rotates. This leads to a decrease in β and an increase in α. Several mechanisms such as gliding on cleavage, cataclasis, and dilation operate in the short limb. As long as the resolved shear stress along cleavage in the short limb is greater than frictional and cohesive resistance to gliding, rotation of the short limb continues. Cleavage in the short limb separates during rotation leading to dilation and dissolution of soluble minerals. Dilation, measured by increase of thickness in the short limb, is a aine function of angle p (Figure 335, Rousell, 1980), and thes is maximum when \$ has decreased to 90° (Figure 3-35b). Thereafter, thickness of the short limb decreases as $\&$ becomes less than 90° approaching the value of d as rotation continues (Figure 3-35c). Assuming flexural slip, that is, slip between laminae in the short limb is the only deformation mechanism and the thickness of laminae in the long and short limbs remain equal, further rotation of kinks is not possible when $\alpha \times \beta$, and the fold becomes locked (Figure 3-35c) (Verbeek, 1978; Rouse11, 1980). Therefore constant L, variable d, and \neq, and dilation in kinks characterize the rotation model.

Results

The distribution of all the parameters measured for kinks is shown on Figure $3-36$ and 3-37. Among angles, α has the lowest variation (Figure 3-36a), y the highest (Figure 3-36c), and $\$$, intermediate (Fig ure $3-36 b$). α and β are equal for most of the folds since ($\alpha-\notin$)

Figure 3-36. Distribution of Iinear and angular features of kinks in the study area.

Figure 3-37. Relattonships between geomet ric Eeatures of kinks.

Figure ${ }^{3-37}$. cont'd
averages 0 (Figure $3-36 e$). α is larger than $\bar{\phi}$ for kinks with L greater than 3 cm (Figure $3-37 \mathrm{a}, \mathrm{b}$), and they are about equal (i.e, kinks are symmetric) for kinks with L smaller than 3 cm (Figure $3-37 \mathrm{a}, \mathrm{b}, \mathrm{h}$). As * decreases, α increases until folds become symmetric. This pattern continues until folds become asymetric with high d and low β (Figure $3-37 f, j) . \gamma(180-(\alpha+\psi\rangle)$ is very variable for kinks with L less than 3 cm and is less variable as L increases (for the given population) (Figure 3-37c).

L ranges between 0.25 and 5.75 cm (Figure $3-36 f$). Defining (α §) as a symetry index for kinks, such that perfectly symetric kinks have $(\alpha-3) m 0$, the kinks have high symmetry when d is between 60° and 80° (Figure $3-38 e$ and $3-37 f$). The aymetry is uncorrelated with the apical angle, suggesting that it can be achieved at any angle of α and \$ (Figure 3-378). The size of the kinks is shown on Fig. 3-36f, 8, and h. All dimensions of kinks are less than 7 cm . Amplitude of kinks has a weak positive correlation with L (Figure $3-37 e$) and is constant for different values of y (figure 3-37i).

Joints parallel to kink planes sut discordantly across short limbs of kinks with $\boldsymbol{\beta}=90$. Very low amplitude small kinks also occur on the short limb of the kinks (Figure $3-38 b$). α is variable for kinks with $\Phi=90^{\circ}$ (Figure $3-37 j$). Kinks with d ap have fine cracks on their long limbs close to the kink planes, possibiy ss incipient kink planes and indicating migration (Figure 3-34a) of kink boundaries by extending their short limb into the long limbs (Figure 3-34b). Thin sections made from small kink bands indicate hish concentrations of iron oxides

on the short limbs, probably as residue after soluble minerals were removed due to dilation on this limb. Kink bands terminate both by convergence of kink boundaries and gradual decrease in amplitude.

Subequal α and Φ for the majority of kinks of variable length (L) and apparent lengthening of their short limb by extending into the long limbs (Figure $3-38$) probably support the migration model for nucleam tion and growth of the kink bands in the study area. However, this model can not explain the presence of the small kinks in the short limbs of the larger kinks when $\beta=90^{\circ}$, nor can it explain dilation in the short limbs. These can be better explained by the rotation model. Incomplete evidence of both models exists in the kinks of the study ares. It is possible that different growth pattern described by these two or other models (see for example Verbeek, 1978), may operate at different times and conditions during progressive deformation.

Tectonic fabric at the Golconda thrust zone
This zone includes the basal part of packet 7 at Ophir Canyon, inmediately above the Golconda thrust. Mesoscopic folds cut by faults occur at this area. The folds occur only adjacent (commonly less than 50 cm) to faults and are locally cut by them, suggesting that the two grructures are either contemporaneous or that the fault is younger. Figure 3-39 shows the orientation of the folds and associated faults in three different locations in this zone. Although one is conjugate, folds have E and ENE vergence (Figure $3-39 b$). Axial planes are at low angles to the associated faults. The intersection of the faults and axial planes is subparallel to the hingelines at each location. Using
the
imat
dire
norma
Golco
tions
moder
block
thrus
rever:
these
kinks
Kinks
howeve
chetic
the Go
from
about
cleavas
gests
thrust.
the method of Figure $3-40$, slip directions for these faults are approximated assuming that the faults and folds are contemporaneous. The directions trend westerly; two of these indicate thrust, and one is normal. They are subparallel to some striations on the faults at the Golconda thrust (Figure 3-41), supporting the validity of the assumptions of the model directions. Local faults at the Golconda thrust dip moderately W. This and slip directions in them indicate that faulted blocks moved both up and down relative to the west dipping Golconda thrust in different parts of the thrust leading to both normal and reverse faulting.

Kink folds occur in the Golconda thrust zone. The orientation of these folds in the northern side of Ophir Canyon is about the same as kinks in domain 7h5a farther from the thrust (Figure 3-24, 3-25, 3-42). Kinks at the thrust zone in domain 8 and southern part of domain 7 h 5 a , however, have rotated attitudes (Figure $3-43 a$). Figure $3-43 b$ is a syththetic fabric diagram of a flexural slip model showing the effect of the Golconda thrust on kinks at the thrugt zone south of Ophir Canyon. In this model, orientation of the S kinks in subdomain 7 h 5 a , being far from the thrust, is taken to be the initial attitude. These are rotated about an axis parallel to the intersection of the axial planes and cleavage in subdomain 7 h 5 a and the Golconda thrust. The good fit suggests that kinks are older than the latest reactivation of the Golconda thrust.

1) fold is formed during fatiting
2) strain is plane such that both fault and axial plane are normal to the $X Z$ plane.
3) the axial plane is normal to Z.

Procedure:
Slip parallels the intersection of the $X Z$ plane and the fault.
Slip direction is determined on the XZ plane assuming that the fault is formed at 45 to the Z axis.

Figure 3-40. A method to determine slip direction using axial plane of a fold and associated fault.

Figure 3-4l. Crientation data of (a) folds and slip and (h) fialtes and striations in the Golconda thrust zone.

- Hinge line

O 1 to cleavage

- 1 to bedding
$\times \perp$ to axial piane

Figure 3-42. Orientation data of kinks in the Golconda thrust zone.

Figure 3-43, a) Orientation data of kinks south of Ophir canyon in the Golconda thrust zone, b) a model for their formation. See text for explanation.

Packet 9 contains lower Paleozoic (?) rocks that are included in structural subdomain $9 a$, and upper Paleozoic (?) sedimentary breccia (t5) in subdomain $9 b$. The orientation of deformed tabular clasts in the sedimentary breccia in subdomain $9 b$ is shown on Figure 3-44. These are oriented similar to bedding and cleavage in domain $9 a$ in packet 9 and to those in upper Paleozoic packets of the Golconda allochthon. The lower Paleozoic (?) rocks in subdomain 9a contain tectonic fabrics which differ in part from those of subdomain $9 b$ and other domains of the allochthon. Two generations of cleavage exist in domain 9a (Table $3-2$, Figure $3-45$, and $3-49$) one (S1) is parallel to bedding and is penetrative, and the other is a sporadic and weakly developed spaced cleavage (S3) oblique to bedding and the first cleavage. The $S 1$ cleavage is folded by chevron, conjugate, and other types of folds (F2a) and shows large variations in attitude. The folds have sharp to curved hinges, straight to curved limbs, and apical angles ranging between 40° and 140° (Figure $3-46 \mathrm{~s}$). The amplitudes and half-wavelengths of these folds range between 1 and 70 cm with a mode of less than 20 cm (Figure 3-46b, c).

Although there are not evident superposed folds, the variable orientation of the axes and axial planes of these folds indicates multiphase generation and (or) heterogeneous strain for the reason to be discussed, In areas of 20×20 meters, the orientation of all the fabric elements varies significantly. Two such exposures were studied in detail (stations $146 \& 147$) about 40 meters apart, and in each, piece-

DEFORMATION	FOLD	AXIAL PLANE	AXIS	FOLIATION	comments
${ }^{1}$	F_{1}	${ }^{A} p_{1}$	$A p_{1} \times S_{0}$	S_{1}	isoclinal folds in bedding with axial. plane slaty cleavage.
D_{2}	$\mathrm{F}_{2 \mathrm{a}}$	${ }^{\wedge} p_{2 a}$	$\begin{aligned} & \mathrm{Ap}_{2 \mathrm{a}} \times \mathrm{S}_{0} \\ & \mathrm{Ap}_{2 \mathrm{a}} \times \mathrm{Sl} \end{aligned}$		mesoscopic folds in bedding and cleavage $\left(F_{2}\right)$.
	$\mathrm{F}_{2 \mathrm{~b}}$	$\mathrm{Ap}_{2 \mathrm{~b}}$	${ }^{A p_{2 b}} \times S_{0}$		homoaxial. folding of $\mathrm{F}_{2 a}$ folds (F_{26})
			$\mathrm{Ap}_{26} \times \mathrm{S}_{1}$		
D_{3}				s_{3}	formation of spaced cleavage oblique to all other structures.

Tabie 3-2. Deformation events in the lower Paleozoic (?) packet 9 of the Golconda allochthon.
$\stackrel{\cong}{\sim}$

Figure 3-44. Orientation of tabular clasts and bedding in domain $9 b$.

Figure 3-45. Orientation of (a) unfolded bedding and (b) unfolded S_{1} and S_{3} cleavages in domain ga.

Figure 3-46. Distribution of (a) apical angle and size (b \& c) of folds in domain 93.

Figure 3-47. Ordentation of folds in station 146 of domain 9 a.
wise cylindrical folds were measured. Figure $3-47$ shows the fold structures in different parts of station 146 . In each position at this stacion, poles to bedding and axial planes lie on great circles with zonal axes parallel to the hingelines and axes of the folds. This suggest either nearly homoaxial refolding, faming of the axial planes, conjum gate geometry, or a combination of these. The continuous girdie of axial planes makes fanning and conjugate geometry unlikely, Eowever, a perfect box was recorded at station 146 , indicating that some folds may be conjugate. Folds with S and Z asymmetries occur with symmetric folds close to one another in distances of few meters at this station. Orientation data of folds at atation 147 are depicted on figure 3-48. Here, the asymmetry of these folds varies in distances of 1 m . Hingelines plunge shallower and are oriented differently over a more continuous girdle compared to those at btation 146 . Axial plates, like 146, spread similar to bedding, though over different girdies.

At both stations, hingelines and fold axes of different asymmetries spread over their entire girdle. The composite diagrams (Figure $3-47 \& 3-48$) of all the folds at stations 146 and 147 show that the local bedding and axial plane girdles have nearly colinear intersection that parallel the nomal to the girdle of the hingelines and axes in each station.

The tectonic fabric in packet 9 is different from those in upper Paleozoic packets because of 1) their deformed folds which except for the rotated $F 2 b$ folds do not exist in the Golconda allochthon, and 2) their second generation spaced cleavage. The orientation of the SI
the fold strucEion st this staircles with zonal is. This suggest planes, conjuinuous girdle of ely. However, a it some folds may with symmetric this station. cted on Figure iistances of 1 m . y over a more ial planes, like irdies.
different asym-
e diagrams (Fig47 show that the ear intersection and axes in

those in upper

which except for
chthon, and 2)
tation of the Sl

Abstract

131 cleavage in packet 9 is similar to that of $S 1$ cleavage in many upper Paleozoic packets. The spaced cleavage, $S 3$, on the other hand, although subparallel to some $S 1$ slaty clesvages in upper Paleozoic packets, is absent in these packets. It is quite likely that at least sl cleavage in packet 9 is of pre-Golconda age, and formed by the deformation associated with the Antler orogeny, because it is parallel to isoclinal bedding in chert and limestone interbeds of probable early paleozoic age.

The relationship of $S 1, S 2$, and $S 3$ are schematically shown on Figw ure $3-49$. 53 is about normal to both the hingeline girdies at stations 146 and 147 (Figure $3-45,3-47$, and $3-48$), indicating that it was not formed with $F 2 a$ fold and probably is the youngest structure in packet 9. Figure 3-49 explains: a) abrupt change in the asymmetry of the folds, b) curvilinear orientation of hingelines of the S and Z folds at different substations that when combined, display great circie distribution at both stations, and c) parallelism of bedding and 52 girdles.

Tectonic fabric of the Diablo Formation (Pd) The autochthonous Diablo Formation lies above deformed lower Paleozoic rocks and below the Golconda thrust in Last Chance, Ophir, and Wisconsin Canyons. The Golconda thrust above the Diablo is defined by the occurrence of carbonatized and fresh serpentinite and a sharp structural and lithological break. Unlike deformed beds imediately above the thrust, the Diablo Formation is homoclinal and is not affected by the microscopic F2a fold in Ophir Canyon (Figure 3-50). Foliation is the prevalent structure of Diablo and is defined by the

 other hand, although leozoic packets, is at least $S 1$ cleavage the deformation assoparalle1 to isoclinal ble early Paleozoic tically shown on Fig~ e girdles at stations ing that it was not t structure in packet asymmetry of the the S and Z folds at reat circle distriding and 52 girdles.ove deformed lower Last Chance, Ophir, Diablo is defined entinite and a sharp d beds immediately moclinal and is not yon (Figure 3-50). nd is defined by the

preferred orientation of tabular clasts of chert that iie parallel and subparallel to bedding (Figure 3-50). The clast shape and orientation is tectonic because their tabularity parallels an anastomosing foliation in the matrix and because their aspect ratio is too great to be sedimentary. Bed are upright and dip H, the facing of which is recognized by graded and cross beds and erosional surfaces between chert conglomerate and calcarenite (Chapter 2).

Hesoscopic folds exist in the Diablo Formation. At the contact with pelites of packet 7 of the Golconda allochthon, a class 18 fold occurs in well-bedded finemgrained sandstones of the Diablo formation. Orientation data of this fold is given on Figure 3-51. The fold is isolated halfuave and exists only in the hanging wall and within 50 cm of a fault. Using the method described on Figure $3-40$, slip direction on the fault is calculated. Because the resolved slip is perpendicular to the axial plane (Figure 3-51), the fold could not have formed during the faulting and rather is older as it is cut by the fault.

Disharmonic folds are common in the interbedded medium to coarsegrained calcarenite and fine to medium grained calcareous sandstones of the Diablo Formation on the southern side of Ophir Canyon. These folds are most probably soft sediment structures because they are single halfwaves which die out in less than a meter and are bounded by unfolded beds with depositional contact. \#ingelines and axial planes of these folds are very much spread with no systematic distribution (Figure 3-52).

The strong foliation in the chert conglomerate of the Diablo For-

Figure 3-51. Orientation data of a fold and an associated fault in authochthonous Diablo Formation.

Figure 3-52. Orientation of disharmonic folds in Diablo Formation. Tie lines are between corresponding hingeline and axial plane of individual folds.
mation can be attributed to the emplacement of the Golconda allochtion or to intrusion of the Ophir pluton (Tgr). The rocks of the Diablo Formation are thermally metamorphosed as indicated by the presence of marblea. Although there is not an evident gradient in foliation development with respest to the Golconda thrust, the subparallelism of bedding, foliation, and the Golconda thrust and other faults (Figure 3-50 and 3-41b), favor the idea that foliation was formed after the allochthon was emplaced, most probably due to loading by the upper plate. An age founger than the Golconda thrust for the foliation is further suggested by its homoclinal attitude, in contrast to the intensely deformed allochthonous packets in the Golconda allochthon and underlym ing lower Paleozoic rocks. Although there is no clear increase in foliation development toward the pluton, younger intrusion of the Ophir pluton as the cause of formation of the foliation can not be ruled out.

Tectonic fabric of the autochthonous lower paleozoic rocks

Abstract

Autochthonous lower Paleozoic rocks occur below the Golconda thrust and the Diablo Formation. They were at least deformed before deposition of the Diablo Formation. At Ophix and Wisconsin Canyons, tabular clasts in the lower Paleozoic sedimentary breccia form a foliation by their planar orientation. The foliation originated by flatten" ing indicated by folds in quartz veins that have axial planes parallel to these clasts. Bedding and cleavage in these rocks are parallel and mostly dip shallowly to moderately $W, S W$, and NE , and strike between NE and NW (Figure 3-53). These planes have similar orientation to those in upper Paleozoic packets and in packet 9 . Although only one bedding is

1conda allochthon f the Diablo Forpresence of mar liation developrallelism of bed-
1ts (Figure 3-50
d after the allo-
he upper plate.
iation is further

- the intensely
thon and underlym
increase in foli-
sion of the Ophir
not be ruled out.
ocks
ow the Golconda t deformed before scorsin Canyons, cia form a foliaated by flattenplanes parallel are parallel and trike between NE tion to those in y one bedding is

Figure $3-53$. Orientation of bedding and cleavage in the autochthonous lower paleozoic rocks, east of of the Golconda thrust
shown on Rigure 3-53, bedding and cleavage are parallel in interbedded chert and pelite, and define probably isoclinal first folds. Bedding and cleavage are deformed by chevron folds in Sumit Canyon. This, their early Paleozoic age, and the fact that they are unconformably overlain by homoclinal Diabio rocks, auggest a pre-Diablo age for these structures despite their similar orientation to the same fabric elements in the Golconda allochthon.
conda a is defir quartz paxalle cut by chert gr have $1 a x$
tions is graing axisl ra Eoliatio

In in parti strain

Theory o

deviator
orientat
is a
ments,
Ramsay,

Introduction

Slates and thin sandstones of upper Paleozoic packets of the Golconda allochthon such as 7 and 12 , include a penetrative foliation that is defined by planar orientation of micaceous minerals and flattened quartz and chert grains. The foliation is a Dl structure because it is parallel to the axial planes of Fl isoclinal folds and because it is cut by D2 thruats and folded by F 2 and F3 folds (Table 3-1). Quartz and chert grains are elliptical in aections perpendicular to foliation and have large axial zatio of up to 13. The average long axis in these sections is within 3° of the trace of the foliation. The aligrment of the grains is interpreted to be at lesst partly tectonic because their axial ratios are too large on perpendicular sections and too low in foliation parallel sections to be sedimentary.

In this section, strain in general and strain of elliptical grains in particular are discussed, followed by a discussion of the results of strain measurement in the study area.

Theory of strain of elliptical grains

Finite strain of a rock represents the sum of all incremental deviatoric strains, volumetric strains, and rotations that can vary in orientation and magnitude with each increment. Generally, deformation is a continuous process that includes a series of successive increments, superimposed non-coaxially in different stages (Flinn, 1962; Ramsay, 1967; Durney and Ramsay, 1973). In a grain-matrix system with
a well developed slaty cleavage, grains thay have rigidly rotated and (or) changed shape during each increment of deformation.

All strain determinations in deformed rocks are based on using one or more of the following: 1) lines of known original length, 2) lines of known original relative length, and 3) initial angle made between intersecting lines (Ramsay, 1967). During deformation, both the length and angles between intersecting lines change. The change in length can be measured using extension (e), defined by the ratio of the change in length and original length (Eqn. 3-1) (Ramaay, 1967, p. 52).

$$
\begin{equation*}
e=(1-10) / 10 \tag{3-1}
\end{equation*}
$$

where 1 is final length and lo is the original length. Quadratic elongation (λ), defined by Equation 3-2, is commonly used in strain stum dies for longitudinal strains.

$$
\lambda=(1 / 20)^{2}=(1+e)^{2} \quad(3-2)
$$

Another measure of geological strain is logarithmic or natural strain which is defined by Equation 3-3.

$$
\begin{equation*}
\varepsilon=\ln (1+e) \tag{3-3}
\end{equation*}
$$

A measure of change in angle is given by shear strain y, defined by Equation 3-4,

$$
\begin{equation*}
y=\tan \phi \tag{3-4}
\end{equation*}
$$

where ϕ is the deflection from perpendicular of two lines which were originally at 90° to one another.
n.
ased on using one
length, 2) lines
le made between
, both the length
ge in length can
tio of the change
, p. 52).

Quadratic elon ed in strain stu-

To better visualize the geometric effects of strain, deformation of an original spbere with unit radius is considered in rocks. After strain, this sphere becomes an ellipsoid, the finite strain ellipsoid (Ramsay, 1967). The three principal axes of this ellipsoid define the principal longitudinal strains, $\left(1+e_{1}\right)>\left(1+e_{2}\right)>\left(1+3_{3}\right)$, with quadratic elongations $\lambda_{1}>\lambda_{2}>\lambda_{3}$.

In geological problems, unfortunately, the original length (10) is unknown, and lines are generally not initially perpendicular, therefore, rather than actual extensions along the axis of the strain ellipsoid, their ratios sre calculated. Volume change can not be computed also without actual extensions.

To calculate shape and orientation of the strain ellipsoid in deformed rocks, the comon procedure is to calculate two dimensional sections of the ellipsoid (strain ellipse) on two or three sections of the rock and then combining them to find the three dimensional strain. Among strain markers in rocks, the shape and orientations of deformed elliptical grains in slate, sandstone, and conglomerate have bean used exteasively to measure strain (Flinn, 1956; Fobbs and Talbot, 1966; Ramsay, 1967; Gay, 1968a,b, 1969; Hossack, 1968; Dunnet, 1969; Elliott, 1970; Dunnet and Siddans, 1971; Mukhopadhyay, 1973; Gay and Fripp, 1976; Mitra, 1976; Tobisch and others, 1977; Oertel, 1978; Chapman and others, 1979; Lisle, 1979). The question continuously arises as to whether the strain measured using these grains represent the bulk strain. The final grain shape after deformation depends on several factors: 1) initial grain shape, 2) initial grain orientation, 3) ductil-
ity contrast between grain and matrix, 4) orientation, amount, and axial ratio of deviatoric strain, 5) volumetric strain, and 6) incremental rotations. Methods designed for strain analysis are only capable to consider part of these factors and therefore involve some degree of uncertainty. The following is a brief analysis of these facluis.

Initial ghape - Sphere and ellipse are the two simplest shapes which are commonly assumed for grains in undeformed rocks. The only proof of initial shape is the existence of equivalent undeformed rocks and any assumption of original shape contributes an error. It is only for spherical grains, deformed homogeneously with their matrix, that the strain measured from the grains is the same as the bulk finite strain (Cloos, 1947, 1971; Ramsay, 1967; E1liott, 1970). However, strain markers are seldom originally spherical, and this is among the reasons why initial elliptical shapes are more frequently assumed and different techniques have been developed. Fortunately, there are some two dimensional methods, for example $\mathrm{Rf} / \mathrm{\phi}$ and polar graph (Appendix I), that can estimate initial eccentricities of the grains. Others, such as method of Robin (Appendix I) work for grains of any shape. The error generated by ignoring original shape is large (Hossack 1968).

Initial grain orientation - The initial angle between the long axis of an elliptical grain and the finite deformation axes controls the eccentricity of the grains during deformation. In cases where the long axis of a grain is parallel or perpendicular to the long axis of the strain ellipse, the grain becomes longer or shorter, respectively, depending
smount, and and 6) increre only capa. ve gome degree fačuis.
shapes which only proof of cks and any lt is only for (x, that the finite strain strain marke reasons why nd different me two dimen(I), that can uch as method error gen-
long axis of is the eccenhe long axis of the strain y, depending
on the axial ratio of the grain and strain ellipse (Ramsay, 1967; Elliot, 1970). On the other hand, if elliptical grains are at other angles to strain axes, they will deform both by rotation and change in shape (Gay, 1968a). Originally non-spherical grains can have either random or non-random orientations. Truly random orientations are rare in sedimentary rocks (Griffith, 1967; Elliott, 1970). Despite this, random orientation is assumed in many cases (e.8. Ramsay, 1967; Dunnet, 1969; Gay, 1969; Shimamoto-Ikeds, 1976; Robin, 1977). Original nonrandom orientations are more common and include linear (unimodal) and planar preferred orientations (Elifott, 1970; Dunnet and Siddans, 1971). Methods such as BE / ϕ and polar graph (Appendix I) have been designed to estimate the non-random distributions. The error contributed by ignoring initial orientation can be significant.

Ductility contrast between grains and matrix - Ductility is a measure of rheological condition of the deforming material and is approximately equivalent to the reciprocal of viscosity; more ductile materials are less viscous (Gay and Eripp, 1976). When the ductility of grains is less than that of the surrounding matrix, grains undergo a component of rigid body rotation during defomation of the grain-matrix system. This leads to superimposition of differently oriented incremental strains on grains that deform as they rotate (Ramsay, 1967; Gay, 1968 a (b; Rossack 1968; Gay and Fripp, 1976). In this case, the bulk strain in the matrix may be irrotational and different from the strain in the grains. It is a common practice to assume that the ductility ratio of grains and matrix is 1 , and therefore to take the grain ellipse as a
representative of the bukk strain ellipse. Gay (1968a\&b) examined 145 behavior of non-rigid viscous elliptical grains during pure shear and circular grains during simple shear in a viscous matrix. He found that during pure shear, if the major axis of an elliptical particle and that of strain are not parallel, particles change shape and rotate toward the direction of extension (X), the rates of which decrease if viscosity ratio of particles and matrix (R) increased. Elliptical particles parallel to pure shear axes, only change their shape depending on the viscosity ratio (R); if $R(1$, particle changes shape more rapidiy than the pure shear strain ellipse; if $R=1$, particle and atrain ellipse are equivalent; if $R>l$, particle changes shape more slowly than the strain ellipse. If circular grains are deformed by simple shesr, they deform and rotate, simultaneously. Particles with low viscosity ratios need larger shear strain than the more viscous ones to become parallel to the X direction. More viscous particles rotate toward shearing direction quite rapidly.

Detrital rocks such as sandatone and conglomerate may contain one or more types of grains. Because different types of grains have different ductility with respect to the matrix, they will be strained and rotate differently. Incorporating shape and orientation of different grain types of one rock specimen during strain measurement can reault in significant error if their ductility contrast is not taken into account (Gay, 1968a,b: Gay and Fripp, 1976). This problem is avoided by using grains of one type during measurement.

Volume change during gtrain - Rocks can undergo volume loss by
compaction, migration of solid and pore water, and densification, which can occur before or during deformation. Volume change is caused by the mean normal strain, that is, the non-deviatoric component of strain. Ramsay (1967), Ramsay and Wood (1973), and Wood (1974) have demonstrated that volume losses of up to 20% or more may be involved in the deformation of lithified and unlithified rocks, respectively. Deformation plot is a two dimensional representation of the strain ellipsoid on an orthogonal coordinate system with $\ln \left(\left(1+e_{2}\right) /\left(1+e_{3}\right)\right)$ as abscisas and $\ln \left(\left(1+e_{1}\right) /\left(1+e_{2}\right)\right)$ as ordinate (e.g. Figure 3-67) (Flinn, 1962; Rameay, 1967; Ramsay and Wood, 1973). Spheres plot at the origin and ellipsoids at the positive quadrant of the plot. If no volume change occurred during strain, the line of unit slope, passing through the origin of the plot, separates constrictional from flattening ellipsoids, or in other words, ellipsoids which have their intermediate axis contracted or expanded, respectively. However, if volume change did occur, this line no longer separates the two field, and rather divides fields of apparent flattening below from the field of apparent constriction above it.

Comparing the densities of slate ($2.7-2.85 \mathrm{gr} / \mathrm{cm}^{3}$) and mudstone (2.1-2.75 gr/cm ${ }^{3}$) that slates derive from, Ramsay and Wood (1973) and Wood (1974) evaluated the significance of volume loss during formation of slaty cleavage. Wood (1974) places an upper limit of 10% for the volume loss during formation of slate and shows that only small errors are involved in ignoring volume change of this magnitude. However, he mentions that if volume changes exceed 20% they must be considered. In
rocks such as pelite and sandstone, tatrix, being generally more compactable than grains, auffers a higher volume loss during deformation.

Qrientation, amount, and axial ratios of deviatoric strain - The final axial ratio of elliptical grains in deformed rocks (Rf) is a function of their initial axial ratio (Ri), deviatoric atrain axial ratio (Rs) and orientation with respect to the long axis of the grains (6) as indicated by Equation 3-5 (Dunnet, 1969, Eqn. 16).

$$
\cos 2 \phi=R i\left(R f^{2}+1\right)\left(R s^{2}+1\right) \pm 2\left(R i^{2}+1\right) R s x R f / R i\left(R f^{2}-1\right)\left(R s^{2}-1\right)(3-5)
$$

Equation 3-5 is applied to calculate atrain sxial ratio in methods of two dimensional strain analyais such as Rf/b (Appendix I) using final axial ratios and orientations of elliptical grains for given initial grain ratios.

Incremental rotations - At any successive stage during progressive deformation, the principal axes of incremental and finite ellipsoids are generally non-parallel except when deformation is irrotational. This leads to superimposition of incremental distortion and rotation over the establiabed finite strain at that increment (Ramsay, 1967, 1976; Ramsay and Graham, 1970; Durney and Ramasy, 1973). The final shape of grains embedded in a rock undergoing a progressive deformation is affected by the rotstions and distortions at each increment. Grains elongated during previous increments may be contracted in later stages of strain depending on incremental rotation (Ramsay, 1967, p. 114). 18 deformation.
an - The final) is a function al ratio (Rs) grains (d) as
$\left(8_{8}^{2}-1\right)(3-5)$
in methods of
I) using final
given initisl
ng progressive nite ellipsoids irrotational. on and rotation (Ramsay, 1967, 973). The fins ive deformation rement. Grains n later stages 7, p. 114).

Errors
Most of the strain methods are two dimensional and are used on tiain sections, polished surfaces, photographs or natural surfaces in the field. For thin sections, the errors depend on: 1) the accuracy of reading the occular scale and therefore determining length of the long and short axes of the grains; although it is their ratio which is used, the long and short axes, being independently measured, can involve certain error, 2) the accuracy of reading the angle between the long axis of the grains and a reference line (e.g. the trace of cleavage), 3) non-perfect ellipticity of the grains, leading to inaccuracy of reading their sizes, 4) grain population, as it migit not be statistically enough to repregent the whole rock, 5) the error involved in each of the two dimensional strain methods regarding the validity of their assumptions. In three dimensional methods, the major errors result from misorientation of the sectional planes and the errors involved in these methods because of the uncertainties concerning their basic assumptions.

Strain measurament in the study area

Strain was measured from specimens in packet 7 and 12 of the allochthon because they contain slates and sandstones with elliptical strain markers and include identical rock types at different structural positions relative to the Golconda thrust (Figure 2-1, 3-1, 3-54). The objective was to detect a deformation gradient if one exists. Oriented samples were collected from locations show on Figure 3-54 where kinks or other young structures are absent except for specimen $0 S 10$ where the

[^2]effect
analysis
and hing
packets.
closures
Thi
detect
are almo
were the
and the
were
thin sec
cleavage
pendicul
the ion
between
ocular
grain as
of the
the grid
methods
number o
represen
ured on
effect of an $F 2 a$ fold on $D 1$ structures was the objective of the analysis. Other D1 structures besides the slaty cleavage are boudins and hingelines of $F 1$ folds in the interbedded chert and pelite of these packets. The specitens were taken from the planar regions where $F 1$ fold closures are absent.

Thin sections were first cut parallel to the cleavage in order to detect the existence of microscopic lineations. Because grain shapes are almost equant in these planes, three other oriented thin sections were then made perpendicular to the cleavage, two normal to one another and the third at about 45° to them. The orientations of the sections were plotted on a stereogram and the intersections of the cleavage and thin sections were determined (Figure $3-55 \& 3-56$). The trace of cleavage or an arbitrary line was taken as reference in sections perpendicular or parallel to the cleavage, respectively. The length of the long and short axes of individual elliptical grains and the angle between the long axis and the reference line (6) were measured using an ocular micrometer and a mechanical stage. Rf was calculated for each grain as the ratio of its long and short axes. For systematic coverage of the whole thin section and avoiding repetition, the survey followed the grid of the mechanical stage. Because all the two dimensional methods used are statistical (Appendix I), they require a minimum number of grains to be measured for their shape and orientation to represent finite strain. In this study, the number of the grains measured on thin sections ranges between 70 and 108.

Figure 3-56. Orientation of chin sections and calculated principal strains in the oriented samples

$$
\text { in packet } 12 \text {. Dash iines are thin sections. }
$$

Several methods have been developed to calculate two dimensional rock strain ratio given dimensions and orientation of elliptical gráing. The ones used for this study can be categorized into two groups: I and II. The methods of both groups are described in Appendix I, and for simplicity, they sre referred to by letters A through H. Group I methods use arithmetic, geometric, and harmonic means of grain axial ratios and the slope of a best fit line on a long/ahort axis plot to estimate strain ratio. The methods of group I do not take into account the atrain controlling factors mentioned in the previous section and assume that grains were initially spherical and therefore provide a less valid approximation to the actual rock strain than those of group II. They, nevertheless, are simpler and faster to measure compared to group II, and among them, the harmonic mean yields high quality results and therefore are used in this atudy. Group Ir methods, on the other hand, include more sophisticated algebraic, graphic, and stam tistical methods. Some of these are capable of evaluating the initisl shape and orientation of the grains (Appendix I). Assuming that the resulta of group II methods are wore accurate, the error in estimating the principal strains by methoda of group I can be measured relative to the strain ratio determined by the methods of group II using Equation 3-6 (Lisle, 1977b).
where mean or slope is the result of any of the group I methods, and R
is the strain ratio detemined by methods of group II. The \% error is used to assess the quality of the results of group I and to find a relationship between methods of the two groups.

Because each metbod takes different assumptions and provides difm ferent results, all were used for each of the 34 thin sections that were made from 9 specimens in packets 7 and 12 . The objective was to elucidate the effect of the assumptions involved in each method, evaluate the two dimensional strain by choosing the best results, find the errors of group I methods with respect to the more exact methods of group II, and approximate original shape and orientation of the grains.

Results

Table 3-3 sets out the results of all the methods for the 34 thin sections. A typical long versus short axis plot provided by method A is shown on Figure 3-57. Because grains have finite size, a best fit line through the data points can not have an intercept and therefore is forced to pass through the origin as shown on this diagran. The slope of this line is used in method A to estimate strain axial ratio. In general, the stort and long axes of quartz grains in slate specimens range between 0.003 and 0.112 , and 0.017 and 2.6 mim, respectively. The chert grains in sandstones have their short and long axes in the range between 0.028 and 1.2 m, and 0.07 and 5.88 mm , respectively. For all the grains there is a good linear correlation between their long and short axes as is defined by r, the coefficient of goodness of linear correlation (Appendix I), indicating that the grains originally had almost constant initial axial ratio (Ri) and orientation. r is

	Group I			Group II (Rs)				Rf/ $/$ \$	$\begin{aligned} & \stackrel{r}{\text { Linear }} \\ & \text { cocff. } \end{aligned}$	R1	$\bar{\theta}$
Arith. mean	Geo. mean	Harm. mean	Slope	Robin	Shim. Ikeda	Tob1sch	Holst				
	3:03	$2: 91$	2.76	2:90	2.91 $2: 79$	2.98	2.72 2.69	$\frac{2}{2: 72}$.96	$1: 545$	7.63 -20
3.37	3.16	2.98	2.76	2.74	2.74	2.91	2.68	2.72	. 96	1.61	1.51
2.14	2.03.	1.95	1.80	1.49	1.48	1.51	1.42	1.50	. 98	1.89	. 77
3.86	3.48	3.18	2.62	3.21	3.25	3.35	2.85	3.03	. 93	1.73	.77
3.39	3.06	2.81	2.35	2.02	2.63	2.80	$2 . \pm 0$	2.50	.93	1.70	-2.04
3.95	3.02	3.32	2.73	3.36	3.34	3.49	3.16	3.17	. 93	1.71	7.19
2.15	2.08	2.00	1.90	1.50	1.50	1.43	1.47	1.60	. 97	1.87	3.75
3.81	3.54	3.27	3.10	3.20	3.21	3.39	3.08	3.27	.83	1.72	-.76
3.31	3.04	2.79	2.52	2.79	2.81	2.92	2.69	2.69	.91	1.67	3.17
3.80	3.48	3.17	3.03	3.15	3.24	3.31	3,01	3.07	. 90	1.78	5.93
2.18	2.12	2.00	2.09	1.83	1.60	1.67	2.58	1.86	. 98	1.81	-.t1
4.63	4.26	3.94	4.22	3.82	3.85	4.09	3.69	3.59	- 88	1.78	-9.26
3.61	3.31	3.06	3.29	3.07	3.08	3.28	2.89	2.71	. 36	1.70	1.91
4.49	4.27	4.04	3.90	3.86	3.87	4.12	3.71	4.04	. 95	1.65	3.89
2.07	1.97	1.87	1.75	1.28	1.25	1.30	1.23	1.37	. 95	1.97	1.86
3.23	3.28	3.11	2.98	2.85	2.85	2.96	2.72	2.83	. 96	1.59	3.11
3.58	3.35	3.16	2.97	3.13	3.13	3.23	2.94	2.96	.94	1.58	. 75
3.53	3.37	3.22	3.18	3.16	3.17	3.27	2.97	3.22	. 95	1.51	. 06
2.52	2.35	2.21	2.15	1.53	1.47	1.59	1.49	1.51	.94	2.23	-1. 26
3.14	2.83	2.75	2.61	2.59	2.50	2.71	2.50	2.70	.94	1.74	9.66
3.72	3.43	3.16	2.85	3.03	3.00	3.21	2.92	3.03	.93	1.81	-13.43
3.48	3.23	3.02	2.71	2.81	2.77	2.97	2.23	2.72	. 93	1.83	-7. 20
2.65	2.48	2.34	2.19	2.62	1.55	1.69	1.58	1.59	. 94	2.27	-1.04
3.25	3.02	2.03	2.64	2.66	2.63	2.79	2.54	2.58	. 94	1.76	11.68
3.47	3.23	2.99	2.75	2.75	2.72	2.94	2.70	3.10	. 93	1.92	-1.85
2.91	2.71	2.52	2.40	2.27	2.25	2.39	2.20	2.15	.93	1.87	2.11
2.58	2.48	2.38	2.34	2.08	2.06	2.17	2.01	2.08	.94	1.73	-5.04
3.52	3.25	3.02	3.01	2.71	2.69	2.94	2.70	2.87	. 92	1.94	2.37
3.20	2.99	2.82	2.75	2.54	2.53	2.72	2.50	2.42	.94	1.80	-.96
2.79	2.51	2.30	2.20	1.18	1.25	1.11	1.22	1.25	. 93	2.70	-2.26
4.25	3.73	3.29	2.98	3.14	3.14	3.42	3.11	3.04	. 87	2.13	2.74
3.89	3.45	3.08	2.72	3.15	3.17	3.31	3.01	3.28	. 91	1.63	$3 \cdot 31$
3.31	2.98	2.73	2.61	2.69	2.69	2.80	2.35	2.58	. 89	1.78	1.29

Table 3-3. Results of two-dmensional strain analysis for 34 thin sections.

HNN

Figure 3-57. Typical long versus short axes plot in a slate sample, showing best fit line passing through the origin (method A)

Figure 3-58. Relacionshif between r, the coefficient of linear correlation with $\overline{R i}$ and $R s$
independent of Rs and average Ri (Figure 3-58). The majority of the grains have mean initial axial ratio (Ri) between 1.7 and 1.9 (Table $3 m 3$). However, it is common for individual graing to have Ri less than 1.5 (e.8. Figure 3-60).

An example of the polar graphs in strained and "unstrained" states (Appendix I), plotted using polar grapt method, is shown on Figure 359. The distribution on this graph can be described as heart shaped (Appendix I). Delta and heart shaped initial polar graph distributions indicative of initial unimodal grain distribution are common, whereas an elliptical distribution indicative of initial random distribution is not common in the thin jections studied. Typical graphs of Rf/ $\mathrm{R}, \mathrm{Ri} / \theta$, and Chi-Square plotted by the use of Rf/o method are shown on Figure 3-60.

Correlation between different methods
Strain ratios estimated by the arithmetic and geometric means are greater than those determined by methods of group II for all sections with loy Rs values. However, in sections with larger Rs, the difference between the results of the two groups, indicated by the measured error, decreases but never becomes zero (Figure $3-61$ and 3-62). The harmonic mean, on the other hand, approaches the value of the strain ratio determined by group II methods at moderate R_{s} values where its exror averages zero as was also reported by Lisle (1977b). Although the error determined by the slope method decreases on sections with moderate $R s$, it increases again at larger Rs values (Figure 3-61 and 3-62). The difference (\%error) between group I and II is larger for grains with

Figure 3-59. Polar graphs showing heart-shaped distribution in a) strained and b) unstrained slates.

Figure 3-60. (a) Rf / ϕ graph showing 50% data curve, with its minimum at Rs.
(b) $R I / \theta$ graph of same sample as (a), showing less common random initial distribution. (c) typical Chi-Square test graph (Chi-Square versus Rs).

Figure $3-60$ cont'd

Figure 3-61. Relationship between the estimates of strain calculated by different methods of group I and all methods of group II.

Figure 3-63. Relationship between : error of each method of group I and $\overline{\mathrm{RI}}$ (average initial axial rario).
higher initial axial ratio (estimated by group II methods) (Figure 363) and is maximum for grains that initially had their long axes within $5^{\circ}\left(\theta \leqslant 5^{\circ}\right)$ of the major axis of the strain ellipse (Figure 3-64).

Figure $3-65$ shows the relationship between $R s$ calculated by the method of Shimamoto-Ikeda (1976) and $k s$ found by other methods of group II. There is a good linear correlation between ratio of principal strains determined by methods of Shimamoto-Ikeds (1976) and Robin (1977). Ra measured by Holst method (Holst, 1982) is less well correlated with that of Shimamoto-Ikeda method. Except where it is low, Rs calculated by method of Tobisch and others (1977) is larger than that of Shimamoto-Ikeda as is expected (Appendix I). The results of $R f / \phi$ method are well correlated with almost all others at low Rs values and is less so at moderate Rs, where they are mainly less than the results of Shimatooto-Ikeda.

Implications

The harmonic mean is calculated more readily than Rs of group II methods and approximates the strain ratio better than any other method in group I. A graph incorporating the results of this study has been constructed using the hamonic mean values and Rs determined by methotis of Shimamoto-Ikeda, Robin, and Rf/b (Figure 3-66). The best fit curve through data points on a plot of harmonic mean versus axial ratio has been found by the least square method and is shown sith its equation in Figure 3-66. After having calculated the harmonic mean, Rs can be read directly from the graph.
thods) (Figure 3long axes within igure 3-64).
lculated by the methods of group io of principal (1976) and Robin ess well correrere it is low, Rs arger than that e results of Rf/ low Rs values and 3 than the results

Rs of group II any other method study has been ermined by methods e best fit curve as axial ratio has th its equation in $a n, \mathrm{Rs}$ can be read

6

Piguze 3-64. Relationship between \bar{z} error and $\bar{\theta}$ (average indtial axial orientation).

F1gure 3-65. Correlation between ks found by the method of Shimamotomikeda (method E) and other group II methods.

Pigure 3-66. Relationship between the hammonic mean of group I methods and Rs of all methods of group II, showing also the curve and equation of the best fit ilne calculated by the method of least square.

It is recomended that the harmonic mean, corrected by the empirical curve above, be used as a fast, practical, and accurate estimate of Rs in cases where imsediate application of other computerized methods in not feasible as was previoualy guggested by Lisle (1977b)

Three-dimensional strain analysis

The problem of vhether cleavage is parallel to the $X Y$ principal plame of strain is a classic one and has been considered by many workers such as Ramsay (1967), Ramsay and Graham (1970), C100s (1971), Siddans (1972), Wood (1974), and Williams (i976, 1977). It seems that cleavage, defined by flattened objects are parallel to the XY plane of finite strain probably because of high strain magnitudes in rocks with such structures. However, like all other planes, cleavage, if originally in other orientations, can rotate towards parallelism with the $X Y$ plane as strain increases (hilliams, 1977). This probably explaina why in places, a plane of shear might be seen parallel to cleavage. The mechanisms through which mica or planar grains attain their preferred orientation can include mechanical rotation and (or) dissolution and recrystallization (Tullis and Wood, 1975 ; Williams, 1977).

The method to calculate shape and orientation of strain ellipsoid from two dimensional data is as follows: the three thin sections that are cut normal to the cleavage for each specimen should have their conmon intersection parallel to the cleavage nornal and to the minimum quadratic elongation (λ) (see the section on theory of strain) if cleavage is parallel to the $\lambda_{1} \lambda_{2}$ plane $\left(\lambda_{1}>\lambda_{2}>\lambda_{3}\right)$. On each thin section, the major and minor azes of the strain ellipse (λ_{1}^{*} and λ_{3}^{*})
are within 3°, respectively, of the trace and pole of the cleavage, indicating that the pole to cleavage is parallel to the minimura principal elongation. The few degree discrepancy depends on 1) the error in orienting the thin sections, 2) the precision of aligning the long axes of graias parallel to the trace of cleavage, and 3) non-parallelism of the λ_{3} axis and the pole to cleavage. Because of the very low angles involved, it is reasonable to assume that λ_{1}^{*} and λ_{3}^{*} are parallel to the trace of cleavage on thin section and pole to cleavage, respectively, and therefore, that cleavage is parallel to the $\lambda_{1} \lambda_{2}$ plane. Rs $=\checkmark \lambda_{1}^{*} / \checkmark \lambda_{3}^{*}$ is known from the two dimensional measurement. Because λ_{3}^{*} is common in all the three sections, it is reduced to unity in order to deternine λ_{1}^{*} using Equations 3-7 through 3-9,

$$
\operatorname{Rg}(b)=\sqrt{ } \lambda_{1}^{*} b / \sqrt{ } \lambda_{3}^{*} b \quad \operatorname{sg}(c)=\sqrt{ } \lambda_{1}^{*} c / \sqrt{ } \lambda_{3}^{*} c \quad \operatorname{Rg}(d)=\sqrt{ } \lambda_{1}^{*} d / \sqrt{ } \lambda_{3}^{*} d \quad(3-7)
$$

where b, c, and d, refer to the three thin sections normal to cleavage. Since

$$
\begin{equation*}
\lambda_{3}^{*} b=\lambda_{3}^{*} c=\lambda_{3}^{*} d=\lambda_{3} \tag{3-8}
\end{equation*}
$$

reducing $\lambda 3$ to unity leads to:

$$
\begin{equation*}
\lambda_{1}^{*} b=\left((\operatorname{Rs}(b))^{2} \quad \lambda_{1}^{*} c=\left((\operatorname{Rs}(d))^{2} \quad \lambda_{1}^{*} d=\left((\operatorname{Rs}(d))^{2}\right.\right.\right. \tag{3-9}
\end{equation*}
$$

Now the problem is reduced to having the quadratic elongations along three lines at the intersection of cleavage and the three thin sec-
tions, and finding maximm and minimum quadratic elongations (λ_{1} and λ_{2}) on cleavage. The procedure to obtain λ_{1} and λ_{2} is that of Ramsay (1967, p.80). Details of this method and an example are given in Appendix II. After the magnitude and orientation of λ_{1} and λ_{2} and X and Y are determined by this method, the radius of a sphere of equal volume to the ellipsoid is calculated and the deviatoric components of strain, $X d, Y d$, and $Z d$, and the simple elongations e_{1}, e_{2}, and e_{3} are calculated using the relationships shown on Table 3-4.

Results

Packet 7 - The five specimens studied in paciet 7 were taken in different structural positions relative to the Golconda thrust (Figure 354). Specimen 1 and 10 are from the west and east dipping 1 imbs of the F2a fold in Ophir Canyon, respectively. Specimens 6, 7, and 8 are taken closer to the Golconda thrust on the west dipping limb of the fold. Specimen 8 is sampled within few meters of the Golconda thrust. Specimens 8 and 10 sre medium- to coarsemgained sandstone and specimens 1,6 , and 7 are slate.

Table 3-4 sets out the three dimensional results for the specimens in packet 7. The orientation of the principal strain axes and the deformation plot for each sample are shown on Figure 3-67. All the deformation ellipsoids plot in the apparent flattening field (Ramsay 1967, Rambay and Wood 1973). Because volume change is unknown, these fields may not necessarily be of true flattening as discussed before. The deformation ellipsoids of slate and even sandstone plot in the
sphere of equal ric components of e_{2}, and e_{3} are
taken in difthruat (Figure 3ing limbs of the 86,7 , and 8 are 98 limb of the Golconda thrust. tone and speciEor the specimens rain axes and the 3-67. All the ing field (Ramsay unknown, these discussed before. plot in the
Table $3-4$. Results of three dimensional strain analysis for the 9 specimens
in packets 7 and 12 .

Figure 3-67. Principal directions (a) and deformation plot (b) for the specimens in packet 7.

Figure 3-68. Ramsay and Wood's (1973) deformation plot for slates from the Caledonites of NW Europe and the eastern United States and the results of the present study, Δ is total volume change per original unit volume.
deformation field of slates compiled by Ramsay and Wood (1973) (Figure 3-68). The principal extensions and axial ratios of strain ellipsoid are plotted for each specimen versus its structural position on figure 3-69. Specimen 1 in the highest position has the lowest shortening and extension along the Z and X axis, respectively, and the highest extengion along the Y axis. Specimen 8 followed by 6 , both close to the Golconda thrust, have the highest extension along the X, shortening along the Z, and the lowest extension along the Y axis. Specimen 7 has an intermediate charscteristics in term of the principal extensions."

The atructural position of specimen 10 is complicated by its position in the macroscopic F2a fold in Ophir Canyon and does not correlate with the pattern of the principal extensions as defined by the other specimens. The orientation of the principal axes in specimen 10 is most certainly influenced by the F2a fold. Comparing Figures $3-67$ and $3-19$, the orientation of the X and Z axes in this specimen can be explained by rotation sbout the axis of the F 2 a fold which is homoaxial with Y gaes in samples 1 and 6 and with Fl fold axes. This and the fact that the magnitude of strain in specimen 10 is not much different from the others indicate that the recorded strain is older than the F2a folding and that the F 2 a fold bas deformed the cleavage by flexural slip such that grain shapes have remained constant and the X and Z axes rotated about Y axis. Despite the nearly constant oxientation of cleavage and z axis in samples $1,6,7$, and 8 , the X and Y axes in specimens 7 and 8 are differently ariented from those of 1 and 6 ; these will be discussed later.
ition on Figure shortening and highest extenose to the Golhortening along men 7 has an xtensions。 ed by its posis not correlate by the other imen 10 is most $3-67$ and $3-19$, an be explained oaxial with Y d the fact that rent from the the F2a folding ral slip such Z axes rotated cleavage and 2 ecimens 7 and 8 11 be discussed
gacket 12 - Except for specimen 17. which is a sandstone taken on the crest between Ophir and Wisconsin canyons, other specimens in this domain are slate (Figure 3-54). The orientation of cleavage in specimen 17 is different because of F2a folds compared to the almost homoclinal cleayage in other specimens. Specimens 15 and 20 are sampled in northern (subdomain 12b3) and specimen 16 in the southern (subdomain 12b2) sides of Ophir Canyon (Figure 3-54).

Table $3-4$ shows the results of the 3 D strain gtudy in packet 12. The orientation and deformation field of the principal strain axea in this packet are shown on Figure 3-70. The \bar{y} axes plunge ghallowly and moderately between N and NW. The X axes of specimens 15,16 , and 20 plunge moderately to steeply SSB on the vertical cleavage. The orientation of the principal axes in specimen 17 is different because of the younger F2a folds. No pattern is evident in the variation of the principal extensions and $X / Y, Y / Z$, and X / Z ratios as a function of structural position within this packet (Figure 3-69). The average shortening $\left(e_{3}\right)$ is less and the X / Y ratio is larger in this packet compared to those in packet 7. The deformation ellipsoids for these specimens plot closer to plane strain (assuming no volume change) in the apparent flattening field of the deformation plot than those in packet 7.

Discussion

Despite the existence of the apparent gradient in the magnituce of the principal extensions as a function of structural position relative to the Golconda thrust in packet 7 , no such gradient exists in domain 12. This suggests that the strain related to the slaty cleavage is

Figure 3-69, Relationship of the (a) principal extensions and (b) axial ratios with structural position of the specimens relative to the Golconda thrust in packet 7 and 12 .

E e:
 $\Delta-e_{3}$
 O e_{2}
 specimens are shown by their numbers

- X/Z
$0^{Y / Z}$
(X / Y

200

tensions

position
conda

Fibure 3-70. Principal directions (a) and deformation pion
(b) for the specimens in packet 12.
older than the emplacement of the Golconda allochthon. If correct, the strain was applied in each packet during the $D 1$ deformation phase as is also evidenced by the parallelism of cleavage, the XY plane, axial planes of Fi folds, as well as the Y axes of strain and fold and boudin axes. The submparallelism of the Y axis and the majority of the $F I$, F2a, and F3 fold axes suggests a consistent and continuous tectonic motion responsible for all these deformations. Assuming that the directions of the principal axes in the homoclinal part of packet 7 , an area not affected by the $82 a$ fold or other structure in this area, represent the tectonic motions, an east-west trend of shortening is apparent from the results of all specimens in this packet and from the orientation of P1 axial planes and cleayage. The maximum elongation occurred mainly subparallel to dip of the flattening plane except in specimens 7 and 8 where it was subhorizontal.

The difference in the orientation of X and Y of specimens 7 and 8 from those of 1 and 6 can be explained in four different ways:

1) The principal orientations in specimens 7 and 8 are because of superimposition of a later incremental strain with its major axis at a high angle to that of the established finite strain after Di phase and due to the emplacement of the allochtion along the Golconda thrust.
2) The variation is contemporaneous with $D 1$ and caused by variable displacements in the $X Y$ plane at the culminations and depressions of large Fl folds; this does not seem likeiy considering the parallelistm in specimens 7 and 8 of X and $F 1$ and $F 2 a$ fold axes.
3) The difference in the orientation of X in specimens 7 and 8 is
due

If correct, the tion phase as is plane, axial fold and budin :y of the Fl, inuous tectonic that the direccket 7, an area ares, represent 8 apparent from orientation of occurred mainly cimens 7 and 8
cimens 7 and 8 ways:
are because of major axis at a r D1 phase and nda thrust. sed by variable depressions of he parallelism
due to rotation, for example as a result of reactivation along the Gol conda thrust because of their low structural position; this is also unlikely because no such rotation is evidenced in the orientation of the cleavage and Z axis in these specimens.
4) The orientation of X in sandstone of specimen 8 is a result of heterogeneous flow parallel to $F I$ fold axes. The flow was formed because of rheological differences between pelite and sandstone, such that while the more compactable pelites of specimen 1 and 6 were being shortened, grains in sandstone of specimen 8 deformed and rotated. This is unlikely because: a) X in specimen 7, being a slate, is also subparallel to Fl fold axes and to X in sandstone specimen 8 , b) specimen 10, a sandstone, attains X axis orientation subparallel to X in pelite specimens 1 and 6 after the removal of $72 a$ folding, and c) shortening in specimen 10 , a andstone, is about equal in magnitude to shortening in pelitic specimens. Although shortening is maximum in sandstone specimen 8, it may be due to a younger superimposed atrain when the allochthon was emplaced as discussed in the first hypothesis.

A comparison of the principal directions of specimen 1 and 6 and those of 15,16 , and 20 , in the homoclinal parta of packets 7 and 12 , respectively, suggests that the orientations of the principal axes in packet 12 are the result of rotation of directions such as those in packet 7 (rigure $3-67,3-70$) about an axis subparallel to the Y axis and Fl linear structures.
X and Y axes plunge moderately N and $S H$ on an inclined plane parallel to the Golconda thrust in specimens 1 and 6 of packet 7 (Fis
ure 3-67). This is probably because shortening during p1 phase of deformation was non-horizontal and that during $D 2$ phase, when cleaved rocks were imbricated and thrusted, the rigid body rotation if occurred, was homoaxial with the Y axis of $D 1$ phase. Moreover, the contraction direction should have remained constant in order to emplace the allochthon over the Golconda thrust essentially subparallel to Dl cleavage.

The bigher flattening in samples of packet 7 can partly be attributed to the emplacement of the Golconda allochthon, implying that the finite strain recorded in the rocks close to the Golconda thrust is a gum of D1 and a younger deformation that can be related to the thruat. It is also possible that an unidentified pre-D1 deformation such as gravitational compaction of the mudstones and sandstones contributed partly to the grain shapes which were messured in the slates and sandstones.
presen phy, ti

D1 phase of se, when cleaved $1 y$ rotation if eover, the conler to emplace bparallel to 01
rtly be attriplying that the a thrust is a to the thrust. ation such as nes contributed ates and sand-

CHAPTER 4- KINEMATICS OF SEQUENTIAL PROCESSES AND

 RECONSTRUCTION OR THE PALEOGEOGRAPHYIn this Chapter, the tectonostratigraphic and structural data presented in Chapter 2 and 3 are used to reconstruct the paleogeography, timing, and kinematics of emplacement of the Golconda allochthon and to analyze the source and tectonic significance of serpentinites in the study area. Data from other parts of the allochthon are compared with those in the study area to evsluate the regional extent and tectonic significance of the allochthon.

Age of emplacement of the Golconda allochthon in the study ares
The rocks of the Golconda allochthon in the Toiyabe Range can be divided into three groups according to their age. The first includes lower Paleozoic rocks such as those in packet 1 and possibly 9. Packet I can be interpreted, for the reasons to be discussed, as a detached slice of the lower plate of the Golconda thrust which was incorporated into the allochthon probably after the deposition of Triassic rocks. The second group includes upper Paleozoic allochthonous rocks of varied Eacies that range in age becween Late Mississippian and Permian (Chapter 2). The third includes Lower Triassic rocks below the rocks of the upper Paleozoic section. The main body of the allochthon has Permian rocks at various positions above the colconda thrust that indicate a maximum age of Permian for the assemblage. Triassic rocks occur at the base of the allochthon and provide a maximum age of Triassic for the final emplacement of the allochthon.

The youngest rocks overthrust by the Golconda allochthon in the study area are those of the Diablo Formation with a Wolfcampian to Guadalupian (Early to Late Permian) age in Jett and Pablo Canyons (Speed and others, 1977) that indicate a maximum age of permian for the thrust. A minimum age for the thrust is 42 and 54 my ($\mathrm{K}-\mathrm{Ar}$ ages of the Ophir pluton). If the rocks of unit t6 (Chapter 2) prove to be Mesom zoic and autochthonoub, the minimum age can be increased to pre-t6.

The proto-Golconda thrust can be traced at the base of the structurally lowest packet of the upper Paleozoic section such as 7 and above the Triassic packet (Figure 4-6). This is the thrust above which the upper Paleozoic rocks were originally translated and emplaced over the continental slope or shelf or possibly subareal parts of the continental margin of North American plate. The present sole thrust of the Golconda allochthon above the Diablo Formation and at the base of packet 1 is a product of continued contraction and thrusting that spanned a time since the emplacement of the upper Paleozoic section over the continental margin through the deposition of Lower Triagsic rocks and their tectonic juxtaposition under lower Paleozoic packets at the base of the allochthon.

Kinematics of sequential events

F1 folds and axial plane cleavage are the most pervasive structures that are detected in all the upper Paleozoic packets of the allochthon. These structures are cut by packet bounding faults. Fl and F2a folds and the thrust faulis that occurred between these events provide evidence of transport direction and folding of the sediments before and

Iffampian to Gua-

Canyons (Speed f Permian for the K-Ar ages of the prove to be Mesoed to pre-t6. lse of the strucion such as 7 and rust above which and emplaced over rts of the conole thrust of the at the base of nd thrusting that aleozoic section of Lower Triassic eozoic packets at

pervasive struc-

 kets of the alloAlts. Fl and F2a e events provide ments before andduring the attachment of each packet. The axes of Fl and F2a folds are subparallel in many packets, and plunge shallowly and moderately NNW subparallel to some $F 2 b$ fold axes.

In parts of packet 12 , the axes of FI folds are subparallel to the chert boudin axes, bxc Ifneations, and the Y axes of strain in the same location (Figure 3-4, 3-5, 3-70) indicating that slaty cleavage and FI folding are related. The minimum principal extension, Z, plunges shallowly and moderately E, and the maximum principal extension, X, plunges moderately WSH along the dip of the Golconda thrust and other lacal faults in the homoclinal part of packet 7 (Figure 3-41, 3-67). In the homoclinal part of packet 12 , the Z strain axis plunges shallowly between W and $S W$, and the Z axis plunges moderately to steeply S or $S S E$ on the steep cleavage (Figure 3-4, 3-70). The 7 axis, on the other hand, plunges shallowly and moderately between NNE and NH, subparallel to FI and F2a fold axes in pactet 7 and 12. These and the east trending horizontal projection of the pole to the axial planar slaty cleavage which is parallel to the Golconda and other thrusts in the allochthon, indicate a strong east-west component of contraction that persisted through most phases of deformation.

The upper Paleozoic section of the Golconda allochthon in the study area can best be described as an accretionary prism (Chapter 1) for the following reasons: 1) the tectonic juxtaposition among packets of coeval pelagic and arc related (?) volcanogenic rocks over hemipelagic rocks that in turn lie over slope-base rocks (Chapter 2), 2) evidence of shortening subnormal to the packet bounding thrusts and the

Golconda thrust, 3) dip-slip motion along packets as indicated by fault-fold (f4) relationships, and 4) the systematic relationship between folds of different generations in terms of their attitude with respect to an east-west shortening, that is, between pre-, syn-, and post-thrust deformation events. In the following paragraphs, the structural data of the study area are used to reconstruct the kinematic history of the Golconda allochthon partly based on a model described by Speed (1981), Speed and Laזue (1982), and Speed (1983b) for the Barbados accretionary prism.

As flat-1ying sediments on a subducting oceanic crust move near the toe of the accretionary prism, they fold, first openiy, and tighter as they get closer, such that close and isoclinal Fl folds with axial plane cleavage are completely formed when the sediments reach the toe (Figure 4-1 and 4-2, stages $t 1$ through $t 3$). The orientation of the F1 fold structures, bedding, and cleavage at stage $t 3$, is taken to be those in the honoclinal part of domain 7h5a where they are not affected by the D2 and younger deformations. These are then cut by west dipping packet-bounding thrusts at time t4. Back rotation (Karis and Sharman, 1975) in small scale, probably by wedge underthrust (Speed, 1981; Speed and Larue, 1982), may have led to steepening of the axial planes and cleavage in the structurally higher packets. Open fan folds are formed in the accretionary surfaces because of the continued intraprism shortening after cessation of slip along the packet faults, leading to the observed variability of cleavage and strain orientation in most of the packets (Figure 3-17).

Figure 4-1. A schematic model for the formation of $F 1$ and F2a Folds in the Golconda allochthon.

Figure 4-2. Synthetic fabric Eor the model $F 1$ and F2a Eolding. see the text for the origiral orientation of fold axes and other structureal elements.

Local reactivation of packet bounding faults such as the one between packet 7 and 8, generated fault-contemporaneous F 2 b folds along these faults (Figure 3-22). Several local faults cut across the F2b folds at the fault contact, suggesting that they were formed according to the following model (Figure 4-3).

Bedding and cleavage at this contact, originally dipping moderately to the west as in the homoclinal part of domain 7 h 5 a , were locally rotated due to faulting caused probably by the presence of irregularities such as bumps in the fault zone (Figure $4-3 a$). Folds were then formed in the rotated block due to the continued motion along the thrust. The axial planes in Figure $4-3 b$ are taken to be perpendicular to a SHWE trending shortening along the thrust, suggested by the NW trending axis of rotation of bedding and cleavage (Figure 4-3a), which also lies on the thrust. These folds could have had constant or differently oriented axial planes as depicted on Figures 4-3b and 4-3c, respectively. The other altamative is that these rocks were first deformed by $F 2 b$ folds and later rotated so as to remove the bedding girdle from the pole to homoclinal bedding. The folds were then rotated homoaxially (Figure $4-3 d-f$) as suggested by the observed partial girdle and great circle distributions of their axes and axial planes, respectively (Figure $3-22$). Other possibilities such as conjugate folding with initially differently oriented hingelines and axial planes, or rotation of axes by simple or pure constrictional shear in the upper plate are not accepted because $F 2 b$ conjugate folds are absent and no evidence of high strain required for axial rotation exists.

folded
kinks
indivio
macrosc
the
tation
the f kink
conda
contemp
of the
probabl
conda t
Th
zone, s
lel to
ractior
indicat
within
The
3-39 and
autochth
tion
this mot

The existence of non-deformed kinks within few meters of the folded $F 2 b$ folds, $a t$ the contact of packets 7 and 8 , indicates that kinks were formed after $k 2 b$ folds. The form of the kinks, conjugate or individual, was most probably controlled by the limb attitudes of macroscopic F2a folds. F3 folding is either synchronous or oider than the latest movement on the Golconda thrust, as indicated by the orisntation of kinks in the southern part of domain 7 h 5 a and other parts of the Golconda thrust zone (Figure 3-29, 3-43). The most plausible cause of kink folding is the firal emplacement of the upper plate of the Golconda thrust that occurred after intraprism thrusting and faultcontemporaneous folding, implying that kinks in different packets are of the same generation. Further motion along the Golconda thrust, probably by late reactivation, locally deformed the kinks at the Golconda thrust zone (Figure 3-43).

The parallelism of the striations on faults at the Golconda thrust zone, slip directions determined from faults associated with and parallel to the Golconda thrust (Figure $3 \sim 41$), and the west plunging contractions (Z) resolved from intersecting 53 kinks (Figure 3-25, 3-26), indicate that the kinks are related to a succession of displacements within the Golconda allochthon.

The tectonic fabric at the Golconda thrust in Ophir Canyon (Figure 3-39 and 3-41) is consistent with an east to west underthrusting of the autochthon below the Golconda allochthon as indicated by the orientam tion of axial planes of 54 folds and slip on associated faults. During this motion which probably occurred after the allochthon was emplaced,

$\Delta \perp$ local faults
$\Delta \perp$ Golconda thrust
striation of local faults
\rightarrow slip direction
1 bedding and cleavage
(b) synthetic fabric

chert
faults
result
on Fig
and ar
sequenc
sumptio
must be
Litholo
the Gol

Ealeoge
the Gol
phase fo
geny.
Permian
(1982),
a migrat
western
Antler o
accretio
contract
zoi.c
oceanic
chert beds in the upper plate, at low angles to the Golconda and local faults (Figure $4-4 a$), were folded by layer parallei compression, resulting in the fomation of $F 4$ conjugate folds as depicted on a model on Figure $4-4 b$. These folds are related to the $D 5$ deformation phase and are reatricted to the Golconda thrust zone (Table 3-1).

It should be noted that structural analysis only indicates the sequence and direction of displacements and styles of displacement consumption, not the transport distance of packets in the allochthon. This must be determined by paleoragnetism, paleobiofacies, or by some unique lithologic ties. None of these exists. It can not be stated whether the Golconda allochtion is wholy locally or partly distally derived.

Paleogeography and plate tectonics reconstruction

The lower Paleozoic rocks that are autochthonous with respect to the Golconda thrust have not been studied in detail. These show multiphase folding and were deformed during the mid-Paleozoic Antler orogeny. They are in many places overlain by the autochthonous homoclinal Permian rocks of the Diablo Formation. According to Speed and Sleep (1982), deformed lower Paleozoic rocks formed an accretionary prism to a migrating island arc syatem. Collision between the arc and the western passive margin of the North American continent caused the Antler orogeny in the Missisbippian. The island arc that propelled the accretionary prism (Roberts Mountains allochthon) sank due to thermal contraction (Speed and Sleep, 1982). The subsidence of the lower Paleozoic magmatic arc was probably accompanied by the formation of another oceanic basin and westward shift of the subduction zone (Speed, 1979).

Some rocks of the Golconda allochthon were then deposited on the outer shelf, slope, and floor of this oceanic basin that was situated between the Antler highlands and a convergent boundary to the west, the polarity of which has been a matter of debate (Chapter 1). Sedimentation in the oceanic basin continued from the Mississippian to Permian or possibly Early Triassic.

The purpose of this section is to discuss the sedimentologic and structural data that bear on interpretation of the polarity of the convergent boundary, and therefore, the nature of the continental margin of the western North American plate and the paleogeography in late Paleozoic and Early Triabsic time.

Terrigenous and hemipelagic packets in the lower part of the allochthon (Chapter 2) lack the volcanogenic rocks that are characteristic of the age equivalent upper packets of the allochthon. Moreover, a volcanic terrane that could have supplied the clasts to the volcanogenic packets does not exist in the autochtion east of the Golconda thrust. Thus the source of volcanogenic material should have been to the west of the oceanic basin where the volcanogenic and other upper paleozoic rocks vere deposited in the present geographic coordinates assuming no rotation and translation of the allochthon after ity emplacement. Sonomia, the magmatic arc of Speed (1979), or another intra-oceanic arc, west of the oceanic basin, is assumed to be the source of the volcanogenic material. Pelagic packets, in the highest structural position, containing mainly radiolarian cherts, pelite, minor volcanogenic rocks, and basalt slices, were probably deposited in an oceanic basin
t of the allom characteriatic reover, a volhe volcanogenic londa thrust. een to the west pper Paleozoic tes assuming no emplacement. r intra-oceanic ree of the voltructural posivolcanogenic n oceanic basin
with no access to terrigenous material. The terrigenous rocks contain clasts that correlate by their age and lithology to the rock3 imediately under the Golconda thrust in the study area. These were deposited at the continental slope or its bage (Chapter 2). The depositional settings of the four allochthonous upper paleozoic facies which are given in Chapter 2 are used in the following paragraphs to reconstruct the prevailing paleogeography of the local western margin of the North American continent, assuming that the Golconda allochthon was emplaced at its present geographic location.

Figure $4-5$ is an schematic illustration of the paleogeography and sequential tectonic and depositional processes between the Mississippian and Permian times based on the accretionary model discussed in the previous section. According to this model, the upper Paleozoic section of the Golconda allochthon evolved by progressive accretion of the pelagic, volcanogenic-basaltic, hemipelagic, and terrigenous rocks in that order. The Golconda accretionary prism was underthrust by the passive local continental margin, probably during Triassic, due to the convergence of the arc (Speed, 1979) and continental crust.

The existence of a packet of Early Triassic rocks, in the basal part of the Golconds allochthon above the allochthonous lower Raleozoic rocks, indicates that the sole thrust of the allochtion is younger than the Triassic rocks. The calcareous Triassic clastic rocks apparently do not possess the penetrative Fl foliation that exists in the upper Paleozoic rocks. Despite the sandy texture of the Triassic rocks which may have inhibited the development of a foliation without large strain,

the
well
text
matic
that
(Chap
sited
packe
betwe
to the
Triase
the
and $q u$
likely
the Go
first
sphere
formati
Speed
probabl
contine
ary pri
zoic ro
gence
the undeformed pelecypod shells in these sandstones, and the pervasive,

Wolconda allochthon \qquad

Golconda thrust
Roberts Mountatns thrust
Packet bounding thrust

Pd
unconformable contact
lower Paleozoic rocks Diablo Fornation

Figure 4-6. A model for the Triassic paleogeography and tectonic and depositional processes.

modet 1

198

7 upward motion of serpentinite along packet bounding faults

motion along normal faults	normal faults
1 Pz	lower Paleozofe rocks

packet bounding faults
oceanis crust
Triassic rocks
Germian Dablo Formation

- Colconda thrust

Figure 4-7. Three alternative tectonic models tor the origin and mode of emplacement of serpentinites in che Golconda allochtion, rocks of the lower plate in packets such as 1 and 9.

The rest of this section is an analysis of possible origins and modes of emplacement of serpentinite in the Golconda allochthon (Chapter 2).

Serpentinization

Serpencine can be formed by hydration of peridotite, harzburgite, and lherzolite (Coleman, 1971, 1977); type of rocks that are comonly found in oceanic crust. Serpentine minerals can be stable over different ranges of P-T conditions depending on activity of H 20 , composition, and oxygen fugacity (Faust and Fahey, 1962; Yoder, 1967; Barnes and D'Heil, 1969; Iishi and Saito, 1973; Coleman, 1977). Experimental work shows that mogt of serpentinites can form from ophiolite peridotites in the temperature range of $100^{\circ}-300^{\circ} \mathrm{C}$ (Wenner and Taylor, 1971).

The amount of water needed to form serpentine from a peridotite depends on the original content of olivine, pyroxene, and plagioclage in the ultramafic rocis, and on the mobility of Mg, Si, or both (Coleman, 1977). Stable isotope studies of serpentinites dredged from ocean floors and those from ophiolite serpentinites indicate that the source of water for ocean serpentinite is ocean water, whereas many ophiolite serpentinites were formed by meteoric water, in a continental crustal enviroment, at temperatures between 0° and $300^{\circ} \mathrm{C}$ (Magaritz and Taylor, 1974; Wenner and Taylor, 1971; Coleman, 1977).
$g r / \mathrm{cmi}^{3} t$
tectoni
Mansfie
believe
allochth

Model 1 an ocea
tionaty
to the
Kay, 1981
been faci
a depth vert the 4-7a). Ha
observed
drilling
with these
ible origins and lconda allochthon
ite, harzburgite, that are commonly stable over dify of H 20 , composiier, 1967; Barnes
977). Experimental ophiolite peridoWenner and Taylor,

Erom a peridotite e, and plagioclase , or both (Coledredged from ocean e that the source ceas tuany ophiolite ontinental crustal (Magaritz and Tay-

During serpentinization, density of peridotite decreases from 3.3 $g r / \mathrm{cm}^{3} t o \quad 2.5 \mathrm{gr} / \mathrm{cm}^{3}$ in gerpentinite. If serpentinites become intensely tectonized, their shear strength may be reduced to 1 bar (Cowan and Mansfield, 1970; Coleman, 1977). In this context, it is reasonable to believe that sheared serpentinites can plastically flow upward under low stress, for example along weak zones such as faults, because of their low density and weak nature (Coleman, 1977). The following are alternative models for emplacement of the serpentinite in the Golconda allochthon based on the above discussion.

Model 1 - The fault-zone serpentinites (Chapter 2) are originated from an oceanic crust which lied under upper Paleozoic rocks. In an accre* tionary model, the ocean crust could have partly segmented and attached to the base of the prism in the upper plate by underplating (Rarig and Ray, 1981; Moore and others, 1981), a tectonic process that could have been facilitated by serpentinization of the oceanic crust as it slid to a depth where temperature and activity of $\mathrm{H}_{2} \mathrm{O}$ were high enough to convert the ultramafic lower layer of the crust into serpentinite (Figure 4-7a). Water needed to form serpentinite from peridotite or haraburgite was supplied by dewatering of the subducted sediments as they became consolidated or by chemical reactions (Von Heuene and Lee, 1982). Supporting evidence for this hypothesis are the high fluid pressure obsexved in modern subduction zones, for example Barbados, from DSDP drilling (Moore and other, 1982) and by other observations associated with these high elevated pore pressures such as shale diapirs (Von Huene and Lee, 1982). Moreover, packets of massive and pillow basalts
are common in the Golconda allochthon (e.g. vib, v2b, p2b units) Basalts of the Golconda allochthon, 20 km to the south of the study area, are related to ocean floor through chemical analysis by speed (1977a). The presence of basaltic slices in the Golconda allochthon of the study area, assuming that they were part of an oceanic crust, suggests that the oceanic crust which went under the Golconda accretionary prism was partly accreted to the prism probably through underplating. Chemical and mineralogical studies of serpentinite slices in unspecified positiona in Paleozoic rocks indicate that they are derived from olivinemich rocks such as dunite and harzburgite (Poole, 1973). Poole (1973) interpreted these serpentinites as fragments of Paleozoic or older upper mantle that vere incorporated in the Roberts Mountain and Golconda allochthon through unspecified tectonic processes during Paleozoic plate convergence.

Kode1 2 - Fault-zone serpentinites are originated from serpentinized part of an oceanic crust after it moved under the accretionary prism through upward plastic diapiric movement that was facilitated by its buoyancy and low shear strength as discussed before (Figure 4-7b).

Model 3 - Fault-zone serpentinites are diapirically injected from beneath the Golconda accretionary prism, after or during its last stage of emplacement, along extensional faults (A. C. Speed, Pers. Comm., 1982) which vere formed by flexing the underriding lithosphere because of the load of the accreted or accreting Golconda allochthon as modeled by Speed and Sleep (1982) (Figure 4-7c). The source of the serpentinite $2 b, \quad$ p2b units \rangle. outh of the study alysis by speed nda allochthon of anic crust, sugonda accretionary gh underplating. lices in unspecire derived from ole, 1973). Poole of Paleozoic or erts Mountain and processes during
out gerpentinized ccretionary prism :ilitated by its igure 4-7b). ly injected from ing its last atage d, Pers. Comm., ithosphere because chthon as modeled the serpentinite
could be those discussed in models 1 and 2 or from the upper mantle.
The flexural model is appealing because it also explains the emplacement of the allochthonous lower paleozoic packets and formation of a basin for the deposition of the now allochthonous Triassic rocks (Figure 4-6 and 4-7c).

Model 4 - Fault-zone serpentinites were deposited as large olistos~ tromes which were carried with other clastic debris into the depositional site of the terrigenous rocis. The source of these olistostromes could have been in the older Roberts Mountain allochthon, or older serpentinites in structurally higher positions in the Golconda allochthon Which themselves were formed by wodels 1,2 , and 3 . Although there is a serpentinite slice in the lower paleozoic autochthonous rocks in Wisconsin Canyon, this model is not favored because of the apparent lack of more of such serpentinites in the autochthon, and because not all the large serpentinite slices are associated with terrigenous clastic rocks. Horeover, this model does not explair the presence of fault-zone serpentinites along packet boundsries. The clastic serpentinites could have been supplied from the fault-zone serpentinites as they were exposed on the surface of the accretionary prism in models 1 and 2 , and from the autochthon in model 3.

Correlation with other parts of the Golconda allochthon

Jett to Wall Canyons - The nearest place, where the allochthon has been studied in detail is between Jett and Wall Canyons, about 20 km to the south of the study area (R. C. Speed 1971-3 unpub, data; Speed, 1977a;

Speed and others, 1977). Eere, the allochthon, identified by a succession of fault bounded packets of upper paleozoic rocks, and the underlying Diablo Formation and lower galeozoic rocks, are well correlated with rocks of the study area (Speed and others, 1977; Speed, 1977a). The major difference, however, is in the absence of the coarse-grained volcanogenic sedimentary rocks in this southern part of the allochthon. Here, the volcanic rocks are pillow basalts that are correlated chemically to oceanic tholeiite (Speed, 1977).

Speed (1977a) interpreted the allochthon in this area to comprise tectonic slices of oceanic pelagic and volcanic rocks that have since been dated as Mississippian-Permian (R. C. Speed, pers. comm.). The time of emplacement of these rocks on the continental margin is taken to be Late Permian or Mesozoic. The surface, separating the allochthon and the lover plate Disblo Formation is the folded Golconda thrust.

The tectonic fabric in the allochthon in this area is dominated by a slaty cleavage in pelite and axial planes of isoclinal folds of chert, both parallel to bedding except in hinges of folds (R. C. Speed 1977a, unpub. data). Here, chert beds are lenticular along the foliam tion. Such structures are well correlated with Fl structures in the atudy area.

The environment of deposition of upper Paleozoic allochthonous rocks is interpreted as the deep sea floor, either distal from a continental source or close to a continent but with a continental sediment bypass. (Speed, 1977a).
tified by a succes ks, and the underare well correlated 7; Speed, 1977a). the coarse-grained of the allochthon. correlated chemi-
area to comprise ks that have since ers. comm.). The al margin is taken ng the allochthon lconda thrust.
ea is dominated by isoclinal folds of olds (R. C. Speed along the foliatructures in the
ic allochthonous listal from a contineatal sediment
to the Golconda
allochtion (MacMillan, 1972) can mostly be correlated with those in the 204 study area (Speed, 1977a). Here, the Golconda allochthon includes highly deformed interbedded chert and pelite, homogeneous chert, volcanogenic sedimentary rocks, pillow bssalts, pebbly mudstone, and carbonate-quartz-chert sandstone (Mackillan, 1972; Speed, 1977a). The allochthonous rocks of the Nes Pass Range are overlain by upper Lower Triassic rocks with an angular unconformity. The allochthon is juxtaposed by the Golconda thrust over autocinthonous homoclinal upper Paleozoic rocks, which correlate with the Antler Sequence (Chapter 1), and bighly deformed lower Paleozoic rocks of the Valmy Formstion. Here, the contact between the lower and upper Paleozoic rocks is an angular unconformity.

MacMillan (1972) dewonstrated that the emplacement of the Golconda allochthon occurred before the deposition of the late Early Triassic rocks, and further narrowed its age between post Guadalupian and preSmithian (latest late Permian to late Early Triassic).

The allochthonous upper Paleozoic rocks have undergone two major folding events in the new pass Range (MacMillan 1972). First folds are isoclinal with W to wNW plunging axes. These are refolded bomoaxially. These folds do not exist in the upper Paleozoic terrigenous clastic and shallow water autochthonous rocks below the Golconda thrust. The second folding occurred when the upper Paleozoic rocks were moved over the Colconda thrust. In this second event, folds were formed both in the allochthonous rocks and localiy in the upper thin layer of the autochthon with coplanar axial planes dipping shallowly WNH. These folds component of displacement over the Golconda thrust,

Northern Nevada ~ The rocks belonging to the Golconda allochthon in northern Nevada (The Havallah sequence) include chert-greenstonejasperoid units that range in age from Mississippian to Permian, chert and argillite of Late Devonian to Permian age, giliciclastic, calcareous, and volcaniclastic turbidites, and masaive aulfide and siliceous Fe and mindeposits (Snyder and Brueckner, 1983). These authors interpret the rocks to have been deposited in an ocean basin with active spreading (during late Paleozoic) which were emplaced over the continental North America between latest Pemian and late Early to Middle Triassic. Through diagenetic, lithologic, and structural analyses, these workers suggest that the allochthon was prempackaged through accretionary processes during late paleozoic, before its eastward emplacement along the Golconda thrust.

An evidence of an unconformable contact between upper widdle Triassic rocks, the Havallah Sequence, and the Golconda thrust is given by Nichols (1971), indicating that in this part of Nevada, the Golconda thruat is older than late Middle Triassic (Silberling, 1973).

Miller and others (1982), correlating the Schoonover complex in the Independence Mountains and the Eavallah sequence, prefer a back arc thrusting model (Chapter 1) for the evolution and emplacement of the Golconda allochthon.

Lithology and structural fabric of the allochthonous and autochthonous rocks in the New pass Range and probably other parts of
da allochthon in chert-greenstoneto Permian, chert iclastic, calcarede and siliceous ese authors interasin with active aced over the cone Early to Middle ructural analpses, -packaged through fore its eastward een upper Middle da thrust is given vada, the Golconda 1973).
nover complex in prefer a back arc placement of the honous and autobly other parts of
northern Nevada correlate vell with those in the study area, indicating 206 that the allochthon is a coherent and continuous tectonic assemblage with regional extent and systematic depositional and tectonic history which can best be explained by plate interactions during late Paleozoic and early Mesozoic.

References

Anderson, T. B., 1964, Rink bands and related geological structures. Nature, v. 202, p. 272-274.

Anderson, T. B., 1968, The geometry of a natural orthorhombic system of kink bands. Can. Geol. Surv. Pap., v. 52, p. 200-228.

Anderson, T. B., 1974, The relationship between kink bands and shear fractures in the experimental deformation of slate. Jour. geol. Soc. Lon., v. 130, 2. 367-382.

Barnes, I. and 0^{\prime} Neil, J. R., 1969, The relationship between fluids in some fresh alpinetype ultramafic rocks and possible modern serpentinization, western Jnited States. GSA Bu11., Y. 80, P. 1947-1960.

Bell, T. H., 1978, Progressive deformation and reorientation of fold axes in a ductile mylonite zone: The Woodruffe thrust. Tectonophysics, V. 44, D. 285-320.

Berger, W. H., 1974, Deep-sea sedimentation. In: C. A. Burke and C. L. Drake eds. The geology of continental margins. p. 213-241, Springer-Verlag, New York.

Borg, I, and Handin, J., 1966, Experimental deformation of crystalline rocks. Tectonophysics, v. 3, 2. 249-367.

Boulter, C. A., 1976, Sedimentary fabric and their relation to strain analysis methods. Geology, Y. 4, 2. 14l-146.

Bouma, A. H., 1962, Sedimentology of some flysch deposits: A graphic approach to facies interpretation. Elsevier, Amsterdam, 168 p .

Bouma, A. H. and Hollister, C.D., 1973, Deep ocean basin sedimentation. In: Turbidites and deep water sedimentation. SEPM, pacific section, short course, Aneheim, p. 79-118.

Burchfiel, B. C., and Davis, G. A., 1972, Structural framework and evolution of the southern part of the Cordilleran orogen, western United States: Amer. Jour. of Sci., v. 272, p. 97-118.

Burke, D. B., 1973, Reinterpretation of the "Tobin" thrust: PreTertiary geology of the southern Tobin Range, Pershing County, Nevada. PhD thesis, Stanford University. 82 g .

Chapman, T. J., Milton, N. J., \& Williams, G. D., 1979, Shape fabric variations in deformed conglomerates at the base of the lakesfjord Nappe, Norway. J. geol. Soc. Lon., v. 136, p. 683-691.

Churkin, M.Jr., and Ray, M., 1967, Graptolite-bearing Ordovician siliceous and volcanic rocks, northern Independence Range, Nevada: GSA Bu11., y. 78, 2. 651-668.

Churkin, M. Jr., 1974, Paleozoic marginal basin-voicanic arc systems in the Cordilleran foldbelts. SEPM Spec. Pub. 19, 174-192.
Clifford, P. M., 1968, Kink band development in the Lake St. Joseph area, northwestern ontario. Can. Geo1. Sux. Pap., 68-52, p. 229242.

Cloos, E., 1947, Dolite deformation in the south Mountain fold, Maryland. GSA Bu11., y. 58, p. 843-918.

Cloos, E., 1971, Microtectonics along the western edge of the Blue Ridge Karyland and Virginia. The John Hopkins Press, Baltimoxe and London.

Cogbill, A. 甘., 1979, Relationships of crustal structures and seismicity, western Great Basin. PhD thesis: Horthwestern Uniy. Eyanston, 11., 253p.

Coleman, R. G., 1971, Petrologic and geophysical nature of serpentinites. GSA Bull, ․ 82, D. 897-918.
Coleman, R. G., 1977, Ophiolites, ancient oceanic lithosphere? Speringer-Verlag Berlin, Heidelberg, Ney York, 229p.

Cowan, D. S. and Mansfield, C. E., 1970, Serpentinite flows on Joaquin Ridge, southern coast Ranges, California. GSA Bull., y. 81, p. 2615-2628.

Dewey, J. F. 1965, Nature and origin of kink bands. Tectonophysics, y. 1, 1. 459-494.

Dewey, J. F., 1969, The origin and development of kink bands in a foliated body. Geol. J., y. $\underline{6}$, p. 193-216.

Dickinson, W. R., 1977, Paleozoic plate tectonics and the evolution of the Cordilleran continental margin. In Stewart, J. H., Stevens, C. H., and Fritsche, A. E., eds., Paleozoic paleogeography of the western United States: SRPM Pacific section, Pacific paleogeography sym. 1, 2. 137-155.

Donath, F. A., 1968, Experimental study of kink band development in Martinburg shale. Can. Geol. Surv. Pap., 68-52, 2. 225-242.

Dunnet, D., 1969, A technique for finite strain analysis using elliptical particles. Tectonophysics, y. 7, 2. 117-136.

Dunnet, D. \& Siddans, A. W. B., 1971, Non-random sedimentary fabrics and their modification by strain. Tectonophysics, y. 12, 2. 307 325.

Durney, D. W. and Ramsay, J. R., 1973, Incremental strain measured by syatectonic crystal growth. In Dejong, K. A. and Scholton, R. eds., Gravity and tectonics. Hiley, New York, N. Y.

Escher, A. and Watterson, J., 1974, Stretching fabrics, folds and crustal shortening. Tectonophysics, Y. 22, P. 223-231.
Elliott, D., 1970 , Determination of finite strain and initial shape from deformed elliptical objects. GSA Bul1., v. 81, p. 2221-2236.
Fagan, J. J., 1962, Carboniferous chert, turbidites, and volcanic rocks in northern Independence Range, Nevada: GSA Bu11., Y. 73, p.595-612.

Fergubon, \#. G., Muller, S. W., and Roberts, R. J., 1951, Geology of the Winnenucca Quadrangle, Nevada. U. S. Geol. Surv. GQ-11.

Ferguson, H. G., Roberts, z. J., and Muller, S. H., 1952, Geologic map of the Golconda Quadrangle, Nevada. U.S. Geol. Surv. GQ-15.
Ferguson, \#. G., and Cathcart, S. H., 1954, Geologic map of the round Mountain Quadrangle, Nevada: ․ S. Geol. Surv. Geal. Quad. Map GQ-40.
Faust, G. T., and Fahey, J. J., 1962, The serpentine-group minerals.区. S. Geol. Sury. Prof. Pap. . v. 384-A, p. 1-91.
Flinn, D., 1956, on the deformation of the Funzie conglomerate, Fetlar, Shetland. Jour. Geology, 叉. 64, p. 480-505.

Flinn, D., 1962, On folding during three dimensional progressive deformation. Q. J. geol. Soc., v. 118, p. 385-433.
Fyson, W. H., 1968 , Profile variation in a kink set. Can. Geol. Surv. Pap. : 68-52, D. 243-254
Gay, N. C., 1968 a , Pure shear and aimple ahear deformation of inhomogeneous viscous fluids. 1. Theory. Tectonophysics, v. S, p. 211234.

Gay, N. C., 1968 b , Pure shear and simple shear defomation in inhomogeneous viscous fluids. 2. The determination of the total finite strain in a rock from objects such as defomed pebbles. Tectonophy sics, v. 5, 2. 295-302.
Gay, N. C., 1969, The analysis of strain in the Barberton Mountain Land, Eastern Transvaal, using deformed pebbles. J. Geol. v. 77, $\underline{\text {. }}$.
377-396.

Gay, N. C. and Weiss, L. E., 1974, The relationship between principal stress directions and the geometry of kinks in foliated tocks. Tectonophysics, y. 21, 2. 287-300.

Gay, N. C. \& Fripp, R. E. P., 1976, The control of ductility on the deformation of pebbles and conglomerate. Phil. Trans. R. Soc. Lond. A., ‥ 283, 卫. 109-128.

Griffiths, J. C., 1967, Scientific method in anslysis of sediments. New York, McGraw-Hill Book Co, 508 p.
Helma, D. G. \& Siddans, A. W. B., 1971, Deformation of a slaty lapillar tuff in the English Lake Districts: Discussion. GSA Bull., y. 82, 2. 523-531.

Hobbs, B. E. and Talbot, J. L., 1966, The analysis of strain in deformed rocks. Jour. of Geology, ․ 74, p. 500-513.

Hobson, D. M., 1971, Deformed agglomerates near Tintagel, North Cornwali. Geol. Mag., v. 108, p. 383-391.

Hobson, D. M., 1973, The origin of kink bands near Tintage1, North Cornwall. Geol. Msa., y. 110, p. 133-144.
Holst, T. B., 1982, The role of initial fabric on strain determination from deformed elliptical objects. Tectonophysics, y. 82, p. 329. 350.

Hossack, J. R., 1968, Pebble deformation and thrusting in the Bygdin area (S. Norway). Tectonphysics, ․ S, 2. 315-339.

Iishi, K. and Saito, M., 1973, Synthesis of antigorite. Am. Mineralogist, ․ 58, ․ 915-919.

Raxig, D. E. and Sharman, G. E., 1975, Subduction and accretion in trenches. GSA Bul1. y. 86, 2. 377-389.

Karig, D. E. and Ray, R. W., 1981, Fate of sediments on the descending plate at convergent margins. phil. Trans. R. Soc. Lon. A-301, p. 233-251.

Kay, M., and Crawford, J. P., 1964, Paleozoic facies from the miogeosynclinal to the eugeosynciinal belt in thrust slices, central Nevada: GSA Bull., ․ ․ 75, 2.425-454.

Retner, R., 1982, Jurassic or later age of Golconda thrust - evidence from Quinn River and Pinnon-Adobe range areas. Presented at the Sonoma Penrose Conference" Sonoma orogeny and Permian to Triassic tectonism in western North America. Ninnemucea, Nevada.

Ristler, R. W. ang petefman, W. E., 1973, Variations in Sr, Kd, X, Na, and initial ${ }^{87} \mathrm{Sr} /{ }^{86} \mathrm{Sr}$ in Hesozoic granitic rocks and intruded wall rocks in central California. GSA Bull., y. 84, p. 3489 -3512.
Kistler, R. W., 1974, Phanerozoic batholiths in western Morth America. Ann. Rev. Earth and Planet. Sci., y.2, D. 403-419.
Kistler, R. W., and Peterman, 2. E., 1978, Reconstruction of crustal blocks of California on the basis of initial Sr isotopic compositions of Mesozoic plutons: U.S. Geol. Surv. prof. paper 1061, 27p.
Kleinhampl, F. J., and Ziony, J. I., 1967, Preliminary geologic map of northern Nye county, Nevada: ㅁ.S. Geol. Surv. open file map, scale $1: 250,000$.

Rleist, J. R., 1972, Kink bands along Denali fault, Alaska, GSA Buil., y. 83, 2. 3487-3490.

Krumbein, W. L. \& Graybill, F. A., 1965, An introduction to statistical models in Geology. McGraw Hill, New York.

Laine, M, 1977, The origin of the Toiyabe Quartz Latite. Mg thesis, Northyestern University, Evanston, II.
Laule, S. W., Snydr, W. S., and Ormiston, A. R., 1981, Willow Canyon Formation, Nevada, an extension of the Golconda allochthon: GSA Abs. with Pros. У. 13, 2. 66.

Lisle, R. J., 1977a, Clastic grain shape and orientation in relation to cleavage from the Aberyswyth grits, Wales. Tectonophysics, $\mathrm{v}, 39$, g. 381-395.

Lisle, R. J., 1977b, Estimation of the tectonic strain ratio from the mean shape of deformed elliptical markers. Geol. Minbouw, y. 56, g. 140-144.

Lisle, R. J., 1979, Strain analysis using deformed pebbles: The influence of initial pebble shape. Tectonophysics, y. 60, p. 253-277.
MacMillan, J. R., 1972, Late Paleozoic and Mesozoic tectonic events in west central Nevada. PhD thesis, Northwestern Oniversity, 146 p.
Macmillan, J. R., 1974, Re-examination of the Diablo Formation, Jett Canyon, Toiyabe Range, Nevada. GSA Abs yith Prog., v. 6, 2. 211.
Magaritz, M. and Taylor, H. P., Jr., 1974, Oxygen and hydrogen isotope studies of serpentinization in the Troodos ophiolite complex, Cyprus. Earth Planet. Sci. Lett., v.23, 2. 8 -14.
Matti, J. C., and McRee, E. H., 1977, Silurian and lower Devonian
paleogeography of the outer continental shelf of the Cordilleran miogeocline, central Hevada. In Stewart, J. H., Stevens. C. H., and Fritsche, A. E., eds., Paleozoic paleogeography of the western United States: SEPM Pacific Section. Pacific Coast paleogeography Sym. 1, p. 39-65.

McRee, E. H., 1976a, Geologic map of the Austin Quadrangle, Lander County, Nevada: I.S. Geol. Surv. geol. Quad. Map GO-1307, scale 1:62,500.

McRee, E. \#., 1976b, Geology of the northern part of the Toquima Range, Lander, Eureka, and Hye counties, Nevada. U. S. Geol. Surv. Prof. paper 931, 49p.

Kiddleton, G. V. and Rampton, M. A., 1976, Subaqueo;s sediment transport and deposition by sediment gravity flows. In: Stanley, D. J., and Swift, D. J. P., eds. Marine sediment transport and environmental management. p. 197-218. New York, Wiley-Intrasci. publ.

Miller, E. L., Bateson, J., Dinter, D., Dyer, J. R., Harbaugh D., and Jones, D. L., 1981, Thrust emplacement of the Schoonover sequence, northern Independence Mountains, Nevada: GSA Bull., y. 92, p. 730737.

Miller, Z. L., Kanter, L. 品, Larue, D. K., Murchey, B., and Jones, D. L., 1982, Structural fabric of the Paleozoic Golconda allochthon, Antlet Peak Quadrangle, Nevada: Progressive deformation of an oce anic sedimentary assemblage. Jour. Geophy. Res., y. 87, 2. 37953804 .

Mitra, S., 1976, A quantitative study of deformation mechanism and finite stain in quartzites. Contrib. Mineral. Petrol., y. 59, 2. 203226.

Moores, E. M., 1970, Ultramafics and orogeny, with models of the U. S. Cordillera and the Tethys. Nature, v. 228, p. 837-842.

Hoore, J. C., Watkins, J. S., and Shipley, T. H., 1981, Sumary of accretionary processes, Deep Sea Drilling Project Leg 66: offscraping, underplating and defomation of the slope apron. Initial Repts. of the DSDP, y. 65, p. 825-836.

Koore, J. C. and others, 1982, Offacraping and underthrusting of sediment at the deformation Eront of the Barbados Ridge: Deep Sea Drilling Project Leg 78A. GSA Bull. y. 93, D. 1065-1077.

Hukhopadhyay, D., 1973, Strain measurements from deformed quartz grains in the slaty rocks from Ardennes and the northern Eifel. Tectonphysics, y. 16, p. 279-296.

Muller, S. W., Ferguson, H. G., and Roberts, R. J., 1951, Geology of the Mount Tobin Quadrangle. D. S. Geol. Surv. Geologic quadrangle Map GQ-7.

Mutti, E. and Ricci-iucchi, F., 1978, Turbidites of the northern Appennimes: Introduction to facies snalysis. International Geolosy Reviey, $y .20,2.125-166$.

Naha, R. and Halburton, R. V. 1974, Late stress systems deduced from conjugate folds and kink bands in the "Main Railo syncline", vdaipur District, Rajasthan, India. GSA Bull., y. 85, 2. 251-256.

Neslon, C. H, and Rulm, L. D., 1973, Subwarine fans and channels. In: Turbidites and deep water sedimentation. p. 39-78. SEPM Pacific Section, Short course, Angheim, Calif.

Nelson, C. \#. and Nilson, T., 1974, Depositional trends of modern and ancient deep-sea fans. In: Dott, R. H. and Shaver, R. H., eds. Kodern and ancient geosynclinal sedimentation. SEPM Spec. Pub. y. 19, 2. 69-91.

Nichols, R. m., 1971, Overlap of the Golconda thrust by Triassic strata, north-central Nevada. GSA Aba with Prog. y. 3, 2. 171.

Normark, W. R., 1970, Growth patterns of deep sea fans. AAPG Bull., y. 54, R. 2170-2195.

Normark, W. R., 1974, Subnarine canyons and fan valleys: factors affecting growth patterns of deep sea fans. In: Dott, R. H and Shaver, R. H. eds. Modern and ancient geosynclinal sedimentation. SEpy Spec. Pub. no. 19, 2. 56-68.
Dertal, G., 1978, Strain determination from the measurement of pebble shapes. Tectonophysics, \underline{y}. 50, 2. Ty-77.
Patterson, M. S. and Weiss, L. E., 1966, Experimental deformation and folding in phyllite. GSA Bul1., ․ . 77, R. 343-374.
Peach, C. J. \& Lisle, R. J., 1979, A FORTRAN IV program for the analysis of tectonic strain using deformed elliptical markers. Computers \& Geosciences, y. 5, 2. 325-334.
Pfiffner, O. A., 1980, Strain analysis in folds (Intrahelvetic Complex, Central Alps). Tectonphysics, $¥ .61$, p. 337 - 362 .
Poole, F. G., 1973, Alpine-type serpentinites in Nevada and their tectonic significance. GSA Abs. with Prog. v. 5, p. 90.
Poole, F. G., and Sandberg, C. A., 1977, Mississippian Paleogeography and tectonics of the western United States. In Stewart, J. G.,

18 deduced from ncline", Udaipur $1-250$.
chanuels. In:
8. SEPM Pacific
of modern and iver, R. H., eds. Spec. pub, \mathbf{y}.
ist by Triassic
3, R. 171.
AAPG Bull., y.
alleys: factors
: Dott, R. a and sedimentation.
ment of pebble
deformation and
rogram for the
1 markers. Com-
elvetic Complex, and their tec-

Paleogeography Stewart, J. H.,

Stevens, C. H., and Fritsche, A. E., eds. Paleozoic paleogeography of the western Drited States: SEPM pacific section. Pacific Coast paleogeography syw. 1, 1. 181-215.

Prohdehl, C., 1979, Crustal structure of the western United States: D.S. Geol. Surv. prof. paper 1034, 74 p .

Ramsay, J. G., 1962, The geometry of conjugate fold systems. Geol. Mag., y. 99, 2. 516-526.

Ramsay, J. G., 1967, Folding and fracturing of rocks. New York, McGraw Eill Book Co., 568 p .

Ramsay, J. G. and Graham, R. H., 1970, Strain variation in shear belts. Canadian Jour. Earth Sci. y. 7, R. 786-813.

Ramsay, J. G. and Hood, D. S., 1973, The geometric effects of volume change during deformation processes. Tectonophysics, v . 16 , p . 263-277.

Ramsay, D. M., 1979, Analysis of rotation of folds during progressive deformation. GSA Bull. , y. 90, p. 732-738.
Rhodes, S. and Gayer, Z. A., 1977, Moncylinderical folds, linear structures in the \mathbb{X}-direction and mylonite developed during translation of the Caledonian Ralak Nappe Complex of Finmark. Geol. Mas., y. 114, 2. 329-341.

Roberta, R. J., 1951, Geology of the Antler Peak Quadrangle, Nevada: U.S. Geol. Surv. Geol. Quad. Map GQ-10, scale 1:62,500.

Roberts, R. J., Zotz, P. R., Gilluly, J., and Ferguson, H. G., 1958, Paleozoic rocks of north-central Nevada: AAPG Bul., y. 42, 2.28132857.

Roberts, D., 1971, Stress regime and distribution of a conjugate fold system from the Trondhaim region, Central Norway. Tectonophysics, y. 12, P. 155-165.

Robin, P. Y. F., 1977, Determination of geologic strain using randomly oriented strain markers of any shape. Tectomphysics, y . 42, D. T7T16.

Rousell, D. H., 1980, Kink bands in the Onaping Formation, Sudbury Basin, Ontario. Tectonophysics, y. 66, p. 83-97.

Sanderson, D. J., 1973, The development of fold axes oblique to the regional trend. Tectonophysics, y. 16, 2. 55-70.

Scho11, D. W., Von Huene, R., Vallier, T. L., and Howell, D. G., 1980,

Sedimentary masses and concepts about tectonic processes 215 underthrust ocean margins. Geology, y. 8, p. 564-568.

Shimamoto, T. \& Ikeda, Y. 1976. A simple algebraic method for strain estimation from deformed ellipsoidal objects. 1. Basic theory. Tectonophysics, y. 36, 2. 315-337.

Siddans, A. H. B., 1972, Slaty cleavage - A review of research gince 1815. Sarth Sci. Tev., Y. 8, D. 205-232.

Silberling, N. J., 1959, Pre-Tertiary atratigraphy and upper Triassic paleontology of the Union District, Shoshone Mountains, Nevada. U. S. Geol. Surv. prof. Pap. , y. 332, 59p.

Silberling, N. J., and Zoberta, R. Jo, 1962, Pre-Tertiary stratigraphy and structure of northwestern Nevada: GSA Spec. Paper 72, 58p.

Silberling, N. J. 1973, Geologic events during Pemian-Triassic time along the Pacific margin of the United States: Alberta Soc. of Petrol. Geo1. Nem. 2, p. 345-362.

Silberling, N. J., 1975, Age relationships of the Golconda thrust fault, Sonoma Range, north-central Nevada: GSA spec. paper 163, 28 p .
Snyder, W. S., and Brueckner, H. K.: 1983, Tectonic evolution of the Golconda allochthon, Nevada: Problema and perspectives: in Stevens, C. H., Pre-Jurassic rocks in vestern North American suspect terranes: SEPM Pacific section

Speed, R. C., 197la, Permo-Triassic continental margin tectonics in western Nevada: GSA Abs with Prog. V. 3, 2. 199.

Speed, ․ C. C. 1971b, Golconda thruat, western Nevada: regional extent: Geol. Soc. Am. Abs. With prog. Y. 3, 2. 199.

Speed, R. C. and Armstrong, R. L., 1971, $\mathrm{K}-\mathrm{Ar}$ ages of some minerals from igneous rocks of western Nevada. LSochzon West, y. 71-1, p .
$1-8$. 1-8.

Speed, R. C., 1974, Record of continental margin tectonics in the Candelaria Fm., Nevada. GSA Abs with Prog., Y. 6, 2. 259.

Speed, R. C, and McKee, E. H., 1976, Age and origin of the Darrough Felsite, southern Toiyabe Range, Nevada: U.S. Geol. Sury. Jour. Research, v. 4, p. 75-81.

Speed, R. C., 1977a, An appraisal of the Pablo Formation of presumed Paleozoic age, central Nevada. In Stewart, J. H., Stevens, C. H., and Eritsche, A. E., eds., Paleozoic paleogeography of the western United States: SEPM Pacific section. Pacific paleogeography Sym. 1 ,

Speed,
lat Ste
of

and
C.
west
geos
Speed,
eari
Howe
of pale

Speed, Stat

Speed, ary logis

Speed, catio

Speed, basin

Speed. R
Prese
mian
Nevad
Speed, R weste,

Speed, R. I. Che

Stanley, turbid
ment i
lin, 287-34
p. 315-324.

Speed, R. C., 1977b, Islandmarc and other paleogeographic terranes of late paleozoic age in the western Great Basin. In Stewart, J. H., Stevens, C. H., and Fritsche, A. E., eds., Paleozoic paleogeography of the western United States: SEPM Pacific section, Pacific coast paleogeography sym. 1, p. 349-362.

Speed, R. C., MacMillan, J. R., Poole, F. G., and Kleinhampl, F. J., 1977, Diablo Formation, central western Nevada: composite of deep and shallow water upper Paleozoic rocks. In Stewart, J. H., Stevens, C. H., and Fritsche, A. E., eds., Palozoic paleogeography of the western United States: SEPM Pacific gection. Pacific coast paleogeography sym. 1, R. 301-314.

Speed, R. C. 1978, Paleogeographic and plate tectonic evolution of the early Hesozoic marine province of the western Great Basin. In Howel1, D. G., and McDougall, X. A., eds., Hesozoic paleogeography of the western United States: SEPM Pacific section. pacific coast paleogeography Sym. 2, 2. 253-270.

Speed, R. C., 1979, Collided Paleozoic microplate in the western United States: jour. of Geology, y. 87, 2. 279-292.
Speed, R. C., 1981, Geology of Jarbados: implications for an accretionary origin. Oceanologica Acta, 26th Congress International de Geologie, Paris., P. 259-265.

Speed, R. C., and Larue, D. K., 1982, Barbados: Architecture and implications for accretion. Jour. of Geophys. Res. y. 87, 2. 3633-3643.
Speed, R. C., and Sleep, N. H., 1982, Antler orogeny and foreland basin: A model: GSA Bull., V. 93, 上. 815-828.
Speed. R. C., 1982, Tectonic history of the Sonoma orogeny Nevada. Presented at the Sonoma Penrose Conference" Sonoma orogeny and Permian to Triassic tectonism in western North America" Winnemucca, Nevada.

Speed, R. C., 1982b, Evolution of the sialic margin in the central western United States: AAPG Hemoir, Hedberg vol. 34, p. 457-468.

Speed, R. C., 1983b, Structure of the accretionary complex of Barbados, I. Chalky Mount. GSA BulL., Y. 94, p. 92-116.

Stanley, D. L. and Unrug, R., 1972, Submarine channel deposits, fluxoturbidites and other indicators of slope and base-of-slope environment in modern an ancient marine basins. In: Rigby, W. K. and Hamblin, W. K. eds. Recognition of ancient sedimentary environment, P. 287-340. SEPM Spec. Pub. y. 16, Tulga.

Stewart, J. H., 1972, Initial deposits of the Cordilleran geosyncline: evidence of a late Precambrian ($850 \mathrm{~m} . \mathrm{y}$.) continental separation: GSA Bul1., y. 83, ․ . $1345-1360$.

Stewart, J. H., and Poole, F. G., 1974, Lower Paleozoic and uppermost Precambrian Cordilleran miogeocline, Great Basin, western United States. In Dickenon, W. R., ed., Tectonics and sedimentation: SEPM spec. pub. 22, p. 27-57.

Stewart, J. H., MacMillan, J. R., Nichols, R. M., and Stevens, C. H., 1977, Deep-water upper Paleozoic rocks in north-central Nevada- A study of the type area of the Havallah Formation. In Stewart, J. H., Stevens, C. H., and Fritsche, A. E., eds., Paleozoic paleogeography of the western United States: SEPM Pacific section. Pacific coast paleogeography sym. 1, p. 337-347.

Stewart, J. H., and Carlson, J. E., 1978, Geologic map of Nevada. U.S. Geo1. Surv. and Mevada Bur. of Mines and Geol. Scale 1: 500,000.

Tobisch, O. T. and Fiske, R. S., 1976, Significance of conjugate folds and crenulations in the central Sierra Nevada, California. GSA Bull. : ․ . 87, D. 1411-1420.

Tobisch, O. T., Fiske, R. S., Sacks, S. \& Taniguchi, D., 1977, Strain in metamorphosed volcaniclastic rocks and its bearing on the evolution of orogenic belts. GSA Bull., Y. 88, 2. 23-40.
Tullis, T. B., and Wood, D. S., 1975, Correlation of finite strain from both reduction bodies and preferred orientation of mica in slates from Wales. GSA Bul1., V. 86, 2. 632-638.

Turner, F. J. and Weiss, L. E., 1963, Structural Analysis of Hetamorphic Tectomites. New York, McGraw Eil1, 545p.

Ferbeek, E. R., 1978, Kink bands in the Somport slates, west central Pyrenees, France and Spain. GSA Bul1., 叉. 89, p. 814-824.
Von Huene, R. and Lee, ${ }^{\text {F. M., }}$, 1982, The possible significance of pore fluid pressures in subduction zones. In: Watkins, J. S. and Drake, C. L., eds. Studies in contimental margin geology. AAPG Mem, v. 34. 2. 781-791.

Walker, R. G. and Mutti, E., 1973, Turbidite facies and facies associations. In: Turbidites ad deep water sedimentation, p- 119-157. SEPM Pacific Section, Short course, Anaheim.

Walker, R. G., 1975, Generalized facies models for resedimented conglomerates of turbidite association, GSA gull., ․ 85, Q. 737748 .
ran geosyncline: ental separation:
c and uppermost n, western United imentation: SEPM

Steyens, C. H. central Nevada- A n Stewart, J. H., ic paleogeography

Pacific coast
of Nevada. U. S. le 1: $500,000$.
conjugate folds California. GSA
-, 1977, Strain ing on the evolu-
inite strain from of mica in slates
al Anslysis of
g.

3, west central $14-824$.
ficance of pore J. S. and Drake, AAPG Mem, y.
d facies association, p- 119-157.

Eor resedimented ., y. 86, D. 737-

Weiss, L. E., 1988 , Flexural slip folding of foliated model materials. Can. Geol. Surv. Pap. 68-52, 2. 294-359.

Weiss, L. E., 1980, Nucleation and growth of kink bands. Tectonophysics, Y. 65, D. 1-38.
Wenner, D. B. and Taylor, H. P., Jr., 1971, Temperatures of serpentinization of ultramafic rocks based on $0^{18} / 0^{26}$ fractionation between coexisting serpentine and magnetite. Cont. Mineral. Petrol., y. 32, p. 165-185.

Williams, P. F., 1976, Relationships between axial plane foliations and strain. Tectonophysics, v. 30, 2. 181-196.

Williams, P. F., 1977, Foliation: A review and discussion. Tectonophy= gics, Y. 39, 2. 305-328.

Wood, D. S., 1974, Current views of the development of slaty cleavage. Ann. Rev. Earth and Planetary Science, Y. 2, 2. 1-37.

Yoder, H. S., Jr., 1967, Spilites and serpentinites. Carnegie Inst. HBshington Yeax Book, y. 65, 2. 269-279.

The two dimensional strain methods used in this study are divided into two groups: I and I. These methods are described briefly in the following paragraphs and are informally referred to by letters A through H.

GROUP I

Method A - (Slope method)
This method (Cloos, 1947, 1971; Ramsay, 1967) assumes that strain markers were initially spherical and is extended for the case of non-spherical grains by Mukhopadhyay (1973). If grains have an original axial ratio of 1 , their axial ratio after strain reflects finite strain assuming that their ductility is the same as the matrix and that the strain is homogeneous, that is, amount and direction of strain are the same at every point of the rock. To determine whether grains in a deformed rock come from the same population of initial axial ratio, Mukhopadhyay (1973) used linear correlation of the long and short axis of the grains and defined, r, the coefficient of goodness of linear correlation (Krumbein and Graybill, 1965) (Eqn. 1),

$$
\begin{equation*}
r=\Sigma X_{i} Y_{i} / \sqrt{ }\left(\Sigma X_{i}^{2}\right)\left(\Sigma Y_{i}^{2}\right) \tag{1}
\end{equation*}
$$

where X and Y are the short and long axes of the grains. for perfect linear correlation, r is 1. A population of circular and elliptical

ARALYSIS

this study are ds are described ly referred to
assumes that ded for the case grains have an strain reflects e same as the t is, amount and the rock. To a the same popu3) used linear and defined, r, (Rrumbein and (1)
grains vith constant initial axial ratio (Ri) and orientation will after deformation show high values of r but atill less than a because strain is in general inhomogeneous and therefore grains are elongated differently, However, if grains were originally elliptical with different $R i$ and (or) had random initial orientation, r will be low, and will decrease as strain increases (Mukhopadhyay, 1973).

The slope of a best fit line passing through the origin and data points on a long versus short axis plot (e.g. Fig. 3-57) will estimate the axial ratio of strain ellipse only if grains were initially circular and deformed homogeneously. Because grains have finite dimensions and can not attain zero length, the best fit line can not have an intercept. Equation 2 (Xrumbein and Graybill, 1965; Kukhopadhyay, 1973) was used to calculate the lope of the best fit line forced to pass through the origin, vhere X and Y are as defined before.

$$
\begin{equation*}
\text { slope }=\Sigma X_{i} Y_{i} / \Sigma X_{i}^{2} \tag{2}
\end{equation*}
$$

Methods B, C, and D - (Methoo of means)
Mechod B (Cioos, 1947, 1971; Ramsay, 1967; Lisle, 1977b; Hossack, 1969) assumes that grains had an original sircular section and measures the arithmetic mean according to Equation 3 , where $R E$ is the final axial ratio of the long and short axes of grains. Because the initial axial ratio and orientation (Ri and θ) of the grains are not included in chis calculation, the arithmetic mean is an imprecise estimate of strain axial ratio unless grains were originally
circular and deformed homogeneously. Its validity for such an estimation is challenged in cases where initial eccentricity of the grains is unknown (Ramsay, 1967, p. 214; Lisle, 1977b).

Methods C and D use geometric and hamonic means of the grain axial ratios according to Equation 4 and 5 , respectively, to estim mate Rs.

$$
\begin{align*}
& \text { arithmetic mean }=A=\Sigma R f / N \tag{3}\\
& \text { geometric mean }=G=N / R f_{1} \times R f_{2} \times \ldots \mathrm{NRF} \tag{4}\\
& \text { harmonic mean }=H=\Sigma\left(1 / R f_{i}\right) \tag{5}\\
& \text { (where } N \text { is population of the grains) }
\end{align*}
$$

The harmonic mean (H) was introduced for strain analysis by Lisle (1977b). The value of g is less than that of geometric mean, and both are less than the arithmetic mean.

The three means were tested against Rs through mathematical models by Lisle (1977b). He concluded that no simple mean of final axial ratios will give the strain ellipse, particularly when initial grain axial ratios are high and strain ratio is low. However, he also showed that if grains with moderate initial axial ratios (between 1 and 4) and with no preferred orientation are intensely but homogeneously strained, good estimate of strain ratio can be obtained from the harmonic mean of their axial ratios. He indicated further that the arithmetic mean of $R f$ is of little value for estimation of strain axial ratio because it is strongly dependent on initial shapes of the grains.

The methods of this group use axial ratio (RF $=$ long/short) and the angle between the long axis of grains and a reference line (δ). The reference line is usually the trace of cleavage on the sections where strain is measured. They use algebraic, graphic, and statistical procedures and take into consideration the factors that control the final shape of the grains as discussed in Chapter 3 (theory of strain) and therefore provide a better estimate of shape and orientation of two dimensional strain ellipse. Brief description of each of these methods is as follows:

Method E - (Method of Shimamoto and Ikeda, 1976)
This method assumes that initially randomly oriented ellipsoidal grains deform homogeneously with their matrix and is degigned both for two and three dimensional strain analyses of which only the two dimensional part is discussed here.

The matrix representation of the strain ellipse is shown in Equation 6.

$$
\left(\begin{array}{ll}
\mathrm{X} & \mathrm{Y}
\end{array}\right)\left(\begin{array}{ll}
\overline{\mathrm{f}} & \overline{\mathrm{~h}} \tag{6}\\
\overline{\mathrm{~h}} & \overline{\mathrm{~g}}
\end{array}\right)\binom{\mathrm{X}}{\mathrm{Y}}=1
$$

This is a symerric matrix and is called average final shape matrix (Shimamoto and Ikeda, 1976). The two measurable parameters, $R f$ and ϕ, are used to calculate the components of this matrix using Equations 7 through 12.

$$
\begin{align*}
& f_{i}=1 / R f_{i} \cos \varphi_{i}^{2}+R f_{i} \sin \phi_{i}^{2} \tag{7}\\
& g_{i}=1 / R f_{i} \sin \phi_{i}^{2}+R f_{i} \operatorname{cos\phi _{i}^{2}} \tag{8}\\
& h_{i}=\left(1 /\left(\left(1 / R f_{i}\right)-R f_{i}\right)\right) \sin \phi_{i} \cos \phi_{i} \tag{9}\\
& \bar{f}=1 / N \Sigma f_{i} \tag{10}\\
& \bar{g}=1 / N \Sigma g_{i} \tag{i1}\\
& \bar{h}=1 / N \Sigma h_{i} \tag{12}
\end{align*}
$$

The principal axes of the strain ellipse are eigenvalues (λ) of the average final shape factor tatrix and should satiafy the characteristic equation 13.

$$
\left|\begin{array}{lr}
\bar{f}-\lambda_{1} & \bar{h} \tag{13}\\
\bar{h} & \bar{g}-\lambda_{2}
\end{array}\right|=0
$$

Equation 13 can be diagonalized and solved for its two solutions; $\lambda 1$ and $\lambda 2$. The length of the principal axes of the strain ellipse are $1 / \sqrt{\lambda 1}$ and $1 / \sqrt{\lambda 2}$. The principal direction θ is found by Equation 14.

$$
\begin{equation*}
\tan 2 \theta=\bar{f}-\bar{g} \tag{14}
\end{equation*}
$$

Method E-(Polax graph method of Elliott, 1970)
This method does not assume an initial random distribution of the elliptical grains and makes it possible to establish initial distribution solely by examining the deformed distribution on a
polar graph fithout information on the axial ratio or orientation of the strain ellipse.

Size and orientation of each deformed grain is plotted on polar coordinates with radius vector as a natural logarithof the axial ratio (\mathcal{E}) and polar angle as the double of the long axis orientation (2§). N, the grain population, is chosen during measurement such that a pattern (elliptical, heart-shaped, delta-shaped, point maxima, etc.) emerges on the polar graph. The pattern is indicative of initial preferred orientstion of the graing. For example, deltaand heart-shaped distributions indicate an original unimodal preferred orientation and an elliptical shape is a result of deforming an initial random distribution. Once the shape of the distribution if spparent, it is contoured preferably by the method of Mellis (Turner and Weiss, 1963). To determine the strain ellipse, we need to locate a point on the polar graph that was initially sircular (ICP) (Elliott, 1970; Boulter, 1976; Tobisch and others, 1977). For delta pattern, ICP is at the intersection of the dissector and base of the pattern. ICP is located at the center of elliptical pattern. Uncertainties for locating the ICP are discussed by Boulter (1976). ICP represents the strain ellipse on the polar graph for which $\varepsilon_{f}=$. Es. Orientation of the strain ellipse can be directly read from the reference line on the polar graph using half the polar angle.

Method E1 - (Tobisch and others, 1977)
This method adopts a statistical procedure to calculate the
center of the distribution on a polar graph (method f) of Elliott (1970) by first converting the polar coordinstes of all the grains into Cartesian coordinates using Equations 15 through 17. In this method, it is not necessary to identify the pattern or determine the ICP. After plotting all the points on a polar graph by their X and Y Cartesian coordinates, the center of the distribution is calculated by averaging the x coordinates (Eqn. 18). The distance in e units from this point to the origin of the plot is equal to es, from which Rs can be determined using Equation 19.

$$
\begin{align*}
\varepsilon f_{i} & =0.5 \ln R f_{i} \tag{15}\\
X_{i} & =\varepsilon f_{i} \cos \phi_{i}^{2} \tag{16}\\
Y_{i} & =\varepsilon f_{i} \sin \phi_{i}^{2} \tag{i7}\\
\varepsilon_{s} & =\Sigma X_{i} / N \tag{18}\\
R s & =e^{\left(2 \varepsilon_{s}\right)} \tag{19}
\end{align*}
$$

The statistical way of finding the center of the distribution discussed above leads to a consistent overestimation of strain ratio for the following resson. Holst ($1982, p, 341$) indicated that ICP on elliptical patterns of polar graphs, representing deformation of grains with initially different axial ratio and circular pattern on polar graph, lies to the left of the center of the elliptical distribution calculated by the method of Tobisch and other (1977). Therefore, the distance of the statistical center to the origin of the polar graph in e units is larger than the distance of actual $I C$? from the origin, leading to an overestimation of $e s$ and therefore strain axisl ratio.

This procedure is essentially that of Elliott (1970) and Tooisch and others (1977). Holst (1982) showed that the percent of the overestimation of strain axial ratio, using statistical methods discussed above, increases with increasing Rs, but at a decreasing rate. To compensate for the error cauged by this effect, he provides an empirical factor, F, that ranges between 0.87 and 1.00 . Rs calculated by method Fl can be multiplied by an appropriate value of F, that can directly be read from his Figure 7, to provide an accurate measure of two dimensional strain.

Method G - (Method of Robin, 1977)
This method employs strain markers of any shape and assumes that they were initially randomly oriented and strained homogeneOusly. Robin (1977) presented a technique to calculate strain ratio in a section that contains grains with various outlines. The procedure for this general case is not considered here because the grains used in this study are elliptical in shape. However, he provided Equations 20 and 21 below to calculate strain ratio ($\sqrt{ } \lambda_{1} / \sqrt{ } \lambda_{3}$) using Rf and of olliptical grains.

$$
\begin{align*}
& a_{i} / c_{i}=\left(\left(\tan \phi_{i}^{2}+R f_{i}^{2}\right) /\left(R f_{i}^{2} \tan \phi_{i}^{2}+1\right)\right)^{0.5} \tag{20}\\
& R s=e
\end{align*}
$$

This method is straightforward and more objective than the graphic or statistical methods, and yields unique results which, although
calculated in an independent way, are close to those of Shimamoto and Ikeda method.

Method 프 (Method of Lisie, 1977b; Peach and Lisle, 1979)
The oxiginal Rf/o method, first described by Ramsay (1967) and developed by Dunnet (1969) and Dunnet and Sidans (1971), requires that $R f$ and ϕ of all the grains be plotted on a semi-logarithmic graph. The plot is then compared to a get of theoretical curves (Eqn. 3-16 of Dunnet, 1969) (Equation 3-5) for different values of Rs and Ri. The best fit library curves of Ra and Ri are taken as the representative of the axial strain ratio and the initial axial ratios of the grains, respestively (e.g. Fig. 3-60). No restriction on the initial axial ratio (Ri) of grains is present in this method. However, grains are assumed to be initially elliptical with random orientation that deformed homogeneously.

Lisle (1977b) and Peach and Lisle (1979) improved this method by plotting curves of equal initial axial orientation (θ) on the Bf/ $/$ graphs, Rs is determined by comparing the distribution of the grains on the Rf/ $\$$ plot with theoretical curves as described above except that the best fit is selected by the Chi-Square test. This fit is more reliable and objective. To do the test, the barmonic mean is first calculated and an incremental coaxial reciprocal strain with its long axis perpendicular to the vector mean of ϕ is applied using Rs values between $\mathrm{G}+0.6$ and $\mathrm{H}-2.0$ in increments of 0.05 . The Rs which produces the most uniform distribution on the basis of the Chi-Square test is taken as the representative of

APPENDIX II ~ METHOD OF THREE-DYRENSIONAL STRAIN

 ANALYSIS (RAMSAY, 1967, P. 80)
Abstract

This method is designed for three-dimensional strain analysis in cases where the quadratic elongations of three lines and the angles between them are known. For this study, the three lines are the intersections of the three thin sections with the cleavage. The quadratic elongations are determined from the two-dimensional strain analysis.

Details of this method are described in progressive steps in the following paragraphs. At the end, and example, using specimen f 16 is provided.

1- Define lines i, j, and k parallel to the three intersections of cleavage wich thin section b, c, and d, respectively. These are parallel to $\lambda_{\mathrm{Ib}}^{*}, \lambda_{1 \mathrm{c}}^{*}$, and $\lambda_{\mathrm{ld}}^{*}$.

2- Measure angles α, β, and γ between these lines on the stereonet, where $\alpha=i<j, \beta=j<k$, and $\gamma=i<k$ 。

3- Draw triangle ÁBC' (deformed state) of arbitrary size, sides of which are chosen parallel to i, j, and k with their correst angular relationship (Figure APP-1).

4- Calculate the original length of the sides of this triangle (i.e. $A B, B C$, and $A C$) using their corresponding quadratic elongations (λ_{1}^{*}) and final lengths ($A^{\prime} B^{\prime}, B^{\prime} C^{\prime}$, and $A ́ C$) using the following relation-
in analysis ines and the lines are leavage. The ional strain e steps in g specimen \ddagger sections of y. These are
stereonet, ides of which angular rela-
angle (i.e.
gations λ_{1}^{*}
ng relation-

5- Draw triangle $A B C$ and plot perpendicular lines (EF, BF, and DF) to its sides at points E, F, and D. Use the proportionality of the two triangles (e.g. ÁD/ $A_{B}^{\prime}=A D / D B$) and locate points D^{\prime}, ε, and F^{\prime} on triangle $A^{\prime \prime} C^{\prime}$ (figure APP-1).

6- Draw perpendicuiar lines to the sides of triangle A'BC at points D^{\prime}, E, and P^{\prime}. Find the angle ψ (angular shear) between each line and lines of $\mathrm{DF}^{\prime}, \mathrm{BF}^{\prime}$, and $\mathrm{EF}^{\prime \prime}$. ψ_{i}, ψ_{j}, and ψk correspond to the angular shears of lines i, j, and k, respectively. ψ is positive if an arrow connecting the perpendicular line and each of the lines 'fr, BF ', and ${ }^{\prime \prime} \mathcal{E F}^{\prime}$ is clockwise (Figure APP-1b)

7- Having the quadratic elongations and angulat shears for i, j, and k, calculate y, λ^{\prime}, and y^{\prime} for these lines using the following relationships:

$$
y=\tan \psi, \lambda^{\prime}=1 / \lambda, \quad y^{\prime}=y / \lambda
$$

8- On an orthogonal coordinate system of λ^{\prime} and y^{\prime}, plot lines i, j, and k as points P_{i}, p_{j}, and P_{k} with the following coordinates:

$$
p_{i}\left(\lambda^{\prime}{ }_{i}, y_{i}^{\prime}\right), P_{j}\left(\lambda_{j}^{\prime}, y_{j}^{\prime}\right), P_{k}\left(\lambda k, y_{k}^{\prime}\right)
$$

9- Draw the Mohr Circle passing through the three points and find its

10- Check the angles $P_{i} c P_{j}, P_{j} c P_{k}$, and $P_{i} c P_{k}$. These should be equal to $2 \alpha, 2 \beta$, and 2γ, respectively.

11- Find the intersections of the circle and the λ axis. These are $\lambda^{\prime} 1$ and $\lambda^{\prime} 2$ ($\grave{\lambda}_{1}$ (λ_{2}), or values of the reciprocal quadratic elongations on cleavage.

12- Read the angles subtended between \hat{d} and lines i, j, and k (2 i, $20 j$, and 20 k$)$. θi is the angle between the principal axis of the longitudinal strain and line i for example. Draw these angles on triangle ÁB'́ as well as on the stereonet. These constrain the direction of X and therefore X on the cleavage (Figure APP-1b and APP-2).

13-Calculate $\dot{\lambda}_{1}$ and λ_{2}, hence X and Y and their ratio X / Y on the cleavage using the following relationships:

$$
\lambda_{1}=1 / \lambda_{1}^{\prime}, \lambda_{2}=1 / \lambda_{2}^{\prime}, \quad X=\sqrt{ } \lambda_{1} \quad, \quad Y=\sqrt{ } \lambda_{2}
$$

uld be equal to
. These are $\lambda^{\prime} 1$
uadratic elonga-
and $k<2 \theta i$, ipal axis of the hese angles on train the direc-$P-1 b$ and $A P P-2)$.

The steps used in this exanple correspond to the ones in Appendix II.

Step 1: (from 2D strain analysis)

$$
\begin{aligned}
& \lambda_{i}^{*}=\lambda_{1 b}^{*}=6.1504 \\
& \lambda_{j}^{*}=\lambda_{1 c}^{*}=7.3984 \\
& \lambda_{k}^{*}=\lambda_{1 d}^{*}=5.0625
\end{aligned}
$$

$$
\lambda_{j}^{*}=\lambda_{1 c}^{*}=7.3984 \quad \begin{aligned}
& \text { where, } b, c, \& d \text { refer to thin } \\
& \text { sections. }
\end{aligned}
$$

Step 2: (from Fig. 3-49, specimen OS16)

$$
\begin{aligned}
& \alpha=90^{\circ} \\
& \beta=46^{\circ} \\
& \gamma=44^{\circ}
\end{aligned}
$$

Step 3: (see Fig. 1a)
Step 4:

Scep 5: (see Fig. 1b)

$$
\begin{aligned}
& A B=\stackrel{\prime}{A B} / V^{\prime} \lambda_{i}^{*}=10 / \sqrt{6.1504}=4.032 \\
& B C={ }^{1 \prime} B C / \gamma \lambda_{j}^{*}=10.3 / \sqrt{7} .3984=3.79 \\
& A C=\stackrel{\prime}{A C} / \sqrt{\lambda_{k}^{*}}=14.4 / \sqrt{5} .0625=6.4
\end{aligned}
$$

Step 7:

$\psi_{i}=+17^{\circ}$	$\psi_{j}=-20^{\circ}$	$\psi_{k}=-4.7^{\circ}$
$Y_{i}=0.305$	$\gamma_{j}=-0.36$	$\gamma_{k}=-0.82$
$\lambda_{i}=6.1504$	$\lambda_{j}^{\prime}=7.3984$	$\hat{\lambda}_{k}^{\prime}=5.0625$
$\hat{\lambda}_{i}^{\prime}=0.162$	$\lambda_{j}^{\prime}=0.135$	$\lambda_{k}^{\prime}=0.197$
$\gamma_{i}^{\prime}=0.049$	$\gamma_{j}^{\prime}=-0.049$	$\gamma_{k}^{\prime}=-0.017$

Step 8: (see Fig. 2)
The coordinates of the points i, j, and k on the Mohr circle are:
pi(0.162,0.049)
pj $(0.135,-0.049)$
pk $(0.197,-0.016)$
step 9: (sec Fig. 2)

Step 10:
The angle picpj $\simeq 180 \simeq 2 \alpha$
The angle picpk $\simeq 92.5 \simeq 23$
(see step 2 for α, β, γ)
The angle pjcpk $\simeq 87 \simeq 2 \gamma$
Step 11: (see Fig. 2)
$\lambda_{1}^{\prime}=0.098$
$\lambda_{2}^{\prime}=0.199$

Step 12:

$$
\begin{aligned}
& 2 \theta_{i}=105^{\circ} \quad \therefore \quad \hat{\theta}_{i}=52.5^{\circ} \\
& 2 \theta_{j}=-75^{\circ} \quad \therefore \quad \theta_{j}=-37.5^{\circ} \\
& 2 \theta_{k}=-161 \quad \therefore \quad \theta_{k}=-80.5^{\circ}
\end{aligned}
$$

Step 13:

$$
\begin{aligned}
& \lambda_{1}=1 / 0.098=10.2 \quad \therefore \quad X=3.19 \\
& \lambda_{2}=1 / 0.199=5.02 \quad \therefore \quad Y=2.24
\end{aligned}
$$

(b)

Figure APP-1. Triangle construction of three-dimensional method of strain analysis.

Hame: H
Place 0
Date of
EDUCAXIO
PhD, Aug
Ms, Jun
Bs, Jun
Publicat
Babaie,
probls
Pub.
Babsie,
yabe
Orogen
Winnem
-mー--",
Go1co
15, p .
Babaie, H
folds
Submit
Babaie, H
using
Submit
Babaie, conda
graphid
conda

Name: Has san Ali Babaie
Place of birth: Khorramshahr, Iran
Date of birth: June 22, 1951
EDUCATION
PhD, August, 1984, Northwestern University, Evanston Illinois.
Ms, June, 1980, Northwestern University, Evanston, Illinois.
Bs, June, 1973, Pahlavi University, Shiraz, Iran.

Publications

Babaie, . A., 1973, The Ophiolite belt near Neyriz and the radiolarite problem. 1. Earth and Space Physic3, y. 2, 2. 20-26, Tehran Univ. pub.

Babaie, Z. A., 1982, Tectonic fabric of the Golconda allochthon, Toiysbe Range, Nevada. Presented at the Penrose Conference "Sonoma Orogeny and Permian to Triassic tectonism in western North America", Winnemucca, Nevada.
--m, and R. C. Speed, 1983, Significance of tectonic fabric of the Golconda allochthon in Toiyabe Range, Nevada. GSA Abs with Prog. v. 15, D. 382.

Babaie, H. A. and Speed, R. C., 1984, Tectonic significance of kink folds in the Golconda allochthon, southern Toiyabe Range, Nevada. Submitted to the GSA Bull.

Babaie, H. A., 1984, A comparison of two dimensional strain methods using elliptical quartz grains in slate and foliated sandstone. Submitted to Jour. of Struc. Geol.

Babaie, H. A. and Speed, R. C., 1984, Tectonostratigraphy of the Golconda allochthon in the southern Toiyabe Range, Nevada: Paleogeographic implications. Under review.
--m---, Kinematic interpretation of the tectonic fabrics in the Golconda allochthon, southern Toiyabe Range, Nevada. Under review.

[^0]: 1 Geologic map of the Golconda allochthon in the southern Toiyabe Range, Nevada

[^1]: Figure 326 . Orientation and a picture of the intersecting kinks in domain 76

[^2]: Figure 3-54. Map showing the location and number of oriented specimens for strain analysis.

